src/HOL/Library/Lubs_Glbs.thy
author hoelzl
Tue, 05 Nov 2013 09:45:02 +0100
changeset 55715 c4159fe6fa46
parent 52479 src/HOL/Library/Glbs.thy@763c6872bd10
permissions -rw-r--r--
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl@55715
     1
(*  Title:      HOL/Library/Lubs_Glbs.thy
hoelzl@55715
     2
    Author:     Jacques D. Fleuriot, University of Cambridge
hoelzl@55715
     3
    Author:     Amine Chaieb, University of Cambridge *)
chaieb@29775
     4
hoelzl@55715
     5
header {* Definitions of Least Upper Bounds and Greatest Lower Bounds *}
chaieb@29775
     6
hoelzl@55715
     7
theory Lubs_Glbs
hoelzl@55715
     8
imports Complex_Main
chaieb@29775
     9
begin
chaieb@29775
    10
hoelzl@55715
    11
text {* Thanks to suggestions by James Margetson *}
hoelzl@55715
    12
hoelzl@55715
    13
definition setle :: "'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"  (infixl "*<=" 70)
hoelzl@55715
    14
  where "S *<= x = (ALL y: S. y \<le> x)"
hoelzl@55715
    15
hoelzl@55715
    16
definition setge :: "'a::ord \<Rightarrow> 'a set \<Rightarrow> bool"  (infixl "<=*" 70)
hoelzl@55715
    17
  where "x <=* S = (ALL y: S. x \<le> y)"
hoelzl@55715
    18
hoelzl@55715
    19
hoelzl@55715
    20
subsection {* Rules for the Relations @{text "*<="} and @{text "<=*"} *}
hoelzl@55715
    21
hoelzl@55715
    22
lemma setleI: "ALL y: S. y \<le> x \<Longrightarrow> S *<= x"
hoelzl@55715
    23
  by (simp add: setle_def)
hoelzl@55715
    24
hoelzl@55715
    25
lemma setleD: "S *<= x \<Longrightarrow> y: S \<Longrightarrow> y \<le> x"
hoelzl@55715
    26
  by (simp add: setle_def)
hoelzl@55715
    27
hoelzl@55715
    28
lemma setgeI: "ALL y: S. x \<le> y \<Longrightarrow> x <=* S"
hoelzl@55715
    29
  by (simp add: setge_def)
hoelzl@55715
    30
hoelzl@55715
    31
lemma setgeD: "x <=* S \<Longrightarrow> y: S \<Longrightarrow> x \<le> y"
hoelzl@55715
    32
  by (simp add: setge_def)
hoelzl@55715
    33
hoelzl@55715
    34
hoelzl@55715
    35
definition leastP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a::ord \<Rightarrow> bool"
hoelzl@55715
    36
  where "leastP P x = (P x \<and> x <=* Collect P)"
hoelzl@55715
    37
hoelzl@55715
    38
definition isUb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
hoelzl@55715
    39
  where "isUb R S x = (S *<= x \<and> x: R)"
hoelzl@55715
    40
hoelzl@55715
    41
definition isLub :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
hoelzl@55715
    42
  where "isLub R S x = leastP (isUb R S) x"
hoelzl@55715
    43
hoelzl@55715
    44
definition ubs :: "'a set \<Rightarrow> 'a::ord set \<Rightarrow> 'a set"
hoelzl@55715
    45
  where "ubs R S = Collect (isUb R S)"
hoelzl@55715
    46
hoelzl@55715
    47
hoelzl@55715
    48
subsection {* Rules about the Operators @{term leastP}, @{term ub} and @{term lub} *}
hoelzl@55715
    49
hoelzl@55715
    50
lemma leastPD1: "leastP P x \<Longrightarrow> P x"
hoelzl@55715
    51
  by (simp add: leastP_def)
hoelzl@55715
    52
hoelzl@55715
    53
