src/HOL/Tools/Meson/meson.ML
author blanchet
Mon, 25 Jul 2011 14:10:12 +0200
changeset 44835 9338aa218f09
parent 44685 048619bb1dc3
child 46438 8e3891309a8e
permissions -rw-r--r--
thread proper context through, to make sure that "using [[meson_max_clauses = 200]]" is not ignored when clausifying the conjecture
blanchet@40122
     1
(*  Title:      HOL/Tools/Meson/meson.ML
paulson@9840
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
blanchet@40122
     3
    Author:     Jasmin Blanchette, TU Muenchen
paulson@9840
     4
wenzelm@9869
     5
The MESON resolution proof procedure for HOL.
wenzelm@29267
     6
When making clauses, avoids using the rewriter -- instead uses RS recursively.
paulson@9840
     7
*)
paulson@9840
     8
wenzelm@24300
     9
signature MESON =
paulson@15579
    10
sig
blanchet@40160
    11
  val trace : bool Config.T
blanchet@43604
    12
  val unfold_set_consts : bool Config.T
blanchet@40160
    13
  val max_clauses : int Config.T
wenzelm@24300
    14
  val term_pair_of: indexname * (typ * 'a) -> term * 'a
wenzelm@24300
    15
  val size_of_subgoals: thm -> int
blanchet@39496
    16
  val has_too_many_clauses: Proof.context -> term -> bool
blanchet@44835
    17
  val make_cnf:
blanchet@44835
    18
    thm list -> thm -> Proof.context
blanchet@44835
    19
    -> Proof.context -> thm list * Proof.context
wenzelm@24300
    20
  val finish_cnf: thm list -> thm list
blanchet@43604
    21
  val unfold_set_const_simps : Proof.context -> thm list
blanchet@44105
    22
  val presimplified_consts : Proof.context -> string list
blanchet@43615
    23
  val presimplify: Proof.context -> thm -> thm
wenzelm@32274
    24
  val make_nnf: Proof.context -> thm -> thm
blanchet@40131
    25
  val choice_theorems : theory -> thm list
blanchet@40131
    26
  val skolemize_with_choice_theorems : Proof.context -> thm list -> thm -> thm
blanchet@40085
    27
  val skolemize : Proof.context -> thm -> thm
blanchet@43612
    28
  val extensionalize_conv : Proof.context -> conv
blanchet@43612
    29
  val extensionalize_theorem : Proof.context -> thm -> thm
wenzelm@24300
    30
  val is_fol_term: theory -> term -> bool
blanchet@44835
    31
  val make_clauses_unsorted: Proof.context -> thm list -> thm list
blanchet@44835
    32
  val make_clauses: Proof.context -> thm list -> thm list
wenzelm@24300
    33
  val make_horns: thm list -> thm list
wenzelm@24300
    34
  val best_prolog_tac: (thm -> int) -> thm list -> tactic
wenzelm@24300
    35
  val depth_prolog_tac: thm list -> tactic
wenzelm@24300
    36
  val gocls: thm list -> thm list
blanchet@40081
    37
  val skolemize_prems_tac : Proof.context -> thm list -> int -> tactic
blanchet@39281
    38
  val MESON:
blanchet@39496
    39
    tactic -> (thm list -> thm list) -> (thm list -> tactic) -> Proof.context
blanchet@39496
    40
    -> int -> tactic
wenzelm@32274
    41
  val best_meson_tac: (thm -> int) -> Proof.context -> int -> tactic
wenzelm@32274
    42
  val safe_best_meson_tac: Proof.context -> int -> tactic
wenzelm@32274
    43
  val depth_meson_tac: Proof.context -> int -> tactic
wenzelm@24300
    44
  val prolog_step_tac': thm list -> int -> tactic
wenzelm@24300
    45
  val iter_deepen_prolog_tac: thm list -> tactic
wenzelm@32274
    46
  val iter_deepen_meson_tac: Proof.context -> thm list -> int -> tactic
wenzelm@24300
    47
  val make_meta_clause: thm -> thm
wenzelm@24300
    48
  val make_meta_clauses: thm list -> thm list
wenzelm@32274
    49
  val meson_tac: Proof.context -> thm list -> int -> tactic
paulson@15579
    50
end
paulson@9840
    51
blanchet@40082
    52
structure Meson : MESON =
paulson@15579
    53
struct
paulson@9840
    54
wenzelm@43487
    55
val trace = Attrib.setup_config_bool @{binding meson_trace} (K false)
wenzelm@32955
    56
blanchet@40160
    57
fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
blanchet@40160
    58
blanchet@43604
    59
val unfold_set_consts =
blanchet@43604
    60
  Attrib.setup_config_bool @{binding meson_unfold_set_consts} (K false)
blanchet@43604
    61
blanchet@43604
    62
val max_clauses = Attrib.setup_config_int @{binding meson_max_clauses} (K 60)
paulson@26562
    63
wenzelm@39069
    64
(*No known example (on 1-5-2007) needs even thirty*)
wenzelm@39069
    65
val iter_deepen_limit = 50;
wenzelm@39069
    66
haftmann@31454
    67
val disj_forward = @{thm disj_forward};
haftmann@31454
    68
val disj_forward2 = @{thm disj_forward2};
haftmann@31454
    69
val make_pos_rule = @{thm make_pos_rule};
haftmann@31454
    70
val make_pos_rule' = @{thm make_pos_rule'};
haftmann@31454
    71
val make_pos_goal = @{thm make_pos_goal};
haftmann@31454
    72
val make_neg_rule = @{thm make_neg_rule};
haftmann@31454
    73
val make_neg_rule' = @{thm make_neg_rule'};
haftmann@31454
    74
val make_neg_goal = @{thm make_neg_goal};
haftmann@31454
    75
val conj_forward = @{thm conj_forward};
haftmann@31454
    76
val all_forward = @{thm all_forward};
haftmann@31454
    77
val ex_forward = @{thm ex_forward};
haftmann@31454
    78
blanchet@40134
    79
val not_conjD = @{thm not_conjD};
blanchet@40134
    80
val not_disjD = @{thm not_disjD};
blanchet@40134
    81
val not_notD = @{thm not_notD};
blanchet@40134
    82
val not_allD = @{thm not_allD};
blanchet@40134
    83
val not_exD = @{thm not_exD};
blanchet@40134
    84
val imp_to_disjD = @{thm imp_to_disjD};
blanchet@40134
    85
val not_impD = @{thm not_impD};
blanchet@40134
    86
val iff_to_disjD = @{thm iff_to_disjD};
blanchet@40134
    87
val not_iffD = @{thm not_iffD};
blanchet@40134
    88
val conj_exD1 = @{thm conj_exD1};
blanchet@40134
    89
val conj_exD2 = @{thm conj_exD2};
blanchet@40134
    90
val disj_exD = @{thm disj_exD};
blanchet@40134
    91
val disj_exD1 = @{thm disj_exD1};
blanchet@40134
    92
val disj_exD2 = @{thm disj_exD2};
blanchet@40134
    93
val disj_assoc = @{thm disj_assoc};
blanchet@40134
    94
val disj_comm = @{thm disj_comm};
