src/HOL/Tools/inductive.ML
author wenzelm
Sun, 07 Mar 2010 12:19:47 +0100
changeset 35625 9c818cab0dd0
parent 35624 c4e29a0bb8c1
child 35646 b32d6c1bdb4d
permissions -rw-r--r--
modernized structure Object_Logic;
haftmann@31723
     1
(*  Title:      HOL/Tools/inductive.ML
berghofe@5094
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@21367
     3
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
berghofe@5094
     4
wenzelm@6424
     5
(Co)Inductive Definition module for HOL.
berghofe@5094
     6
berghofe@5094
     7
Features:
wenzelm@6424
     8
  * least or greatest fixedpoints
wenzelm@6424
     9
  * mutually recursive definitions
wenzelm@6424
    10
  * definitions involving arbitrary monotone operators
wenzelm@6424
    11
  * automatically proves introduction and elimination rules
berghofe@5094
    12
berghofe@5094
    13
  Introduction rules have the form
berghofe@21024
    14
  [| M Pj ti, ..., Q x, ... |] ==> Pk t
berghofe@5094
    15
  where M is some monotone operator (usually the identity)
berghofe@21024
    16
  Q x is any side condition on the free variables
berghofe@5094
    17
  ti, t are any terms
berghofe@21024
    18
  Pj, Pk are two of the predicates being defined in mutual recursion
berghofe@5094
    19
*)
berghofe@5094
    20
haftmann@31723
    21
signature BASIC_INDUCTIVE =
berghofe@5094
    22
sig
wenzelm@33464
    23
  type inductive_result =
wenzelm@33464
    24
    {preds: term list, elims: thm list, raw_induct: thm,
wenzelm@33464
    25
     induct: thm, intrs: thm list}
wenzelm@21526
    26
  val morph_result: morphism -> inductive_result -> inductive_result
wenzelm@33464
    27
  type inductive_info = {names: string list, coind: bool} * inductive_result
wenzelm@21526
    28
  val the_inductive: Proof.context -> string -> inductive_info
wenzelm@21367
    29
  val print_inductives: Proof.context -> unit
wenzelm@18728
    30
  val mono_add: attribute
wenzelm@18728
    31
  val mono_del: attribute
wenzelm@21367
    32
  val get_monos: Proof.context -> thm list
wenzelm@21367
    33
  val mk_cases: Proof.context -> term -> thm
wenzelm@10910
    34
  val inductive_forall_name: string
wenzelm@10910
    35
  val inductive_forall_def: thm
wenzelm@10910
    36
  val rulify: thm -> thm
wenzelm@28839
    37
  val inductive_cases: (Attrib.binding * string list) list -> local_theory ->
wenzelm@28084
    38
    thm list list * local_theory
wenzelm@28839
    39
  val inductive_cases_i: (Attrib.binding * term list) list -> local_theory ->
wenzelm@28084
    40
    thm list list * local_theory
wenzelm@33464
    41
  type inductive_flags =
wenzelm@33671
    42
    {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
wenzelm@33671
    43
      no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool}
wenzelm@24815
    44
  val add_inductive_i:
haftmann@29581
    45
    inductive_flags -> ((binding * typ) * mixfix) list ->
wenzelm@28084
    46
    (string * typ) list -> (Attrib.binding * term) list -> thm list -> local_theory ->
wenzelm@28084
    47
    inductive_result * local_theory
wenzelm@28083
    48
  val add_inductive: bool -> bool ->
haftmann@29581
    49
    (binding * string option * mixfix) list ->
haftmann@29581
    50
    (binding * string option * mixfix) list ->
wenzelm@28084
    51
    (Attrib.binding * string) list ->
wenzelm@28083
    52
    (Facts.ref * Attrib.src list) list ->
wenzelm@29412
    53
    bool -> local_theory -> inductive_result * local_theory
wenzelm@33736
    54
  val add_inductive_global: inductive_flags ->
haftmann@29581
    55
    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
wenzelm@28084
    56
    thm list -> theory -> inductive_result * theory
berghofe@22789
    57
  val arities_of: thm -> (string * int) list
berghofe@22789
    58
  val params_of: thm -> term list
berghofe@22789
    59
  val partition_rules: thm -> thm list -> (string * thm list) list
berghofe@25822
    60
  val partition_rules': thm -> (thm * 'a) list -> (string * (thm * 'a) list) list
berghofe@22789
    61
  val unpartition_rules: thm list -> (string * 'a list) list -> 'a list
berghofe@22789
    62
  val infer_intro_vars: thm -> int -> thm list -> term list list
wenzelm@18708
    63
  val setup: theory -> theory
berghofe@5094
    64
end;
berghofe@5094
    65
haftmann@31723
    66
signature INDUCTIVE =
berghofe@23762
    67
sig
haftmann@31723
    68
  include BASIC_INDUCTIVE
wenzelm@33464
    69
  type add_ind_def =
wenzelm@33464
    70
    inductive_flags ->
wenzelm@33464
    71
    term list -> (Attrib.binding * term) list -> thm list ->
wenzelm@33464
    72
    term list -> (binding * mixfix) list ->
wenzelm@33464
    73
    local_theory -> inductive_result * local_theory
wenzelm@33671
    74
  val declare_rules: binding -> bool -> bool -> string list ->
berghofe@34973
    75
    thm list -> binding list -> Attrib.src list list -> (thm * string list * int) list ->
berghofe@23762
    76
    thm -> local_theory -> thm list * thm list * thm * local_theory
berghofe@23762
    77
  val add_ind_def: add_ind_def
wenzelm@28083
    78
  val gen_add_inductive_i: add_ind_def -> inductive_flags ->
haftmann@29581
    79
    ((binding * typ) * mixfix) list -> (string * typ) list -> (Attrib.binding * term) list ->
wenzelm@28084
    80
    thm list -> local_theory -> inductive_result * local_theory
wenzelm@28083
    81
  val gen_add_inductive: add_ind_def -> bool -> bool ->
haftmann@29581
    82
    (binding * string option * mixfix) list ->
haftmann@29581
    83
    (binding * string option * mixfix) list ->
wenzelm@28084
    84
    (Attrib.binding * string) list -> (Facts.ref * Attrib.src list) list ->
wenzelm@29412
    85
    bool -> local_theory -> inductive_result * local_theory
wenzelm@26988
    86
  val gen_ind_decl: add_ind_def -> bool ->
wenzelm@29412
    87
    OuterParse.token list -> (bool -> local_theory -> local_theory) * OuterParse.token list
berghofe@23762
    88
end;
berghofe@23762
    89
haftmann@31723
    90
structure Inductive: INDUCTIVE =
berghofe@5094
    91
struct
berghofe@5094
    92
wenzelm@9598
    93
wenzelm@10729
    94
(** theory context references **)
wenzelm@10729
    95
wenzelm@11991
    96
val inductive_forall_name = "HOL.induct_forall";
haftmann@32602
    97
val inductive_forall_def = @{thm induct_forall_def};
wenzelm@11991
    98
val inductive_conj_name = "HOL.induct_conj";
haftmann@32602
    99
val inductive_conj_def = @{thm induct_conj_def};
haftmann@32602
   100
val inductive_conj = @{thms induct_conj};
haftmann@32602
   101
val inductive_atomize = @{thms induct_atomize};
haftmann@32602
   102
val inductive_rulify = @{thms induct_rulify};
haftmann@32602
   103
val inductive_rulify_fallback = @{thms induct_rulify_fallback};
wenzelm@10729
   104
berghofe@21024
   105
val notTrueE = TrueI RSN (2, notE);
berghofe@21024
   106
val notFalseI = Seq.hd (atac 1 notI);
wenzelm@32181
   107
wenzelm@32181
   108
val simp_thms' = map mk_meta_eq
wenzelm@32181
   109
  @{lemma "(~True) = False" "(~False) = True"
wenzelm@32181
   110
      "(True --> P) = P" "(False --> P) = True"
wenzelm@32181
   111
      "(P & True) = P" "(True & P) = P"
wenzelm@32181
   112
    by (fact simp_thms)+};
berghofe@21024
   113
haftmann@32652
   114
val simp_thms'' = map mk_meta_eq [@{thm inf_fun_eq}, @{thm inf_bool_eq}] @ simp_thms';
haftmann@32652
   115
haftmann@32652
   116
val simp_thms''' = map mk_meta_eq
