doc-src/TutorialI/Recdef/termination.thy
author nipkow
Fri, 28 Jul 2000 16:02:51 +0200
changeset 9458 c613cd06d5cf
parent 8771 026f37a86ea7
child 9792 bbefb6ce5cb2
permissions -rw-r--r--
apply. -> by
nipkow@8745
     1
(*<*)
nipkow@8745
     2
theory termination = Main:;
nipkow@8745
     3
(*>*)
nipkow@8745
     4
nipkow@8745
     5
text{*
nipkow@8745
     6
When a function is defined via \isacommand{recdef}, Isabelle tries to prove
nipkow@8745
     7
its termination with the help of the user-supplied measure.  All of the above
nipkow@8745
     8
examples are simple enough that Isabelle can prove automatically that the
nipkow@8771
     9
measure of the argument goes down in each recursive call. As a result,
nipkow@8771
    10
\isa{$f$.simps} will contain the defining equations (or variants derived from
nipkow@8745
    11
them) as theorems. For example, look (via \isacommand{thm}) at
nipkow@8745
    12
\isa{sep.simps} and \isa{sep1.simps} to see that they define the same
nipkow@8745
    13
function. What is more, those equations are automatically declared as
nipkow@8745
    14
simplification rules.
nipkow@8745
    15
nipkow@8745
    16
In general, Isabelle may not be able to prove all termination condition
nipkow@8745
    17
(there is one for each recursive call) automatically. For example,
nipkow@8745
    18
termination of the following artificial function
nipkow@8745
    19
*}
nipkow@8745
    20
nipkow@8745
    21
consts f :: "nat*nat \\<Rightarrow> nat";
nipkow@8745
    22
recdef f "measure(\\<lambda>(x,y). x-y)"
nipkow@8745
    23
  "f(x,y) = (if x \\<le> y then x else f(x,y+1))";
nipkow@8745
    24
nipkow@8745
    25
text{*\noindent
nipkow@8745
    26
is not proved automatically (although maybe it should be). Isabelle prints a
nipkow@8745
    27
kind of error message showing you what it was unable to prove. You will then
nipkow@8745
    28
have to prove it as a separate lemma before you attempt the definition
nipkow@8745
    29
of your function once more. In our case the required lemma is the obvious one:
nipkow@8745
    30
*}
nipkow@8745
    31
nipkow@8745
    32
lemma termi_lem[simp]: "\\<not> x \\<le> y \\<Longrightarrow> x - Suc y < x - y";
nipkow@8745
    33
nipkow@8745
    34
txt{*\noindent
nipkow@8745
    35
It was not proved automatically because of the special nature of \isa{-}
nipkow@8745
    36
on \isa{nat}. This requires more arithmetic than is tried by default:
nipkow@8745
    37
*}
nipkow@8745
    38
nipkow@9458
    39
by(arith);
nipkow@8745
    40
nipkow@8745
    41
text{*\noindent
nipkow@8771
    42
Because \isacommand{recdef}'s termination prover involves simplification,
nipkow@8771
    43
we have turned our lemma into a simplification rule. Therefore our second
nipkow@8745
    44
attempt to define our function will automatically take it into account:
nipkow@8745
    45
*}
nipkow@8745
    46
nipkow@8745
    47
consts g :: "nat*nat \\<Rightarrow> nat";
nipkow@8745
    48
recdef g "measure(\\<lambda>(x,y). x-y)"
nipkow@8745
    49
  "g(x,y) = (if x \\<le> y then x else g(x,y+1))";
nipkow@8745
    50
nipkow@8745
    51
text{*\noindent
nipkow@8745
    52
This time everything works fine. Now \isa{g.simps} contains precisely the
nipkow@8745
    53
stated recursion equation for \isa{g} and they are simplification
nipkow@8745
    54
rules. Thus we can automatically prove
nipkow@8745
    55
*}
nipkow@8745
    56
nipkow@8745
    57
theorem wow: "g(1,0) = g(1,1)";
nipkow@9458
    58
by(simp);
nipkow@8745
    59
nipkow@8745
    60
text{*\noindent
nipkow@8745
    61
More exciting theorems require induction, which is discussed below.
nipkow@8745
    62
nipkow@8745
    63
Because lemma \isa{termi_lem} above was only turned into a
nipkow@8745
    64
simplification rule for the sake of the termination proof, we may want to
nipkow@8745
    65
disable it again:
nipkow@8745
    66
*}
nipkow@8745
    67
nipkow@8745
    68
lemmas [simp del] = termi_lem;
nipkow@8745
    69
nipkow@8745
    70
text{*
nipkow@8745
    71
The attentive reader may wonder why we chose to call our function \isa{g}
nipkow@8745
    72
rather than \isa{f} the second time around. The reason is that, despite
nipkow@8745
    73
the failed termination proof, the definition of \isa{f} did not
nipkow@8745
    74
fail (and thus we could not define it a second time). However, all theorems
nipkow@8745
    75
about \isa{f}, for example \isa{f.simps}, carry as a precondition the
nipkow@8745
    76
unproved termination condition. Moreover, the theorems \isa{f.simps} are
nipkow@8745
    77
not simplification rules. However, this mechanism allows a delayed proof of
nipkow@8745
    78
termination: instead of proving \isa{termi_lem} up front, we could prove
nipkow@8745
    79
it later on and then use it to remove the preconditions from the theorems
nipkow@8745
    80
about \isa{f}. In most cases this is more cumbersome than proving things
nipkow@8745
    81
up front
nipkow@8745
    82
%FIXME, with one exception: nested recursion.
nipkow@8745
    83
nipkow@8745
    84
Although all the above examples employ measure functions, \isacommand{recdef}
nipkow@8745
    85
allows arbitrary wellfounded relations. For example, termination of
nipkow@8745
    86
Ackermann's function requires the lexicographic product \isa{<*lex*>}:
nipkow@8745
    87
*}
nipkow@8745
    88
nipkow@8745
    89
consts ack :: "nat*nat \\<Rightarrow> nat";
nipkow@8745
    90
recdef ack "measure(%m. m) <*lex*> measure(%n. n)"
nipkow@8745
    91
  "ack(0,n)         = Suc n"
nipkow@8745
    92
  "ack(Suc m,0)     = ack(m, 1)"
nipkow@8745
    93
  "ack(Suc m,Suc n) = ack(m,ack(Suc m,n))";
nipkow@8745
    94
nipkow@8745
    95
text{*\noindent
nipkow@8745
    96
For details see the manual~\cite{isabelle-HOL} and the examples in the
nipkow@8745
    97
library.
nipkow@8745
    98
*}
nipkow@8745
    99
nipkow@8745
   100
(*<*)
nipkow@8745
   101
end
nipkow@8745
   102
(*>*)