blanchet@40134
    95
val disj_FalseD1 = @{thm disj_FalseD1};
blanchet@40134
    96
val disj_FalseD2 = @{thm disj_FalseD2};
paulson@9840
    97
paulson@9840
    98
paulson@15579
    99
(**** Operators for forward proof ****)
paulson@9840
   100
paulson@20417
   101
paulson@20417
   102
(** First-order Resolution **)
paulson@20417
   103
paulson@20417
   104
fun term_pair_of (ix, (ty,t)) = (Var (ix,ty), t);
paulson@20417
   105
paulson@20417
   106
(*FIXME: currently does not "rename variables apart"*)
paulson@20417
   107
fun first_order_resolve thA thB =
wenzelm@32274
   108
  (case
wenzelm@32274
   109
    try (fn () =>
wenzelm@32274
   110
      let val thy = theory_of_thm thA
wenzelm@32274
   111
          val tmA = concl_of thA
wenzelm@32274
   112
          val Const("==>",_) $ tmB $ _ = prop_of thB
blanchet@37373
   113
          val tenv =
blanchet@37385
   114
            Pattern.first_order_match thy (tmB, tmA)
blanchet@37385
   115
                                          (Vartab.empty, Vartab.empty) |> snd
wenzelm@32274
   116
          val ct_pairs = map (pairself (cterm_of thy) o term_pair_of) (Vartab.dest tenv)
wenzelm@32274
   117
      in  thA RS (cterm_instantiate ct_pairs thB)  end) () of
wenzelm@32274
   118
    SOME th => th
blanchet@37373
   119
  | NONE => raise THM ("first_order_resolve", 0, [thA, thB]))
paulson@18175
   120
blanchet@40505
   121
(* Hack to make it less likely that we lose our precious bound variable names in
blanchet@40505
   122
   "rename_bound_vars_RS" below, because of a clash. *)
blanchet@40505
   123
val protect_prefix = "Meson_xyzzy"
blanchet@40111
   124
blanchet@40505
   125
fun protect_bound_var_names (t $ u) =
blanchet@40505
   126
    protect_bound_var_names t $ protect_bound_var_names u
blanchet@40505
   127
  | protect_bound_var_names (Abs (s, T, t')) =
blanchet@40505
   128
    Abs (protect_prefix ^ s, T, protect_bound_var_names t')
blanchet@40505
   129
  | protect_bound_var_names t = t
blanchet@40111
   130
blanchet@40505
   131
fun fix_bound_var_names old_t new_t =
blanchet@40505
   132
  let
blanchet@40505
   133
    fun quant_of @{const_name All} = SOME true
blanchet@40505
   134
      | quant_of @{const_name Ball} = SOME true
blanchet@40505
   135
      | quant_of @{const_name Ex} = SOME false
blanchet@40505
   136
      | quant_of @{const_name Bex} = SOME false
blanchet@40505
   137
      | quant_of _ = NONE
blanchet@40505
   138
    val flip_quant = Option.map not
blanchet@40505
   139
    fun some_eq (SOME x) (SOME y) = x = y
blanchet@40505
   140
      | some_eq _ _ = false
blanchet@40505
   141
    fun add_names quant (Const (quant_s, _) $ Abs (s, _, t')) =
blanchet@40505
   142
        add_names quant t' #> some_eq quant (quant_of quant_s) ? cons s
blanchet@40505
   143
      | add_names quant (@{const Not} $ t) = add_names (flip_quant quant) t
blanchet@40505
   144
      | add_names quant (@{const implies} $ t1 $ t2) =
blanchet@40505
   145
        add_names (flip_quant quant) t1 #> add_names quant t2
blanchet@40505
   146
      | add_names quant (t1 $ t2) = fold (add_names quant) [t1, t2]
blanchet@40505
   147
      | add_names _ _ = I
blanchet@40505
   148
    fun lost_names quant =
blanchet@40505
   149
      subtract (op =) (add_names quant new_t []) (add_names quant old_t [])
blanchet@40505
   150
    fun aux ((t1 as Const (quant_s, _)) $ (Abs (s, T, t'))) =
blanchet@40505
   151
      t1 $ Abs (s |> String.isPrefix protect_prefix s
blanchet@40505
   152
                   ? perhaps (try (fn _ => hd (lost_names (quant_of quant_s)))),
blanchet@40505
   153
                T, aux t')
blanchet@40505
   154
      | aux (t1 $ t2) = aux t1 $ aux t2
blanchet@40505
   155
      | aux t = t
blanchet@40505
   156
  in aux new_t end
blanchet@40085
   157
blanchet@40505
   158
(* Forward proof while preserving bound variables names *)
blanchet@40505
   159
fun rename_bound_vars_RS th rl =
blanchet@40085
   160
  let
blanchet@40085
   161
    val t = concl_of th
blanchet@40111
   162
    val r = concl_of rl
blanchet@40505
   163
    val th' = th RS Thm.rename_boundvars r (protect_bound_var_names r) rl
blanchet@40085
   164
    val t' = concl_of th'
blanchet@40505
   165
  in Thm.rename_boundvars t' (fix_bound_var_names t t') th' end
paulson@24937
   166
paulson@24937
   167
(*raises exception if no rules apply*)
wenzelm@24300
   168
fun tryres (th, rls) =
paulson@18141
   169
  let fun tryall [] = raise THM("tryres", 0, th::rls)
blanchet@40505
   170
        | tryall (rl::rls) =
blanchet@40505
   171
          (rename_bound_vars_RS th rl handle THM _ => tryall rls)
paulson@18141
   172
  in  tryall rls  end;
wenzelm@24300
   173
paulson@21050
   174
(*Permits forward proof from rules that discharge assumptions. The supplied proof state st,
paulson@21050
   175
  e.g. from conj_forward, should have the form
paulson@21050
   176
    "[| P' ==> ?P; Q' ==> ?Q |] ==> ?P & ?Q"
paulson@21050
   177
  and the effect should be to instantiate ?P and ?Q with normalized versions of P' and Q'.*)
wenzelm@32274
   178
fun forward_res ctxt nf st =
paulson@21050
   179
  let fun forward_tacf [prem] = rtac (nf prem) 1
wenzelm@24300
   180
        | forward_tacf prems =
wenzelm@32111
   181
            error (cat_lines
wenzelm@32111
   182
              ("Bad proof state in forward_res, please inform lcp@cl.cam.ac.uk:" ::
wenzelm@32274
   183
                Display.string_of_thm ctxt st ::
wenzelm@32274
   184
                "Premises:" :: map (Display.string_of_thm ctxt) prems))
paulson@21050
   185
  in
wenzelm@37781
   186
    case Seq.pull (ALLGOALS (Misc_Legacy.METAHYPS forward_tacf) st)
paulson@21050
   187
    of SOME(th,_) => th
paulson@21050
   188
     | NONE => raise THM("forward_res", 0, [st])
paulson@21050
   189
  end;
paulson@9840
   190
paulson@20134
   191
(*Are any of the logical connectives in "bs" present in the term?*)