haftmann@32652
   117
  [@{thm le_fun_def}, @{thm le_bool_def}, @{thm sup_fun_eq}, @{thm sup_bool_eq}];
wenzelm@10729
   118
wenzelm@10729
   119
wenzelm@22846
   120
(** context data **)
berghofe@7710
   121
berghofe@21024
   122
type inductive_result =
berghofe@23762
   123
  {preds: term list, elims: thm list, raw_induct: thm,
berghofe@23762
   124
   induct: thm, intrs: thm list};
berghofe@21024
   125
berghofe@23762
   126
fun morph_result phi {preds, elims, raw_induct: thm, induct, intrs} =
wenzelm@21526
   127
  let
wenzelm@21526
   128
    val term = Morphism.term phi;
wenzelm@21526
   129
    val thm = Morphism.thm phi;
wenzelm@21526
   130
    val fact = Morphism.fact phi;
wenzelm@21526
   131
  in
berghofe@23762
   132
   {preds = map term preds, elims = fact elims, raw_induct = thm raw_induct,
berghofe@23762
   133
    induct = thm induct, intrs = fact intrs}
wenzelm@21526
   134
  end;
wenzelm@21526
   135
berghofe@7710
   136
type inductive_info =
berghofe@21024
   137
  {names: string list, coind: bool} * inductive_result;
berghofe@7710
   138
wenzelm@33519
   139
structure InductiveData = Generic_Data
wenzelm@22846
   140
(
berghofe@7710
   141
  type T = inductive_info Symtab.table * thm list;
berghofe@7710
   142
  val empty = (Symtab.empty, []);
wenzelm@16432
   143
  val extend = I;
wenzelm@33519
   144
  fun merge ((tab1, monos1), (tab2, monos2)) : T =
wenzelm@24039
   145
    (Symtab.merge (K true) (tab1, tab2), Thm.merge_thms (monos1, monos2));
wenzelm@22846
   146
);
berghofe@7710
   147
wenzelm@21526
   148
val get_inductives = InductiveData.get o Context.Proof;
wenzelm@22846
   149
wenzelm@22846
   150
fun print_inductives ctxt =
wenzelm@22846
   151
  let
wenzelm@22846
   152
    val (tab, monos) = get_inductives ctxt;
wenzelm@22846
   153
    val space = Consts.space_of (ProofContext.consts_of ctxt);
wenzelm@22846
   154
  in
wenzelm@33100
   155
    [Pretty.strs ("(co)inductives:" :: map #1 (Name_Space.extern_table (space, tab))),
wenzelm@32111
   156
     Pretty.big_list "monotonicity rules:" (map (Display.pretty_thm ctxt) monos)]
wenzelm@22846
   157
    |> Pretty.chunks |> Pretty.writeln
wenzelm@22846
   158
  end;
berghofe@7710
   159
berghofe@7710
   160
berghofe@7710
   161
(* get and put data *)
berghofe@7710
   162
wenzelm@21367
   163
fun the_inductive ctxt name =
wenzelm@21526
   164
  (case Symtab.lookup (#1 (get_inductives ctxt)) name of
berghofe@21024
   165
    NONE => error ("Unknown (co)inductive predicate " ^ quote name)
skalberg@15531
   166
  | SOME info => info);
wenzelm@9598
   167
wenzelm@25380
   168
fun put_inductives names info = InductiveData.map
wenzelm@25380
   169
  (apfst (fold (fn name => Symtab.update (name, info)) names));
berghofe@7710
   170
berghofe@7710
   171
berghofe@7710
   172
berghofe@7710
   173
(** monotonicity rules **)
berghofe@7710
   174
wenzelm@21526
   175
val get_monos = #2 o get_inductives;
wenzelm@21367
   176
val map_monos = InductiveData.map o apsnd;
wenzelm@8277
   177
berghofe@7710
   178
fun mk_mono thm =
berghofe@7710
   179
  let
berghofe@33899
   180
    fun eq2mono thm' = thm' RS (thm' RS eq_to_mono);
haftmann@32652
   181
    fun dest_less_concl thm = dest_less_concl (thm RS @{thm le_funD})
haftmann@32652
   182
      handle THM _ => thm RS @{thm le_boolD}
berghofe@7710
   183
  in
berghofe@33899
   184
    case concl_of thm of
berghofe@22275
   185
      Const ("==", _) $ _ $ _ => eq2mono (thm RS meta_eq_to_obj_eq)
wenzelm@35364
   186
    | _ $ (Const (@{const_name "op ="}, _) $ _ $ _) => eq2mono thm
haftmann@35092
   187
    | _ $ (Const (@{const_name Orderings.less_eq}, _) $ _ $ _) =>
berghofe@33899
   188
      dest_less_concl (Seq.hd (REPEAT (FIRSTGOAL
berghofe@33899
   189
        (resolve_tac [@{thm le_funI}, @{thm le_boolI'}])) thm))
berghofe@33899
   190
    | _ => thm
wenzelm@32111
   191
  end handle THM _ =>
wenzelm@32111
   192
    error ("Bad monotonicity theorem:\n" ^ Display.string_of_thm_without_context thm);
berghofe@7710
   193
berghofe@33899
   194
val mono_add = Thm.declaration_attribute (map_monos o Thm.add_thm o mk_mono);
berghofe@33899
   195
val mono_del = Thm.declaration_attribute (map_monos o Thm.del_thm o mk_mono);
berghofe@7710
   196
berghofe@7710
   197
wenzelm@7107
   198
wenzelm@10735
   199
(** misc utilities **)
wenzelm@6424
   200
wenzelm@26477
   201
fun message quiet_mode s = if quiet_mode then () else writeln s;
wenzelm@26477
   202
fun clean_message quiet_mode s = if ! quick_and_dirty then () else message quiet_mode s;
berghofe@5662
   203
wenzelm@6424
   204
fun coind_prefix true = "co"
wenzelm@6424
   205
  | coind_prefix false = "";
wenzelm@6424
   206
wenzelm@24133
   207
fun log (b:int) m n = if m >= n then 0 else 1 + log b (b * m) n;
wenzelm@6424
   208
berghofe@21024
   209
fun make_bool_args f g [] i = []
berghofe@21024
   210
  | make_bool_args f g (x :: xs) i =
berghofe@21024
   211
      (if i mod 2 = 0 then f x else g x) :: make_bool_args f g xs (i div 2);
berghofe@7020
   212
berghofe@21024
   213
fun make_bool_args' xs =
berghofe@21024
   214
  make_bool_args (K HOLogic.false_const) (K HOLogic.true_const) xs;
berghofe@7020
   215
haftmann@33956
   216
fun arg_types_of k c = drop k (binder_types (fastype_of c));
haftmann@33077
   217
berghofe@21024
   218
fun find_arg T x [] = sys_error "find_arg"
berghofe@21024
   219
  | find_arg T x ((p as (_, (SOME _, _))) :: ps) =
berghofe@21024
   220
      apsnd (cons p) (find_arg T x ps)
berghofe@21024
   221
  | find_arg T x ((p as (U, (NONE, y))) :: ps) =
wenzelm@23577
   222
      if (T: typ) = U then (y, (U, (SOME x, y)) :: ps)
berghofe@21024
   223
      else apsnd (cons p) (find_arg T x ps);
berghofe@7020
   224
berghofe@21024
   225
fun make_args Ts xs =
haftmann@28524
   226
  map (fn (T, (NONE, ())) => Const (@{const_name undefined}, T) | (_, (SOME t, ())) => t)
berghofe@21024
   227
    (fold (fn (t, T) => snd o find_arg T t) xs (map (rpair (NONE, ())) Ts));
berghofe@21024
   228
berghofe@21024
   229
fun make_args' Ts xs Us =
berghofe@21024
   230
  fst (fold_map (fn T => find_arg T ()) Us (Ts ~~ map (pair NONE) xs));
berghofe@21024
   231
berghofe@21024
   232
fun dest_predicate cs params t =
berghofe@5094
   233
  let
berghofe@21024
   234
    val k = length params;
berghofe@21024
   235
    val (c, ts) = strip_comb t;
berghofe@21024
   236
    val (xs, ys) = chop k ts;
haftmann@31986
   237
    val i = find_index (fn c' => c' = c) cs;
berghofe@21024
   238
  in
berghofe@21024
   239
    if xs = params andalso i >= 0 then
haftmann@33077
   240
      SOME (c, i, ys, chop (length ys) (arg_types_of k c))
berghofe@21024
   241
    else NONE
berghofe@5094
   242
  end;
berghofe@5094
   243
berghofe@21024
   244
fun mk_names a 0 = []
berghofe@21024
   245
  | mk_names a 1 = [a]
berghofe@21024
   246
  | mk_names a n = map (fn i => a ^ string_of_int i) (1 upto n);
berghofe@5094
   247
wenzelm@6424
   248
wenzelm@6424
   249
wenzelm@10729
   250
(** process rules **)
berghofe@5094
   251
wenzelm@10729
   252
local
berghofe@5094
   253
berghofe@23762
   254
fun err_in_rule ctxt name t msg =
wenzelm@16432
   255
  error (cat_lines ["Ill-formed introduction rule " ^ quote name,
wenzelm@24920
   256
    Syntax.string_of_term ctxt t, msg]);
berghofe@5094
   257
berghofe@23762
   258
fun err_in_prem ctxt name t p msg =
wenzelm@24920
