src/HOL/Divides.thy
author paulson
Tue, 25 Nov 2003 10:37:03 +0100
changeset 14267 b963e9cee2a0
parent 14208 144f45277d5a
child 14430 5cb24165a2e1
permissions -rw-r--r--
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
to Isar script.
paulson@3366
     1
(*  Title:      HOL/Divides.thy
paulson@3366
     2
    ID:         $Id$
paulson@3366
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@6865
     4
    Copyright   1999  University of Cambridge
paulson@3366
     5
paulson@3366
     6
The division operators div, mod and the divides relation "dvd"
paulson@3366
     7
*)
paulson@3366
     8
paulson@14267
     9
theory Divides = NatArith:
paulson@3366
    10
wenzelm@8902
    11
(*We use the same class for div and mod;
paulson@6865
    12
  moreover, dvd is defined whenever multiplication is*)
paulson@6865
    13
axclass
wenzelm@12338
    14
  div < type
paulson@6865
    15
nipkow@13152
    16
instance  nat :: div ..
nipkow@13152
    17
instance  nat :: plus_ac0
nipkow@13152
    18
proof qed (rule add_commute add_assoc add_0)+
paulson@6865
    19
paulson@3366
    20
consts
nipkow@13152
    21
  div  :: "'a::div \<Rightarrow> 'a \<Rightarrow> 'a"          (infixl 70)
nipkow@13152
    22
  mod  :: "'a::div \<Rightarrow> 'a \<Rightarrow> 'a"          (infixl 70)
nipkow@13152
    23
  dvd  :: "'a::times \<Rightarrow> 'a \<Rightarrow> bool"      (infixl 50)
paulson@3366
    24
paulson@3366
    25
paulson@3366
    26
defs
paulson@6865
    27
nipkow@13152
    28
  mod_def:   "m mod n == wfrec (trancl pred_nat)
paulson@7029
    29
                          (%f j. if j<n | n=0 then j else f (j-n)) m"
paulson@6865
    30
nipkow@13152
    31
  div_def:   "m div n == wfrec (trancl pred_nat) 
paulson@7029
    32
                          (%f j. if j<n | n=0 then 0 else Suc (f (j-n))) m"
paulson@3366
    33
paulson@6865
    34
(*The definition of dvd is polymorphic!*)
paulson@14267
    35
  dvd_def:   "m dvd n == \<exists>k. n = m*k"
paulson@3366
    36
paulson@10559
    37
(*This definition helps prove the harder properties of div and mod.
paulson@10559
    38
  It is copied from IntDiv.thy; should it be overloaded?*)
paulson@10559
    39
constdefs
paulson@10559
    40
  quorem :: "(nat*nat) * (nat*nat) => bool"
paulson@10559
    41
    "quorem == %((a,b), (q,r)).
paulson@10559
    42
                      a = b*q + r &
paulson@14267
    43
                      (if 0<b then 0\<le>r & r<b else b<r & r \<le>0)"
paulson@10559
    44
nipkow@13152
    45
paulson@14267
    46
paulson@14267
    47
subsection{*Initial Lemmas*}
paulson@14267
    48
paulson@14267
    49
lemmas wf_less_trans = 
paulson@14267
    50
       def_wfrec [THEN trans, OF eq_reflection wf_pred_nat [THEN wf_trancl],
paulson@14267
    51
                  standard]
paulson@14267
    52
paulson@14267
    53
lemma mod_eq: "(%m. m mod n) = 
paulson@14267
    54
              wfrec (trancl pred_nat) (%f j. if j<n | n=0 then j else f (j-n))"
paulson@14267
    55
by (simp add: mod_def)
paulson@14267
    56
paulson@14267
    57
lemma div_eq: "(%m. m div n) = wfrec (trancl pred_nat)  
paulson@14267
    58
               (%f j. if j<n | n=0 then 0 else Suc (f (j-n)))"
paulson@14267
    59
by (simp add: div_def)
paulson@14267
    60
paulson@14267
    61
paulson@14267
    62
(** Aribtrary definitions for division by zero.  Useful to simplify 
paulson@14267
    63
    certain equations **)
paulson@14267
    64
paulson@14267
    65
lemma DIVISION_BY_ZERO_DIV [simp]: "a div 0 = (0::nat)"
paulson@14267
    66
by (rule div_eq [THEN wf_less_trans], simp)
paulson@14267
    67
paulson@14267
    68
lemma DIVISION_BY_ZERO_MOD [simp]: "a mod 0 = (a::nat)"
paulson@14267
    69
by (rule mod_eq [THEN wf_less_trans], simp)
paulson@14267
    70
paulson@14267
    71
paulson@14267
    72
subsection{*Remainder*}
paulson@14267
    73
paulson@14267
    74
lemma mod_less [simp]: "m<n ==> m mod n = (m::nat)"
paulson@14267
    75
by (rule mod_eq [THEN wf_less_trans], simp)
paulson@14267
    76
paulson@14267
    77
lemma mod_geq: "~ m < (n::nat) ==> m mod n = (m-n) mod n"
paulson@14267
    78
apply (case_tac "n=0", simp) 
paulson@14267
    79
apply (rule mod_eq [THEN wf_less_trans])
paulson@14267
    80
apply (simp add: diff_less cut_apply less_eq)
paulson@14267
    81
done
paulson@14267
    82
paulson@14267
    83
(*Avoids the ugly ~m<n above*)
paulson@14267
    84
lemma le_mod_geq: "(n::nat) \<le> m ==> m mod n = (m-n) mod n"
paulson@14267
    85
by (simp add: mod_geq not_less_iff_le)
paulson@14267
    86
paulson@14267
    87
lemma mod_if: "m mod (n::nat) = (if m<n then m else (m-n) mod n)"
paulson@14267
    88
by (simp add: mod_geq)
paulson@14267
    89
paulson@14267
    90
lemma mod_1 [simp]: "m mod Suc 0 = 0"
paulson@14267
    91
apply (induct_tac "m")
paulson@14267
    92
apply (simp_all (no_asm_simp) add: mod_geq)
paulson@14267
    93
done
paulson@14267
    94
paulson@14267
    95
lemma mod_self [simp]: "n mod n = (0::nat)"
paulson@14267
    96
apply (case_tac "n=0")
paulson@14267
    97
apply (simp_all add: mod_geq)
paulson@14267
    98
done
paulson@14267
    99
paulson@14267
   100
lemma mod_add_self2 [simp]: "(m+n) mod n = m mod (n::nat)"
paulson@14267
   101
apply (subgoal_tac " (n + m) mod n = (n+m-n) mod n") 
paulson@14267
   102
apply (simp add: add_commute)
paulson@14267
   103
apply (subst mod_geq [symmetric], simp_all)
paulson@14267