paulson@20134
   192
fun has_conns bs =
blanchet@39574
   193
  let fun has (Const _) = false
haftmann@38782
   194
        | has (Const(@{const_name Trueprop},_) $ p) = has p
haftmann@38782
   195
        | has (Const(@{const_name Not},_) $ p) = has p
haftmann@39028
   196
        | has (Const(@{const_name HOL.disj},_) $ p $ q) = member (op =) bs @{const_name HOL.disj} orelse has p orelse has q
haftmann@39028
   197
        | has (Const(@{const_name HOL.conj},_) $ p $ q) = member (op =) bs @{const_name HOL.conj} orelse has p orelse has q
haftmann@38782
   198
        | has (Const(@{const_name All},_) $ Abs(_,_,p)) = member (op =) bs @{const_name All} orelse has p
haftmann@38782
   199
        | has (Const(@{const_name Ex},_) $ Abs(_,_,p)) = member (op =) bs @{const_name Ex} orelse has p
wenzelm@24300
   200
        | has _ = false
paulson@15579
   201
  in  has  end;
wenzelm@24300
   202
paulson@9840
   203
paulson@15579
   204
(**** Clause handling ****)
paulson@9840
   205
haftmann@38782
   206
fun literals (Const(@{const_name Trueprop},_) $ P) = literals P
haftmann@39028
   207
  | literals (Const(@{const_name HOL.disj},_) $ P $ Q) = literals P @ literals Q
haftmann@38782
   208
  | literals (Const(@{const_name Not},_) $ P) = [(false,P)]
paulson@15579
   209
  | literals P = [(true,P)];
paulson@9840
   210
paulson@15579
   211
(*number of literals in a term*)
paulson@15579
   212
val nliterals = length o literals;
paulson@9840
   213
paulson@18389
   214
paulson@18389
   215
(*** Tautology Checking ***)
paulson@18389
   216
haftmann@39028
   217
fun signed_lits_aux (Const (@{const_name HOL.disj}, _) $ P $ Q) (poslits, neglits) =
paulson@18389
   218
      signed_lits_aux Q (signed_lits_aux P (poslits, neglits))
haftmann@38782
   219
  | signed_lits_aux (Const(@{const_name Not},_) $ P) (poslits, neglits) = (poslits, P::neglits)
paulson@18389
   220
  | signed_lits_aux P (poslits, neglits) = (P::poslits, neglits);
wenzelm@24300
   221
paulson@18389
   222
fun signed_lits th = signed_lits_aux (HOLogic.dest_Trueprop (concl_of th)) ([],[]);
paulson@18389
   223
paulson@18389
   224
(*Literals like X=X are tautologous*)
haftmann@39093
   225
fun taut_poslit (Const(@{const_name HOL.eq},_) $ t $ u) = t aconv u
haftmann@38782
   226
  | taut_poslit (Const(@{const_name True},_)) = true
paulson@18389
   227
  | taut_poslit _ = false;
paulson@18389
   228
paulson@18389
   229
fun is_taut th =
paulson@18389
   230
  let val (poslits,neglits) = signed_lits th
paulson@18389
   231
  in  exists taut_poslit poslits
paulson@18389
   232
      orelse
wenzelm@20073
   233
      exists (member (op aconv) neglits) (HOLogic.false_const :: poslits)
paulson@19894
   234
  end
wenzelm@24300
   235
  handle TERM _ => false;       (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   236
paulson@18389
   237
paulson@18389
   238
(*** To remove trivial negated equality literals from clauses ***)
paulson@18389
   239
paulson@18389
   240
(*They are typically functional reflexivity axioms and are the converses of
paulson@18389
   241
  injectivity equivalences*)
wenzelm@24300
   242
blanchet@40134
   243
val not_refl_disj_D = @{thm not_refl_disj_D};
paulson@18389
   244
paulson@20119
   245
(*Is either term a Var that does not properly occur in the other term?*)
paulson@20119
   246
fun eliminable (t as Var _, u) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   247
  | eliminable (u, t as Var _) = t aconv u orelse not (Logic.occs(t,u))
paulson@20119
   248
  | eliminable _ = false;
paulson@20119
   249
paulson@18389
   250
fun refl_clause_aux 0 th = th
paulson@18389
   251
  | refl_clause_aux n th =
paulson@18389
   252
       case HOLogic.dest_Trueprop (concl_of th) of
haftmann@39028
   253
          (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _) =>
paulson@18389
   254
            refl_clause_aux n (th RS disj_assoc)    (*isolate an atom as first disjunct*)
haftmann@39093
   255
        | (Const (@{const_name HOL.disj}, _) $ (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ t $ u)) $ _) =>
wenzelm@24300
   256
            if eliminable(t,u)
wenzelm@24300
   257
            then refl_clause_aux (n-1) (th RS not_refl_disj_D)  (*Var inequation: delete*)
wenzelm@24300
   258
            else refl_clause_aux (n-1) (th RS disj_comm)  (*not between Vars: ignore*)
haftmann@39028
   259
        | (Const (@{const_name HOL.disj}, _) $ _ $ _) => refl_clause_aux n (th RS disj_comm)
wenzelm@24300
   260
        | _ => (*not a disjunction*) th;
paulson@18389
   261
haftmann@39028
   262
fun notequal_lits_count (Const (@{const_name HOL.disj}, _) $ P $ Q) =
paulson@18389
   263
      notequal_lits_count P + notequal_lits_count Q
haftmann@39093
   264
  | notequal_lits_count (Const(@{const_name Not},_) $ (Const(@{const_name HOL.eq},_) $ _ $ _)) = 1
paulson@18389
   265
  | notequal_lits_count _ = 0;
paulson@18389
   266
paulson@18389
   267
(*Simplify a clause by applying reflexivity to its negated equality literals*)
wenzelm@24300
   268
fun refl_clause th =
paulson@18389
   269
  let val neqs = notequal_lits_count (HOLogic.dest_Trueprop (concl_of th))
paulson@19894
   270
  in  zero_var_indexes (refl_clause_aux neqs th)  end
wenzelm@24300
   271
  handle TERM _ => th;  (*probably dest_Trueprop on a weird theorem*)
paulson@18389
   272
paulson@18389
   273
paulson@24937
   274
(*** Removal of duplicate literals ***)
paulson@24937
   275
paulson@24937
   276
(*Forward proof, passing extra assumptions as theorems to the tactic*)
blanchet@39574
   277
fun forward_res2 nf hyps st =
paulson@24937
   278
  case Seq.pull
paulson@24937
   279
        (REPEAT
wenzelm@37781
   280
         (Misc_Legacy.METAHYPS (fn major::minors => rtac (nf (minors@hyps) major) 1) 1)
paulson@24937
   281
         st)
paulson@24937
   282
  of SOME(th,_) => th
paulson@24937
   283
   | NONE => raise THM("forward_res2", 0, [st]);
paulson@24937
   284