   259
  error (cat_lines ["Ill-formed premise", Syntax.string_of_term ctxt p,
wenzelm@24920
   260
    "in introduction rule " ^ quote name, Syntax.string_of_term ctxt t, msg]);
berghofe@5094
   261
berghofe@21024
   262
val bad_concl = "Conclusion of introduction rule must be an inductive predicate";
wenzelm@10729
   263
berghofe@21024
   264
val bad_ind_occ = "Inductive predicate occurs in argument of inductive predicate";
berghofe@21024
   265
berghofe@21024
   266
val bad_app = "Inductive predicate must be applied to parameter(s) ";
paulson@11358
   267
wenzelm@16432
   268
fun atomize_term thy = MetaSimplifier.rewrite_term thy inductive_atomize [];
wenzelm@10729
   269
wenzelm@10729
   270
in
wenzelm@10729
   271
wenzelm@28083
   272
fun check_rule ctxt cs params ((binding, att), rule) =
berghofe@5094
   273
  let
wenzelm@30222
   274
    val err_name = Binding.str_of binding;
berghofe@21024
   275
    val params' = Term.variant_frees rule (Logic.strip_params rule);
berghofe@21024
   276
    val frees = rev (map Free params');
berghofe@21024
   277
    val concl = subst_bounds (frees, Logic.strip_assums_concl rule);
berghofe@21024
   278
    val prems = map (curry subst_bounds frees) (Logic.strip_assums_hyp rule);
berghofe@23762
   279
    val rule' = Logic.list_implies (prems, concl);
berghofe@23762
   280
    val aprems = map (atomize_term (ProofContext.theory_of ctxt)) prems;
berghofe@21024
   281
    val arule = list_all_free (params', Logic.list_implies (aprems, concl));
berghofe@21024
   282
berghofe@21024
   283
    fun check_ind err t = case dest_predicate cs params t of
berghofe@21024
   284
        NONE => err (bad_app ^
wenzelm@24920
   285
          commas (map (Syntax.string_of_term ctxt) params))
berghofe@21024
   286
      | SOME (_, _, ys, _) =>
berghofe@21024
   287
          if exists (fn c => exists (fn t => Logic.occs (c, t)) ys) cs
berghofe@21024
   288
          then err bad_ind_occ else ();
berghofe@21024
   289
berghofe@21024
   290
    fun check_prem' prem t =
berghofe@21024
   291
      if head_of t mem cs then
haftmann@28999
   292
        check_ind (err_in_prem ctxt err_name rule prem) t
berghofe@21024
   293
      else (case t of
berghofe@21024
   294
          Abs (_, _, t) => check_prem' prem t
berghofe@21024
   295
        | t $ u => (check_prem' prem t; check_prem' prem u)
berghofe@21024
   296
        | _ => ());
berghofe@5094
   297
wenzelm@10729
   298
    fun check_prem (prem, aprem) =
berghofe@21024
   299
      if can HOLogic.dest_Trueprop aprem then check_prem' prem prem
haftmann@28999
   300
      else err_in_prem ctxt err_name rule prem "Non-atomic premise";
wenzelm@10729
   301
  in
paulson@11358
   302
    (case concl of
wenzelm@35364
   303
       Const (@{const_name Trueprop}, _) $ t =>
berghofe@21024
   304
         if head_of t mem cs then
haftmann@28999
   305
           (check_ind (err_in_rule ctxt err_name rule') t;
berghofe@21024
   306
            List.app check_prem (prems ~~ aprems))
haftmann@28999
   307
         else err_in_rule ctxt err_name rule' bad_concl
haftmann@28999
   308
     | _ => err_in_rule ctxt err_name rule' bad_concl);
wenzelm@28083
   309
    ((binding, att), arule)
berghofe@5094
   310
  end;
berghofe@5094
   311
berghofe@24744
   312
val rulify =
wenzelm@18222
   313
  hol_simplify inductive_conj
wenzelm@18463
   314
  #> hol_simplify inductive_rulify
wenzelm@18463
   315
  #> hol_simplify inductive_rulify_fallback
wenzelm@30554
   316
  #> Simplifier.norm_hhf;
wenzelm@10729
   317
wenzelm@10729
   318
end;
wenzelm@10729
   319
wenzelm@10729
   320
berghofe@5094
   321
berghofe@21024
   322
(** proofs for (co)inductive predicates **)
wenzelm@6424
   323
berghofe@26534
   324
(* prove monotonicity *)
berghofe@5094
   325
wenzelm@29412
   326
fun prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos ctxt =
wenzelm@29412
   327
 (message (quiet_mode orelse skip_mono andalso !quick_and_dirty orelse fork_mono)
berghofe@26534
   328
    "  Proving monotonicity ...";
wenzelm@32970
   329
  (if skip_mono then Skip_Proof.prove else if fork_mono then Goal.prove_future else Goal.prove) ctxt
wenzelm@29412
   330
    [] []
wenzelm@17985
   331
    (HOLogic.mk_Trueprop
wenzelm@24815
   332
      (Const (@{const_name Orderings.mono}, (predT --> predT) --> HOLogic.boolT) $ fp_fun))
wenzelm@25380
   333
    (fn _ => EVERY [rtac @{thm monoI} 1,
haftmann@32652
   334
      REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI'}] 1),
berghofe@21024
   335
      REPEAT (FIRST
berghofe@21024
   336
        [atac 1,
berghofe@33899
   337
         resolve_tac (map mk_mono monos @ get_monos ctxt) 1,
haftmann@32652
   338
         etac @{thm le_funE} 1, dtac @{thm le_boolD} 1])]));
berghofe@5094
   339
berghofe@5094
   340
wenzelm@10735
   341
(* prove introduction rules *)
berghofe@5094
   342
wenzelm@26477
   343
fun prove_intrs quiet_mode coind mono fp_def k params intr_ts rec_preds_defs ctxt =
berghofe@5094
   344
  let
wenzelm@26477
   345
    val _ = clean_message quiet_mode "  Proving the introduction rules ...";
berghofe@5094
   346
berghofe@21024
   347
    val unfold = funpow k (fn th => th RS fun_cong)
berghofe@21024
   348
      (mono RS (fp_def RS
haftmann@32652
   349
        (if coind then @{thm def_gfp_unfold} else @{thm def_lfp_unfold})));
berghofe@5094
   350
berghofe@5094
   351
    fun select_disj 1 1 = []
berghofe@5094
   352
      | select_disj _ 1 = [rtac disjI1]
berghofe@5094
   353
      | select_disj n i = (rtac disjI2)::(select_disj (n - 1) (i - 1));
berghofe@5094
   354
berghofe@21024
   355
    val rules = [refl, TrueI, notFalseI, exI, conjI];
berghofe@21024
   356
berghofe@22605
   357
    val intrs = map_index (fn (i, intr) => rulify
wenzelm@32970
   358
      (Skip_Proof.prove ctxt (map (fst o dest_Free) params) [] intr (fn _ => EVERY
berghofe@21024
   359
       [rewrite_goals_tac rec_preds_defs,
berghofe@21024
   360
        rtac (unfold RS iffD2) 1,
berghofe@21024
   361
        EVERY1 (select_disj (length intr_ts) (i + 1)),
wenzelm@17985
   362
        (*Not ares_tac, since refl must be tried before any equality assumptions;
wenzelm@17985
   363
          backtracking may occur if the premises have extra variables!*)
berghofe@21024
   364
        DEPTH_SOLVE_1 (resolve_tac rules 1 APPEND assume_tac 1)]))) intr_ts
berghofe@5094
   365
berghofe@5094
   366
  in (intrs, unfold) end;
berghofe@5094
   367
wenzelm@6424
   368
wenzelm@10735
   369
(* prove elimination rules *)
berghofe@5094
   370
wenzelm@26477
   371
fun prove_elims quiet_mode cs params intr_ts intr_names unfold rec_preds_defs ctxt =
berghofe@5094
   372
  let
wenzelm@26477
   373
    val _ = clean_message quiet_mode "  Proving the elimination rules ...";
berghofe@5094
   374
berghofe@22605
   375
    val ([pname], ctxt') = ctxt |>
berghofe@22605
   376
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   377
      Variable.variant_fixes ["P"];
berghofe@21024
   378
    val P = HOLogic.mk_Trueprop (Free (pname, HOLogic.boolT));
berghofe@21024
   379
berghofe@21024
   380
    fun dest_intr r =
berghofe@21024
   381
      (the (dest_predicate cs params (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))),
berghofe@21024
   382
       Logic.strip_assums_hyp r, Logic.strip_params r);
berghofe@21024
   383
berghofe@21024
   384
    val intrs = map dest_intr intr_ts ~~ intr_names;