   104
done
paulson@14267
   105
paulson@14267
   106
lemma mod_add_self1 [simp]: "(n+m) mod n = m mod (n::nat)"
paulson@14267
   107
by (simp add: add_commute mod_add_self2)
paulson@14267
   108
paulson@14267
   109
lemma mod_mult_self1 [simp]: "(m + k*n) mod n = m mod (n::nat)"
paulson@14267
   110
apply (induct_tac "k")
paulson@14267
   111
apply (simp_all add: add_left_commute [of _ n])
paulson@14267
   112
done
paulson@14267
   113
paulson@14267
   114
lemma mod_mult_self2 [simp]: "(m + n*k) mod n = m mod (n::nat)"
paulson@14267
   115
by (simp add: mult_commute mod_mult_self1)
paulson@14267
   116
paulson@14267
   117
lemma mod_mult_distrib: "(m mod n) * (k::nat) = (m*k) mod (n*k)"
paulson@14267
   118
apply (case_tac "n=0", simp)
paulson@14267
   119
apply (case_tac "k=0", simp)
paulson@14267
   120
apply (induct_tac "m" rule: nat_less_induct)
paulson@14267
   121
apply (subst mod_if, simp)
paulson@14267
   122
apply (simp add: mod_geq diff_less diff_mult_distrib)
paulson@14267
   123
done
paulson@14267
   124
paulson@14267
   125
lemma mod_mult_distrib2: "(k::nat) * (m mod n) = (k*m) mod (k*n)"
paulson@14267
   126
by (simp add: mult_commute [of k] mod_mult_distrib)
paulson@14267
   127
paulson@14267
   128
lemma mod_mult_self_is_0 [simp]: "(m*n) mod n = (0::nat)"
paulson@14267
   129
apply (case_tac "n=0", simp)
paulson@14267
   130
apply (induct_tac "m", simp)
paulson@14267
   131
apply (rename_tac "k")
paulson@14267
   132
apply (cut_tac m = "k*n" and n = n in mod_add_self2)
paulson@14267
   133
apply (simp add: add_commute)
paulson@14267
   134
done
paulson@14267
   135
paulson@14267
   136
lemma mod_mult_self1_is_0 [simp]: "(n*m) mod n = (0::nat)"
paulson@14267
   137
by (simp add: mult_commute mod_mult_self_is_0)
paulson@14267
   138
paulson@14267
   139
paulson@14267
   140
subsection{*Quotient*}
paulson@14267
   141
paulson@14267
   142
lemma div_less [simp]: "m<n ==> m div n = (0::nat)"
paulson@14267
   143
by (rule div_eq [THEN wf_less_trans], simp)
paulson@14267
   144
paulson@14267
   145
lemma div_geq: "[| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)"
paulson@14267
   146
apply (rule div_eq [THEN wf_less_trans])
paulson@14267
   147
apply (simp add: diff_less cut_apply less_eq)
paulson@14267
   148
done
paulson@14267
   149
paulson@14267
   150
(*Avoids the ugly ~m<n above*)
paulson@14267
   151
lemma le_div_geq: "[| 0<n;  n\<le>m |] ==> m div n = Suc((m-n) div n)"
paulson@14267
   152
by (simp add: div_geq not_less_iff_le)
paulson@14267
   153
paulson@14267
   154
lemma div_if: "0<n ==> m div n = (if m<n then 0 else Suc((m-n) div n))"
paulson@14267
   155
by (simp add: div_geq)
paulson@14267
   156
paulson@14267
   157
paulson@14267
   158
(*Main Result about quotient and remainder.*)
paulson@14267
   159
lemma mod_div_equality: "(m div n)*n + m mod n = (m::nat)"
paulson@14267
   160
apply (case_tac "n=0", simp)
paulson@14267
   161
apply (induct_tac "m" rule: nat_less_induct)
paulson@14267
   162
apply (subst mod_if)
paulson@14267
   163
apply (simp_all (no_asm_simp) add: add_assoc div_geq add_diff_inverse diff_less)
paulson@14267
   164
done
paulson@14267
   165
paulson@14267
   166
lemma mod_div_equality2: "n * (m div n) + m mod n = (m::nat)"
paulson@14267
   167
apply(cut_tac m = m and n = n in mod_div_equality)
paulson@14267
   168
apply(simp add: mult_commute)
paulson@14267
   169
done
paulson@14267
   170
paulson@14267
   171
subsection{*Simproc for Cancelling Div and Mod*}
paulson@14267
   172
paulson@14267
   173
lemma div_mod_equality: "((m div n)*n + m mod n) + k = (m::nat) + k"
paulson@14267
   174
apply(simp add: mod_div_equality)
paulson@14267
   175
done
paulson@14267
   176
paulson@14267
   177
lemma div_mod_equality2: "(n*(m div n) + m mod n) + k = (m::nat) + k"
paulson@14267
   178
apply(simp add: mod_div_equality2)
paulson@14267
   179
done
paulson@14267
   180
paulson@14267
   181
ML
paulson@14267
   182
{*
paulson@14267
   183
val div_mod_equality = thm "div_mod_equality";
paulson@14267
   184
val div_mod_equality2 = thm "div_mod_equality2";
paulson@14267
   185
paulson@14267
   186
paulson@14267
   187
structure CancelDivModData =
paulson@14267
   188
struct
paulson@14267
   189
paulson@14267
   190
val div_name = "Divides.op div";
paulson@14267
   191
val mod_name = "Divides.op mod";
paulson@14267
   192
val mk_binop = HOLogic.mk_binop;
paulson@14267
   193
val mk_sum = NatArithUtils.mk_sum;
paulson@14267
   194
val dest_sum = NatArithUtils.dest_sum;
paulson@14267
   195
paulson@14267
   196
(*logic*)
paulson@14267
   197
paulson@14267
   198
val div_mod_eqs = map mk_meta_eq [div_mod_equality,div_mod_equality2]
paulson@14267
   199
paulson@14267
   200
val trans = trans
paulson@14267
   201
paulson@14267
   202
val prove_eq_sums =
paulson@14267
   203
  let val simps = add_0 :: add_0_right :: add_ac
paulson@14267
   204
  in NatArithUtils.prove_conv all_tac (NatArithUtils.simp_all simps) end
paulson@14267
   205
paulson@14267
   206
end;
paulson@14267
   207
paulson@14267
   208
structure CancelDivMod = CancelDivModFun(CancelDivModData);
paulson@14267
   209
paulson@14267
   210
val cancel_div_mod_proc = NatArithUtils.prep_simproc
paulson@14267
   211
      ("cancel_div_mod", ["(m::nat) + n"], CancelDivMod.proc);
paulson@14267
   212
paulson@14267
   213
Addsimprocs[cancel_div_mod_proc];
paulson@14267
   214
*}
paulson@14267
