src/ZF/AC/AC18_AC19.thy
author haftmann
Fri, 17 Jun 2005 16:12:49 +0200
changeset 16417 9bc16273c2d4
parent 14171 0cab06e3bbd0
child 24893 b8ef7afe3a6b
permissions -rw-r--r--
migrated theory headers to new format
clasohm@1478
     1
(*  Title:      ZF/AC/AC18_AC19.thy
lcp@1123
     2
    ID:         $Id$
clasohm@1478
     3
    Author:     Krzysztof Grabczewski
lcp@1123
     4
paulson@12776
     5
The proof of AC1 ==> AC18 ==> AC19 ==> AC1
lcp@1123
     6
*)
lcp@1123
     7
haftmann@16417
     8
theory AC18_AC19 imports AC_Equiv begin
lcp@1123
     9
paulson@12776
    10
constdefs
paulson@12776
    11
  uu    :: "i => i"
paulson@12776
    12
    "uu(a) == {c Un {0}. c \<in> a}"
lcp@1123
    13
paulson@12776
    14
paulson@12776
    15
(* ********************************************************************** *)
paulson@12776
    16
(* AC1 ==> AC18                                                           *)
paulson@12776
    17
(* ********************************************************************** *)
paulson@12776
    18
paulson@12776
    19
lemma PROD_subsets:
skalberg@14171
    20
     "[| f \<in> (\<Pi> b \<in> {P(a). a \<in> A}. b);  \<forall>a \<in> A. P(a)<=Q(a) |]   
skalberg@14171
    21
      ==> (\<lambda>a \<in> A. f`P(a)) \<in> (\<Pi> a \<in> A. Q(a))"
paulson@12776
    22
by (rule lam_type, drule apply_type, auto)
paulson@12776
    23
paulson@12776
    24
lemma lemma_AC18:
skalberg@14171
    25
     "[| \<forall>A. 0 \<notin> A --> (\<exists>f. f \<in> (\<Pi> X \<in> A. X)); A \<noteq> 0 |] 
paulson@12776
    26
      ==> (\<Inter>a \<in> A. \<Union>b \<in> B(a). X(a, b)) \<subseteq> 
skalberg@14171
    27
          (\<Union>f \<in> \<Pi> a \<in> A. B(a). \<Inter>a \<in> A. X(a, f`a))"
paulson@12776
    28
apply (rule subsetI)
paulson@12776
    29
apply (erule_tac x = "{{b \<in> B (a) . x \<in> X (a,b) }. a \<in> A}" in allE)
paulson@12776
    30
apply (erule impE, fast)
paulson@12776
    31
apply (erule exE)
paulson@12776
    32
apply (rule UN_I)
paulson@12776
    33
 apply (fast elim!: PROD_subsets)
paulson@12776
    34
apply (simp, fast elim!: not_emptyE dest: apply_type [OF _ RepFunI])
paulson@12776
    35
done
paulson@12776
    36
wenzelm@13416
    37
lemma AC1_AC18: "AC1 ==> PROP AC18"
wenzelm@13416
    38
apply (unfold AC1_def)
wenzelm@13421
    39
apply (rule AC18.intro)
paulson@12776
    40
apply (fast elim!: lemma_AC18 apply_type intro!: equalityI INT_I UN_I)
paulson@12776
    41
done
paulson@12776
    42
paulson@12776
    43
(* ********************************************************************** *)
paulson@12776
    44
(* AC18 ==> AC19                                                          *)
paulson@12776
    45
(* ********************************************************************** *)
paulson@12776
    46
wenzelm@13416
    47
theorem (in AC18) AC19
wenzelm@13416
    48
apply (unfold AC19_def)
wenzelm@13416
    49
apply (intro allI impI)
wenzelm@13416
    50
apply (rule AC18 [of _ "%x. x", THEN mp], blast)
wenzelm@13416
    51
done
paulson@12776
    52
paulson@12776
    53
(* ********************************************************************** *)
paulson@12776
    54
(* AC19 ==> AC1                                                           *)
paulson@12776
    55
(* ********************************************************************** *)
paulson@12776
    56
paulson@12776
    57
lemma RepRep_conj: 
paulson@12776
    58
        "[| A \<noteq> 0; 0 \<notin> A |] ==> {uu(a). a \<in> A} \<noteq> 0 & 0 \<notin> {uu(a). a \<in> A}"
paulson@12776
    59
apply (unfold uu_def, auto) 
paulson@12776
    60
apply (blast dest!: sym [THEN RepFun_eq_0_iff [THEN iffD1]])
paulson@12776
    61
done
paulson@12776
    62
paulson@12776
    63
lemma lemma1_1: "[|c \<in> a; x = c Un {0}; x \<notin> a |] ==> x - {0} \<in> a"
paulson@12776
    64
apply clarify 
paulson@12820
    65
apply (rule subst_elem, assumption)
paulson@12776
    66
apply (fast elim: notE subst_elem)
paulson@12776
    67
done
paulson@12776
    68
paulson@12776
    69
lemma lemma1_2: 
skalberg@14171
    70
        "[| f`(uu(a)) \<notin> a; f \<in> (\<Pi> B \<in> {uu(a). a \<in> A}. B); a \<in> A |]   
paulson@12776
    71
                ==> f`(uu(a))-{0} \<in> a"
paulson@12776
    72
apply (unfold uu_def, fast elim!: lemma1_1 dest!: apply_type)
paulson@12776
    73
done
paulson@12776
    74
skalberg@14171
    75
lemma lemma1: "\<exists>f. f \<in> (\<Pi> B \<in> {uu(a). a \<in> A}. B) ==> \<exists>f. f \<in> (\<Pi> B \<in> A. B)"
paulson@12776
    76
apply (erule exE)
paulson@12776
    77
apply (rule_tac x = "\<lambda>a\<in>A. if (f` (uu(a)) \<in> a, f` (uu(a)), f` (uu(a))-{0})" 
paulson@12776
    78
       in exI)
paulson@12776
    79
apply (rule lam_type) 
paulson@12776
    80
apply (simp add: lemma1_2)
paulson@12776
    81
done
paulson@12776
    82
paulson@12776
    83
lemma lemma2_1: "a\<noteq>0 ==> 0 \<in> (\<Union>b \<in> uu(a). b)"
paulson@12776
    84
by (unfold uu_def, auto)
paulson@12776
    85
paulson@12776
    86
lemma lemma2: "[| A\<noteq>0; 0\<notin>A |] ==> (\<Inter>x \<in> {uu(a). a \<in> A}. \<Union>b \<in> x. b) \<noteq> 0"
paulson@12776
    87
apply (erule not_emptyE) 
paulson@13339
    88
apply (rule_tac a = 0 in not_emptyI)
paulson@12776
    89
apply (fast intro!: lemma2_1)
paulson@12776
    90
done
paulson@12776
    91
paulson@12776
    92
lemma AC19_AC1: "AC19 ==> AC1"
paulson@12776
    93
apply (unfold AC19_def AC1_def, clarify)
paulson@12776
    94
apply (case_tac "A=0", force)
paulson@12776
    95
apply (erule_tac x = "{uu (a) . a \<in> A}" in allE)
paulson@12776
    96
apply (erule impE)
paulson@12820
    97
apply (erule RepRep_conj, assumption)
paulson@12776
    98
apply (rule lemma1)
paulson@12820
    99
apply (drule lemma2, assumption, auto) 
paulson@12776
   100
done
lcp@1123
   101
lcp@1203
   102
end