doc-src/Ref/tctical.tex
author lcp
Thu, 11 May 1995 10:38:30 +0200
changeset 1118 93ba05d8ccdc
parent 332 01b87a921967
child 3108 335efc3f5632
permissions -rw-r--r--
Indexing of FILTER and COND
lcp@104
     1
%% $Id$
lcp@104
     2
\chapter{Tacticals}
lcp@104
     3
\index{tacticals|(}
lcp@104
     4
Tacticals are operations on tactics.  Their implementation makes use of
lcp@104
     5
functional programming techniques, especially for sequences.  Most of the
lcp@104
     6
time, you may forget about this and regard tacticals as high-level control
lcp@104
     7
structures.
lcp@104
     8
lcp@104
     9
\section{The basic tacticals}
lcp@104
    10
\subsection{Joining two tactics}
lcp@323
    11
\index{tacticals!joining two tactics}
lcp@104
    12
The tacticals {\tt THEN} and {\tt ORELSE}, which provide sequencing and
lcp@104
    13
alternation, underlie most of the other control structures in Isabelle.
lcp@104
    14
{\tt APPEND} and {\tt INTLEAVE} provide more sophisticated forms of
lcp@104
    15
alternation.
lcp@104
    16
\begin{ttbox} 
lcp@104
    17
THEN     : tactic * tactic -> tactic                 \hfill{\bf infix 1}
lcp@104
    18
ORELSE   : tactic * tactic -> tactic                 \hfill{\bf infix}
lcp@104
    19
APPEND   : tactic * tactic -> tactic                 \hfill{\bf infix}
lcp@104
    20
INTLEAVE : tactic * tactic -> tactic                 \hfill{\bf infix}
lcp@104
    21
\end{ttbox}
lcp@323
    22
\begin{ttdescription}
lcp@323
    23
\item[$tac@1$ \ttindexbold{THEN} $tac@2$] 
lcp@104
    24
is the sequential composition of the two tactics.  Applied to a proof
lcp@104
    25
state, it returns all states reachable in two steps by applying $tac@1$
lcp@104
    26
followed by~$tac@2$.  First, it applies $tac@1$ to the proof state, getting a
lcp@104
    27
sequence of next states; then, it applies $tac@2$ to each of these and
lcp@104
    28
concatenates the results.
lcp@104
    29
lcp@323
    30
\item[$tac@1$ \ttindexbold{ORELSE} $tac@2$] 
lcp@104
    31
makes a choice between the two tactics.  Applied to a state, it
lcp@104
    32
tries~$tac@1$ and returns the result if non-empty; if $tac@1$ fails then it
lcp@104
    33
uses~$tac@2$.  This is a deterministic choice: if $tac@1$ succeeds then
lcp@104
    34
$tac@2$ is excluded.
lcp@104
    35
lcp@323
    36
\item[$tac@1$ \ttindexbold{APPEND} $tac@2$] 
lcp@104
    37
concatenates the results of $tac@1$ and~$tac@2$.  By not making a commitment
lcp@323
    38
to either tactic, {\tt APPEND} helps avoid incompleteness during
lcp@323
    39
search.\index{search}
lcp@104
    40
lcp@323
    41
\item[$tac@1$ \ttindexbold{INTLEAVE} $tac@2$] 
lcp@104
    42
interleaves the results of $tac@1$ and~$tac@2$.  Thus, it includes all
lcp@104
    43
possible next states, even if one of the tactics returns an infinite
lcp@104
    44
sequence.
lcp@323
    45
\end{ttdescription}
lcp@104
    46
lcp@104
    47
lcp@104
    48
\subsection{Joining a list of tactics}
lcp@323
    49
\index{tacticals!joining a list of tactics}
lcp@104
    50
\begin{ttbox} 
lcp@104
    51
EVERY : tactic list -> tactic
lcp@104
    52
FIRST : tactic list -> tactic
lcp@104
    53
\end{ttbox}
lcp@104
    54
{\tt EVERY} and {\tt FIRST} are block structured versions of {\tt THEN} and
lcp@104
    55
{\tt ORELSE}\@.
lcp@323
    56
\begin{ttdescription}
lcp@104
    57
\item[\ttindexbold{EVERY} {$[tac@1,\ldots,tac@n]$}] 
lcp@104
    58
abbreviates \hbox{\tt$tac@1$ THEN \ldots{} THEN $tac@n$}.  It is useful for
lcp@104
    59
writing a series of tactics to be executed in sequence.