berghofe@21024
   385
berghofe@21024
   386
    val rules1 = [disjE, exE, FalseE];
berghofe@21024
   387
    val rules2 = [conjE, FalseE, notTrueE];
berghofe@21024
   388
berghofe@21024
   389
    fun prove_elim c =
berghofe@21024
   390
      let
haftmann@33077
   391
        val Ts = arg_types_of (length params) c;
berghofe@21024
   392
        val (anames, ctxt'') = Variable.variant_fixes (mk_names "a" (length Ts)) ctxt';
berghofe@21024
   393
        val frees = map Free (anames ~~ Ts);
berghofe@21024
   394
berghofe@21024
   395
        fun mk_elim_prem ((_, _, us, _), ts, params') =
berghofe@21024
   396
          list_all (params',
berghofe@21024
   397
            Logic.list_implies (map (HOLogic.mk_Trueprop o HOLogic.mk_eq)
berghofe@21024
   398
              (frees ~~ us) @ ts, P));
wenzelm@33325
   399
        val c_intrs = filter (equal c o #1 o #1 o #1) intrs;
berghofe@21024
   400
        val prems = HOLogic.mk_Trueprop (list_comb (c, params @ frees)) ::
berghofe@21024
   401
           map mk_elim_prem (map #1 c_intrs)
berghofe@21024
   402
      in
wenzelm@32970
   403
        (Skip_Proof.prove ctxt'' [] prems P
berghofe@21024
   404
          (fn {prems, ...} => EVERY
berghofe@21024
   405
            [cut_facts_tac [hd prems] 1,
berghofe@21024
   406
             rewrite_goals_tac rec_preds_defs,
berghofe@21024
   407
             dtac (unfold RS iffD1) 1,
berghofe@21024
   408
             REPEAT (FIRSTGOAL (eresolve_tac rules1)),
berghofe@21024
   409
             REPEAT (FIRSTGOAL (eresolve_tac rules2)),
berghofe@21024
   410
             EVERY (map (fn prem =>
berghofe@21024
   411
               DEPTH_SOLVE_1 (ares_tac [rewrite_rule rec_preds_defs prem, conjI] 1)) (tl prems))])
berghofe@21024
   412
          |> rulify
berghofe@21048
   413
          |> singleton (ProofContext.export ctxt'' ctxt),
berghofe@34973
   414
         map #2 c_intrs, length Ts)
berghofe@21024
   415
      end
berghofe@21024
   416
berghofe@21024
   417
   in map prove_elim cs end;
berghofe@5094
   418
wenzelm@6424
   419
wenzelm@10735
   420
(* derivation of simplified elimination rules *)
berghofe@5094
   421
wenzelm@11682
   422
local
wenzelm@11682
   423
wenzelm@11682
   424
(*delete needless equality assumptions*)
wenzelm@29064
   425
val refl_thin = Goal.prove_global @{theory HOL} [] [] @{prop "!!P. a = a ==> P ==> P"}
haftmann@22838
   426
  (fn _ => assume_tac 1);
berghofe@21024
   427
val elim_rls = [asm_rl, FalseE, refl_thin, conjE, exE];
wenzelm@11682
   428
val elim_tac = REPEAT o Tactic.eresolve_tac elim_rls;
wenzelm@11682
   429
berghofe@23762
   430
fun simp_case_tac ss i =
berghofe@23762
   431
  EVERY' [elim_tac, asm_full_simp_tac ss, elim_tac, REPEAT o bound_hyp_subst_tac] i;
wenzelm@21367
   432
wenzelm@11682
   433
in
wenzelm@9598
   434
wenzelm@21367
   435
fun mk_cases ctxt prop =
wenzelm@7107
   436
  let
wenzelm@21367
   437
    val thy = ProofContext.theory_of ctxt;
wenzelm@32149
   438
    val ss = simpset_of ctxt;
wenzelm@21367
   439
wenzelm@21526
   440
    fun err msg =
wenzelm@21526
   441
      error (Pretty.string_of (Pretty.block
wenzelm@24920
   442
        [Pretty.str msg, Pretty.fbrk, Syntax.pretty_term ctxt prop]));
wenzelm@21526
   443
wenzelm@24861
   444
    val elims = Induct.find_casesP ctxt prop;
wenzelm@21367
   445
wenzelm@21367
   446
    val cprop = Thm.cterm_of thy prop;
berghofe@23762
   447
    val tac = ALLGOALS (simp_case_tac ss) THEN prune_params_tac;
wenzelm@21367
   448
    fun mk_elim rl =
wenzelm@21367
   449
      Thm.implies_intr cprop (Tactic.rule_by_tactic tac (Thm.assume cprop RS rl))
wenzelm@21367
   450
      |> singleton (Variable.export (Variable.auto_fixes prop ctxt) ctxt);
wenzelm@7107
   451
  in
wenzelm@7107
   452
    (case get_first (try mk_elim) elims of
skalberg@15531
   453
      SOME r => r
wenzelm@21526
   454
    | NONE => err "Proposition not an inductive predicate:")
wenzelm@7107
   455
  end;
wenzelm@7107
   456
wenzelm@11682
   457
end;
wenzelm@11682
   458
wenzelm@7107
   459
wenzelm@21367
   460
(* inductive_cases *)
wenzelm@7107
   461
wenzelm@21367
   462
fun gen_inductive_cases prep_att prep_prop args lthy =
wenzelm@9598
   463
  let
wenzelm@21367
   464
    val thy = ProofContext.theory_of lthy;
wenzelm@21367
   465
    val facts = args |> map (fn ((a, atts), props) =>
wenzelm@21367
   466
      ((a, map (prep_att thy) atts),
wenzelm@21367
   467
        map (Thm.no_attributes o single o mk_cases lthy o prep_prop lthy) props));
wenzelm@33673
   468
  in lthy |> Local_Theory.notes facts |>> map snd end;
wenzelm@12609
   469
wenzelm@24509
   470
val inductive_cases = gen_inductive_cases Attrib.intern_src Syntax.read_prop;
wenzelm@24509
   471
val inductive_cases_i = gen_inductive_cases (K I) Syntax.check_prop;
wenzelm@7107
   472
wenzelm@6424
   473
wenzelm@30722
   474
val ind_cases_setup =
wenzelm@30722
   475
  Method.setup @{binding ind_cases}
wenzelm@30722
   476
    (Scan.lift (Scan.repeat1 Args.name_source --
wenzelm@30722
   477
      Scan.optional (Args.$$$ "for" |-- Scan.repeat1 Args.name) []) >>
wenzelm@30722
   478
      (fn (raw_props, fixes) => fn ctxt =>
wenzelm@30722
   479
        let
wenzelm@30722
   480
          val (_, ctxt') = Variable.add_fixes fixes ctxt;
wenzelm@30722
   481
          val props = Syntax.read_props ctxt' raw_props;
wenzelm@30722
   482
          val ctxt'' = fold Variable.declare_term props ctxt';
wenzelm@30722
   483
          val rules = ProofContext.export ctxt'' ctxt (map (mk_cases ctxt'') props)
wenzelm@30722
   484
        in Method.erule 0 rules end))
wenzelm@30722
   485
    "dynamic case analysis on predicates";
wenzelm@9598
   486
wenzelm@9598
   487
wenzelm@10735
   488
(* prove induction rule *)
berghofe@5094
   489
wenzelm@26477
   490
fun prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono
berghofe@21024
   491
    fp_def rec_preds_defs ctxt =
berghofe@5094
   492
  let
wenzelm@26477
   493
    val _ = clean_message quiet_mode "  Proving the induction rule ...";
wenzelm@20047
   494
    val thy = ProofContext.theory_of ctxt;
berghofe@5094
   495
berghofe@21024
   496
    (* predicates for induction rule *)
berghofe@7293
   497
berghofe@22605
   498
    val (pnames, ctxt') = ctxt |>
berghofe@22605
   499
      Variable.add_fixes (map (fst o dest_Free) params) |> snd |>
berghofe@22605
   500
      Variable.variant_fixes (mk_names "P" (length cs));
haftmann@33077
   501
    val preds = map2 (curry Free) pnames
haftmann@33077
   502
      (map (fn c => arg_types_of (length params) c ---> HOLogic.boolT) cs);
berghofe@21024
   503
berghofe@21024
   504
    (* transform an introduction rule into a premise for induction rule *)
berghofe@21024
   505
berghofe@21024
   506
    fun mk_ind_prem r =
berghofe@21024
   507
      let
wenzelm@33671
   508
        fun subst s =
wenzelm@33671
   509
          (case dest_predicate cs params s of
berghofe@21024
   510
            SOME (_, i, ys, (_, Ts)) =>
berghofe@21024
   511
              let
berghofe@21024
   512
                val k = length Ts;
berghofe@21024
   513
                val bs = map Bound (k - 1 downto 0);
berghofe@23762
   514
                val P = list_comb (List.nth (preds, i),
berghofe@23762
   515
                  map (incr_boundvars k) ys @ bs);
berghofe@21024
   516
                val Q = list_abs (mk_names "x" k ~~ Ts,