paulson@24937
   285
(*Remove duplicates in P|Q by assuming ~P in Q
paulson@24937
   286
  rls (initially []) accumulates assumptions of the form P==>False*)
wenzelm@32274
   287
fun nodups_aux ctxt rls th = nodups_aux ctxt rls (th RS disj_assoc)
paulson@24937
   288
    handle THM _ => tryres(th,rls)
blanchet@39574
   289
    handle THM _ => tryres(forward_res2 (nodups_aux ctxt) rls (th RS disj_forward2),
paulson@24937
   290
                           [disj_FalseD1, disj_FalseD2, asm_rl])
paulson@24937
   291
    handle THM _ => th;
paulson@24937
   292
paulson@24937
   293
(*Remove duplicate literals, if there are any*)
wenzelm@32274
   294
fun nodups ctxt th =
paulson@24937
   295
  if has_duplicates (op =) (literals (prop_of th))
wenzelm@32274
   296
    then nodups_aux ctxt [] th
paulson@24937
   297
    else th;
paulson@24937
   298
paulson@24937
   299
paulson@18389
   300
(*** The basic CNF transformation ***)
paulson@18389
   301
blanchet@39574
   302
fun estimated_num_clauses bound t =
paulson@26562
   303
 let
blanchet@39496
   304
  fun sum x y = if x < bound andalso y < bound then x+y else bound
blanchet@39496
   305
  fun prod x y = if x < bound andalso y < bound then x*y else bound
paulson@26562
   306
  
paulson@26562
   307
  (*Estimate the number of clauses in order to detect infeasible theorems*)
haftmann@38782
   308
  fun signed_nclauses b (Const(@{const_name Trueprop},_) $ t) = signed_nclauses b t
haftmann@38782
   309
    | signed_nclauses b (Const(@{const_name Not},_) $ t) = signed_nclauses (not b) t
haftmann@39028
   310
    | signed_nclauses b (Const(@{const_name HOL.conj},_) $ t $ u) =
wenzelm@32962
   311
        if b then sum (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32962
   312
             else prod (signed_nclauses b t) (signed_nclauses b u)
haftmann@39028
   313
    | signed_nclauses b (Const(@{const_name HOL.disj},_) $ t $ u) =
wenzelm@32962
   314
        if b then prod (signed_nclauses b t) (signed_nclauses b u)
wenzelm@32962
   315
             else sum (signed_nclauses b t) (signed_nclauses b u)
haftmann@39019
   316
    | signed_nclauses b (Const(@{const_name HOL.implies},_) $ t $ u) =
wenzelm@32962
   317
        if b then prod (signed_nclauses (not b) t) (signed_nclauses b u)
wenzelm@32962
   318
             else sum (signed_nclauses (not b) t) (signed_nclauses b u)
haftmann@39093
   319
    | signed_nclauses b (Const(@{const_name HOL.eq}, Type ("fun", [T, _])) $ t $ u) =
wenzelm@32962
   320
        if T = HOLogic.boolT then (*Boolean equality is if-and-only-if*)
wenzelm@32962
   321
            if b then sum (prod (signed_nclauses (not b) t) (signed_nclauses b u))
wenzelm@32962
   322
                          (prod (signed_nclauses (not b) u) (signed_nclauses b t))
wenzelm@32962
   323
                 else sum (prod (signed_nclauses b t) (signed_nclauses b u))
wenzelm@32962
   324
                          (prod (signed_nclauses (not b) t) (signed_nclauses (not b) u))
wenzelm@32962
   325
        else 1
haftmann@38782
   326
    | signed_nclauses b (Const(@{const_name Ex}, _) $ Abs (_,_,t)) = signed_nclauses b t
haftmann@38782
   327
    | signed_nclauses b (Const(@{const_name All},_) $ Abs (_,_,t)) = signed_nclauses b t
paulson@26562
   328
    | signed_nclauses _ _ = 1; (* literal *)
blanchet@39496
   329
 in signed_nclauses true t end
blanchet@39496
   330
blanchet@39496
   331
fun has_too_many_clauses ctxt t =
blanchet@39496
   332
  let val max_cl = Config.get ctxt max_clauses in
blanchet@39574
   333
    estimated_num_clauses (max_cl + 1) t > max_cl
blanchet@39496
   334
  end
paulson@19894
   335
paulson@15579
   336
(*Replaces universally quantified variables by FREE variables -- because
paulson@24937
   337
  assumptions may not contain scheme variables.  Later, generalize using Variable.export. *)
paulson@24937
   338
local  
paulson@24937
   339
  val spec_var = Thm.dest_arg (Thm.dest_arg (#2 (Thm.dest_implies (Thm.cprop_of spec))));
paulson@24937
   340
  val spec_varT = #T (Thm.rep_cterm spec_var);
haftmann@38782
   341
  fun name_of (Const (@{const_name All}, _) $ Abs(x,_,_)) = x | name_of _ = Name.uu;
paulson@24937
   342
in  
paulson@24937
   343
  fun freeze_spec th ctxt =
paulson@24937
   344
    let
wenzelm@43232
   345
      val cert = Thm.cterm_of (Proof_Context.theory_of ctxt);
paulson@24937
   346
      val ([x], ctxt') = Variable.variant_fixes [name_of (HOLogic.dest_Trueprop (concl_of th))] ctxt;
paulson@24937
   347
      val spec' = Thm.instantiate ([], [(spec_var, cert (Free (x, spec_varT)))]) spec;
paulson@24937
   348
    in (th RS spec', ctxt') end
paulson@24937
   349
end;
paulson@9840
   350
paulson@15998
   351
(*Used with METAHYPS below. There is one assumption, which gets bound to prem
paulson@15998
   352
  and then normalized via function nf. The normal form is given to resolve_tac,
paulson@22515
   353
  instantiate a Boolean variable created by resolution with disj_forward. Since
paulson@22515
   354
  (nf prem) returns a LIST of theorems, we can backtrack to get all combinations.*)
paulson@15579
   355
fun resop nf [prem] = resolve_tac (nf prem) 1;
paulson@9840
   356
blanchet@39281
   357
(* Any need to extend this list with "HOL.type_class", "HOL.eq_class",
blanchet@39281
   358
   and "Pure.term"? *)
haftmann@38782
   359
val has_meta_conn = exists_Const (member (op =) ["==", "==>", "=simp=>", "all", "prop"] o #1);
paulson@20417
   360
blanchet@37385
   361
fun apply_skolem_theorem (th, rls) =
blanchet@37373
   362
  let
blanchet@37385
   363
    fun tryall [] = raise THM ("apply_skolem_theorem", 0, th::rls)
blanchet@37373
   364
      | tryall (rl :: rls) =
blanchet@37373
   365
        first_order_resolve th rl handle THM _ => tryall rls
blanchet@37373
   366
  in tryall rls end
paulson@22515
   367
blanchet@37385
   368
(* Conjunctive normal form, adding clauses from th in front of ths (for foldr).
