src/FOL/ex/First_Order_Logic.thy
author haftmann
Fri, 17 Jun 2005 16:12:49 +0200
changeset 16417 9bc16273c2d4
parent 14981 e73f8140af78
child 21939 9b772ac66830
permissions -rw-r--r--
migrated theory headers to new format
wenzelm@12369
     1
(*  Title:      FOL/ex/First_Order_Logic.thy
wenzelm@12369
     2
    ID:         $Id$
wenzelm@12369
     3
    Author:     Markus Wenzel, TU Munich
wenzelm@12369
     4
*)
wenzelm@12369
     5
wenzelm@12369
     6
header {* A simple formulation of First-Order Logic *}
wenzelm@12369
     7
haftmann@16417
     8
theory First_Order_Logic imports Pure begin
wenzelm@12369
     9
wenzelm@12369
    10
text {*
wenzelm@12369
    11
  The subsequent theory development illustrates single-sorted
wenzelm@12369
    12
  intuitionistic first-order logic with equality, formulated within
wenzelm@12369
    13
  the Pure framework.  Actually this is not an example of
wenzelm@12369
    14
  Isabelle/FOL, but of Isabelle/Pure.
wenzelm@12369
    15
*}
wenzelm@12369
    16
wenzelm@12369
    17
subsection {* Syntax *}
wenzelm@12369
    18
wenzelm@12369
    19
typedecl i
wenzelm@12369
    20
typedecl o
wenzelm@12369
    21
wenzelm@12369
    22
judgment
wenzelm@12369
    23
  Trueprop :: "o \<Rightarrow> prop"    ("_" 5)
wenzelm@12369
    24
wenzelm@12369
    25
wenzelm@12369
    26
subsection {* Propositional logic *}
wenzelm@12369
    27
wenzelm@12369
    28
consts
wenzelm@12369
    29
  false :: o    ("\<bottom>")
wenzelm@12369
    30
  imp :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<longrightarrow>" 25)
wenzelm@12369
    31
  conj :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<and>" 35)
wenzelm@12369
    32
  disj :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<or>" 30)
wenzelm@12369
    33
wenzelm@12369
    34
axioms
wenzelm@12369
    35
  falseE [elim]: "\<bottom> \<Longrightarrow> A"
wenzelm@12369
    36
wenzelm@12369
    37
  impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
wenzelm@12369
    38
  mp [dest]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
wenzelm@12369
    39
wenzelm@12369
    40
  conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B"
wenzelm@12369
    41
  conjD1: "A \<and> B \<Longrightarrow> A"
wenzelm@12369
    42
  conjD2: "A \<and> B \<Longrightarrow> B"
wenzelm@12369
    43
wenzelm@12369
    44
  disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@12369
    45
  disjI1 [intro]: "A \<Longrightarrow> A \<or> B"
wenzelm@12369
    46
  disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
wenzelm@12369
    47
wenzelm@12369
    48
theorem conjE [elim]: "A \<and> B \<Longrightarrow> (A \<Longrightarrow> B \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@12369
    49
proof -
wenzelm@12369
    50
  assume ab: "A \<and> B"
wenzelm@12369
    51
  assume r: "A \<Longrightarrow> B \<Longrightarrow> C"
wenzelm@12369
    52
  show C
wenzelm@12369
    53
  proof (rule r)
wenzelm@12369
    54
    from ab show A by (rule conjD1)
wenzelm@12369
    55
    from ab show B by (rule conjD2)
wenzelm@12369
    56
  qed
wenzelm@12369
    57
qed
wenzelm@12369
    58
wenzelm@12369
    59
constdefs
wenzelm@12369
    60
  true :: o    ("\<top>")
wenzelm@12369
    61
  "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
wenzelm@12369
    62
  not :: "o \<Rightarrow> o"    ("\<not> _" [40] 40)
wenzelm@12369
    63
  "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
wenzelm@12392
    64
  iff :: "o \<Rightarrow> o \<Rightarrow> o"    (infixr "\<longleftrightarrow>" 25)
wenzelm@12392
    65
  "A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
wenzelm@12392
    66
wenzelm@12369
    67
wenzelm@12369
    68
theorem trueI [intro]: \<top>
wenzelm@12369
    69
proof (unfold true_def)
wenzelm@12369
    70
  show "\<bottom> \<longrightarrow> \<bottom>" ..
wenzelm@12369
    71
qed
wenzelm@12369
    72
wenzelm@12369
    73
theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
wenzelm@12369
    74
proof (unfold not_def)
wenzelm@12369
    75
  assume "A \<Longrightarrow> \<bottom>"
wenzelm@12369
    76
  thus "A \<longrightarrow> \<bottom>" ..
wenzelm@12369
    77
qed
wenzelm@12369
    78
wenzelm@12369
    79
theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
wenzelm@12369
    80
proof (unfold not_def)
wenzelm@12369
    81
  assume "A \<longrightarrow> \<bottom>" and A
wenzelm@12369
    82
  hence \<bottom> .. thus B ..