berghofe@23762
   517
                  HOLogic.mk_binop inductive_conj_name
berghofe@23762
   518
                    (list_comb (incr_boundvars k s, bs), P))
berghofe@21024
   519
              in (Q, case Ts of [] => SOME (s, P) | _ => NONE) end
wenzelm@33671
   520
          | NONE =>
wenzelm@33671
   521
              (case s of
wenzelm@33671
   522
                (t $ u) => (fst (subst t) $ fst (subst u), NONE)
wenzelm@33671
   523
              | (Abs (a, T, t)) => (Abs (a, T, fst (subst t)), NONE)
wenzelm@33671
   524
              | _ => (s, NONE)));
berghofe@21024
   525
wenzelm@33345
   526
        fun mk_prem s prems =
wenzelm@33345
   527
          (case subst s of
wenzelm@33345
   528
            (_, SOME (t, u)) => t :: u :: prems
wenzelm@33345
   529
          | (t, _) => t :: prems);
berghofe@21024
   530
berghofe@21024
   531
        val SOME (_, i, ys, _) = dest_predicate cs params
berghofe@21024
   532
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r))
berghofe@21024
   533
berghofe@21024
   534
      in list_all_free (Logic.strip_params r,
wenzelm@33345
   535
        Logic.list_implies (map HOLogic.mk_Trueprop (fold_rev mk_prem
wenzelm@33345
   536
          (map HOLogic.dest_Trueprop (Logic.strip_assums_hyp r)) []),
berghofe@21024
   537
            HOLogic.mk_Trueprop (list_comb (List.nth (preds, i), ys))))
berghofe@21024
   538
      end;
berghofe@21024
   539
berghofe@21024
   540
    val ind_prems = map mk_ind_prem intr_ts;
berghofe@21024
   541
wenzelm@21526
   542
berghofe@21024
   543
    (* make conclusions for induction rules *)
berghofe@21024
   544
berghofe@21024
   545
    val Tss = map (binder_types o fastype_of) preds;
berghofe@21024
   546
    val (xnames, ctxt'') =
berghofe@21024
   547
      Variable.variant_fixes (mk_names "x" (length (flat Tss))) ctxt';
berghofe@21024
   548
    val mutual_ind_concl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
berghofe@21024
   549
        (map (fn (((xnames, Ts), c), P) =>
berghofe@21024
   550
           let val frees = map Free (xnames ~~ Ts)
berghofe@21024
   551
           in HOLogic.mk_imp
berghofe@21024
   552
             (list_comb (c, params @ frees), list_comb (P, frees))
berghofe@21024
   553
           end) (unflat Tss xnames ~~ Tss ~~ cs ~~ preds)));
berghofe@5094
   554
paulson@13626
   555
berghofe@5094
   556
    (* make predicate for instantiation of abstract induction rule *)
berghofe@5094
   557
berghofe@21024
   558
    val ind_pred = fold_rev lambda (bs @ xs) (foldr1 HOLogic.mk_conj
wenzelm@33345
   559
      (map_index (fn (i, P) => fold_rev (curry HOLogic.mk_imp)
wenzelm@33345
   560
         (make_bool_args HOLogic.mk_not I bs i)
wenzelm@33345
   561
         (list_comb (P, make_args' argTs xs (binder_types (fastype_of P))))) preds));
berghofe@5094
   562
berghofe@5094
   563
    val ind_concl = HOLogic.mk_Trueprop
haftmann@35092
   564
      (HOLogic.mk_binrel @{const_name Orderings.less_eq} (rec_const, ind_pred));
berghofe@5094
   565
haftmann@32652
   566
    val raw_fp_induct = (mono RS (fp_def RS @{thm def_lfp_induct}));
paulson@13626
   567
wenzelm@32970
   568
    val induct = Skip_Proof.prove ctxt'' [] ind_prems ind_concl
wenzelm@20248
   569
      (fn {prems, ...} => EVERY
wenzelm@17985
   570
        [rewrite_goals_tac [inductive_conj_def],
berghofe@21024
   571
         DETERM (rtac raw_fp_induct 1),
haftmann@32652
   572
         REPEAT (resolve_tac [@{thm le_funI}, @{thm le_boolI}] 1),
haftmann@32610
   573
         rewrite_goals_tac simp_thms'',
berghofe@21024
   574
         (*This disjE separates out the introduction rules*)
berghofe@21024
   575
         REPEAT (FIRSTGOAL (eresolve_tac [disjE, exE, FalseE])),
berghofe@5094
   576
         (*Now break down the individual cases.  No disjE here in case
berghofe@5094
   577
           some premise involves disjunction.*)
paulson@13747
   578
         REPEAT (FIRSTGOAL (etac conjE ORELSE' bound_hyp_subst_tac)),
berghofe@21024
   579
         REPEAT (FIRSTGOAL
berghofe@21024
   580
           (resolve_tac [conjI, impI] ORELSE' (etac notE THEN' atac))),
berghofe@21024
   581
         EVERY (map (fn prem => DEPTH_SOLVE_1 (ares_tac [rewrite_rule
haftmann@32610
   582
             (inductive_conj_def :: rec_preds_defs @ simp_thms'') prem,
berghofe@22980
   583
           conjI, refl] 1)) prems)]);
berghofe@5094
   584
wenzelm@32970
   585
    val lemma = Skip_Proof.prove ctxt'' [] []
wenzelm@17985
   586
      (Logic.mk_implies (ind_concl, mutual_ind_concl)) (fn _ => EVERY
berghofe@21024
   587
        [rewrite_goals_tac rec_preds_defs,
berghofe@5094
   588
         REPEAT (EVERY
berghofe@5094
   589
           [REPEAT (resolve_tac [conjI, impI] 1),
haftmann@32652
   590
            REPEAT (eresolve_tac [@{thm le_funE}, @{thm le_boolE}] 1),
berghofe@21024
   591
            atac 1,
berghofe@21024
   592
            rewrite_goals_tac simp_thms',
berghofe@21024
   593
            atac 1])])
berghofe@5094
   594
berghofe@21024
   595
  in singleton (ProofContext.export ctxt'' ctxt) (induct RS lemma) end;
berghofe@5094
   596
wenzelm@6424
   597
wenzelm@6424
   598
berghofe@21024
   599
(** specification of (co)inductive predicates **)
berghofe@5094
   600
wenzelm@33464
   601
fun mk_ind_def quiet_mode skip_mono fork_mono alt_name coind
wenzelm@33464
   602
    cs intr_ts monos params cnames_syn lthy =
wenzelm@33464
   603
  let
haftmann@24915
   604
    val fp_name = if coind then @{const_name Inductive.gfp} else @{const_name Inductive.lfp};
berghofe@5094
   605
haftmann@33077
   606
    val argTs = fold (combine (op =) o arg_types_of (length params)) cs [];
berghofe@21024
   607
    val k = log 2 1 (length cs);
berghofe@21024
   608
    val predT = replicate k HOLogic.boolT ---> argTs ---> HOLogic.boolT;
wenzelm@33464
   609
    val p :: xs = map Free (Variable.variant_frees lthy intr_ts
berghofe@21024
   610
      (("p", predT) :: (mk_names "x" (length argTs) ~~ argTs)));
wenzelm@33464
   611
    val bs = map Free (Variable.variant_frees lthy (p :: xs @ intr_ts)
berghofe@21024
   612
      (map (rpair HOLogic.boolT) (mk_names "b" k)));
berghofe@21024
   613
wenzelm@33464
   614
    fun subst t =
wenzelm@33464
   615
      (case dest_predicate cs params t of
berghofe@21024
   616
        SOME (_, i, ts, (Ts, Us)) =>
berghofe@23762
   617
          let
berghofe@23762
   618
            val l = length Us;
wenzelm@33671
   619
            val zs = map Bound (l - 1 downto 0);
berghofe@21024
   620
          in
berghofe@21024
   621
            list_abs (map (pair "z") Us, list_comb (p,
berghofe@23762
   622
              make_bool_args' bs i @ make_args argTs
berghofe@23762
   623
                ((map (incr_boundvars l) ts ~~ Ts) @ (zs ~~ Us))))
berghofe@21024
   624
          end
wenzelm@33671
   625
      | NONE =>
wenzelm@33671
   626
          (case t of
wenzelm@33671
   627
            t1 $ t2 => subst t1 $ subst t2
wenzelm@33671
   628
          | Abs (x, T, u) => Abs (x, T, subst u)
wenzelm@33671
   629
          | _ => t));
berghofe@5149
   630
berghofe@5094
   631
    (* transform an introduction rule into a conjunction  *)
berghofe@21024
   632
    (*   [| p_i t; ... |] ==> p_j u                       *)
berghofe@5094
   633
    (* is transformed into                                *)
berghofe@21024
   634
    (*   b_j & x_j = u & p b_j t & ...                    *)