blanchet@37385
   369
   Strips universal quantifiers and breaks up conjunctions.
blanchet@37385
   370
   Eliminates existential quantifiers using Skolemization theorems. *)
blanchet@44835
   371
fun cnf old_skolem_ths ctxt ctxt0 (th, ths) =
blanchet@44835
   372
  let val ctxt0r = Unsynchronized.ref ctxt0   (* FIXME ??? *)
paulson@24937
   373
      fun cnf_aux (th,ths) =
wenzelm@24300
   374
        if not (can HOLogic.dest_Trueprop (prop_of th)) then ths (*meta-level: ignore*)
haftmann@39028
   375
        else if not (has_conns [@{const_name All}, @{const_name Ex}, @{const_name HOL.conj}] (prop_of th))
blanchet@44835
   376
        then nodups ctxt0 th :: ths (*no work to do, terminate*)
wenzelm@24300
   377
        else case head_of (HOLogic.dest_Trueprop (concl_of th)) of
haftmann@39028
   378
            Const (@{const_name HOL.conj}, _) => (*conjunction*)
wenzelm@24300
   379
                cnf_aux (th RS conjunct1, cnf_aux (th RS conjunct2, ths))
haftmann@38782
   380
          | Const (@{const_name All}, _) => (*universal quantifier*)
blanchet@44835
   381
                let val (th',ctxt0') = freeze_spec th (!ctxt0r)
blanchet@44835
   382
                in  ctxt0r := ctxt0'; cnf_aux (th', ths) end
haftmann@38782
   383
          | Const (@{const_name Ex}, _) =>
wenzelm@24300
   384
              (*existential quantifier: Insert Skolem functions*)
blanchet@40067
   385
              cnf_aux (apply_skolem_theorem (th, old_skolem_ths), ths)
haftmann@39028
   386
          | Const (@{const_name HOL.disj}, _) =>
wenzelm@24300
   387
              (*Disjunction of P, Q: Create new goal of proving ?P | ?Q and solve it using
wenzelm@24300
   388
                all combinations of converting P, Q to CNF.*)
wenzelm@24300
   389
              let val tac =
wenzelm@37781
   390
                  Misc_Legacy.METAHYPS (resop cnf_nil) 1 THEN
wenzelm@37781
   391
                   (fn st' => st' |> Misc_Legacy.METAHYPS (resop cnf_nil) 1)
wenzelm@24300
   392
              in  Seq.list_of (tac (th RS disj_forward)) @ ths  end
blanchet@44835
   393
          | _ => nodups ctxt0 th :: ths  (*no work to do*)
paulson@19154
   394
      and cnf_nil th = cnf_aux (th,[])
blanchet@39496
   395
      val cls =
blanchet@44835
   396
        if has_too_many_clauses ctxt (concl_of th) then
blanchet@44835
   397
          (trace_msg ctxt (fn () =>
blanchet@44835
   398
               "cnf is ignoring: " ^ Display.string_of_thm ctxt0 th); ths)
blanchet@44835
   399
        else
blanchet@44835
   400
          cnf_aux (th, ths)
blanchet@44835
   401
  in (cls, !ctxt0r) end
blanchet@44835
   402
fun make_cnf old_skolem_ths th ctxt ctxt0 =
blanchet@44835
   403
  cnf old_skolem_ths ctxt ctxt0 (th, [])
paulson@20417
   404
paulson@20417
   405
(*Generalization, removal of redundant equalities, removal of tautologies.*)
paulson@24937
   406
fun finish_cnf ths = filter (not o is_taut) (map refl_clause ths);
paulson@9840
   407
paulson@9840
   408
paulson@15579
   409
(**** Generation of contrapositives ****)
paulson@9840
   410
haftmann@38782
   411
fun is_left (Const (@{const_name Trueprop}, _) $
haftmann@39028
   412
               (Const (@{const_name HOL.disj}, _) $ (Const (@{const_name HOL.disj}, _) $ _ $ _) $ _)) = true
paulson@21102
   413
  | is_left _ = false;
wenzelm@24300
   414
paulson@15579
   415
(*Associate disjuctions to right -- make leftmost disjunct a LITERAL*)
wenzelm@24300
   416
fun assoc_right th =
paulson@21102
   417
  if is_left (prop_of th) then assoc_right (th RS disj_assoc)
paulson@21102
   418
  else th;
paulson@9840
   419
paulson@15579
   420
(*Must check for negative literal first!*)
paulson@15579
   421
val clause_rules = [disj_assoc, make_neg_rule, make_pos_rule];
paulson@9840
   422
paulson@15579
   423
(*For ordinary resolution. *)
paulson@15579
   424
val resolution_clause_rules = [disj_assoc, make_neg_rule', make_pos_rule'];
paulson@9840
   425
paulson@15579
   426
(*Create a goal or support clause, conclusing False*)
paulson@15579
   427
fun make_goal th =   (*Must check for negative literal first!*)
paulson@15579
   428
    make_goal (tryres(th, clause_rules))
paulson@15579
   429
  handle THM _ => tryres(th, [make_neg_goal, make_pos_goal]);
paulson@9840
   430
paulson@15579
   431
(*Sort clauses by number of literals*)
paulson@15579
   432
fun fewerlits(th1,th2) = nliterals(prop_of th1) < nliterals(prop_of th2);
paulson@9840
   433
paulson@18389
   434
fun sort_clauses ths = sort (make_ord fewerlits) ths;
paulson@9840
   435
blanchet@38345
   436
fun has_bool @{typ bool} = true
blanchet@38345
   437
  | has_bool (Type (_, Ts)) = exists has_bool Ts
blanchet@38345
   438
  | has_bool _ = false
blanchet@38345
   439
blanchet@38345
   440
fun has_fun (Type (@{type_name fun}, _)) = true
blanchet@38345
   441
  | has_fun (Type (_, Ts)) = exists has_fun Ts
blanchet@38345
   442
  | has_fun _ = false
wenzelm@24300
   443
wenzelm@24300
   444
(*Is the string the name of a connective? Really only | and Not can remain,
wenzelm@24300
   445
  since this code expects to be called on a clause form.*)
wenzelm@19875
   446
val is_conn = member (op =)
haftmann@39028
   447
    [@{const_name Trueprop}, @{const_name HOL.conj}, @{const_name HOL.disj},
haftmann@39019
   448
     @{const_name HOL.implies}, @{const_name Not},
haftmann@38782
   449
     @{const_name All}, @{const_name Ex}, @{const_name Ball}, @{const_name Bex}];
paulson@15613
   450
wenzelm@24300
   451
(*True if the term contains a function--not a logical connective--where the type
paulson@20524
   452
  of any argument contains bool.*)
wenzelm@24300
   453
val has_bool_arg_const =
paulson@15613
   454
    exists_Const
blanchet@38345
   455
      (fn (c,T) => not(is_conn c) andalso exists has_bool (binder_types T));
paulson@22381
   456
wenzelm@24300
   457
(*A higher-order instance of a first-order constant? Example is the definition of
haftmann@38845
   458
  one, 1, at a function type in theory Function_Algebras.*)
wenzelm@24300
   459
fun higher_inst_const thy (c,T) =
paulson@22381
   460
  case binder_types T of
paulson@22381
   461
      [] => false (*not a function type, OK*)
paulson@22381
   462
    | Ts => length (binder_types (Sign.the_const_type thy c)) <> length Ts;
paulson@22381
   463
blanchet@43704
   464
(* Returns false if any Vars in the theorem mention type bool.