lcp@104
    60
lcp@104
    61
\item[\ttindexbold{FIRST} {$[tac@1,\ldots,tac@n]$}] 
lcp@104
    62
abbreviates \hbox{\tt$tac@1$ ORELSE \ldots{} ORELSE $tac@n$}.  It is useful for
lcp@104
    63
writing a series of tactics to be attempted one after another.
lcp@323
    64
\end{ttdescription}
lcp@104
    65
lcp@104
    66
lcp@104
    67
\subsection{Repetition tacticals}
lcp@323
    68
\index{tacticals!repetition}
lcp@104
    69
\begin{ttbox} 
lcp@104
    70
TRY           : tactic -> tactic
lcp@104
    71
REPEAT_DETERM : tactic -> tactic
lcp@104
    72
REPEAT        : tactic -> tactic
lcp@104
    73
REPEAT1       : tactic -> tactic
lcp@104
    74
trace_REPEAT  : bool ref \hfill{\bf initially false}
lcp@104
    75
\end{ttbox}
lcp@323
    76
\begin{ttdescription}
lcp@104
    77
\item[\ttindexbold{TRY} {\it tac}] 
lcp@104
    78
applies {\it tac\/} to the proof state and returns the resulting sequence,
lcp@104
    79
if non-empty; otherwise it returns the original state.  Thus, it applies
lcp@104
    80
{\it tac\/} at most once.
lcp@104
    81
lcp@104
    82
\item[\ttindexbold{REPEAT_DETERM} {\it tac}] 
lcp@104
    83
applies {\it tac\/} to the proof state and, recursively, to the head of the
lcp@104
    84
resulting sequence.  It returns the first state to make {\it tac\/} fail.
lcp@104
    85
It is deterministic, discarding alternative outcomes.
lcp@104
    86
lcp@104
    87
\item[\ttindexbold{REPEAT} {\it tac}] 
lcp@104
    88
applies {\it tac\/} to the proof state and, recursively, to each element of
lcp@104
    89
the resulting sequence.  The resulting sequence consists of those states
lcp@104
    90
that make {\it tac\/} fail.  Thus, it applies {\it tac\/} as many times as
lcp@104
    91
possible (including zero times), and allows backtracking over each
lcp@104
    92
invocation of {\it tac}.  It is more general than {\tt REPEAT_DETERM}, but
lcp@104
    93
requires more space.
lcp@104
    94
lcp@104
    95
\item[\ttindexbold{REPEAT1} {\it tac}] 
lcp@104
    96
is like \hbox{\tt REPEAT {\it tac}} but it always applies {\it tac\/} at
lcp@104
    97
least once, failing if this is impossible.
lcp@104
    98
lcp@323
    99
\item[\ttindexbold{trace_REPEAT} := true;] 
lcp@286
   100
enables an interactive tracing mode for the tacticals {\tt REPEAT_DETERM}
lcp@286
   101
and {\tt REPEAT}.  To view the tracing options, type {\tt h} at the prompt.
lcp@323
   102
\end{ttdescription}
lcp@104
   103
lcp@104
   104
lcp@104
   105
\subsection{Identities for tacticals}
lcp@323
   106
\index{tacticals!identities for}
lcp@104
   107
\begin{ttbox} 
lcp@104
   108
all_tac : tactic
lcp@104
   109
no_tac  : tactic
lcp@104
   110
\end{ttbox}
lcp@323
   111
\begin{ttdescription}
lcp@104
   112
\item[\ttindexbold{all_tac}] 
lcp@104
   113
maps any proof state to the one-element sequence containing that state.
lcp@104
   114
Thus, it succeeds for all states.  It is the identity element of the
lcp@104
   115
tactical \ttindex{THEN}\@.
lcp@104
   116
lcp@104
   117
\item[\ttindexbold{no_tac}] 
lcp@104
   118
maps any proof state to the empty sequence.  Thus it succeeds for no state.
lcp@104
   119
It is the identity element of \ttindex{ORELSE}, \ttindex{APPEND}, and 
lcp@104
   120
\ttindex{INTLEAVE}\@.  Also, it is a zero element for \ttindex{THEN}, which means that
lcp@104
   121
\hbox{\tt$tac$ THEN no_tac} is equivalent to {\tt no_tac}.