berghofe@5094
   635
berghofe@5094
   636
    fun transform_rule r =
berghofe@5094
   637
      let
berghofe@21024
   638
        val SOME (_, i, ts, (Ts, _)) = dest_predicate cs params
berghofe@21048
   639
          (HOLogic.dest_Trueprop (Logic.strip_assums_concl r));
berghofe@21048
   640
        val ps = make_bool_args HOLogic.mk_not I bs i @
berghofe@21048
   641
          map HOLogic.mk_eq (make_args' argTs xs Ts ~~ ts) @
berghofe@21048
   642
          map (subst o HOLogic.dest_Trueprop)
berghofe@21048
   643
            (Logic.strip_assums_hyp r)
wenzelm@33345
   644
      in
wenzelm@33345
   645
        fold_rev (fn (x, T) => fn P => HOLogic.exists_const T $ Abs (x, T, P))
wenzelm@33345
   646
          (Logic.strip_params r)
wenzelm@33345
   647
          (if null ps then HOLogic.true_const else foldr1 HOLogic.mk_conj ps)
berghofe@5094
   648
      end
berghofe@5094
   649
berghofe@5094
   650
    (* make a disjunction of all introduction rules *)
berghofe@5094
   651
berghofe@21024
   652
    val fp_fun = fold_rev lambda (p :: bs @ xs)
berghofe@21024
   653
      (if null intr_ts then HOLogic.false_const
berghofe@21024
   654
       else foldr1 HOLogic.mk_disj (map transform_rule intr_ts));
berghofe@5094
   655
berghofe@21024
   656
    (* add definiton of recursive predicates to theory *)
berghofe@5094
   657
wenzelm@28083
   658
    val rec_name =
haftmann@28965
   659
      if Binding.is_empty alt_name then
wenzelm@30227
   660
        Binding.name (space_implode "_" (map (Binding.name_of o fst) cnames_syn))
wenzelm@28083
   661
      else alt_name;
berghofe@5094
   662
wenzelm@33464
   663
    val ((rec_const, (_, fp_def)), lthy') = lthy
wenzelm@33673
   664
      |> Local_Theory.conceal
wenzelm@33812
   665
      |> Local_Theory.define
berghofe@21024
   666
        ((rec_name, case cnames_syn of [(_, syn)] => syn | _ => NoSyn),
blanchet@33568
   667
         ((Binding.empty, [Attrib.internal (K Nitpick_Defs.add)]),
blanchet@33568
   668
         fold_rev lambda params
wenzelm@33278
   669
           (Const (fp_name, (predT --> predT) --> predT) $ fp_fun)))
wenzelm@33673
   670
      ||> Local_Theory.restore_naming lthy;
berghofe@21024
   671
    val fp_def' = Simplifier.rewrite (HOL_basic_ss addsimps [fp_def])
wenzelm@33464
   672
      (cterm_of (ProofContext.theory_of lthy') (list_comb (rec_const, params)));
wenzelm@33278
   673
    val specs =
wenzelm@33278
   674
      if length cs < 2 then []
wenzelm@33278
   675
      else
wenzelm@33278
   676
        map_index (fn (i, (name_mx, c)) =>
wenzelm@33278
   677
          let
wenzelm@33278
   678
            val Ts = arg_types_of (length params) c;
wenzelm@33464
   679
            val xs = map Free (Variable.variant_frees lthy intr_ts
wenzelm@33278
   680
              (mk_names "x" (length Ts) ~~ Ts))
wenzelm@33278
   681
          in
wenzelm@33278
   682
            (name_mx, (Attrib.empty_binding, fold_rev lambda (params @ xs)
wenzelm@33278
   683
              (list_comb (rec_const, params @ make_bool_args' bs i @
wenzelm@33278
   684
                make_args argTs (xs ~~ Ts)))))
wenzelm@33278
   685
          end) (cnames_syn ~~ cs);
wenzelm@33464
   686
    val (consts_defs, lthy'') = lthy'
wenzelm@33673
   687
      |> Local_Theory.conceal
wenzelm@33812
   688
      |> fold_map Local_Theory.define specs
wenzelm@33673
   689
      ||> Local_Theory.restore_naming lthy';
berghofe@21024
   690
    val preds = (case cs of [_] => [rec_const] | _ => map #1 consts_defs);
berghofe@5094
   691
wenzelm@33464
   692
    val mono = prove_mono quiet_mode skip_mono fork_mono predT fp_fun monos lthy'';
wenzelm@33464
   693
    val ((_, [mono']), lthy''') =
wenzelm@33673
   694
      Local_Theory.note (apfst Binding.conceal Attrib.empty_binding, [mono]) lthy'';
berghofe@5094
   695
wenzelm@33464
   696
  in (lthy''', rec_name, mono', fp_def', map (#2 o #2) consts_defs,
berghofe@21024
   697
    list_comb (rec_const, params), preds, argTs, bs, xs)
berghofe@21024
   698
  end;
berghofe@5094
   699
wenzelm@33671
   700
fun declare_rules rec_binding coind no_ind cnames
wenzelm@33671
   701
    intrs intr_bindings intr_atts elims raw_induct lthy =
berghofe@23762
   702
  let
wenzelm@30227
   703
    val rec_name = Binding.name_of rec_binding;
haftmann@32773
   704
    fun rec_qualified qualified = Binding.qualify qualified rec_name;
wenzelm@30227
   705
    val intr_names = map Binding.name_of intr_bindings;
wenzelm@33368
   706
    val ind_case_names = Rule_Cases.case_names intr_names;
berghofe@23762
   707
    val induct =
berghofe@23762
   708
      if coind then
wenzelm@33368
   709
        (raw_induct, [Rule_Cases.case_names [rec_name],
wenzelm@33368
   710
          Rule_Cases.case_conclusion (rec_name, intr_names),
wenzelm@33368
   711
          Rule_Cases.consumes 1, Induct.coinduct_pred (hd cnames)])
berghofe@23762
   712
      else if no_ind orelse length cnames > 1 then
wenzelm@33368
   713
        (raw_induct, [ind_case_names, Rule_Cases.consumes 0])
wenzelm@33368
   714
      else (raw_induct RSN (2, rev_mp), [ind_case_names, Rule_Cases.consumes 1]);
berghofe@23762
   715
wenzelm@33464
   716
    val (intrs', lthy1) =
wenzelm@33464
   717
      lthy |>
wenzelm@33673
   718
      Local_Theory.notes
wenzelm@33278
   719
        (map (rec_qualified false) intr_bindings ~~ intr_atts ~~
wenzelm@33278
   720
          map (fn th => [([th],
wenzelm@33369
   721
           [Attrib.internal (K (Context_Rules.intro_query NONE)),
blanchet@33056
   722
            Attrib.internal (K Nitpick_Intros.add)])]) intrs) |>>
berghofe@24744
   723
      map (hd o snd);
wenzelm@33464
   724
    val (((_, elims'), (_, [induct'])), lthy2) =
wenzelm@33464
   725
      lthy1 |>
wenzelm@33673
   726
      Local_Theory.note ((rec_qualified true (Binding.name "intros"), []), intrs') ||>>
berghofe@34973
   727
      fold_map (fn (name, (elim, cases, k)) =>
wenzelm@33673
   728
        Local_Theory.note
wenzelm@33464
   729
          ((Binding.qualify true (Long_Name.base_name name) (Binding.name "cases"),
wenzelm@33464
   730
            [Attrib.internal (K (Rule_Cases.case_names cases)),
wenzelm@33464
   731
             Attrib.internal (K (Rule_Cases.consumes 1)),
berghofe@34973
   732
             Attrib.internal (K (Rule_Cases.constraints k)),
wenzelm@33464
   733
             Attrib.internal (K (Induct.cases_pred name)),
wenzelm@33464
   734
             Attrib.internal (K (Context_Rules.elim_query NONE))]), [elim]) #>
berghofe@23762
   735
        apfst (hd o snd)) (if null elims then [] else cnames ~~ elims) ||>>
wenzelm@33673
   736
      Local_Theory.note
haftmann@32773
   737
        ((rec_qualified true (Binding.name (coind_prefix coind ^ "induct")),
wenzelm@28107
   738
          map (Attrib.internal o K) (#2 induct)), [rulify (#1 induct)]);
berghofe@23762
   739
wenzelm@33464
   740
    val lthy3 =
wenzelm@33464
   741
      if no_ind orelse coind then lthy2
wenzelm@33464
   742
      else
wenzelm@33464
   743
        let val inducts = cnames ~~ Project_Rule.projects lthy2 (1 upto length cnames) induct' in
wenzelm@33464
   744
          lthy2 |>
wenzelm@33673
   745
          Local_Theory.notes [((rec_qualified true (Binding.name "inducts"), []),
wenzelm@33464
   746
            inducts |> map (fn (name, th) => ([th],
wenzelm@33464
   747