blanchet@43704
   465
   Also rejects functions whose arguments are Booleans or other functions. *)
paulson@22381
   466
fun is_fol_term thy t =
blanchet@43704
   467
    Term.is_first_order [@{const_name all}, @{const_name All},
blanchet@43704
   468
                         @{const_name Ex}] t andalso
blanchet@38345
   469
    not (exists_subterm (fn Var (_, T) => has_bool T orelse has_fun T
blanchet@43704
   470
                          | _ => false) t orelse
blanchet@38345
   471
         has_bool_arg_const t orelse
wenzelm@24300
   472
         exists_Const (higher_inst_const thy) t orelse
wenzelm@24300
   473
         has_meta_conn t);
paulson@19204
   474
paulson@21102
   475
fun rigid t = not (is_Var (head_of t));
paulson@21102
   476
haftmann@39028
   477
fun ok4horn (Const (@{const_name Trueprop},_) $ (Const (@{const_name HOL.disj}, _) $ t $ _)) = rigid t
haftmann@38782
   478
  | ok4horn (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   479
  | ok4horn _ = false;
paulson@21102
   480
paulson@15579
   481
(*Create a meta-level Horn clause*)
wenzelm@24300
   482
fun make_horn crules th =
wenzelm@24300
   483
  if ok4horn (concl_of th)
paulson@21102
   484
  then make_horn crules (tryres(th,crules)) handle THM _ => th
paulson@21102
   485
  else th;
paulson@9840
   486
paulson@16563
   487
(*Generate Horn clauses for all contrapositives of a clause. The input, th,
paulson@16563
   488
  is a HOL disjunction.*)
wenzelm@33346
   489
fun add_contras crules th hcs =
blanchet@39574
   490
  let fun rots (0,_) = hcs
wenzelm@24300
   491
        | rots (k,th) = zero_var_indexes (make_horn crules th) ::
wenzelm@24300
   492
                        rots(k-1, assoc_right (th RS disj_comm))
paulson@15862
   493
  in case nliterals(prop_of th) of
wenzelm@24300
   494
        1 => th::hcs
paulson@15579
   495
      | n => rots(n, assoc_right th)
paulson@15579
   496
  end;
paulson@9840
   497
paulson@15579
   498
(*Use "theorem naming" to label the clauses*)
paulson@15579
   499
fun name_thms label =
wenzelm@33346
   500
    let fun name1 th (k, ths) =
wenzelm@27865
   501
          (k-1, Thm.put_name_hint (label ^ string_of_int k) th :: ths)
wenzelm@33346
   502
    in  fn ths => #2 (fold_rev name1 ths (length ths, []))  end;
paulson@9840
   503
paulson@16563
   504
(*Is the given disjunction an all-negative support clause?*)
paulson@15579
   505
fun is_negative th = forall (not o #1) (literals (prop_of th));
paulson@9840
   506
wenzelm@33325
   507
val neg_clauses = filter is_negative;
paulson@9840
   508
paulson@9840
   509
paulson@15579
   510
(***** MESON PROOF PROCEDURE *****)
paulson@9840
   511
haftmann@38782
   512
fun rhyps (Const("==>",_) $ (Const(@{const_name Trueprop},_) $ A) $ phi,
wenzelm@24300
   513
           As) = rhyps(phi, A::As)
paulson@15579
   514
  | rhyps (_, As) = As;
paulson@9840
   515
paulson@15579
   516
(** Detecting repeated assumptions in a subgoal **)
paulson@9840
   517
paulson@15579
   518
(*The stringtree detects repeated assumptions.*)
wenzelm@33261
   519
fun ins_term t net = Net.insert_term (op aconv) (t, t) net;
paulson@9840
   520
paulson@15579
   521
(*detects repetitions in a list of terms*)
paulson@15579
   522
fun has_reps [] = false
paulson@15579
   523
  | has_reps [_] = false
paulson@15579
   524
  | has_reps [t,u] = (t aconv u)
wenzelm@33261
   525
  | has_reps ts = (fold ins_term ts Net.empty; false) handle Net.INSERT => true;
paulson@9840
   526
paulson@15579
   527
(*Like TRYALL eq_assume_tac, but avoids expensive THEN calls*)
paulson@18508
   528
fun TRYING_eq_assume_tac 0 st = Seq.single st
paulson@18508
   529
  | TRYING_eq_assume_tac i st =
wenzelm@31945
   530
       TRYING_eq_assume_tac (i-1) (Thm.eq_assumption i st)
paulson@18508
   531
       handle THM _ => TRYING_eq_assume_tac (i-1) st;
paulson@18508
   532
paulson@18508
   533
fun TRYALL_eq_assume_tac st = TRYING_eq_assume_tac (nprems_of st) st;
paulson@9840
   534
paulson@15579
   535
(*Loop checking: FAIL if trying to prove the same thing twice
paulson@15579
   536
  -- if *ANY* subgoal has repeated literals*)
paulson@15579
   537
fun check_tac st =
paulson@15579
   538
  if exists (fn prem => has_reps (rhyps(prem,[]))) (prems_of st)
paulson@15579
   539
  then  Seq.empty  else  Seq.single st;
paulson@9840
   540
paulson@9840
   541
paulson@15579
   542
(* net_resolve_tac actually made it slower... *)
paulson@15579
   543
fun prolog_step_tac horns i =
paulson@15579
   544
    (assume_tac i APPEND resolve_tac horns i) THEN check_tac THEN
paulson@18508
   545
    TRYALL_eq_assume_tac;
paulson@15579
   546
paulson@9840
   547
(*Sums the sizes of the subgoals, ignoring hypotheses (ancestors)*)
wenzelm@33346
   548
fun addconcl prem sz = size_of_term (Logic.strip_assums_concl prem) + sz;
paulson@15579
   549
wenzelm@33346
   550
fun size_of_subgoals st = fold_rev addconcl (prems_of st) 0;
paulson@15579
   551
paulson@9840
   552
paulson@9840
   553
(*Negation Normal Form*)
paulson@9840
   554
val nnf_rls = [imp_to_disjD, iff_to_disjD, not_conjD, not_disjD,
wenzelm@9869
   555
               not_impD, not_iffD, not_allD, not_exD, not_notD];
paulson@15581
   556
haftmann@38782
   557
fun ok4nnf (Const (@{const_name Trueprop},_) $ (Const (@{const_name Not}, _) $ t)) = rigid t
haftmann@38782
   558
  | ok4nnf (Const (@{const_name Trueprop},_) $ t) = rigid t
paulson@21102
   559
  | ok4nnf _ = false;
paulson@21102
   560
wenzelm@32274
   561
fun make_nnf1 ctxt th =
wenzelm@24300
   562
  if ok4nnf (concl_of th)
wenzelm@32274
   563
  then make_nnf1 ctxt (tryres(th, nnf_rls))
paulson@28174
   564
    handle THM ("tryres", _, _) =>
wenzelm@32274
   565
        forward_res ctxt (make_nnf1 ctxt)
wenzelm@9869
   566
           (tryres(th, [conj_forward,disj_forward,all_forward,ex_forward]))
paulson@28174
   567
    handle THM ("tryres", _, _) => th
blanchet@38831
   568
  else th
paulson@9840
   569
blanchet@43604
   570
fun unfold_set_const_simps ctxt =
blanchet@43604
   571
  if Config.get ctxt unfold_set_consts then @{thms Collect_def_raw mem_def_raw}
blanchet@43604
   572
  else []
blanchet@43604
   573
wenzelm@24300
   574
(*The simplification removes defined quantifiers and occurrences of True and False.