lcp@323
   122
\end{ttdescription}
lcp@104
   123
These primitive tactics are useful when writing tacticals.  For example,
lcp@104
   124
\ttindexbold{TRY} and \ttindexbold{REPEAT} (ignoring tracing) can be coded
lcp@104
   125
as follows: 
lcp@104
   126
\begin{ttbox} 
lcp@104
   127
fun TRY tac = tac ORELSE all_tac;
lcp@104
   128
lcp@104
   129
fun REPEAT tac = Tactic
lcp@104
   130
     (fn state => tapply((tac THEN REPEAT tac) ORELSE all_tac,
lcp@104
   131
                         state));
lcp@104
   132
\end{ttbox}
lcp@104
   133
If $tac$ can return multiple outcomes then so can \hbox{\tt REPEAT $tac$}.
lcp@104
   134
Since {\tt REPEAT} uses \ttindex{ORELSE} and not {\tt APPEND} or {\tt
lcp@104
   135
INTLEAVE}, it applies $tac$ as many times as possible in each
lcp@104
   136
outcome.
lcp@104
   137
lcp@104
   138
\begin{warn}
lcp@104
   139
Note {\tt REPEAT}'s explicit abstraction over the proof state.  Recursive
lcp@104
   140
tacticals must be coded in this awkward fashion to avoid infinite
lcp@104
   141
recursion.  With the following definition, \hbox{\tt REPEAT $tac$} would
lcp@332
   142
loop due to \ML's eager evaluation strategy:
lcp@104
   143
\begin{ttbox} 
lcp@104
   144
fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;
lcp@104
   145
\end{ttbox}
lcp@104
   146
\par\noindent
lcp@104
   147
The built-in {\tt REPEAT} avoids~{\tt THEN}, handling sequences explicitly
lcp@104
   148
and using tail recursion.  This sacrifices clarity, but saves much space by
lcp@104
   149
discarding intermediate proof states.
lcp@104
   150
\end{warn}
lcp@104
   151
lcp@104
   152
lcp@104
   153
\section{Control and search tacticals}
lcp@323
   154
\index{search!tacticals|(}
lcp@323
   155
lcp@104
   156
A predicate on theorems, namely a function of type \hbox{\tt thm->bool},
lcp@104
   157
can test whether a proof state enjoys some desirable property --- such as
lcp@104
   158
having no subgoals.  Tactics that search for satisfactory states are easy
lcp@104
   159
to express.  The main search procedures, depth-first, breadth-first and
lcp@104
   160
best-first, are provided as tacticals.  They generate the search tree by
lcp@104
   161
repeatedly applying a given tactic.
lcp@104
   162
lcp@104
   163
lcp@104
   164
\subsection{Filtering a tactic's results}
lcp@323
   165
\index{tacticals!for filtering}
lcp@323
   166
\index{tactics!filtering results of}
lcp@104
   167
\begin{ttbox} 
lcp@104
   168
FILTER  : (thm -> bool) -> tactic -> tactic
lcp@104
   169
CHANGED : tactic -> tactic
lcp@104
   170
\end{ttbox}
lcp@323
   171
\begin{ttdescription}
lcp@1118
   172
\item[\ttindexbold{FILTER} {\it p} $tac$] 
lcp@104
   173
applies $tac$ to the proof state and returns a sequence consisting of those
lcp@104
   174
result states that satisfy~$p$.
lcp@104
   175
lcp@104
   176
\item[\ttindexbold{CHANGED} {\it tac}] 
lcp@104
   177
applies {\it tac\/} to the proof state and returns precisely those states
lcp@104
   178
that differ from the original state.  Thus, \hbox{\tt CHANGED {\it tac}}
lcp@104
   179
always has some effect on the state.
lcp@323
   180
\end{ttdescription}
lcp@104
   181
lcp@104
   182
lcp@104
   183
\subsection{Depth-first search}
lcp@323
   184
\index{tacticals!searching}
lcp@104
   185
\index{tracing!of searching tacticals}
lcp@104
   186
\begin{ttbox} 
lcp@104
   187
DEPTH_FIRST   : (thm->bool) -> tactic -> tactic
lcp@332
   188
DEPTH_SOLVE   :                tactic -> tactic
lcp@332
   189
DEPTH_SOLVE_1 :                tactic -> tactic
lcp@104
   190
trace_DEPTH_FIRST: bool ref \hfill{\bf initially false}
lcp@104
   191
\end{ttbox}
lcp@323
   192
\begin{ttdescription}
lcp@104
   193
\item[\ttindexbold{DEPTH_FIRST} {\it satp} {\it tac}] 
lcp@104
   194
returns the proof state if {\it satp} returns true.  Otherwise it applies
lcp@104
   195
{\it tac}, then recursively searches from each element of the resulting
lcp@104
   196
sequence.  The code uses a stack for efficiency, in effect applying
lcp@104
   197
\hbox{\tt {\it tac} THEN DEPTH_FIRST {\it satp} {\it tac}} to the state.
