src/HOL/Tools/Function/partial_function.ML
author wenzelm
Thu, 15 Mar 2012 20:07:00 +0100
changeset 47823 94aa7b81bcf6
parent 46277 7a0b8debef77
child 47836 5c6955f487e5
permissions -rw-r--r--
prefer formally checked @{keyword} parser;
krauss@40353
     1
(*  Title:      HOL/Tools/Function/partial_function.ML
krauss@40353
     2
    Author:     Alexander Krauss, TU Muenchen
krauss@40353
     3
krauss@40353
     4
Partial function definitions based on least fixed points in ccpos.
krauss@40353
     5
*)
krauss@40353
     6
krauss@40353
     7
signature PARTIAL_FUNCTION =
krauss@40353
     8
sig
krauss@40353
     9
  val setup: theory -> theory
krauss@43921
    10
  val init: string -> term -> term -> thm -> thm option -> declaration
krauss@40353
    11
krauss@40353
    12
  val add_partial_function: string -> (binding * typ option * mixfix) list ->
krauss@40353
    13
    Attrib.binding * term -> local_theory -> local_theory
krauss@40353
    14
krauss@40353
    15
  val add_partial_function_cmd: string -> (binding * string option * mixfix) list ->
krauss@40353
    16
    Attrib.binding * string -> local_theory -> local_theory
krauss@40353
    17
end;
krauss@40353
    18
krauss@40353
    19
krauss@40353
    20
structure Partial_Function: PARTIAL_FUNCTION =
krauss@40353
    21
struct
krauss@40353
    22
krauss@40353
    23
(*** Context Data ***)
krauss@40353
    24
krauss@43921
    25
datatype setup_data = Setup_Data of 
krauss@43921
    26
 {fixp: term,
krauss@43921
    27
  mono: term,
krauss@43921
    28
  fixp_eq: thm,
krauss@43921
    29
  fixp_induct: thm option};
krauss@43921
    30
krauss@40353
    31
structure Modes = Generic_Data
krauss@40353
    32
(
krauss@43921
    33
  type T = setup_data Symtab.table;
krauss@40353
    34
  val empty = Symtab.empty;
krauss@40353
    35
  val extend = I;
wenzelm@41720
    36
  fun merge data = Symtab.merge (K true) data;
krauss@40353
    37
)
krauss@40353
    38
krauss@43921
    39
fun init mode fixp mono fixp_eq fixp_induct phi =
krauss@40353
    40
  let
krauss@40353
    41
    val term = Morphism.term phi;
krauss@43921
    42
    val thm = Morphism.thm phi;
krauss@43921
    43
    val data' = Setup_Data 
krauss@43921
    44
      {fixp=term fixp, mono=term mono, fixp_eq=thm fixp_eq,
krauss@43921
    45
       fixp_induct=Option.map thm fixp_induct};
krauss@40353
    46
  in
krauss@43790
    47
    Modes.map (Symtab.update (mode, data'))
krauss@40353
    48
  end
krauss@40353
    49
krauss@40353
    50
val known_modes = Symtab.keys o Modes.get o Context.Proof;
krauss@40353
    51
val lookup_mode = Symtab.lookup o Modes.get o Context.Proof;
krauss@40353
    52
krauss@40353
    53
krauss@40353
    54
structure Mono_Rules = Named_Thms
krauss@40353
    55
(
wenzelm@46165
    56
  val name = @{binding partial_function_mono};
krauss@40353
    57
  val description = "monotonicity rules for partial function definitions";
krauss@40353
    58
);
krauss@40353
    59
krauss@40353
    60
krauss@40353
    61
(*** Automated monotonicity proofs ***)