paulson@20018
   575
  nnf_ss also includes the one-point simprocs,
paulson@18405
   576
  which are needed to avoid the various one-point theorems from generating junk clauses.*)
paulson@19894
   577
val nnf_simps =
blanchet@37535
   578
  @{thms simp_implies_def Ex1_def Ball_def Bex_def if_True if_False if_cancel
blanchet@37535
   579
         if_eq_cancel cases_simp}
blanchet@37535
   580
val nnf_extra_simps = @{thms split_ifs ex_simps all_simps simp_thms}
paulson@18405
   581
blanchet@44685
   582
(* FIXME: "let_simp" is probably redundant now that we also rewrite with
blanchet@44685
   583
  "Let_def_raw". *)
paulson@18405
   584
val nnf_ss =
wenzelm@24300
   585
  HOL_basic_ss addsimps nnf_extra_simps
blanchet@44105
   586
    addsimprocs [@{simproc defined_All}, @{simproc defined_Ex}, @{simproc neq},
blanchet@44105
   587
                 @{simproc let_simp}]
blanchet@44105
   588
blanchet@44105
   589
fun presimplified_consts ctxt =
blanchet@44105
   590
  [@{const_name simp_implies}, @{const_name False}, @{const_name True},
blanchet@44105
   591
   @{const_name Ex1}, @{const_name Ball}, @{const_name Bex}, @{const_name If},
blanchet@44105
   592
   @{const_name Let}]
blanchet@44105
   593
  |> Config.get ctxt unfold_set_consts
blanchet@44105
   594
     ? append ([@{const_name Collect}, @{const_name Set.member}])
paulson@15872
   595
blanchet@43615
   596
fun presimplify ctxt =
blanchet@43615
   597
  rewrite_rule (map safe_mk_meta_eq nnf_simps)
blanchet@43615
   598
  #> simplify nnf_ss
blanchet@43615
   599
  (* TODO: avoid introducing "Set.member" in "Ball_def" "Bex_def" above if and
blanchet@43615
   600
     when "metis_unfold_set_consts" becomes the only mode of operation. *)
blanchet@44685
   601
  #> Raw_Simplifier.rewrite_rule
blanchet@44685
   602
         (@{thm Let_def_raw} :: unfold_set_const_simps ctxt)
blanchet@38335
   603
wenzelm@32274
   604
fun make_nnf ctxt th = case prems_of th of
blanchet@43615
   605
    [] => th |> presimplify ctxt |> make_nnf1 ctxt
paulson@21050
   606
  | _ => raise THM ("make_nnf: premises in argument", 0, [th]);
paulson@15581
   607
blanchet@40131
   608
fun choice_theorems thy =
blanchet@40131
   609
  try (Global_Theory.get_thm thy) "Hilbert_Choice.choice" |> the_list
blanchet@40131
   610
blanchet@40081
   611
(* Pull existential quantifiers to front. This accomplishes Skolemization for
blanchet@40081
   612
   clauses that arise from a subgoal. *)
blanchet@40131
   613
fun skolemize_with_choice_theorems ctxt choice_ths =
blanchet@40081
   614
  let
blanchet@40081
   615
    fun aux th =
blanchet@40081
   616
      if not (has_conns [@{const_name Ex}] (prop_of th)) then
blanchet@40081
   617
        th
blanchet@40081
   618
      else
blanchet@40082
   619
        tryres (th, choice_ths @
blanchet@40081
   620
                    [conj_exD1, conj_exD2, disj_exD, disj_exD1, disj_exD2])
blanchet@40081
   621
        |> aux
blanchet@40081
   622
        handle THM ("tryres", _, _) =>
blanchet@40081
   623
               tryres (th, [conj_forward, disj_forward, all_forward])
blanchet@40081
   624
               |> forward_res ctxt aux
blanchet@40081
   625
               |> aux
blanchet@40081
   626
               handle THM ("tryres", _, _) =>
blanchet@40505
   627
                      rename_bound_vars_RS th ex_forward
blanchet@40081
   628
                      |> forward_res ctxt aux
blanchet@40081
   629
  in aux o make_nnf ctxt end
paulson@29684
   630
blanchet@40131
   631
fun skolemize ctxt =
wenzelm@43232
   632
  let val thy = Proof_Context.theory_of ctxt in
blanchet@40131
   633
    skolemize_with_choice_theorems ctxt (choice_theorems thy)
blanchet@40131
   634
  end
blanchet@40085
   635
blanchet@43625
   636
(* Removes the lambdas from an equation of the form "t = (%x1 ... xn. u)". It
blanchet@43625
   637
   would be desirable to do this symmetrically but there's at least one existing
blanchet@43625
   638
   proof in "Tarski" that relies on the current behavior. *)
blanchet@43612
   639
fun extensionalize_conv ctxt ct =
blanchet@43612
   640
  case term_of ct of
blanchet@43625
   641
    Const (@{const_name HOL.eq}, _) $ _ $ Abs _ =>
blanchet@43625
   642
    ct |> (Conv.rewr_conv @{thm fun_eq_iff [THEN eq_reflection]}
blanchet@43625
   643
           then_conv extensionalize_conv ctxt)
blanchet@43612
   644
  | _ $ _ => Conv.comb_conv (extensionalize_conv ctxt) ct
blanchet@43612
   645
  | Abs _ => Conv.abs_conv (extensionalize_conv o snd) ctxt ct
blanchet@43612
   646
  | _ => Conv.all_conv ct
blanchet@43612
   647
blanchet@43612
   648
val extensionalize_theorem = Conv.fconv_rule o extensionalize_conv
blanchet@43612
   649
blanchet@40081
   650
(* "RS" can fail if "unify_search_bound" is too small. *)
blanchet@43612
   651
fun try_skolemize_etc ctxt =
blanchet@43612
   652
  Raw_Simplifier.rewrite_rule (unfold_set_const_simps ctxt)
blanchet@43612
   653