lcp@104
   198
lcp@104
   199
\item[\ttindexbold{DEPTH_SOLVE} {\it tac}] 
lcp@104
   200
uses {\tt DEPTH_FIRST} to search for states having no subgoals.
lcp@104
   201
lcp@104
   202
\item[\ttindexbold{DEPTH_SOLVE_1} {\it tac}] 
lcp@104
   203
uses {\tt DEPTH_FIRST} to search for states having fewer subgoals than the
lcp@104
   204
given state.  Thus, it insists upon solving at least one subgoal.
lcp@104
   205
lcp@323
   206
\item[\ttindexbold{trace_DEPTH_FIRST} := true;] 
lcp@104
   207
enables interactive tracing for {\tt DEPTH_FIRST}.  To view the
lcp@104
   208
tracing options, type {\tt h} at the prompt.
lcp@323
   209
\end{ttdescription}
lcp@104
   210
lcp@104
   211
lcp@104
   212
\subsection{Other search strategies}
lcp@323
   213
\index{tacticals!searching}
lcp@104
   214
\index{tracing!of searching tacticals}
lcp@104
   215
\begin{ttbox} 
lcp@332
   216
BREADTH_FIRST   :            (thm->bool) -> tactic -> tactic
lcp@104
   217
BEST_FIRST      : (thm->bool)*(thm->int) -> tactic -> tactic
lcp@104
   218
THEN_BEST_FIRST : tactic * ((thm->bool) * (thm->int) * tactic)
lcp@104
   219
                  -> tactic                    \hfill{\bf infix 1}
lcp@104
   220
trace_BEST_FIRST: bool ref \hfill{\bf initially false}
lcp@104
   221
\end{ttbox}
lcp@104
   222
These search strategies will find a solution if one exists.  However, they
lcp@104
   223
do not enumerate all solutions; they terminate after the first satisfactory
lcp@104
   224
result from {\it tac}.
lcp@323
   225
\begin{ttdescription}
lcp@104
   226
\item[\ttindexbold{BREADTH_FIRST} {\it satp} {\it tac}] 
lcp@104
   227
uses breadth-first search to find states for which {\it satp\/} is true.
lcp@104
   228
For most applications, it is too slow.
lcp@104
   229
lcp@104
   230
\item[\ttindexbold{BEST_FIRST} $(satp,distf)$ {\it tac}] 
lcp@104
   231
does a heuristic search, using {\it distf\/} to estimate the distance from
lcp@104
   232
a satisfactory state.  It maintains a list of states ordered by distance.
lcp@104
   233
It applies $tac$ to the head of this list; if the result contains any
lcp@104
   234
satisfactory states, then it returns them.  Otherwise, {\tt BEST_FIRST}
lcp@104
   235
adds the new states to the list, and continues.  
lcp@104
   236
lcp@104
   237
The distance function is typically \ttindex{size_of_thm}, which computes
lcp@104
   238
the size of the state.  The smaller the state, the fewer and simpler
lcp@104
   239
subgoals it has.
lcp@104
   240
lcp@104
   241
\item[$tac@0$ \ttindexbold{THEN_BEST_FIRST} $(satp,distf,tac)$] 
lcp@104
   242
is like {\tt BEST_FIRST}, except that the priority queue initially
lcp@104
   243
contains the result of applying $tac@0$ to the proof state.  This tactical
lcp@104
   244
permits separate tactics for starting the search and continuing the search.
lcp@104
   245
lcp@323
   246
\item[\ttindexbold{trace_BEST_FIRST} := true;] 
lcp@286
   247
enables an interactive tracing mode for the tactical {\tt BEST_FIRST}.  To
lcp@286
   248
view the tracing options, type {\tt h} at the prompt.
lcp@323
   249
\end{ttdescription}
lcp@104
   250
lcp@104
   251
lcp@104
   252
\subsection{Auxiliary tacticals for searching}
lcp@104
   253
\index{tacticals!conditional}
lcp@104
   254
\index{tacticals!deterministic}
lcp@104
   255
\begin{ttbox} 
lcp@104
   256
COND        : (thm->bool) -> tactic -> tactic -> tactic
lcp@104
   257
IF_UNSOLVED : tactic -> tactic
lcp@104
   258
DETERM      : tactic -> tactic
lcp@104
   259
\end{ttbox}
lcp@323
   260
\begin{ttdescription}
lcp@1118
   261
\item[\ttindexbold{COND} {\it p} $tac@1$ $tac@2$] 
lcp@104
   262
applies $tac@1$ to the proof state if it satisfies~$p$, and applies $tac@2$
lcp@104
   263
otherwise.  It is a conditional tactical in that only one of $tac@1$ and
lcp@104
   264
$tac@2$ is applied to a proof state.  However, both $tac@1$ and $tac@2$ are
lcp@104
   265
evaluated because \ML{} uses eager evaluation.
