src/HOL/Hahn_Banach/Bounds.thy
author hoelzl
Tue, 05 Nov 2013 09:45:02 +0100
changeset 55715 c4159fe6fa46
parent 45759 7ca82df6e951
child 59180 85ec71012df8
permissions -rw-r--r--
move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
wenzelm@31795
     1
(*  Title:      HOL/Hahn_Banach/Bounds.thy
wenzelm@7566
     2
    Author:     Gertrud Bauer, TU Munich
wenzelm@7566
     3
*)
wenzelm@7535
     4
wenzelm@9035
     5
header {* Bounds *}
wenzelm@7808
     6
haftmann@25596
     7
theory Bounds
wenzelm@41661
     8
imports Main "~~/src/HOL/Library/ContNotDenum"
haftmann@25596
     9
begin
wenzelm@10687
    10
wenzelm@13515
    11
locale lub =
wenzelm@13515
    12
  fixes A and x
wenzelm@13515
    13
  assumes least [intro?]: "(\<And>a. a \<in> A \<Longrightarrow> a \<le> b) \<Longrightarrow> x \<le> b"
wenzelm@13515
    14
    and upper [intro?]: "a \<in> A \<Longrightarrow> a \<le> x"
wenzelm@13515
    15
wenzelm@13515
    16
lemmas [elim?] = lub.least lub.upper
wenzelm@13515
    17
wenzelm@45759
    18
definition the_lub :: "'a::order set \<Rightarrow> 'a"
wenzelm@45759
    19
  where "the_lub A = The (lub A)"
wenzelm@14653
    20
wenzelm@21210
    21
notation (xsymbols)
wenzelm@19736
    22
  the_lub  ("\<Squnion>_" [90] 90)
wenzelm@7535
    23
wenzelm@13515
    24
lemma the_lub_equality [elim?]:
ballarin@27611
    25
  assumes "lub A x"
wenzelm@13515
    26
  shows "\<Squnion>A = (x::'a::order)"
ballarin@27611
    27
proof -
ballarin@29234
    28
  interpret lub A x by fact
wenzelm@27612
    29
  show ?thesis
wenzelm@27612
    30
  proof (unfold the_lub_def)
ballarin@27611
    31
    from `lub A x` show "The (lub A) = x"
ballarin@27611
    32
    proof
ballarin@27611
    33
      fix x' assume lub': "lub A x'"
ballarin@27611
    34
      show "x' = x"
ballarin@27611
    35
      proof (rule order_antisym)
wenzelm@32962
    36
        from lub' show "x' \<le> x"
wenzelm@32962
    37
        proof
ballarin@27611
    38
          fix a assume "a \<in> A"
ballarin@27611
    39
          then show "a \<le> x" ..
wenzelm@32962
    40
        qed
wenzelm@32962
    41
        show "x \<le> x'"
wenzelm@32962
    42
        proof
ballarin@27611
    43
          fix a assume "a \<in> A"
ballarin@27611
    44
          with lub' show "a \<le> x'" ..
wenzelm@32962
    45
        qed
wenzelm@13515
    46
      qed
wenzelm@13515
    47
    qed
wenzelm@13515
    48
  qed
wenzelm@13515
    49
qed
wenzelm@7535
    50
wenzelm@13515
    51
lemma the_lubI_ex:
wenzelm@13515
    52
  assumes ex: "\<exists>x. lub A x"
wenzelm@13515
    53
  shows "lub A (\<Squnion>A)"
wenzelm@13515
    54
proof -
wenzelm@13515
    55
  from ex obtain x where x: "lub A x" ..
wenzelm@13515
    56
  also from x have [symmetric]: "\<Squnion>A = x" ..
wenzelm@13515
    57
  finally show ?thesis .
wenzelm@13515
    58
qed
wenzelm@7535
    59
hoelzl@55715
    60
lemma real_complete: "\<exists>a::real. a \<in> A \<Longrightarrow> \<exists>y. \<forall>a \<in> A. a \<le> y \<Longrightarrow> \<exists>x. lub A x"
hoelzl@55715
    61
  by (intro exI[of _ "Sup A"]) (auto intro!: cSup_upper cSup_least simp: lub_def)
wenzelm@7917
    62
wenzelm@10687
    63
end