lemma leastPD2: "leastP P x \<Longrightarrow> x <=* Collect P"
hoelzl@55715
    54
  by (simp add: leastP_def)
hoelzl@55715
    55
hoelzl@55715
    56
lemma leastPD3: "leastP P x \<Longrightarrow> y: Collect P \<Longrightarrow> x \<le> y"
hoelzl@55715
    57
  by (blast dest!: leastPD2 setgeD)
hoelzl@55715
    58
hoelzl@55715
    59
lemma isLubD1: "isLub R S x \<Longrightarrow> S *<= x"
hoelzl@55715
    60
  by (simp add: isLub_def isUb_def leastP_def)
hoelzl@55715
    61
hoelzl@55715
    62
lemma isLubD1a: "isLub R S x \<Longrightarrow> x: R"
hoelzl@55715
    63
  by (simp add: isLub_def isUb_def leastP_def)
hoelzl@55715
    64
hoelzl@55715
    65
lemma isLub_isUb: "isLub R S x \<Longrightarrow> isUb R S x"
hoelzl@55715
    66
  unfolding isUb_def by (blast dest: isLubD1 isLubD1a)
hoelzl@55715
    67
hoelzl@55715
    68
lemma isLubD2: "isLub R S x \<Longrightarrow> y : S \<Longrightarrow> y \<le> x"
hoelzl@55715
    69
  by (blast dest!: isLubD1 setleD)
hoelzl@55715
    70
hoelzl@55715
    71
lemma isLubD3: "isLub R S x \<Longrightarrow> leastP (isUb R S) x"
hoelzl@55715
    72
  by (simp add: isLub_def)
hoelzl@55715
    73
hoelzl@55715
    74
lemma isLubI1: "leastP(isUb R S) x \<Longrightarrow> isLub R S x"
hoelzl@55715
    75
  by (simp add: isLub_def)
hoelzl@55715
    76
hoelzl@55715
    77
lemma isLubI2: "isUb R S x \<Longrightarrow> x <=* Collect (isUb R S) \<Longrightarrow> isLub R S x"
hoelzl@55715
    78
  by (simp add: isLub_def leastP_def)
hoelzl@55715
    79
hoelzl@55715
    80
lemma isUbD: "isUb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<le> x"
hoelzl@55715
    81
  by (simp add: isUb_def setle_def)
hoelzl@55715
    82
hoelzl@55715
    83
lemma isUbD2: "isUb R S x \<Longrightarrow> S *<= x"
hoelzl@55715
    84
  by (simp add: isUb_def)
hoelzl@55715
    85
hoelzl@55715
    86
lemma isUbD2a: "isUb R S x \<Longrightarrow> x: R"
hoelzl@55715
    87
  by (simp add: isUb_def)
hoelzl@55715
    88
hoelzl@55715
    89
lemma isUbI: "S *<= x \<Longrightarrow> x: R \<Longrightarrow> isUb R S x"
hoelzl@55715
    90
  by (simp add: isUb_def)
hoelzl@55715
    91
hoelzl@55715
    92
lemma isLub_le_isUb: "isLub R S x \<Longrightarrow> isUb R S y \<Longrightarrow> x \<le> y"
hoelzl@55715
    93
  unfolding isLub_def by (blast intro!: leastPD3)
hoelzl@55715
    94
hoelzl@55715
    95
lemma isLub_ubs: "isLub R S x \<Longrightarrow> x <=* ubs R S"
hoelzl@55715
    96
  unfolding ubs_def isLub_def by (rule leastPD2)
hoelzl@55715
    97
hoelzl@55715
    98
lemma isLub_unique: "[| isLub R S x; isLub R S y |] ==> x = (y::'a::linorder)"
hoelzl@55715
    99
  apply (frule isLub_isUb)
hoelzl@55715
   100
  apply (frule_tac x = y in isLub_isUb)
hoelzl@55715
   101
  apply (blast intro!: order_antisym dest!: isLub_le_isUb)
hoelzl@55715
   102
  done
hoelzl@55715
   103
hoelzl@55715
   104
lemma isUb_UNIV_I: "(\<And>y. y \<in> S \<Longrightarrow> y \<le> u) \<Longrightarrow> isUb UNIV S u"
hoelzl@55715
   105
  by (simp add: isUbI setleI)
hoelzl@55715
   106
hoelzl@55715
   107