krauss@40353
    62
krauss@40353
    63
fun strip_cases ctac = ctac #> Seq.map snd;
krauss@40353
    64
krauss@40353
    65
(*rewrite conclusion with k-th assumtion*)
krauss@40353
    66
fun rewrite_with_asm_tac ctxt k =
wenzelm@46277
    67
  Subgoal.FOCUS (fn {context = ctxt', prems, ...} =>
krauss@40353
    68
    Local_Defs.unfold_tac ctxt' [nth prems k]) ctxt;
krauss@40353
    69
krauss@40353
    70
fun dest_case thy t =
krauss@40353
    71
  case strip_comb t of
krauss@40353
    72
    (Const (case_comb, _), args) =>
krauss@40353
    73
      (case Datatype.info_of_case thy case_comb of
krauss@40353
    74
         NONE => NONE
krauss@40353
    75
       | SOME {case_rewrites, ...} =>
krauss@40353
    76
           let
krauss@40353
    77
             val lhs = prop_of (hd case_rewrites)
krauss@40353
    78
               |> HOLogic.dest_Trueprop |> HOLogic.dest_eq |> fst;
krauss@40353
    79
             val arity = length (snd (strip_comb lhs));
krauss@40353
    80
             val conv = funpow (length args - arity) Conv.fun_conv
krauss@40353
    81
               (Conv.rewrs_conv (map mk_meta_eq case_rewrites));
krauss@40353
    82
           in
krauss@40353
    83
             SOME (nth args (arity - 1), conv)
krauss@40353
    84
           end)
krauss@40353
    85
  | _ => NONE;
krauss@40353
    86
krauss@40353
    87
(*split on case expressions*)
krauss@40353
    88
val split_cases_tac = Subgoal.FOCUS_PARAMS (fn {context=ctxt, ...} =>
krauss@40353
    89
  SUBGOAL (fn (t, i) => case t of
krauss@40353
    90
    _ $ (_ $ Abs (_, _, body)) =>
wenzelm@43232
    91
      (case dest_case (Proof_Context.theory_of ctxt) body of
krauss@40353
    92
         NONE => no_tac
krauss@40353
    93
       | SOME (arg, conv) =>
krauss@40353
    94
           let open Conv in
wenzelm@42989
    95
              if Term.is_open arg then no_tac
krauss@40353
    96
              else ((DETERM o strip_cases o Induct.cases_tac ctxt false [[SOME arg]] NONE [])
krauss@40353
    97
                THEN_ALL_NEW (rewrite_with_asm_tac ctxt 0)
krauss@40353
    98
                THEN_ALL_NEW etac @{thm thin_rl}
krauss@40353
    99
                THEN_ALL_NEW (CONVERSION
krauss@40353
   100
                  (params_conv ~1 (fn ctxt' =>
krauss@40353
   101
                    arg_conv (arg_conv (abs_conv (K conv) ctxt'))) ctxt))) i
krauss@40353
   102
           end)
krauss@40353
   103
  | _ => no_tac) 1);
krauss@40353
   104
krauss@40353
   105
(*monotonicity proof: apply rules + split case expressions*)
krauss@40353
   106
fun mono_tac ctxt =
krauss@40353
   107
  K (Local_Defs.unfold_tac ctxt [@{thm curry_def}])
krauss@40353
   108
  THEN' (TRY o REPEAT_ALL_NEW
krauss@40353
   109
   (resolve_tac (Mono_Rules.get ctxt)
krauss@40353
   110
     ORELSE' split_cases_tac ctxt));
krauss@40353
   111
krauss@40353
   112
krauss@40353
   113
(*** Auxiliary functions ***)
krauss@40353
   114
krauss@40353
   115
(*positional instantiation with computed type substitution.