   215
paulson@14267
   216
paulson@14267
   217
(* a simple rearrangement of mod_div_equality: *)
paulson@14267
   218
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
paulson@14267
   219
by (cut_tac m = m and n = n in mod_div_equality2, arith)
paulson@14267
   220
paulson@14267
   221
lemma mod_less_divisor [simp]: "0<n ==> m mod n < (n::nat)"
paulson@14267
   222
apply (induct_tac "m" rule: nat_less_induct)
paulson@14267
   223
apply (case_tac "na<n", simp) 
paulson@14267
   224
txt{*case @{term "n \<le> na"}*}
paulson@14267
   225
apply (simp add: mod_geq diff_less)
paulson@14267
   226
done
paulson@14267
   227
paulson@14267
   228
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
paulson@14267
   229
by (cut_tac m = "m*n" and n = n in mod_div_equality, auto)
paulson@14267
   230
paulson@14267
   231
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
paulson@14267
   232
by (simp add: mult_commute div_mult_self_is_m)
paulson@14267
   233
paulson@14267
   234
(*mod_mult_distrib2 above is the counterpart for remainder*)
paulson@14267
   235
paulson@14267
   236
paulson@14267
   237
subsection{*Proving facts about Quotient and Remainder*}
paulson@14267
   238
paulson@14267
   239
lemma unique_quotient_lemma:
paulson@14267
   240
     "[| b*q' + r'  \<le> b*q + r;  0 < b;  r < b |]  
paulson@14267
   241
      ==> q' \<le> (q::nat)"
paulson@14267
   242
apply (rule leI)
paulson@14267
   243
apply (subst less_iff_Suc_add)
paulson@14267
   244
apply (auto simp add: add_mult_distrib2)
paulson@14267
   245
done
paulson@14267
   246
paulson@14267
   247
lemma unique_quotient:
paulson@14267
   248
     "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |]  
paulson@14267
   249
      ==> q = q'"
paulson@14267
   250
apply (simp add: split_ifs quorem_def)
paulson@14267
   251
apply (blast intro: order_antisym 
paulson@14267
   252
             dest: order_eq_refl [THEN unique_quotient_lemma] sym)+
paulson@14267
   253
done
paulson@14267
   254
paulson@14267
   255
lemma unique_remainder:
paulson@14267
   256
     "[| quorem ((a,b), (q,r));  quorem ((a,b), (q',r'));  0 < b |]  
paulson@14267
   257
      ==> r = r'"
paulson@14267
   258
apply (subgoal_tac "q = q'")
paulson@14267
   259
prefer 2 apply (blast intro: unique_quotient)
paulson@14267
   260
apply (simp add: quorem_def)
paulson@14267
   261
done
paulson@14267
   262
paulson@14267
   263
lemma quorem_div_mod: "0 < b ==> quorem ((a, b), (a div b, a mod b))"
paulson@14267
   264
by (auto simp add: quorem_def)
paulson@14267
   265
paulson@14267
   266
lemma quorem_div: "[| quorem((a,b),(q,r));  0 < b |] ==> a div b = q"
paulson@14267
   267
by (simp add: quorem_div_mod [THEN unique_quotient])
paulson@14267
   268
paulson@14267
   269
lemma quorem_mod: "[| quorem((a,b),(q,r));  0 < b |] ==> a mod b = r"
paulson@14267
   270
by (simp add: quorem_div_mod [THEN unique_remainder])
paulson@14267
   271
paulson@14267
   272
(** A dividend of zero **)
paulson@14267
   273
paulson@14267
   274
lemma div_0 [simp]: "0 div m = (0::nat)"
paulson@14267
   275
by (case_tac "m=0", simp_all)
paulson@14267
   276
paulson@14267
   277
lemma mod_0 [simp]: "0 mod m = (0::nat)"
paulson@14267
   278
by (case_tac "m=0", simp_all)
paulson@14267
   279
paulson@14267
   280
(** proving (a*b) div c = a * (b div c) + a * (b mod c) **)
paulson@14267
   281
paulson@14267
   282
lemma quorem_mult1_eq:
paulson@14267
   283
     "[| quorem((b,c),(q,r));  0 < c |]  
paulson@14267
   284
      ==> quorem ((a*b, c), (a*q + a*r div c, a*r mod c))"
paulson@14267
   285
apply (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
paulson@14267
   286
done
paulson@14267
   287
paulson@14267
   288
lemma div_mult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::nat)"
paulson@14267
   289
apply (case_tac "c = 0", simp)
paulson@14267
   290
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_div])
paulson@14267
   291
done
paulson@14267
   292
paulson@14267
   293
lemma mod_mult1_eq: "(a*b) mod c = a*(b mod c) mod (c::nat)"
paulson@14267
   294
apply (case_tac "c = 0", simp)
paulson@14267
   295
apply (blast intro: quorem_div_mod [THEN quorem_mult1_eq, THEN quorem_mod])
paulson@14267
   296
done
paulson@14267
   297
paulson@14267
   298
lemma mod_mult1_eq': "(a*b) mod (c::nat) = ((a mod c) * b) mod c"
paulson@14267
   299
apply (rule trans)
paulson@14267
   300
apply (rule_tac s = "b*a mod c" in trans)
paulson@14267
   301
apply (rule_tac [2] mod_mult1_eq)
paulson@14267
   302
apply (simp_all (no_asm) add: mult_commute)
paulson@14267
   303
done
paulson@14267
   304
paulson@14267
   305
lemma mod_mult_distrib_mod: "(a*b) mod (c::nat) = ((a mod c) * (b mod c)) mod c"
paulson@14267
   306
apply (rule mod_mult1_eq' [THEN trans])
paulson@14267
   307
apply (rule mod_mult1_eq)
paulson@14267
   308
done
paulson@14267
   309
paulson@14267
   310
(** proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) **)
paulson@14267
   311
paulson@14267
   312
lemma quorem_add1_eq:
paulson@14267
   313
     "[| quorem((a,c),(aq,ar));  quorem((b,c),(bq,br));  0 < c |]  
paulson@14267
   314
      ==> quorem ((a+b, c), (aq + bq + (ar+br) div c, (ar+br) mod c))"
paulson@14267
   315
by (auto simp add: split_ifs mult_ac quorem_def add_mult_distrib2)
paulson@14267
   316
paulson@14267
   317
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
paulson@14267