wenzelm@47380
   108
definition greatestP :: "('a \<Rightarrow> bool) \<Rightarrow> 'a::ord \<Rightarrow> bool"
wenzelm@47380
   109
  where "greatestP P x = (P x \<and> Collect P *<=  x)"
chaieb@29775
   110
wenzelm@47380
   111
definition isLb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
wenzelm@47380
   112
  where "isLb R S x = (x <=* S \<and> x: R)"
chaieb@29775
   113
wenzelm@47380
   114
definition isGlb :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a::ord \<Rightarrow> bool"
wenzelm@47380
   115
  where "isGlb R S x = greatestP (isLb R S) x"
chaieb@29775
   116
wenzelm@47380
   117
definition lbs :: "'a set \<Rightarrow> 'a::ord set \<Rightarrow> 'a set"
wenzelm@47380
   118
  where "lbs R S = Collect (isLb R S)"
chaieb@29775
   119
chaieb@29775
   120
hoelzl@55715
   121
subsection {* Rules about the Operators @{term greatestP}, @{term isLb} and @{term isGlb} *}
chaieb@29775
   122
hoelzl@55715
   123
lemma greatestPD1: "greatestP P x \<Longrightarrow> P x"
wenzelm@47380
   124
  by (simp add: greatestP_def)
chaieb@29775
   125
wenzelm@47380
   126
lemma greatestPD2: "greatestP P x \<Longrightarrow> Collect P *<= x"
wenzelm@47380
   127
  by (simp add: greatestP_def)
chaieb@29775
   128
wenzelm@47380
   129
lemma greatestPD3: "greatestP P x \<Longrightarrow> y: Collect P \<Longrightarrow> x \<ge> y"
wenzelm@47380
   130
  by (blast dest!: greatestPD2 setleD)
chaieb@29775
   131
wenzelm@47380
   132
lemma isGlbD1: "isGlb R S x \<Longrightarrow> x <=* S"
wenzelm@47380
   133
  by (simp add: isGlb_def isLb_def greatestP_def)
chaieb@29775
   134
wenzelm@47380
   135
lemma isGlbD1a: "isGlb R S x \<Longrightarrow> x: R"
wenzelm@47380
   136
  by (simp add: isGlb_def isLb_def greatestP_def)
chaieb@29775
   137
wenzelm@47380
   138
lemma isGlb_isLb: "isGlb R S x \<Longrightarrow> isLb R S x"
wenzelm@47380
   139
  unfolding isLb_def by (blast dest: isGlbD1 isGlbD1a)
chaieb@29775
   140
wenzelm@47380
   141
lemma isGlbD2: "isGlb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
wenzelm@47380
   142
  by (blast dest!: isGlbD1 setgeD)
chaieb@29775
   143
wenzelm@47380
   144
lemma isGlbD3: "isGlb R S x \<Longrightarrow> greatestP (isLb R S) x"
wenzelm@47380
   145
  by (simp add: isGlb_def)
chaieb@29775
   146
wenzelm@47380
   147
lemma isGlbI1: "greatestP (isLb R S) x \<Longrightarrow> isGlb R S x"
wenzelm@47380
   148
  by (simp add: isGlb_def)
chaieb@29775
   149
wenzelm@47380
   150
lemma isGlbI2: "isLb R S x \<Longrightarrow> Collect (isLb R S) *<= x \<Longrightarrow> isGlb R S x"
wenzelm@47380
   151
  by (simp add: isGlb_def greatestP_def)
chaieb@29775
   152
wenzelm@47380
   153
lemma isLbD: "isLb R S x \<Longrightarrow> y : S \<Longrightarrow> y \<ge> x"
wenzelm@47380
   154
  by (simp add: isLb_def setge_def)
chaieb@29775
   155
wenzelm@47380
   156
lemma isLbD2: "isLb R S x \<Longrightarrow> x <=* S "
wenzelm@47380
   157
  by (simp add: isLb_def)
chaieb@29775
   158
wenzelm@47380
   159
lemma isLbD2a: "isLb R S x \<Longrightarrow> x: R"