krauss@40353
   116
  internal version of  attribute "[of s t u]".*)
krauss@40353
   117
fun cterm_instantiate' cts thm =
krauss@40353
   118
  let
krauss@40353
   119
    val thy = Thm.theory_of_thm thm;
krauss@40353
   120
    val vs = rev (Term.add_vars (prop_of thm) [])
krauss@40353
   121
      |> map (Thm.cterm_of thy o Var);
krauss@40353
   122
  in
krauss@40353
   123
    cterm_instantiate (zip_options vs cts) thm
krauss@40353
   124
  end;
krauss@40353
   125
krauss@40353
   126
(*Returns t $ u, but instantiates the type of t to make the
krauss@40353
   127
application type correct*)
krauss@40353
   128
fun apply_inst ctxt t u =
krauss@40353
   129
  let
wenzelm@43232
   130
    val thy = Proof_Context.theory_of ctxt;
krauss@40353
   131
    val T = domain_type (fastype_of t);
krauss@40353
   132
    val T' = fastype_of u;
wenzelm@43263
   133
    val subst = Sign.typ_match thy (T, T') Vartab.empty
krauss@40353
   134
      handle Type.TYPE_MATCH => raise TYPE ("apply_inst", [T, T'], [t, u])
krauss@40353
   135
  in
krauss@40353
   136
    map_types (Envir.norm_type subst) t $ u
krauss@40353
   137
  end;
krauss@40353
   138
krauss@40353
   139
fun head_conv cv ct =
krauss@40353
   140
  if can Thm.dest_comb ct then Conv.fun_conv (head_conv cv) ct else cv ct;
krauss@40353
   141
krauss@40353
   142
krauss@40353
   143
(*** currying transformation ***)
krauss@40353
   144
krauss@40353
   145
fun curry_const (A, B, C) =
krauss@40353
   146
  Const (@{const_name Product_Type.curry},
krauss@40353
   147
    [HOLogic.mk_prodT (A, B) --> C, A, B] ---> C);
krauss@40353
   148
krauss@40353
   149
fun mk_curry f =
krauss@40353
   150
  case fastype_of f of
krauss@40353
   151
    Type ("fun", [Type (_, [S, T]), U]) =>
krauss@40353
   152
      curry_const (S, T, U) $ f
krauss@40353
   153
  | T => raise TYPE ("mk_curry", [T], [f]);
krauss@40353
   154
krauss@40353
   155
(* iterated versions. Nonstandard left-nested tuples arise naturally
krauss@40353
   156
from "split o split o split"*)
krauss@40353
   157
fun curry_n arity = funpow (arity - 1) mk_curry;
krauss@40353
   158
fun uncurry_n arity = funpow (arity - 1) HOLogic.mk_split;
krauss@40353
   159
krauss@40353
   160
val curry_uncurry_ss = HOL_basic_ss addsimps
krauss@40353
   161
  [@{thm Product_Type.curry_split}, @{thm Product_Type.split_curry}]
krauss@40353
   162
krauss@43924
   163
val split_conv_ss = HOL_basic_ss addsimps
krauss@43924
   164
  [@{thm Product_Type.split_conv}];
krauss@43924
   165
krauss@43924
   166
fun mk_curried_induct args ctxt ccurry cuncurry rule =
krauss@43924
   167
  let
krauss@43924
   168
    val cert = Thm.cterm_of (Proof_Context.theory_of ctxt)
krauss@43924
   169
    val ([P], ctxt') = Variable.variant_fixes ["P"] ctxt
krauss@43924
   170
krauss@43924
   171
    val split_paired_all_conv =
krauss@43924
   172
      Conv.every_conv (replicate (length args - 1) (Conv.rewr_conv @{thm split_paired_all}))
krauss@43924
   173
krauss@43924
   174
    val split_params_conv = 
krauss@43924
   175
      Conv.params_conv ~1 (fn ctxt' =>
krauss@43924
   176
        Conv.implies_conv split_paired_all_conv Conv.all_conv)
krauss@43924
   177
krauss@43924
   178
    val inst_rule =
krauss@43924
   179
      cterm_instantiate' [SOME cuncurry, NONE, SOME ccurry] rule
krauss@43924
   180
krauss@43924
   181
    val plain_resultT = 