   318
lemma div_add1_eq:
paulson@14267
   319
     "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
paulson@14267
   320
apply (case_tac "c = 0", simp)
paulson@14267
   321
apply (blast intro: quorem_add1_eq [THEN quorem_div] quorem_div_mod quorem_div_mod)
paulson@14267
   322
done
paulson@14267
   323
paulson@14267
   324
lemma mod_add1_eq: "(a+b) mod (c::nat) = (a mod c + b mod c) mod c"
paulson@14267
   325
apply (case_tac "c = 0", simp)
paulson@14267
   326
apply (blast intro: quorem_div_mod quorem_div_mod
paulson@14267
   327
                    quorem_add1_eq [THEN quorem_mod])
paulson@14267
   328
done
paulson@14267
   329
paulson@14267
   330
paulson@14267
   331
subsection{*Proving @{term "a div (b*c) = (a div b) div c"}*}
paulson@14267
   332
paulson@14267
   333
(** first, a lemma to bound the remainder **)
paulson@14267
   334
paulson@14267
   335
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
paulson@14267
   336
apply (cut_tac m = q and n = c in mod_less_divisor)
paulson@14267
   337
apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
paulson@14267
   338
apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
paulson@14267
   339
apply (simp add: add_mult_distrib2)
paulson@14267
   340
done
paulson@14267
   341
paulson@14267
   342
lemma quorem_mult2_eq: "[| quorem ((a,b), (q,r));  0 < b;  0 < c |]  
paulson@14267
   343
      ==> quorem ((a, b*c), (q div c, b*(q mod c) + r))"
paulson@14267
   344
apply (auto simp add: mult_ac quorem_def add_mult_distrib2 [symmetric] mod_lemma)
paulson@14267
   345
done
paulson@14267
   346
paulson@14267
   347
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
paulson@14267
   348
apply (case_tac "b=0", simp)
paulson@14267
   349
apply (case_tac "c=0", simp)
paulson@14267
   350
apply (force simp add: quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_div])
paulson@14267
   351
done
paulson@14267
   352
paulson@14267
   353
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
paulson@14267
   354
apply (case_tac "b=0", simp)
paulson@14267
   355
apply (case_tac "c=0", simp)
paulson@14267
   356
apply (auto simp add: mult_commute quorem_div_mod [THEN quorem_mult2_eq, THEN quorem_mod])
paulson@14267
   357
done
paulson@14267
   358
paulson@14267
   359
paulson@14267
   360
subsection{*Cancellation of Common Factors in Division*}
paulson@14267
   361
paulson@14267
   362
lemma div_mult_mult_lemma:
paulson@14267
   363
     "[| (0::nat) < b;  0 < c |] ==> (c*a) div (c*b) = a div b"
paulson@14267
   364
by (auto simp add: div_mult2_eq)
paulson@14267
   365
paulson@14267
   366
lemma div_mult_mult1 [simp]: "(0::nat) < c ==> (c*a) div (c*b) = a div b"
paulson@14267
   367
apply (case_tac "b = 0")
paulson@14267
   368
apply (auto simp add: linorder_neq_iff [of b] div_mult_mult_lemma)
paulson@14267
   369
done
paulson@14267
   370
paulson@14267
   371
lemma div_mult_mult2 [simp]: "(0::nat) < c ==> (a*c) div (b*c) = a div b"
paulson@14267
   372
apply (drule div_mult_mult1)
paulson@14267
   373
apply (auto simp add: mult_commute)
paulson@14267
   374
done
paulson@14267
   375
paulson@14267
   376
paulson@14267
   377
(*Distribution of Factors over Remainders:
paulson@14267
   378
paulson@14267
   379
Could prove these as in Integ/IntDiv.ML, but we already have
paulson@14267
   380
mod_mult_distrib and mod_mult_distrib2 above!
paulson@14267
   381
paulson@14267
   382
Goal "(c*a) mod (c*b) = (c::nat) * (a mod b)"
paulson@14267
   383
qed "mod_mult_mult1";
paulson@14267
   384
paulson@14267
   385
Goal "(a*c) mod (b*c) = (a mod b) * (c::nat)";
paulson@14267
   386
qed "mod_mult_mult2";
paulson@14267
   387
 ***)
paulson@14267
   388
paulson@14267
   389
subsection{*Further Facts about Quotient and Remainder*}
paulson@14267
   390
paulson@14267
   391
lemma div_1 [simp]: "m div Suc 0 = m"
paulson@14267
   392
apply (induct_tac "m")
paulson@14267
   393
apply (simp_all (no_asm_simp) add: div_geq)
paulson@14267
   394
done
paulson@14267
   395
paulson@14267
   396
lemma div_self [simp]: "0<n ==> n div n = (1::nat)"
paulson@14267
   397
by (simp add: div_geq)
paulson@14267
   398
paulson@14267
   399
lemma div_add_self2: "0<n ==> (m+n) div n = Suc (m div n)"
paulson@14267
   400
apply (subgoal_tac " (n + m) div n = Suc ((n+m-n) div n) ")
paulson@14267
   401
apply (simp add: add_commute)
paulson@14267
   402
apply (subst div_geq [symmetric], simp_all)
paulson@14267
   403
done
paulson@14267
   404
paulson@14267
   405
lemma div_add_self1: "0<n ==> (n+m) div n = Suc (m div n)"
paulson@14267
   406
by (simp add: add_commute div_add_self2)
paulson@14267
   407
paulson@14267
   408
lemma div_mult_self1 [simp]: "!!n::nat. 0<n ==> (m + k*n) div n = k + m div n"
paulson@14267
   409
apply (subst div_add1_eq)
paulson@14267
   410
apply (subst div_mult1_eq, simp)
paulson@14267
   411
done
paulson@14267
   412
paulson@14267
   413
lemma div_mult_self2 [simp]: "0<n ==> (m + n*k) div n = k + m div (n::nat)"
paulson@14267
   414
by (simp add: mult_commute div_mult_self1)
paulson@14267
   415
paulson@14267
   416
paulson@14267
   417
(* Monotonicity of div in first argument *)
paulson@14267
   418
lemma div_le_mono [rule_format (no_asm)]:
paulson@14267
   419
     "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
paulson@14267
   420
apply (case_tac "k=0", simp)
paulson@14267
   421
apply (induct_tac "n" rule: nat_less_induct, clarify)