wenzelm@47380
   160
  by (simp add: isLb_def)
chaieb@29775
   161
wenzelm@47380
   162
lemma isLbI: "x <=* S \<Longrightarrow> x: R \<Longrightarrow> isLb R S x"
wenzelm@47380
   163
  by (simp add: isLb_def)
chaieb@29775
   164
wenzelm@47380
   165
lemma isGlb_le_isLb: "isGlb R S x \<Longrightarrow> isLb R S y \<Longrightarrow> x \<ge> y"
wenzelm@47380
   166
  unfolding isGlb_def by (blast intro!: greatestPD3)
wenzelm@47380
   167
wenzelm@47380
   168
lemma isGlb_ubs: "isGlb R S x \<Longrightarrow> lbs R S *<= x"
wenzelm@47380
   169
  unfolding lbs_def isGlb_def by (rule greatestPD2)
chaieb@29775
   170
hoelzl@52479
   171
lemma isGlb_unique: "[| isGlb R S x; isGlb R S y |] ==> x = (y::'a::linorder)"
hoelzl@52479
   172
  apply (frule isGlb_isLb)
hoelzl@52479
   173
  apply (frule_tac x = y in isGlb_isLb)
hoelzl@52479
   174
  apply (blast intro!: order_antisym dest!: isGlb_le_isLb)
hoelzl@52479
   175
  done
hoelzl@52479
   176
hoelzl@55715
   177
lemma bdd_above_setle: "bdd_above A \<longleftrightarrow> (\<exists>a. A *<= a)"
hoelzl@55715
   178
  by (auto simp: bdd_above_def setle_def)
hoelzl@55715
   179
hoelzl@55715
   180
lemma bdd_below_setge: "bdd_below A \<longleftrightarrow> (\<exists>a. a <=* A)"
hoelzl@55715
   181
  by (auto simp: bdd_below_def setge_def)
hoelzl@55715
   182
hoelzl@55715
   183
lemma isLub_cSup: 
hoelzl@55715
   184
  "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> (\<exists>b. S *<= b) \<Longrightarrow> isLub UNIV S (Sup S)"
hoelzl@55715
   185
  by  (auto simp add: isLub_def setle_def leastP_def isUb_def
hoelzl@55715
   186
            intro!: setgeI cSup_upper cSup_least)
hoelzl@55715
   187
hoelzl@55715
   188
lemma isGlb_cInf: 
hoelzl@55715
   189
  "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> (\<exists>b. b <=* S) \<Longrightarrow> isGlb UNIV S (Inf S)"
hoelzl@55715
   190
  by  (auto simp add: isGlb_def setge_def greatestP_def isLb_def
hoelzl@55715
   191
            intro!: setleI cInf_lower cInf_greatest)
hoelzl@55715
   192
hoelzl@55715
   193
lemma cSup_le: "(S::'a::conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> S *<= b \<Longrightarrow> Sup S \<le> b"
hoelzl@55715
   194
  by (metis cSup_least setle_def)
hoelzl@55715
   195
hoelzl@55715
   196
lemma cInf_ge: "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> b <=* S \<Longrightarrow> Inf S \<ge> b"
hoelzl@55715
   197
  by (metis cInf_greatest setge_def)
hoelzl@55715
   198
hoelzl@55715
   199
lemma cSup_bounds:
hoelzl@55715
   200
  fixes S :: "'a :: conditionally_complete_lattice set"
hoelzl@55715
   201
  shows "S \<noteq> {} \<Longrightarrow> a <=* S \<Longrightarrow> S *<= b \<Longrightarrow> a \<le> Sup S \<and> Sup S \<le> b"
hoelzl@55715
   202
  using cSup_least[of S b] cSup_upper2[of _ S a]
hoelzl@55715
   203
  by (auto simp: bdd_above_setle setge_def setle_def)
hoelzl@55715
   204
hoelzl@55715
   205
lemma cSup_unique: "(S::'a :: {conditionally_complete_linorder, no_bot} set) *<= b \<Longrightarrow> (\<forall>b'<b. \<exists>x\<in>S. b' < x) \<Longrightarrow> Sup S = b"