krauss@43924
   182
      Thm.prop_of inst_rule |> Logic.strip_imp_concl |> HOLogic.dest_Trueprop
krauss@43924
   183
      |> Term.head_of |> Term.dest_Var |> snd |> range_type |> domain_type
krauss@43924
   184
    val PT = map (snd o dest_Free) args ---> plain_resultT --> HOLogic.boolT
krauss@43924
   185
    val x_inst = cert (foldl1 HOLogic.mk_prod args)
krauss@43924
   186
    val P_inst = cert (uncurry_n (length args) (Free (P, PT)))
krauss@43924
   187
krauss@43924
   188
    val inst_rule' = inst_rule
krauss@43924
   189
      |> Tactic.rule_by_tactic ctxt
krauss@43924
   190
        (Simplifier.simp_tac curry_uncurry_ss 4
krauss@43924
   191
         THEN Simplifier.simp_tac curry_uncurry_ss 3
krauss@43924
   192
         THEN CONVERSION (split_params_conv ctxt
krauss@43924
   193
           then_conv (Conv.forall_conv (K split_paired_all_conv) ctxt)) 3)
krauss@43924
   194
      |> Drule.instantiate' [] [NONE, NONE, SOME P_inst, SOME x_inst]
krauss@43924
   195
      |> Simplifier.full_simplify split_conv_ss
krauss@43924
   196
      |> singleton (Variable.export ctxt' ctxt)
krauss@43924
   197
  in
krauss@43924
   198
    inst_rule'
krauss@43924
   199
  end;
krauss@43924
   200
    
krauss@40353
   201
krauss@40353
   202
(*** partial_function definition ***)
krauss@40353
   203
krauss@40353
   204
fun gen_add_partial_function prep mode fixes_raw eqn_raw lthy =
krauss@40353
   205
  let
krauss@43921
   206
    val setup_data = the (lookup_mode lthy mode)
krauss@40353
   207
      handle Option.Option => error (cat_lines ["Unknown mode " ^ quote mode ^ ".",
krauss@40353
   208
        "Known modes are " ^ commas_quote (known_modes lthy) ^ "."]);
krauss@43921
   209
    val Setup_Data {fixp, mono, fixp_eq, fixp_induct} = setup_data;
krauss@40353
   210
krauss@40353
   211
    val ((fixes, [(eq_abinding, eqn)]), _) = prep fixes_raw [eqn_raw] lthy;
krauss@43924
   212
    val ((_, plain_eqn), args_ctxt) = Variable.focus eqn lthy;
krauss@40353
   213
krauss@40353
   214
    val ((f_binding, fT), mixfix) = the_single fixes;
krauss@40353
   215
    val fname = Binding.name_of f_binding;
krauss@40353
   216
wenzelm@43232
   217
    val cert = cterm_of (Proof_Context.theory_of lthy);
krauss@40353
   218
    val (lhs, rhs) = HOLogic.dest_eq (HOLogic.dest_Trueprop plain_eqn);
krauss@40353
   219
    val (head, args) = strip_comb lhs;
krauss@43924
   220
    val argnames = map (fst o dest_Free) args;
krauss@40353
   221
    val F = fold_rev lambda (head :: args) rhs;
krauss@40353
   222
krauss@40353
   223
    val arity = length args;
krauss@40353
   224
    val (aTs, bTs) = chop arity (binder_types fT);
krauss@40353
   225
krauss@40353
   226
    val tupleT = foldl1 HOLogic.mk_prodT aTs;
krauss@40353
   227
    val fT_uc = tupleT :: bTs ---> body_type fT;
krauss@40353
   228
    val f_uc = Var ((fname, 0), fT_uc);
krauss@40353
   229
    val x_uc = Var (("x", 0), tupleT);
krauss@40353
   230
    val uncurry = lambda head (uncurry_n arity head);
krauss@40353
   231
    val curry = lambda f_uc (curry_n arity f_uc);
krauss@40353
   232
krauss@40353
   233
    val F_uc =
krauss@40353
   234
      lambda f_uc (uncurry_n arity (F $ curry_n arity f_uc));
krauss@40353
   235
krauss@40353
   236
    val mono_goal = apply_inst lthy mono (lambda f_uc (F_uc $ f_uc $ x_uc))
krauss@40353
   237