paulson@14267
   422
apply (case_tac "n<k")
paulson@14267
   423
(* 1  case n<k *)
paulson@14267
   424
apply simp
paulson@14267
   425
(* 2  case n >= k *)
paulson@14267
   426
apply (case_tac "m<k")
paulson@14267
   427
(* 2.1  case m<k *)
paulson@14267
   428
apply simp
paulson@14267
   429
(* 2.2  case m>=k *)
paulson@14267
   430
apply (simp add: div_geq diff_less diff_le_mono)
paulson@14267
   431
done
paulson@14267
   432
paulson@14267
   433
(* Antimonotonicity of div in second argument *)
paulson@14267
   434
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
paulson@14267
   435
apply (subgoal_tac "0<n")
paulson@14267
   436
 prefer 2 apply simp 
paulson@14267
   437
apply (induct_tac "k" rule: nat_less_induct)
paulson@14267
   438
apply (rename_tac "k")
paulson@14267
   439
apply (case_tac "k<n", simp)
paulson@14267
   440
apply (subgoal_tac "~ (k<m) ")
paulson@14267
   441
 prefer 2 apply simp 
paulson@14267
   442
apply (simp add: div_geq)
paulson@14267
   443
apply (subgoal_tac " (k-n) div n \<le> (k-m) div n")
paulson@14267
   444
 prefer 2
paulson@14267
   445
 apply (blast intro: div_le_mono diff_le_mono2)
paulson@14267
   446
apply (rule le_trans, simp)
paulson@14267
   447
apply (simp add: diff_less)
paulson@14267
   448
done
paulson@14267
   449
paulson@14267
   450
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
paulson@14267
   451
apply (case_tac "n=0", simp)
paulson@14267
   452
apply (subgoal_tac "m div n \<le> m div 1", simp)
paulson@14267
   453
apply (rule div_le_mono2)
paulson@14267
   454
apply (simp_all (no_asm_simp))
paulson@14267
   455
done
paulson@14267
   456
paulson@14267
   457
(* Similar for "less than" *) 
paulson@14267
   458
lemma div_less_dividend [rule_format, simp]:
paulson@14267
   459
     "!!n::nat. 1<n ==> 0 < m --> m div n < m"
paulson@14267
   460
apply (induct_tac "m" rule: nat_less_induct)
paulson@14267
   461
apply (rename_tac "m")
paulson@14267
   462
apply (case_tac "m<n", simp)
paulson@14267
   463
apply (subgoal_tac "0<n")
paulson@14267
   464
 prefer 2 apply simp 
paulson@14267
   465
apply (simp add: div_geq)
paulson@14267
   466
apply (case_tac "n<m")
paulson@14267
   467
 apply (subgoal_tac " (m-n) div n < (m-n) ")
paulson@14267
   468
  apply (rule impI less_trans_Suc)+
paulson@14267
   469
apply assumption
paulson@14267
   470
  apply (simp_all add: diff_less)
paulson@14267
   471
done
paulson@14267
   472
paulson@14267
   473
text{*A fact for the mutilated chess board*}
paulson@14267
   474
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
paulson@14267
   475
apply (case_tac "n=0", simp)
paulson@14267
   476
apply (induct_tac "m" rule: nat_less_induct)
paulson@14267
   477
apply (case_tac "Suc (na) <n")
paulson@14267
   478
(* case Suc(na) < n *)
paulson@14267
   479
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
paulson@14267
   480
(* case n \<le> Suc(na) *)
paulson@14267
   481
apply (simp add: not_less_iff_le le_Suc_eq mod_geq)
paulson@14267
   482
apply (auto simp add: Suc_diff_le diff_less le_mod_geq)
paulson@14267
   483
done
paulson@14267
   484
paulson@14267
   485
paulson@14267
   486
subsection{*The Divides Relation*}
paulson@14267
   487
paulson@14267
   488
lemma dvdI [intro?]: "n = m * k ==> m dvd n"
paulson@14267
   489
by (unfold dvd_def, blast)
paulson@14267
   490
paulson@14267
   491
lemma dvdE [elim?]: "!!P. [|m dvd n;  !!k. n = m*k ==> P|] ==> P"
paulson@14267
   492
by (unfold dvd_def, blast)
paulson@14267
   493
paulson@14267
   494
lemma dvd_0_right [iff]: "m dvd (0::nat)"
paulson@14267
   495
apply (unfold dvd_def)
paulson@14267
   496
apply (blast intro: mult_0_right [symmetric])
paulson@14267
   497
done
paulson@14267
   498
paulson@14267
   499
lemma dvd_0_left: "0 dvd m ==> m = (0::nat)"
paulson@14267
   500
by (force simp add: dvd_def)
paulson@14267
   501
paulson@14267
   502
lemma dvd_0_left_iff [iff]: "(0 dvd (m::nat)) = (m = 0)"
paulson@14267
   503
by (blast intro: dvd_0_left)
paulson@14267
   504
paulson@14267
   505
lemma dvd_1_left [iff]: "Suc 0 dvd k"
paulson@14267
   506
by (unfold dvd_def, simp)
paulson@14267
   507
paulson@14267
   508
lemma dvd_1_iff_1 [simp]: "(m dvd Suc 0) = (m = Suc 0)"
paulson@14267
   509
by (simp add: dvd_def)
paulson@14267
   510
paulson@14267
   511
lemma dvd_refl [simp]: "m dvd (m::nat)"
paulson@14267
   512
apply (unfold dvd_def)
paulson@14267
   513
apply (blast intro: mult_1_right [symmetric])
paulson@14267
   514
done
paulson@14267
   515
paulson@14267
   516
lemma dvd_trans [trans]: "[| m dvd n; n dvd p |] ==> m dvd (p::nat)"
paulson@14267
   517
apply (unfold dvd_def)
paulson@14267
   518
apply (blast intro: mult_assoc)
paulson@14267
   519
done
paulson@14267
   520
paulson@14267
   521
lemma dvd_anti_sym: "[| m dvd n; n dvd m |] ==> m = (n::nat)"
paulson@14267
   522
apply (unfold dvd_def)
paulson@14267
   523
apply (force dest: mult_eq_self_implies_10 simp add: mult_assoc mult_eq_1_iff)
paulson@14267
   524
done
paulson@14267
   525
paulson@14267
   526
lemma dvd_add: "[| k dvd m; k dvd n |] ==> k dvd (m+n :: nat)"
paulson@14267
   527
apply (unfold dvd_def)
paulson@14267
   528
apply (blast intro: add_mult_distrib2 [symmetric])
paulson@14267
   529
done
paulson@14267
   530
paulson@14267
   531
lemma dvd_diff: "[| k dvd m; k dvd n |] ==> k dvd (m-n :: nat)"
paulson@14267
   532
apply (unfold dvd_def)