              [Attrib.internal (K ind_case_names),
wenzelm@33464
   748
               Attrib.internal (K (Rule_Cases.consumes 1)),
wenzelm@33464
   749
               Attrib.internal (K (Induct.induct_pred name))])))] |> snd
wenzelm@33464
   750
        end;
wenzelm@33464
   751
  in (intrs', elims', induct', lthy3) end;
berghofe@23762
   752
berghofe@26534
   753
type inductive_flags =
wenzelm@33671
   754
  {quiet_mode: bool, verbose: bool, alt_name: binding, coind: bool,
wenzelm@33671
   755
    no_elim: bool, no_ind: bool, skip_mono: bool, fork_mono: bool};
berghofe@26534
   756
wenzelm@24815
   757
type add_ind_def =
berghofe@26534
   758
  inductive_flags ->
wenzelm@28084
   759
  term list -> (Attrib.binding * term) list -> thm list ->
haftmann@29581
   760
  term list -> (binding * mixfix) list ->
wenzelm@33464
   761
  local_theory -> inductive_result * local_theory;
berghofe@23762
   762
wenzelm@33671
   763
fun add_ind_def {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono}
wenzelm@33464
   764
    cs intros monos params cnames_syn lthy =
berghofe@9072
   765
  let
wenzelm@25288
   766
    val _ = null cnames_syn andalso error "No inductive predicates given";
wenzelm@30227
   767
    val names = map (Binding.name_of o fst) cnames_syn;
wenzelm@26477
   768
    val _ = message (quiet_mode andalso not verbose)
wenzelm@28083
   769
      ("Proofs for " ^ coind_prefix coind ^ "inductive predicate(s) " ^ commas_quote names);
berghofe@9072
   770
wenzelm@33673
   771
    val cnames = map (Local_Theory.full_name lthy o #1) cnames_syn;  (* FIXME *)
berghofe@23762
   772
    val ((intr_names, intr_atts), intr_ts) =
wenzelm@33464
   773
      apfst split_list (split_list (map (check_rule lthy cs params) intros));
berghofe@9072
   774
wenzelm@33464
   775
    val (lthy1, rec_name, mono, fp_def, rec_preds_defs, rec_const, preds,
wenzelm@29412
   776
      argTs, bs, xs) = mk_ind_def quiet_mode skip_mono fork_mono alt_name coind cs intr_ts
wenzelm@33464
   777
        monos params cnames_syn lthy;
berghofe@9072
   778
wenzelm@26477
   779
    val (intrs, unfold) = prove_intrs quiet_mode coind mono fp_def (length bs + length xs)
wenzelm@33464
   780
      params intr_ts rec_preds_defs lthy1;
wenzelm@33465
   781
    val elims =
wenzelm@33465
   782
      if no_elim then []
wenzelm@33465
   783
      else
wenzelm@33465
   784
        prove_elims quiet_mode cs params intr_ts (map Binding.name_of intr_names)
wenzelm@33465
   785
          unfold rec_preds_defs lthy1;
berghofe@22605
   786
    val raw_induct = zero_var_indexes
wenzelm@33465
   787
      (if no_ind then Drule.asm_rl
wenzelm@33465
   788
       else if coind then
berghofe@23762
   789
         singleton (ProofContext.export
wenzelm@33464
   790
           (snd (Variable.add_fixes (map (fst o dest_Free) params) lthy1)) lthy1)
wenzelm@35625
   791
           (rotate_prems ~1 (Object_Logic.rulify
wenzelm@28839
   792
             (fold_rule rec_preds_defs
haftmann@32652
   793
               (rewrite_rule simp_thms'''
haftmann@32652
   794
                (mono RS (fp_def RS @{thm def_coinduct}))))))
berghofe@21024
   795
       else
wenzelm@26477
   796
         prove_indrule quiet_mode cs argTs bs xs rec_const params intr_ts mono fp_def
wenzelm@33464
   797
           rec_preds_defs lthy1);
berghofe@5094
   798
wenzelm@33671
   799
    val (intrs', elims', induct, lthy2) = declare_rules rec_name coind no_ind
wenzelm@33464
   800
      cnames intrs intr_names intr_atts elims raw_induct lthy1;
berghofe@21048
   801
berghofe@21048
   802
    val result =
berghofe@21048
   803
      {preds = preds,
berghofe@21048
   804
       intrs = intrs',
berghofe@21048
   805
       elims = elims',
berghofe@21048
   806
       raw_induct = rulify raw_induct,
berghofe@23762
   807
       induct = induct};
wenzelm@21367
   808
wenzelm@33464
   809
    val lthy3 = lthy2
wenzelm@33673
   810
      |> Local_Theory.declaration false (fn phi =>
wenzelm@25380
   811
        let val result' = morph_result phi result;
wenzelm@25380
   812
        in put_inductives cnames (*global names!?*) ({names = cnames, coind = coind}, result') end);
wenzelm@33464
   813
  in (result, lthy3) end;
berghofe@5094
   814
wenzelm@6424
   815
wenzelm@10735
   816
(* external interfaces *)
wenzelm@6424
   817
wenzelm@26477
   818
fun gen_add_inductive_i mk_def
wenzelm@33671
   819
    (flags as {quiet_mode, verbose, alt_name, coind, no_elim, no_ind, skip_mono, fork_mono})
wenzelm@25029
   820
    cnames_syn pnames spec monos lthy =
berghofe@5094
   821
  let
wenzelm@25029
   822
    val thy = ProofContext.theory_of lthy;
wenzelm@6424
   823
    val _ = Theory.requires thy "Inductive" (coind_prefix coind ^ "inductive definitions");
berghofe@5094
   824
berghofe@21766
   825
wenzelm@25029
   826
    (* abbrevs *)
berghofe@21766
   827
wenzelm@30227
   828
    val (_, ctxt1) = Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn) lthy;
berghofe@21766
   829
wenzelm@25029
   830
    fun get_abbrev ((name, atts), t) =
wenzelm@25029
   831
      if can (Logic.strip_assums_concl #> Logic.dest_equals) t then
wenzelm@25029
   832
        let
haftmann@28999
   833
          val _ = Binding.is_empty name andalso null atts orelse
wenzelm@25029
   834
            error "Abbreviations may not have names or attributes";
wenzelm@35624
   835
          val ((x, T), rhs) = Local_Defs.abs_def (snd (Local_Defs.cert_def ctxt1 t));
wenzelm@28083
   836
          val var =
wenzelm@30227
   837
            (case find_first (fn ((c, _), _) => Binding.name_of c = x) cnames_syn of
wenzelm@25029
   838
              NONE => error ("Undeclared head of abbreviation " ^ quote x)
wenzelm@28083
   839
            | SOME ((b, T'), mx) =>
wenzelm@25029
   840
                if T <> T' then error ("Bad type specification for abbreviation " ^ quote x)
wenzelm@28083
   841
                else (b, mx));
wenzelm@28083
   842
        in SOME (var, rhs) end
wenzelm@25029
   843
      else NONE;
berghofe@21766
   844
wenzelm@25029
   845
    val abbrevs = map_filter get_abbrev spec;
wenzelm@30227
   846
    val bs = map (Binding.name_of o fst o fst) abbrevs;
berghofe@21766
   847
wenzelm@25029
   848
wenzelm@25029
   849
    (* predicates *)
wenzelm@25029
   850
wenzelm@25029
   851
    val pre_intros = filter_out (is_some o get_abbrev) spec;
wenzelm@30227
   852
    val cnames_syn' = filter_out (member (op =) bs o Binding.name_of o fst o fst) cnames_syn;
wenzelm@30227
   853
    val cs = map (Free o apfst Binding.name_of o fst) cnames_syn';
wenzelm@25029
   854
    val ps = map Free pnames;
berghofe@5094
   855
wenzelm@30227
   856
    val (_, ctxt2) = lthy |> Variable.add_fixes (map (Binding.name_of o fst o fst) cnames_syn');
wenzelm@35624
   857
    val _ = map (fn abbr => Local_Defs.fixed_abbrev abbr ctxt2) abbrevs;
wenzelm@35624
   858
    val ctxt3 = ctxt2 |> fold (snd oo Local_Defs.fixed_abbrev) abbrevs;
wenzelm@25143
   859
    val expand = Assumption.export_term ctxt3 lthy #> ProofContext.cert_term lthy;
wenzelm@25029
   860
wenzelm@25029
   861
    fun close_rule r = list_all_free (rev (fold_aterms
berghofe@21024
   862
      (fn t as Free (v as (s, _)) =>
wenzelm@25029
   863
          if Variable.is_fixed ctxt1 s orelse
wenzelm@25029
   864
            member (op =) ps t then I else insert (op =) v
wenzelm@25029
   865
        | _ => I) r []), r);