lcp@104
   266
lcp@104
   267
\item[\ttindexbold{IF_UNSOLVED} {\it tac}] 
lcp@104
   268
applies {\it tac\/} to the proof state if it has any subgoals, and simply
lcp@104
   269
returns the proof state otherwise.  Many common tactics, such as {\tt
lcp@104
   270
resolve_tac}, fail if applied to a proof state that has no subgoals.
lcp@104
   271
lcp@104
   272
\item[\ttindexbold{DETERM} {\it tac}] 
lcp@104
   273
applies {\it tac\/} to the proof state and returns the head of the
lcp@104
   274
resulting sequence.  {\tt DETERM} limits the search space by making its
lcp@104
   275
argument deterministic.
lcp@323
   276
\end{ttdescription}
lcp@104
   277
lcp@104
   278
lcp@104
   279
\subsection{Predicates and functions useful for searching}
lcp@104
   280
\index{theorems!size of}
lcp@104
   281
\index{theorems!equality of}
lcp@104
   282
\begin{ttbox} 
lcp@104
   283
has_fewer_prems : int -> thm -> bool
lcp@104
   284
eq_thm          : thm * thm -> bool
lcp@104
   285
size_of_thm     : thm -> int
lcp@104
   286
\end{ttbox}
lcp@323
   287
\begin{ttdescription}
lcp@104
   288
\item[\ttindexbold{has_fewer_prems} $n$ $thm$] 
lcp@104
   289
reports whether $thm$ has fewer than~$n$ premises.  By currying,
lcp@104
   290
\hbox{\tt has_fewer_prems $n$} is a predicate on theorems; it may 
lcp@104
   291
be given to the searching tacticals.
lcp@104
   292
lcp@104
   293
\item[\ttindexbold{eq_thm}($thm1$,$thm2$)] 
lcp@104
   294
reports whether $thm1$ and $thm2$ are equal.  Both theorems must have
lcp@104
   295
identical signatures.  Both theorems must have the same conclusions, and
lcp@104
   296
the same hypotheses, in the same order.  Names of bound variables are
lcp@104
   297
ignored.
lcp@104
   298
lcp@104
   299
\item[\ttindexbold{size_of_thm} $thm$] 
lcp@104
   300
computes the size of $thm$, namely the number of variables, constants and
lcp@104
   301
abstractions in its conclusion.  It may serve as a distance function for 
lcp@104
   302
\ttindex{BEST_FIRST}. 
lcp@323
   303
\end{ttdescription}
lcp@323
   304
lcp@323
   305
\index{search!tacticals|)}
lcp@104
   306
lcp@104
   307
lcp@104
   308
\section{Tacticals for subgoal numbering}
lcp@104
   309
When conducting a backward proof, we normally consider one goal at a time.
lcp@104
   310
A tactic can affect the entire proof state, but many tactics --- such as
lcp@104
   311
{\tt resolve_tac} and {\tt assume_tac} --- work on a single subgoal.
lcp@104
   312
Subgoals are designated by a positive integer, so Isabelle provides
lcp@104
   313
tacticals for combining values of type {\tt int->tactic}.
lcp@104
   314
lcp@104
   315
lcp@104
   316
\subsection{Restricting a tactic to one subgoal}
lcp@104
   317
\index{tactics!restricting to a subgoal}
lcp@104
   318
\index{tacticals!for restriction to a subgoal}
lcp@104
   319
\begin{ttbox} 
lcp@104
   320
SELECT_GOAL : tactic -> int -> tactic
lcp@104
   321
METAHYPS    : (thm list -> tactic) -> int -> tactic
lcp@104
   322
\end{ttbox}
lcp@323
   323
\begin{ttdescription}
lcp@104
   324
\item[\ttindexbold{SELECT_GOAL} {\it tac} $i$] 
lcp@104
   325
restricts the effect of {\it tac\/} to subgoal~$i$ of the proof state.  It
lcp@104
   326
fails if there is no subgoal~$i$, or if {\it tac\/} changes the main goal
lcp@104
   327
(do not use {\tt rewrite_tac}).  It applies {\it tac\/} to a dummy proof
lcp@104
   328
state and uses the result to refine the original proof state at
lcp@104
   329
subgoal~$i$.  If {\it tac\/} returns multiple results then so does 
lcp@104
   330
\hbox{\tt SELECT_GOAL {\it tac} $i$}.