paulson@14267
   533
apply (blast intro: diff_mult_distrib2 [symmetric])
paulson@14267
   534
done
paulson@14267
   535
paulson@14267
   536
lemma dvd_diffD: "[| k dvd m-n; k dvd n; n\<le>m |] ==> k dvd (m::nat)"
paulson@14267
   537
apply (erule not_less_iff_le [THEN iffD2, THEN add_diff_inverse, THEN subst])
paulson@14267
   538
apply (blast intro: dvd_add)
paulson@14267
   539
done
paulson@14267
   540
paulson@14267
   541
lemma dvd_diffD1: "[| k dvd m-n; k dvd m; n\<le>m |] ==> k dvd (n::nat)"
paulson@14267
   542
by (drule_tac m = m in dvd_diff, auto)
paulson@14267
   543
paulson@14267
   544
lemma dvd_mult: "k dvd n ==> k dvd (m*n :: nat)"
paulson@14267
   545
apply (unfold dvd_def)
paulson@14267
   546
apply (blast intro: mult_left_commute)
paulson@14267
   547
done
paulson@14267
   548
paulson@14267
   549
lemma dvd_mult2: "k dvd m ==> k dvd (m*n :: nat)"
paulson@14267
   550
apply (subst mult_commute)
paulson@14267
   551
apply (erule dvd_mult)
paulson@14267
   552
done
paulson@14267
   553
paulson@14267
   554
(* k dvd (m*k) *)
paulson@14267
   555
declare dvd_refl [THEN dvd_mult, iff] dvd_refl [THEN dvd_mult2, iff]
paulson@14267
   556
paulson@14267
   557
lemma dvd_reduce: "(k dvd n + k) = (k dvd (n::nat))"
paulson@14267
   558
apply (rule iffI)
paulson@14267
   559
apply (erule_tac [2] dvd_add)
paulson@14267
   560
apply (rule_tac [2] dvd_refl)
paulson@14267
   561
apply (subgoal_tac "n = (n+k) -k")
paulson@14267
   562
 prefer 2 apply simp 
paulson@14267
   563
apply (erule ssubst)
paulson@14267
   564
apply (erule dvd_diff)
paulson@14267
   565
apply (rule dvd_refl)
paulson@14267
   566
done
paulson@14267
   567
paulson@14267
   568
lemma dvd_mod: "!!n::nat. [| f dvd m; f dvd n |] ==> f dvd m mod n"
paulson@14267
   569
apply (unfold dvd_def)
paulson@14267
   570
apply (case_tac "n=0", auto)
paulson@14267
   571
apply (blast intro: mod_mult_distrib2 [symmetric])
paulson@14267
   572
done
paulson@14267
   573
paulson@14267
   574
lemma dvd_mod_imp_dvd: "[| (k::nat) dvd m mod n;  k dvd n |] ==> k dvd m"
paulson@14267
   575
apply (subgoal_tac "k dvd (m div n) *n + m mod n")
paulson@14267
   576
 apply (simp add: mod_div_equality)
paulson@14267
   577
apply (simp only: dvd_add dvd_mult)
paulson@14267
   578
done
paulson@14267
   579
paulson@14267
   580
lemma dvd_mod_iff: "k dvd n ==> ((k::nat) dvd m mod n) = (k dvd m)"
paulson@14267
   581
by (blast intro: dvd_mod_imp_dvd dvd_mod)
paulson@14267
   582
paulson@14267
   583
lemma dvd_mult_cancel: "!!k::nat. [| k*m dvd k*n; 0<k |] ==> m dvd n"
paulson@14267
   584
apply (unfold dvd_def)
paulson@14267
   585
apply (erule exE)
paulson@14267
   586
apply (simp add: mult_ac)
paulson@14267
   587
done
paulson@14267
   588
paulson@14267
   589
lemma dvd_mult_cancel1: "0<m ==> (m*n dvd m) = (n = (1::nat))"
paulson@14267
   590
apply auto
paulson@14267
   591
apply (subgoal_tac "m*n dvd m*1")
paulson@14267
   592
apply (drule dvd_mult_cancel, auto)
paulson@14267
   593
done
paulson@14267
   594
paulson@14267
   595
lemma dvd_mult_cancel2: "0<m ==> (n*m dvd m) = (n = (1::nat))"
paulson@14267
   596
apply (subst mult_commute)
paulson@14267
   597
apply (erule dvd_mult_cancel1)
paulson@14267
   598
done
paulson@14267
   599
paulson@14267
   600
lemma mult_dvd_mono: "[| i dvd m; j dvd n|] ==> i*j dvd (m*n :: nat)"
paulson@14267
   601
apply (unfold dvd_def, clarify)
paulson@14267
   602
apply (rule_tac x = "k*ka" in exI)
paulson@14267
   603
apply (simp add: mult_ac)
paulson@14267
   604
done
paulson@14267
   605
paulson@14267
   606
lemma dvd_mult_left: "(i*j :: nat) dvd k ==> i dvd k"
paulson@14267
   607
by (simp add: dvd_def mult_assoc, blast)
paulson@14267
   608
paulson@14267
   609
lemma dvd_mult_right: "(i*j :: nat) dvd k ==> j dvd k"
paulson@14267
   610
apply (unfold dvd_def, clarify)
paulson@14267
   611
apply (rule_tac x = "i*k" in exI)
paulson@14267
   612
apply (simp add: mult_ac)
paulson@14267
   613
done
paulson@14267
   614
paulson@14267
   615
lemma dvd_imp_le: "[| k dvd n; 0 < n |] ==> k \<le> (n::nat)"
paulson@14267
   616
apply (unfold dvd_def, clarify)
paulson@14267
   617
apply (simp_all (no_asm_use) add: zero_less_mult_iff)
paulson@14267
   618
apply (erule conjE)
paulson@14267
   619
apply (rule le_trans)
paulson@14267
   620
apply (rule_tac [2] le_refl [THEN mult_le_mono])
paulson@14267
   621
apply (erule_tac [2] Suc_leI, simp)
paulson@14267
   622
done
paulson@14267
   623
paulson@14267
   624
lemma dvd_eq_mod_eq_0: "!!k::nat. (k dvd n) = (n mod k = 0)"
paulson@14267
   625
apply (unfold dvd_def)
paulson@14267
   626
apply (case_tac "k=0", simp, safe)
paulson@14267
   627
apply (simp add: mult_commute)
paulson@14267
   628
apply (rule_tac t = n and n1 = k in mod_div_equality [THEN subst])
paulson@14267
   629
apply (subst mult_commute, simp)
paulson@14267
   630
done
paulson@14267
   631
paulson@14267
   632
lemma dvd_mult_div_cancel: "n dvd m ==> n * (m div n) = (m::nat)"
paulson@14267
   633
apply (subgoal_tac "m mod n = 0")
paulson@14267
   634
 apply (simp add: mult_div_cancel)
paulson@14267
   635
apply (simp only: dvd_eq_mod_eq_0)
paulson@14267
   636
done
paulson@14267
   637
paulson@14267
   638
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
paulson@14267
   639
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
paulson@14267
   640
declare mod_eq_0_iff [THEN iffD1, dest!]