berghofe@5094
   866
haftmann@26736
   867
    val intros = map (apsnd (Syntax.check_term lthy #> close_rule #> expand)) pre_intros;
wenzelm@25029
   868
    val preds = map (fn ((c, _), mx) => (c, mx)) cnames_syn';
berghofe@21048
   869
  in
wenzelm@25029
   870
    lthy
wenzelm@25029
   871
    |> mk_def flags cs intros monos ps preds
wenzelm@33673
   872
    ||> fold (snd oo Local_Theory.abbrev Syntax.mode_default) abbrevs
berghofe@21048
   873
  end;
berghofe@5094
   874
wenzelm@29412
   875
fun gen_add_inductive mk_def verbose coind cnames_syn pnames_syn intro_srcs raw_monos int lthy =
berghofe@5094
   876
  let
wenzelm@30488
   877
    val ((vars, intrs), _) = lthy
wenzelm@30488
   878
      |> ProofContext.set_mode ProofContext.mode_abbrev
wenzelm@30488
   879
      |> Specification.read_spec (cnames_syn @ pnames_syn) intro_srcs;
wenzelm@24721
   880
    val (cs, ps) = chop (length cnames_syn) vars;
wenzelm@24721
   881
    val monos = Attrib.eval_thms lthy raw_monos;
wenzelm@33671
   882
    val flags = {quiet_mode = false, verbose = verbose, alt_name = Binding.empty,
wenzelm@33671
   883
      coind = coind, no_elim = false, no_ind = false, skip_mono = false, fork_mono = not int};
wenzelm@26128
   884
  in
wenzelm@26128
   885
    lthy
wenzelm@30227
   886
    |> gen_add_inductive_i mk_def flags cs (map (apfst Binding.name_of o fst) ps) intrs monos
wenzelm@26128
   887
  end;
berghofe@5094
   888
berghofe@23762
   889
val add_inductive_i = gen_add_inductive_i add_ind_def;
berghofe@23762
   890
val add_inductive = gen_add_inductive add_ind_def;
berghofe@23762
   891
wenzelm@33736
   892
fun add_inductive_global flags cnames_syn pnames pre_intros monos thy =
wenzelm@25380
   893
  let
haftmann@28999
   894
    val name = Sign.full_name thy (fst (fst (hd cnames_syn)));
wenzelm@25380
   895
    val ctxt' = thy
wenzelm@33595
   896
      |> Theory_Target.init NONE
wenzelm@25380
   897
      |> add_inductive_i flags cnames_syn pnames pre_intros monos |> snd
wenzelm@33673
   898
      |> Local_Theory.exit;
wenzelm@25380
   899
    val info = #2 (the_inductive ctxt' name);
wenzelm@25380
   900
  in (info, ProofContext.theory_of ctxt') end;
wenzelm@6424
   901
wenzelm@6424
   902
berghofe@22789
   903
(* read off arities of inductive predicates from raw induction rule *)
berghofe@22789
   904
fun arities_of induct =
berghofe@22789
   905
  map (fn (_ $ t $ u) =>
berghofe@22789
   906
      (fst (dest_Const (head_of t)), length (snd (strip_comb u))))
berghofe@22789
   907
    (HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct)));
berghofe@22789
   908
berghofe@22789
   909
(* read off parameters of inductive predicate from raw induction rule *)
berghofe@22789
   910
fun params_of induct =
berghofe@22789
   911
  let
berghofe@22789
   912
    val (_ $ t $ u :: _) =
berghofe@22789
   913
      HOLogic.dest_conj (HOLogic.dest_Trueprop (concl_of induct));
berghofe@22789
   914
    val (_, ts) = strip_comb t;
berghofe@22789
   915
    val (_, us) = strip_comb u
berghofe@22789
   916
  in
berghofe@22789
   917
    List.take (ts, length ts - length us)
berghofe@22789
   918
  end;
berghofe@22789
   919
berghofe@22789
   920
val pname_of_intr =
berghofe@22789
   921
  concl_of #> HOLogic.dest_Trueprop #> head_of #> dest_Const #> fst;
berghofe@22789
   922
berghofe@22789
   923
(* partition introduction rules according to predicate name *)
berghofe@25822
   924
fun gen_partition_rules f induct intros =
berghofe@25822
   925
  fold_rev (fn r => AList.map_entry op = (pname_of_intr (f r)) (cons r)) intros
berghofe@22789
   926
    (map (rpair [] o fst) (arities_of induct));
berghofe@22789
   927
berghofe@25822
   928
val partition_rules = gen_partition_rules I;
berghofe@25822
   929
fun partition_rules' induct = gen_partition_rules fst induct;
berghofe@25822
   930
berghofe@22789
   931
fun unpartition_rules intros xs =
berghofe@22789
   932
  fold_map (fn r => AList.map_entry_yield op = (pname_of_intr r)
berghofe@22789
   933
    (fn x :: xs => (x, xs)) #>> the) intros xs |> fst;
berghofe@22789
   934
berghofe@22789
   935
(* infer order of variables in intro rules from order of quantifiers in elim rule *)
berghofe@22789
   936
fun infer_intro_vars elim arity intros =
berghofe@22789
   937
  let
berghofe@22789
   938
    val thy = theory_of_thm elim;
berghofe@22789
   939
    val _ :: cases = prems_of elim;
berghofe@22789
   940
    val used = map (fst o fst) (Term.add_vars (prop_of elim) []);
berghofe@22789
   941
    fun mtch (t, u) =
berghofe@22789
   942
      let
berghofe@22789
   943
        val params = Logic.strip_params t;
berghofe@22789
   944
        val vars = map (Var o apfst (rpair 0))
berghofe@22789
   945
          (Name.variant_list used (map fst params) ~~ map snd params);
berghofe@22789
   946
        val ts = map (curry subst_bounds (rev vars))
berghofe@22789
   947
          (List.drop (Logic.strip_assums_hyp t, arity));
berghofe@22789
   948
        val us = Logic.strip_imp_prems u;
berghofe@22789
   949
        val tab = fold (Pattern.first_order_match thy) (ts ~~ us)
berghofe@22789
   950
          (Vartab.empty, Vartab.empty);
berghofe@22789
   951
      in
wenzelm@32046
   952
        map (Envir.subst_term tab) vars
berghofe@22789
   953
      end
berghofe@22789
   954
  in
berghofe@22789
   955
    map (mtch o apsnd prop_of) (cases ~~ intros)
berghofe@22789
   956
  end;
berghofe@22789
   957
berghofe@22789
   958
wenzelm@25978
   959
wenzelm@6437
   960
(** package setup **)
wenzelm@6437
   961
wenzelm@6437
   962
(* setup theory *)
wenzelm@6437
   963
wenzelm@8634
   964
val setup =
wenzelm@30722
   965
  ind_cases_setup #>
wenzelm@30530
   966
  Attrib.setup @{binding mono} (Attrib.add_del mono_add mono_del)
wenzelm@30530
   967
    "declaration of monotonicity rule";
wenzelm@6437
   968
wenzelm@6437
   969
wenzelm@6437
   970
(* outer syntax *)
wenzelm@6424
   971
wenzelm@17057
   972
local structure P = OuterParse and K = OuterKeyword in
wenzelm@6424
   973
wenzelm@27353
   974
val _ = OuterKeyword.keyword "monos";
wenzelm@24867
   975
berghofe@23762
   976
fun gen_ind_decl mk_def coind =
wenzelm@21367
   977
  P.fixes -- P.for_fixes --
wenzelm@30488
   978
  Scan.optional SpecParse.where_alt_specs [] --
wenzelm@22102
   979
  Scan.optional (P.$$$ "monos" |-- P.!!! SpecParse.xthms1) []
wenzelm@26988
   980
  >> (fn (((preds, params), specs), monos) =>
wenzelm@30488
   981
      (snd oo gen_add_inductive mk_def true coind preds params specs monos));
berghofe@23762
   982
berghofe@23762
   983
val ind_decl = gen_ind_decl add_ind_def;
wenzelm@6424
   984
wenzelm@33464
   985
val _ =
wenzelm@33464
   986
  OuterSyntax.local_theory' "inductive" "define inductive predicates" K.thy_decl
wenzelm@33464
   987
    (ind_decl false);
wenzelm@33464
   988
wenzelm@33464
   989
val _ =
wenzelm@33464
   990
  OuterSyntax.local_theory' "coinductive" "define coinductive predicates" K.thy_decl
wenzelm@33464
   991
    (ind_decl true);
wenzelm@6723
   992
wenzelm@24867
   993
val _ =
wenzelm@26988
   994
  OuterSyntax.local_theory "inductive_cases"
wenzelm@21367
   995
    "create simplified instances of elimination rules (improper)" K.thy_script
wenzelm@30488
   996
    (P.and_list1 SpecParse.specs >> (snd oo inductive_cases));
wenzelm@7107
   997
berghofe@5094
   998
end;
wenzelm@6424
   999
wenzelm@6424
  1000
end;