lcp@104
   331
lcp@323
   332
{\tt SELECT_GOAL} works by creating a state of the form $\phi\Imp\phi$,
lcp@332
   333
with the one subgoal~$\phi$.  If subgoal~$i$ has the form $\psi\Imp\theta$
lcp@332
   334
then $(\psi\Imp\theta)\Imp(\psi\Imp\theta)$ is in fact
lcp@332
   335
$\List{\psi\Imp\theta;\; \psi}\Imp\theta$, a proof state with two subgoals.
lcp@332
   336
Such a proof state might cause tactics to go astray.  Therefore {\tt
lcp@332
   337
  SELECT_GOAL} inserts a quantifier to create the state
lcp@323
   338
\[ (\Forall x.\psi\Imp\theta)\Imp(\Forall x.\psi\Imp\theta). \]
lcp@104
   339
lcp@323
   340
\item[\ttindexbold{METAHYPS} {\it tacf} $i$]\index{meta-assumptions}
lcp@104
   341
takes subgoal~$i$, of the form 
lcp@104
   342
\[ \Forall x@1 \ldots x@l. \List{\theta@1; \ldots; \theta@k}\Imp\theta, \]
lcp@104
   343
and creates the list $\theta'@1$, \ldots, $\theta'@k$ of meta-level
lcp@104
   344
assumptions.  In these theorems, the subgoal's parameters ($x@1$,
lcp@104
   345
\ldots,~$x@l$) become free variables.  It supplies the assumptions to
lcp@104
   346
$tacf$ and applies the resulting tactic to the proof state
lcp@104
   347
$\theta\Imp\theta$.
lcp@104
   348
lcp@104
   349
If the resulting proof state is $\List{\phi@1; \ldots; \phi@n} \Imp \phi$,
lcp@104
   350
possibly containing $\theta'@1,\ldots,\theta'@k$ as assumptions, then it is
lcp@104
   351
lifted back into the original context, yielding $n$ subgoals.
lcp@104
   352
lcp@286
   353
Meta-level assumptions may not contain unknowns.  Unknowns in the
lcp@286
   354
hypotheses $\theta@1,\ldots,\theta@k$ become free variables in $\theta'@1$,
lcp@286
   355
\ldots, $\theta'@k$, and are restored afterwards; the {\tt METAHYPS} call
lcp@286
   356
cannot instantiate them.  Unknowns in $\theta$ may be instantiated.  New
lcp@323
   357
unknowns in $\phi@1$, \ldots, $\phi@n$ are lifted over the parameters.
lcp@104
   358
lcp@104
   359
Here is a typical application.  Calling {\tt hyp_res_tac}~$i$ resolves
lcp@104
   360
subgoal~$i$ with one of its own assumptions, which may itself have the form
lcp@104
   361
of an inference rule (these are called {\bf higher-level assumptions}).  
lcp@104
   362
\begin{ttbox} 
lcp@104
   363
val hyp_res_tac = METAHYPS (fn prems => resolve_tac prems 1);
lcp@104
   364
\end{ttbox} 
lcp@332
   365
The function \ttindex{gethyps} is useful for debugging applications of {\tt
lcp@332
   366
  METAHYPS}. 
lcp@323
   367
\end{ttdescription}
lcp@104
   368
lcp@104
   369
\begin{warn}
lcp@104
   370
{\tt METAHYPS} fails if the context or new subgoals contain type unknowns.
lcp@104
   371
In principle, the tactical could treat these like ordinary unknowns.
lcp@104
   372
\end{warn}
lcp@104
   373
lcp@104
   374
lcp@104
   375
\subsection{Scanning for a subgoal by number}
lcp@323
   376
\index{tacticals!scanning for subgoals}
lcp@104
   377
\begin{ttbox} 
lcp@104
   378
ALLGOALS         : (int -> tactic) -> tactic
lcp@104
   379
TRYALL           : (int -> tactic) -> tactic
lcp@104
   380
SOMEGOAL         : (int -> tactic) -> tactic
lcp@104
   381
FIRSTGOAL        : (int -> tactic) -> tactic
lcp@104
   382
REPEAT_SOME      : (int -> tactic) -> tactic
lcp@104
   383
REPEAT_FIRST     : (int -> tactic) -> tactic
lcp@104
   384
trace_goalno_tac : (int -> tactic) -> int -> tactic
lcp@104
   385
\end{ttbox}
lcp@104
   386
These apply a tactic function of type {\tt int -> tactic} to all the
lcp@104
   387
subgoal numbers of a proof state, and join the resulting tactics using
lcp@104
   388
\ttindex{THEN} or \ttindex{ORELSE}\@.  Thus, they apply the tactic to all the
lcp@104
   389
subgoals, or to one subgoal.  