paulson@14267
   641
paulson@14267
   642
(*Loses information, namely we also have r<d provided d is nonzero*)
paulson@14267
   643
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
paulson@14267
   644
apply (cut_tac m = m in mod_div_equality)
paulson@14267
   645
apply (simp only: add_ac)
paulson@14267
   646
apply (blast intro: sym)
paulson@14267
   647
done
paulson@14267
   648
paulson@14131
   649
nipkow@13152
   650
lemma split_div:
nipkow@13189
   651
 "P(n div k :: nat) =
nipkow@13189
   652
 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
nipkow@13189
   653
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
   654
proof
nipkow@13189
   655
  assume P: ?P
nipkow@13189
   656
  show ?Q
nipkow@13189
   657
  proof (cases)
nipkow@13189
   658
    assume "k = 0"
nipkow@13189
   659
    with P show ?Q by(simp add:DIVISION_BY_ZERO_DIV)
nipkow@13189
   660
  next
nipkow@13189
   661
    assume not0: "k \<noteq> 0"
nipkow@13189
   662
    thus ?Q
nipkow@13189
   663
    proof (simp, intro allI impI)
nipkow@13189
   664
      fix i j
nipkow@13189
   665
      assume n: "n = k*i + j" and j: "j < k"
nipkow@13189
   666
      show "P i"
nipkow@13189
   667
      proof (cases)
nipkow@13189
   668
	assume "i = 0"
nipkow@13189
   669
	with n j P show "P i" by simp
nipkow@13189
   670
      next
nipkow@13189
   671
	assume "i \<noteq> 0"
nipkow@13189
   672
	with not0 n j P show "P i" by(simp add:add_ac)
nipkow@13189
   673
      qed
nipkow@13189
   674
    qed
nipkow@13189
   675
  qed
nipkow@13189
   676
next
nipkow@13189
   677
  assume Q: ?Q
nipkow@13189
   678
  show ?P
nipkow@13189
   679
  proof (cases)
nipkow@13189
   680
    assume "k = 0"
nipkow@13189
   681
    with Q show ?P by(simp add:DIVISION_BY_ZERO_DIV)
nipkow@13189
   682
  next
nipkow@13189
   683
    assume not0: "k \<noteq> 0"
nipkow@13189
   684
    with Q have R: ?R by simp
nipkow@13189
   685
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
   686
    show ?P by simp
nipkow@13189
   687
  qed
nipkow@13189
   688
qed
nipkow@13189
   689
berghofe@13882
   690
lemma split_div_lemma:
paulson@14267
   691
  "0 < n \<Longrightarrow> (n * q \<le> m \<and> m < n * (Suc q)) = (q = ((m::nat) div n))"
berghofe@13882
   692
  apply (rule iffI)
berghofe@13882
   693
  apply (rule_tac a=m and r = "m - n * q" and r' = "m mod n" in unique_quotient)
paulson@14208
   694
  apply (simp_all add: quorem_def, arith)
berghofe@13882
   695
  apply (rule conjI)
berghofe@13882
   696
  apply (rule_tac P="%x. n * (m div n) \<le> x" in
berghofe@13882
   697
    subst [OF mod_div_equality [of _ n]])
berghofe@13882
   698
  apply (simp only: add: mult_ac)
berghofe@13882
   699
  apply (rule_tac P="%x. x < n + n * (m div n)" in
berghofe@13882
   700
    subst [OF mod_div_equality [of _ n]])
berghofe@13882
   701
  apply (simp only: add: mult_ac add_ac)
paulson@14208
   702
  apply (rule add_less_mono1, simp)
berghofe@13882
   703
  done
berghofe@13882
   704
berghofe@13882
   705
theorem split_div':
berghofe@13882
   706
  "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
paulson@14267
   707
   (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
berghofe@13882
   708
  apply (case_tac "0 < n")
berghofe@13882
   709
  apply (simp only: add: split_div_lemma)
berghofe@13882
   710
  apply (simp_all add: DIVISION_BY_ZERO_DIV)
berghofe@13882
   711
  done
berghofe@13882
   712
nipkow@13189
   713
lemma split_mod:
nipkow@13189
   714
 "P(n mod k :: nat) =
nipkow@13189
   715
 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
nipkow@13189
   716
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
   717
proof
nipkow@13189
   718
  assume P: ?P
nipkow@13189
   719
  show ?Q
nipkow@13189
   720
  proof (cases)
nipkow@13189
   721
    assume "k = 0"
nipkow@13189
   722
    with P show ?Q by(simp add:DIVISION_BY_ZERO_MOD)
nipkow@13189
   723
  next
nipkow@13189
   724
    assume not0: "k \<noteq> 0"
nipkow@13189
   725
    thus ?Q
nipkow@13189
   726
    proof (simp, intro allI impI)
nipkow@13189
   727
      fix i j
nipkow@13189
   728
      assume "n = k*i + j" "j < k"
nipkow@13189
   729
      thus "P j" using not0 P by(simp add:add_ac mult_ac)
nipkow@13189
   730
    qed
nipkow@13189
   731
  qed
nipkow@13189
   732
next
nipkow@13189
   733
  assume Q: ?Q
nipkow@13189
   734
  show ?P
nipkow@13189
   735
  proof (cases)
nipkow@13189
   736
    assume "k = 0"
nipkow@13189
   737
    with Q show ?P by(simp add:DIVISION_BY_ZERO_MOD)
nipkow@13189
   738
  next
nipkow@13189
   739
    assume not0: "k \<noteq> 0"
nipkow@13189
   740
    with Q have R: ?R by simp
nipkow@13189
   741
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
   742
    show ?P by simp
nipkow@13189
   743
  qed
nipkow@13189
   744
qed
nipkow@13189
   745
berghofe@13882
   746
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
berghofe@13882
   747
  apply (rule_tac P="%x. m mod n = x - (m div n) * n" in
berghofe@13882
   748
    subst [OF mod_div_equality [of _ n]])
berghofe@13882
   749
  apply arith
berghofe@13882
   750
  done
berghofe@13882
   751
paulson@14267
   752
ML
paulson@14267
   753
{*
paulson@14267
   754
val div_def = thm "div_def"
paulson@14267
   755
val mod_def = thm "mod_def"
paulson@14267
   756
val dvd_def = thm "dvd_def"
paulson@14267
   757
val quorem_def = thm "quorem_def"
paulson@14267
   758
paulson@14267
   759
val wf_less_trans = thm "wf_less_trans";
paulson@14267
   760
val mod_eq = thm "mod_eq";
paulson@14267
   761
val div_eq = thm "div_eq";
paulson@14267
   762
val DIVISION_BY_ZERO_DIV = thm "DIVISION_BY_ZERO_DIV";
paulson@14267
   763
val DIVISION_BY_ZERO_MOD = thm "DIVISION_BY_ZERO_MOD";
paulson@14267
   764
val mod_less = thm "mod_less";
paulson@14267
   765
val mod_geq = thm "mod_geq";
paulson@14267
   766
val le_mod_geq = thm "le_mod_geq";
paulson@14267
   767
val mod_if = thm "mod_if";
paulson@14267
   768
val mod_1 = thm "mod_1";
paulson@14267
   769
val mod_self = thm "mod_self";
paulson@14267
   770
val mod_add_self2 = thm "mod_add_self2";
paulson@14267
   771
val mod_add_self1 = thm "mod_add_self1";
paulson@14267
   772
val mod_mult_self1 = thm "mod_mult_self1";
paulson@14267
   773
val mod_mult_self2 = thm "mod_mult_self2";
paulson@14267
   774
val mod_mult_distrib = thm "mod_mult_distrib";
paulson@14267
   775
val mod_mult_distrib2 = thm "mod_mult_distrib2";