      |> HOLogic.mk_Trueprop
krauss@40353
   238
      |> Logic.all x_uc;
krauss@40353
   239
krauss@40353
   240
    val mono_thm = Goal.prove_internal [] (cert mono_goal)
krauss@40353
   241
        (K (mono_tac lthy 1))
krauss@40353
   242
      |> Thm.forall_elim (cert x_uc);
krauss@40353
   243
krauss@40353
   244
    val f_def_rhs = curry_n arity (apply_inst lthy fixp F_uc);
krauss@40353
   245
    val f_def_binding = Binding.conceal (Binding.name (Thm.def_name fname));
krauss@40353
   246
    val ((f, (_, f_def)), lthy') = Local_Theory.define
krauss@40353
   247
      ((f_binding, mixfix), ((f_def_binding, []), f_def_rhs)) lthy;
krauss@40353
   248
krauss@40353
   249
    val eqn = HOLogic.mk_eq (list_comb (f, args),
krauss@40353
   250
        Term.betapplys (F, f :: args))
krauss@40353
   251
      |> HOLogic.mk_Trueprop;
krauss@40353
   252
krauss@40353
   253
    val unfold =
krauss@40353
   254
      (cterm_instantiate' (map (SOME o cert) [uncurry, F, curry]) fixp_eq
krauss@40353
   255
        OF [mono_thm, f_def])
krauss@40353
   256
      |> Tactic.rule_by_tactic lthy (Simplifier.simp_tac curry_uncurry_ss 1);
krauss@40353
   257
krauss@43924
   258
    val mk_raw_induct =
krauss@43924
   259
      mk_curried_induct args args_ctxt (cert curry) (cert uncurry)
krauss@43924
   260
      #> singleton (Variable.export args_ctxt lthy)
krauss@45879
   261
      #> (fn thm => cterm_instantiate' [SOME (cert F)] thm OF [mono_thm, f_def])
krauss@43924
   262
      #> Drule.rename_bvars' (map SOME (fname :: argnames @ argnames))
krauss@43924
   263
krauss@43924
   264
    val raw_induct = Option.map mk_raw_induct fixp_induct
krauss@40353
   265
    val rec_rule = let open Conv in
krauss@40353
   266
      Goal.prove lthy' (map (fst o dest_Free) args) [] eqn (fn _ =>
krauss@40353
   267
        CONVERSION ((arg_conv o arg1_conv o head_conv o rewr_conv) (mk_meta_eq unfold)) 1
krauss@40353
   268
        THEN rtac @{thm refl} 1) end;
krauss@40353
   269
  in
krauss@40353
   270
    lthy'
krauss@40353
   271
    |> Local_Theory.note (eq_abinding, [rec_rule])
krauss@40353
   272
    |-> (fn (_, rec') =>
krauss@40421
   273
      Spec_Rules.add Spec_Rules.Equational ([f], rec')
krauss@40421
   274
      #> Local_Theory.note ((Binding.qualify true fname (Binding.name "simps"), []), rec') #> snd)
krauss@43924
   275
    |> (case raw_induct of NONE => I | SOME thm =>
krauss@43924
   276
         Local_Theory.note ((Binding.qualify true fname (Binding.name "raw_induct"), []), [thm]) #> snd)
krauss@40353
   277
  end;
krauss@40353
   278
krauss@40353
   279
val add_partial_function = gen_add_partial_function Specification.check_spec;
krauss@40353
   280
val add_partial_function_cmd = gen_add_partial_function Specification.read_spec;
krauss@40353
   281
wenzelm@47823
   282
val mode = @{keyword "("} |-- Parse.xname --| @{keyword ")"};
krauss@40353
   283
krauss@40353
   284
val _ = Outer_Syntax.local_theory
haftmann@40427
   285
  "partial_function" "define partial function" Keyword.thy_decl
krauss@40353
   286
  ((mode -- (Parse.fixes -- (Parse.where_ |-- Parse_Spec.spec)))
krauss@40353
   287
     >> (fn (mode, (fixes, spec)) => add_partial_function_cmd mode fixes spec));
krauss@40353
   288
krauss@40353
   289
krauss@40353
   290
val setup = Mono_Rules.setup;
krauss@40353
   291
krauss@40353
   292
end