wenzelm@12369
    83
qed
wenzelm@12369
    84
wenzelm@12392
    85
theorem iffI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A \<longleftrightarrow> B"
wenzelm@12392
    86
proof (unfold iff_def)
wenzelm@12392
    87
  assume "A \<Longrightarrow> B" hence "A \<longrightarrow> B" ..
wenzelm@12392
    88
  moreover assume "B \<Longrightarrow> A" hence "B \<longrightarrow> A" ..
wenzelm@12392
    89
  ultimately show "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)" ..
wenzelm@12392
    90
qed
wenzelm@12392
    91
wenzelm@12392
    92
theorem iff1 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
wenzelm@12392
    93
proof (unfold iff_def)
wenzelm@12392
    94
  assume "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
wenzelm@12392
    95
  hence "A \<longrightarrow> B" ..
wenzelm@12392
    96
  thus "A \<Longrightarrow> B" ..
wenzelm@12392
    97
qed
wenzelm@12392
    98
wenzelm@12392
    99
theorem iff2 [elim]: "A \<longleftrightarrow> B \<Longrightarrow> B \<Longrightarrow> A"
wenzelm@12392
   100
proof (unfold iff_def)
wenzelm@12392
   101
  assume "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
wenzelm@12392
   102
  hence "B \<longrightarrow> A" ..
wenzelm@12392
   103
  thus "B \<Longrightarrow> A" ..
wenzelm@12392
   104
qed
wenzelm@12392
   105
wenzelm@12369
   106
wenzelm@12369
   107
subsection {* Equality *}
wenzelm@12369
   108
wenzelm@12369
   109
consts
wenzelm@12369
   110
  equal :: "i \<Rightarrow> i \<Rightarrow> o"    (infixl "=" 50)
wenzelm@12369
   111
wenzelm@12369
   112
axioms
wenzelm@12369
   113
  refl [intro]: "x = x"
wenzelm@12369
   114
  subst: "x = y \<Longrightarrow> P(x) \<Longrightarrow> P(y)"
wenzelm@12369
   115
wenzelm@12369
   116
theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
wenzelm@12369
   117
  by (rule subst)
wenzelm@12369
   118
wenzelm@12369
   119
theorem sym [sym]: "x = y \<Longrightarrow> y = x"
wenzelm@12369
   120
proof -
wenzelm@12369
   121
  assume "x = y"
wenzelm@12369
   122
  from this and refl show "y = x" by (rule subst)
wenzelm@12369
   123
qed
wenzelm@12369
   124
wenzelm@12369
   125
wenzelm@12369
   126
subsection {* Quantifiers *}
wenzelm@12369
   127
wenzelm@12369
   128
consts
wenzelm@12369
   129
  All :: "(i \<Rightarrow> o) \<Rightarrow> o"    (binder "\<forall>" 10)
wenzelm@12369
   130
  Ex :: "(i \<Rightarrow> o) \<Rightarrow> o"    (binder "\<exists>" 10)
wenzelm@12369
   131
wenzelm@12369
   132
axioms
wenzelm@12369
   133
  allI [intro]: "(\<And>x. P(x)) \<Longrightarrow> \<forall>x. P(x)"
wenzelm@12369
   134
  allD [dest]: "\<forall>x. P(x) \<Longrightarrow> P(a)"
wenzelm@12369
   135
wenzelm@12369
   136
  exI [intro]: "P(a) \<Longrightarrow> \<exists>x. P(x)"
wenzelm@12369
   137
  exE [elim]: "\<exists>x. P(x) \<Longrightarrow> (\<And>x. P(x) \<Longrightarrow> C) \<Longrightarrow> C"
wenzelm@12369
   138
wenzelm@12369
   139
wenzelm@12369
   140
lemma "(\<exists>x. P(f(x))) \<longrightarrow> (\<exists>y. P(y))"
wenzelm@12369
   141
proof
wenzelm@12369
   142
  assume "\<exists>x. P(f(x))"
wenzelm@12369
   143
  thus "\<exists>y. P(y)"
wenzelm@12369
   144
  proof
wenzelm@12369
   145
    fix x assume "P(f(x))"
wenzelm@12369
   146
    thus ?thesis ..
wenzelm@12369
   147
  qed
wenzelm@12369
   148
qed
wenzelm@12369
   149
wenzelm@12369
   150
lemma "(\<exists>x. \<forall>y. R(x, y)) \<longrightarrow> (\<forall>y. \<exists>x. R(x, y))"
wenzelm@12369
   151
proof
wenzelm@12369
   152
  assume "\<exists>x. \<forall>y. R(x, y)"
wenzelm@12369
   153
  thus "\<forall>y. \<exists>x. R(x, y)"
wenzelm@12369
   154
  proof
wenzelm@12369
   155
    fix x assume a: "\<forall>y. R(x, y)"
wenzelm@12369
   156
    show ?thesis
wenzelm@12369
   157
    proof
wenzelm@12369
   158
      fix y from a have "R(x, y)" ..
wenzelm@12369
   159
      thus "\<exists>x. R(x, y)" ..
wenzelm@12369
   160
    qed
wenzelm@12369
   161
  qed
wenzelm@12369
   162
qed
wenzelm@12369
   163
wenzelm@12369
   164
end