lcp@104
   390
lcp@104
   391
Suppose that the original proof state has $n$ subgoals.
lcp@104
   392
lcp@323
   393
\begin{ttdescription}
lcp@104
   394
\item[\ttindexbold{ALLGOALS} {\it tacf}] 
lcp@104
   395
is equivalent to
lcp@104
   396
\hbox{\tt$tacf(n)$ THEN \ldots{} THEN $tacf(1)$}.  
lcp@104
   397
lcp@323
   398
It applies {\it tacf} to all the subgoals, counting downwards (to
lcp@104
   399
avoid problems when subgoals are added or deleted).
lcp@104
   400
lcp@104
   401
\item[\ttindexbold{TRYALL} {\it tacf}] 
lcp@104
   402
is equivalent to
lcp@323
   403
\hbox{\tt TRY$(tacf(n))$ THEN \ldots{} THEN TRY$(tacf(1))$}.  
lcp@104
   404
lcp@104
   405
It attempts to apply {\it tacf} to all the subgoals.  For instance,
lcp@286
   406
the tactic \hbox{\tt TRYALL assume_tac} attempts to solve all the subgoals by
lcp@104
   407
assumption.
lcp@104
   408
lcp@104
   409
\item[\ttindexbold{SOMEGOAL} {\it tacf}] 
lcp@104
   410
is equivalent to
lcp@104
   411
\hbox{\tt$tacf(n)$ ORELSE \ldots{} ORELSE $tacf(1)$}.  
lcp@104
   412
lcp@323
   413
It applies {\it tacf} to one subgoal, counting downwards.  For instance,
lcp@286
   414
the tactic \hbox{\tt SOMEGOAL assume_tac} solves one subgoal by assumption,
lcp@286
   415
failing if this is impossible.
lcp@104
   416
lcp@104
   417
\item[\ttindexbold{FIRSTGOAL} {\it tacf}] 
lcp@104
   418
is equivalent to
lcp@104
   419
\hbox{\tt$tacf(1)$ ORELSE \ldots{} ORELSE $tacf(n)$}.  
lcp@104
   420
lcp@323
   421
It applies {\it tacf} to one subgoal, counting upwards.
lcp@104
   422
lcp@104
   423
\item[\ttindexbold{REPEAT_SOME} {\it tacf}] 
lcp@323
   424
applies {\it tacf} once or more to a subgoal, counting downwards.
lcp@104
   425
lcp@104
   426
\item[\ttindexbold{REPEAT_FIRST} {\it tacf}] 
lcp@323
   427
applies {\it tacf} once or more to a subgoal, counting upwards.
lcp@104
   428
lcp@104
   429
\item[\ttindexbold{trace_goalno_tac} {\it tac} {\it i}] 
lcp@104
   430
applies \hbox{\it tac i\/} to the proof state.  If the resulting sequence
lcp@104
   431
is non-empty, then it is returned, with the side-effect of printing {\tt
lcp@104
   432
Subgoal~$i$ selected}.  Otherwise, {\tt trace_goalno_tac} returns the empty
lcp@104
   433
sequence and prints nothing.
lcp@104
   434
lcp@323
   435
It indicates that `the tactic worked for subgoal~$i$' and is mainly used
lcp@104
   436
with {\tt SOMEGOAL} and {\tt FIRSTGOAL}.
lcp@323
   437
\end{ttdescription}
lcp@104
   438
lcp@104
   439
lcp@104
   440
\subsection{Joining tactic functions}
lcp@323
   441
\index{tacticals!joining tactic functions}
lcp@104
   442
\begin{ttbox} 
lcp@104
   443
THEN'     : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic \hfill{\bf infix 1}
lcp@104
   444
ORELSE'   : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic \hfill{\bf infix}
lcp@104
   445
APPEND'   : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic \hfill{\bf infix}
lcp@104
   446
INTLEAVE' : ('a -> tactic) * ('a -> tactic) -> 'a -> tactic \hfill{\bf infix}
lcp@104
   447
EVERY'    : ('a -> tactic) list -> 'a -> tactic
lcp@104
   448
FIRST'    : ('a -> tactic) list -> 'a -> tactic
lcp@104
   449
\end{ttbox}
lcp@104
   450
These help to express tactics that specify subgoal numbers.  The tactic
lcp@104
   451
\begin{ttbox} 
lcp@104
   452
SOMEGOAL (fn i => resolve_tac rls i  ORELSE  eresolve_tac erls i)
lcp@104
   453
\end{ttbox}
lcp@104
   454
can be simplified to
lcp@104
   455
\begin{ttbox} 
lcp@104
   456
SOMEGOAL (resolve_tac rls  ORELSE'  eresolve_tac erls)
lcp@104
   457
\end{ttbox}
lcp@104
   458
Note that {\tt TRY'}, {\tt REPEAT'}, {\tt DEPTH_FIRST'}, etc.\ are not
lcp@104
   459
provided, because function composition accomplishes the same purpose.