hoelzl@55715
   206
  by (rule cSup_eq) (auto simp: not_le[symmetric] setle_def)
hoelzl@55715
   207
hoelzl@55715
   208
lemma cInf_unique: "b <=* (S::'a :: {conditionally_complete_linorder, no_top} set) \<Longrightarrow> (\<forall>b'>b. \<exists>x\<in>S. b' > x) \<Longrightarrow> Inf S = b"
hoelzl@55715
   209
  by (rule cInf_eq) (auto simp: not_le[symmetric] setge_def)
hoelzl@55715
   210
hoelzl@55715
   211
text{* Use completeness of reals (supremum property) to show that any bounded sequence has a least upper bound*}
hoelzl@55715
   212
hoelzl@55715
   213
lemma reals_complete: "\<exists>X. X \<in> S \<Longrightarrow> \<exists>Y. isUb (UNIV::real set) S Y \<Longrightarrow> \<exists>t. isLub (UNIV :: real set) S t"
hoelzl@55715
   214
  by (intro exI[of _ "Sup S"] isLub_cSup) (auto simp: setle_def isUb_def intro!: cSup_upper)
hoelzl@55715
   215
hoelzl@55715
   216
lemma Bseq_isUb: "\<And>X :: nat \<Rightarrow> real. Bseq X \<Longrightarrow> \<exists>U. isUb (UNIV::real set) {x. \<exists>n. X n = x} U"
hoelzl@55715
   217
  by (auto intro: isUbI setleI simp add: Bseq_def abs_le_iff)
hoelzl@55715
   218
hoelzl@55715
   219
lemma Bseq_isLub: "\<And>X :: nat \<Rightarrow> real. Bseq X \<Longrightarrow> \<exists>U. isLub (UNIV::real set) {x. \<exists>n. X n = x} U"
hoelzl@55715
   220
  by (blast intro: reals_complete Bseq_isUb)
hoelzl@55715
   221
hoelzl@55715
   222
lemma isLub_mono_imp_LIMSEQ:
hoelzl@55715
   223
  fixes X :: "nat \<Rightarrow> real"
hoelzl@55715
   224
  assumes u: "isLub UNIV {x. \<exists>n. X n = x} u" (* FIXME: use 'range X' *)
hoelzl@55715
   225
  assumes X: "\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n"
hoelzl@55715
   226
  shows "X ----> u"
hoelzl@55715
   227
proof -
hoelzl@55715
   228
  have "X ----> (SUP i. X i)"
hoelzl@55715
   229
    using u[THEN isLubD1] X
hoelzl@55715
   230
    by (intro LIMSEQ_incseq_SUP) (auto simp: incseq_def image_def eq_commute bdd_above_setle)
hoelzl@55715
   231
  also have "(SUP i. X i) = u"
hoelzl@55715
   232
    using isLub_cSup[of "range X"] u[THEN isLubD1]
hoelzl@55715
   233
    by (intro isLub_unique[OF _ u]) (auto simp add: SUP_def image_def eq_commute)
hoelzl@55715
   234
  finally show ?thesis .
hoelzl@55715
   235
qed
hoelzl@55715
   236
hoelzl@55715
   237
lemmas real_isGlb_unique = isGlb_unique[where 'a=real]
hoelzl@55715
   238
hoelzl@55715
   239
lemma real_le_inf_subset: "t \<noteq> {} \<Longrightarrow> t \<subseteq> s \<Longrightarrow> \<exists>b. b <=* s \<Longrightarrow> Inf s \<le> Inf (t::real set)"
hoelzl@55715
   240
  by (rule cInf_superset_mono) (auto simp: bdd_below_setge)
hoelzl@55715
   241
hoelzl@55715
   242
lemma real_ge_sup_subset: "t \<noteq> {} \<Longrightarrow> t \<subseteq> s \<Longrightarrow> \<exists>b. s *<= b \<Longrightarrow> Sup s \<ge> Sup (t::real set)"
hoelzl@55715
   243
  by (rule cSup_subset_mono) (auto simp: bdd_above_setle)
hoelzl@55715
   244
chaieb@29775
   245
end