paulson@14267
   776
val mod_mult_self_is_0 = thm "mod_mult_self_is_0";
paulson@14267
   777
val mod_mult_self1_is_0 = thm "mod_mult_self1_is_0";
paulson@14267
   778
val div_less = thm "div_less";
paulson@14267
   779
val div_geq = thm "div_geq";
paulson@14267
   780
val le_div_geq = thm "le_div_geq";
paulson@14267
   781
val div_if = thm "div_if";
paulson@14267
   782
val mod_div_equality = thm "mod_div_equality";
paulson@14267
   783
val mod_div_equality2 = thm "mod_div_equality2";
paulson@14267
   784
val div_mod_equality = thm "div_mod_equality";
paulson@14267
   785
val div_mod_equality2 = thm "div_mod_equality2";
paulson@14267
   786
val mult_div_cancel = thm "mult_div_cancel";
paulson@14267
   787
val mod_less_divisor = thm "mod_less_divisor";
paulson@14267
   788
val div_mult_self_is_m = thm "div_mult_self_is_m";
paulson@14267
   789
val div_mult_self1_is_m = thm "div_mult_self1_is_m";
paulson@14267
   790
val unique_quotient_lemma = thm "unique_quotient_lemma";
paulson@14267
   791
val unique_quotient = thm "unique_quotient";
paulson@14267
   792
val unique_remainder = thm "unique_remainder";
paulson@14267
   793
val div_0 = thm "div_0";
paulson@14267
   794
val mod_0 = thm "mod_0";
paulson@14267
   795
val div_mult1_eq = thm "div_mult1_eq";
paulson@14267
   796
val mod_mult1_eq = thm "mod_mult1_eq";
paulson@14267
   797
val mod_mult1_eq' = thm "mod_mult1_eq'";
paulson@14267
   798
val mod_mult_distrib_mod = thm "mod_mult_distrib_mod";
paulson@14267
   799
val div_add1_eq = thm "div_add1_eq";
paulson@14267
   800
val mod_add1_eq = thm "mod_add1_eq";
paulson@14267
   801
val mod_lemma = thm "mod_lemma";
paulson@14267
   802
val div_mult2_eq = thm "div_mult2_eq";
paulson@14267
   803
val mod_mult2_eq = thm "mod_mult2_eq";
paulson@14267
   804
val div_mult_mult_lemma = thm "div_mult_mult_lemma";
paulson@14267
   805
val div_mult_mult1 = thm "div_mult_mult1";
paulson@14267
   806
val div_mult_mult2 = thm "div_mult_mult2";
paulson@14267
   807
val div_1 = thm "div_1";
paulson@14267
   808
val div_self = thm "div_self";
paulson@14267
   809
val div_add_self2 = thm "div_add_self2";
paulson@14267
   810
val div_add_self1 = thm "div_add_self1";
paulson@14267
   811
val div_mult_self1 = thm "div_mult_self1";
paulson@14267
   812
val div_mult_self2 = thm "div_mult_self2";
paulson@14267
   813
val div_le_mono = thm "div_le_mono";
paulson@14267
   814
val div_le_mono2 = thm "div_le_mono2";
paulson@14267
   815
val div_le_dividend = thm "div_le_dividend";
paulson@14267
   816
val div_less_dividend = thm "div_less_dividend";
paulson@14267
   817
val mod_Suc = thm "mod_Suc";
paulson@14267
   818
val dvdI = thm "dvdI";
paulson@14267
   819
val dvdE = thm "dvdE";
paulson@14267
   820
val dvd_0_right = thm "dvd_0_right";
paulson@14267
   821
val dvd_0_left = thm "dvd_0_left";
paulson@14267
   822
val dvd_0_left_iff = thm "dvd_0_left_iff";
paulson@14267
   823
val dvd_1_left = thm "dvd_1_left";
paulson@14267
   824
val dvd_1_iff_1 = thm "dvd_1_iff_1";
paulson@14267
   825
val dvd_refl = thm "dvd_refl";
paulson@14267
   826
val dvd_trans = thm "dvd_trans";
paulson@14267
   827
val dvd_anti_sym = thm "dvd_anti_sym";
paulson@14267
   828
val dvd_add = thm "dvd_add";
paulson@14267
   829
val dvd_diff = thm "dvd_diff";
paulson@14267
   830
val dvd_diffD = thm "dvd_diffD";
paulson@14267
   831
val dvd_diffD1 = thm "dvd_diffD1";
paulson@14267
   832
val dvd_mult = thm "dvd_mult";
paulson@14267
   833
val dvd_mult2 = thm "dvd_mult2";
paulson@14267
   834
val dvd_reduce = thm "dvd_reduce";
paulson@14267
   835
val dvd_mod = thm "dvd_mod";
paulson@14267
   836
val dvd_mod_imp_dvd = thm "dvd_mod_imp_dvd";
paulson@14267
   837
val dvd_mod_iff = thm "dvd_mod_iff";
paulson@14267
   838
val dvd_mult_cancel = thm "dvd_mult_cancel";
paulson@14267
   839
val dvd_mult_cancel1 = thm "dvd_mult_cancel1";
paulson@14267
   840
val dvd_mult_cancel2 = thm "dvd_mult_cancel2";
paulson@14267
   841
val mult_dvd_mono = thm "mult_dvd_mono";
paulson@14267
   842
val dvd_mult_left = thm "dvd_mult_left";
paulson@14267
   843
val dvd_mult_right = thm "dvd_mult_right";
paulson@14267
   844
val dvd_imp_le = thm "dvd_imp_le";
paulson@14267
   845
val dvd_eq_mod_eq_0 = thm "dvd_eq_mod_eq_0";
paulson@14267
   846
val dvd_mult_div_cancel = thm "dvd_mult_div_cancel";
paulson@14267
   847
val mod_eq_0_iff = thm "mod_eq_0_iff";
paulson@14267
   848
val mod_eqD = thm "mod_eqD";
paulson@14267
   849
*}
paulson@14267
   850
paulson@14267
   851
nipkow@13189
   852
(*
nipkow@13189
   853
lemma split_div:
nipkow@13152
   854
assumes m: "m \<noteq> 0"
nipkow@13152
   855
shows "P(n div m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P i)"
nipkow@13152
   856
       (is "?P = ?Q")
nipkow@13152
   857
proof
nipkow@13152
   858
  assume P: ?P
nipkow@13152
   859
  show ?Q
nipkow@13152
   860
  proof (intro allI impI)
nipkow@13152
   861
    fix i j
nipkow@13152
   862
    assume n: "n = m*i + j" and j: "j < m"
nipkow@13152
   863
    show "P i"
nipkow@13152
   864
    proof (cases)
nipkow@13152
   865
      assume "i = 0"
nipkow@13152
   866
      with n j P show "P i" by simp
nipkow@13152
   867
    next
nipkow@13152
   868
      assume "i \<noteq> 0"
nipkow@13152
   869
      with n j P show "P i" by (simp add:add_ac div_mult_self1)
nipkow@13152
   870
    qed
nipkow@13152
   871
  qed
nipkow@13152
   872
next
nipkow@13152
   873
  assume Q: ?Q
nipkow@13152
   874
  from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
nipkow@13517
   875
  show ?P by simp
nipkow@13152
   876
qed
nipkow@13152
   877
nipkow@13152
   878
lemma split_mod:
nipkow@13152
   879
assumes m: "m \<noteq> 0"
nipkow@13152
   880
shows "P(n mod m :: nat) = (!i. !j<m. n = m*i + j \<longrightarrow> P j)"
nipkow@13152
   881
       (is "?P = ?Q")
nipkow@13152
   882
proof
nipkow@13152
   883
  assume P: ?P
nipkow@13152
   884
  show ?Q
nipkow@13152
   885
  proof (intro allI impI)
nipkow@13152
   886
    fix i j
nipkow@13152
   887
    assume "n = m*i + j" "j < m"
nipkow@13152
   888
    thus "P j" using m P by(simp add:add_ac mult_ac)
nipkow@13152
   889
  qed
nipkow@13152
   890
next
nipkow@13152
   891
  assume Q: ?Q
nipkow@13152
   892
  from m Q[THEN spec,of "n div m",THEN spec, of "n mod m"]
nipkow@13517
   893
  show ?P by simp
nipkow@13152
   894
qed
nipkow@13189
   895
*)
paulson@3366
   896
end