lcp@104
   460
The tactic
lcp@104
   461
\begin{ttbox} 
lcp@104
   462
ALLGOALS (fn i => REPEAT (etac exE i  ORELSE  atac i))
lcp@104
   463
\end{ttbox}
lcp@104
   464
can be simplified to
lcp@104
   465
\begin{ttbox} 
lcp@104
   466
ALLGOALS (REPEAT o (etac exE  ORELSE'  atac))
lcp@104
   467
\end{ttbox}
lcp@104
   468
These tacticals are polymorphic; $x$ need not be an integer.
lcp@104
   469
\begin{center} \tt
lcp@104
   470
\begin{tabular}{r@{\rm\ \ yields\ \ }l}
lcp@323
   471
    $(tacf@1$~~THEN'~~$tacf@2)(x)$ \index{*THEN'} &
lcp@104
   472
    $tacf@1(x)$~~THEN~~$tacf@2(x)$ \\
lcp@104
   473
lcp@323
   474
    $(tacf@1$ ORELSE' $tacf@2)(x)$ \index{*ORELSE'} &
lcp@104
   475
    $tacf@1(x)$ ORELSE $tacf@2(x)$ \\
lcp@104
   476
lcp@323
   477
    $(tacf@1$ APPEND' $tacf@2)(x)$ \index{*APPEND'} &
lcp@104
   478
    $tacf@1(x)$ APPEND $tacf@2(x)$ \\
lcp@104
   479
lcp@323
   480
    $(tacf@1$ INTLEAVE' $tacf@2)(x)$ \index{*INTLEAVE'} &
lcp@104
   481
    $tacf@1(x)$ INTLEAVE $tacf@2(x)$ \\
lcp@104
   482
lcp@104
   483
    EVERY' $[tacf@1,\ldots,tacf@n] \; (x)$ \index{*EVERY'} &
lcp@104
   484
    EVERY $[tacf@1(x),\ldots,tacf@n(x)]$ \\
lcp@104
   485
lcp@104
   486
    FIRST' $[tacf@1,\ldots,tacf@n] \; (x)$ \index{*FIRST'} &
lcp@104
   487
    FIRST $[tacf@1(x),\ldots,tacf@n(x)]$
lcp@104
   488
\end{tabular}
lcp@104
   489
\end{center}
lcp@104
   490
lcp@104
   491
lcp@104
   492
\subsection{Applying a list of tactics to 1}
lcp@323
   493
\index{tacticals!joining tactic functions}
lcp@104
   494
\begin{ttbox} 
lcp@104
   495
EVERY1: (int -> tactic) list -> tactic
lcp@104
   496
FIRST1: (int -> tactic) list -> tactic
lcp@104
   497
\end{ttbox}
lcp@104
   498
A common proof style is to treat the subgoals as a stack, always
lcp@104
   499
restricting attention to the first subgoal.  Such proofs contain long lists
lcp@104
   500
of tactics, each applied to~1.  These can be simplified using {\tt EVERY1}
lcp@104
   501
and {\tt FIRST1}:
lcp@104
   502
\begin{center} \tt
lcp@104
   503
\begin{tabular}{r@{\rm\ \ abbreviates\ \ }l}
lcp@104
   504
    EVERY1 $[tacf@1,\ldots,tacf@n]$ \indexbold{*EVERY1} &
lcp@104
   505
    EVERY $[tacf@1(1),\ldots,tacf@n(1)]$ \\
lcp@104
   506
lcp@104
   507
    FIRST1 $[tacf@1,\ldots,tacf@n]$ \indexbold{*FIRST1} &
lcp@104
   508
    FIRST $[tacf@1(1),\ldots,tacf@n(1)]$
lcp@104
   509
\end{tabular}
lcp@104
   510
\end{center}
lcp@104
   511
lcp@104
   512
\index{tacticals|)}