  (* Extensionalize "th", because that makes sense and that's what Sledgehammer
blanchet@43612
   654
     does, but also keep an unextensionalized version of "th" for backward
blanchet@43612
   655
     compatibility. *)
blanchet@43612
   656
  #> (fn th => insert Thm.eq_thm_prop (extensionalize_theorem ctxt th) [th])
blanchet@43612
   657
  #> map_filter (fn th => try (skolemize ctxt) th
blanchet@43612
   658
                          |> tap (fn NONE =>
blanchet@43612
   659
                                     trace_msg ctxt (fn () =>
blanchet@43612
   660
                                         "Failed to skolemize " ^
blanchet@43612
   661
                                          Display.string_of_thm ctxt th)
blanchet@43612
   662
                                   | _ => ()))
paulson@25694
   663
blanchet@44835
   664
fun add_clauses ctxt th cls =
wenzelm@36603
   665
  let val ctxt0 = Variable.global_thm_context th
blanchet@44835
   666
      val (cnfs, ctxt) = make_cnf [] th ctxt ctxt0
paulson@24937
   667
  in Variable.export ctxt ctxt0 cnfs @ cls end;
paulson@9840
   668
paulson@9840
   669
(*Make clauses from a list of theorems, previously Skolemized and put into nnf.
paulson@9840
   670
  The resulting clauses are HOL disjunctions.*)
blanchet@44835
   671
fun make_clauses_unsorted ctxt ths = fold_rev (add_clauses ctxt) ths [];
blanchet@44835
   672
val make_clauses = sort_clauses oo make_clauses_unsorted;
quigley@15773
   673
paulson@16563
   674
(*Convert a list of clauses (disjunctions) to Horn clauses (contrapositives)*)
wenzelm@9869
   675
fun make_horns ths =
paulson@9840
   676
    name_thms "Horn#"
wenzelm@33346
   677
      (distinct Thm.eq_thm_prop (fold_rev (add_contras clause_rules) ths []));
paulson@9840
   678
paulson@9840
   679
(*Could simply use nprems_of, which would count remaining subgoals -- no
paulson@9840
   680
  discrimination as to their size!  With BEST_FIRST, fails for problem 41.*)
paulson@9840
   681
wenzelm@9869
   682
fun best_prolog_tac sizef horns =
paulson@9840
   683
    BEST_FIRST (has_fewer_prems 1, sizef) (prolog_step_tac horns 1);
paulson@9840
   684
wenzelm@9869
   685
fun depth_prolog_tac horns =
paulson@9840
   686
    DEPTH_FIRST (has_fewer_prems 1) (prolog_step_tac horns 1);
paulson@9840
   687
paulson@9840
   688
(*Return all negative clauses, as possible goal clauses*)
paulson@9840
   689
fun gocls cls = name_thms "Goal#" (map make_goal (neg_clauses cls));
paulson@9840
   690
wenzelm@32274
   691
fun skolemize_prems_tac ctxt prems =
blanchet@43612
   692
  cut_facts_tac (maps (try_skolemize_etc ctxt) prems) THEN' REPEAT o etac exE
paulson@9840
   693
paulson@22546
   694
(*Basis of all meson-tactics.  Supplies cltac with clauses: HOL disjunctions.
paulson@22546
   695
  Function mkcl converts theorems to clauses.*)
blanchet@39281
   696
fun MESON preskolem_tac mkcl cltac ctxt i st =
paulson@16588
   697
  SELECT_GOAL
wenzelm@35625
   698
    (EVERY [Object_Logic.atomize_prems_tac 1,
paulson@23552
   699
            rtac ccontr 1,
blanchet@39496
   700
            preskolem_tac,
wenzelm@32286
   701
            Subgoal.FOCUS (fn {context = ctxt', prems = negs, ...} =>
blanchet@39496
   702
                      EVERY1 [skolemize_prems_tac ctxt negs,
wenzelm@32286
   703
                              Subgoal.FOCUS (cltac o mkcl o #prems) ctxt']) ctxt 1]) i st
wenzelm@24300
   704
  handle THM _ => no_tac st;    (*probably from make_meta_clause, not first-order*)
paulson@9840
   705
blanchet@39281
   706
paulson@9840
   707
(** Best-first search versions **)
paulson@9840
   708
paulson@16563
   709
(*ths is a list of additional clauses (HOL disjunctions) to use.*)
blanchet@44835
   710
fun best_meson_tac sizef ctxt =
blanchet@44835
   711
  MESON all_tac (make_clauses ctxt)
paulson@22546
   712
    (fn cls =>
paulson@9840
   713
         THEN_BEST_FIRST (resolve_tac (gocls cls) 1)
paulson@9840
   714
                         (has_fewer_prems 1, sizef)
blanchet@44835
   715
                         (prolog_step_tac (make_horns cls) 1))
blanchet@44835
   716
    ctxt
paulson@9840
   717
paulson@9840
   718
(*First, breaks the goal into independent units*)
wenzelm@32274
   719
fun safe_best_meson_tac ctxt =
wenzelm@43665
   720
  SELECT_GOAL (TRY (safe_tac ctxt) THEN TRYALL (best_meson_tac size_of_subgoals ctxt));
paulson@9840
   721
paulson@9840
   722
(** Depth-first search version **)
paulson@9840
   723
blanchet@44835
   724
fun depth_meson_tac ctxt =
blanchet@44835
   725
  MESON all_tac (make_clauses ctxt)
blanchet@44835
   726
    (fn cls => EVERY [resolve_tac (gocls cls) 1, depth_prolog_tac (make_horns cls)])
blanchet@44835
   727
    ctxt
paulson@9840
   728
paulson@9840
   729
(** Iterative deepening version **)
paulson@9840
   730
paulson@9840
   731
(*This version does only one inference per call;
paulson@9840
   732
  having only one eq_assume_tac speeds it up!*)
wenzelm@9869
   733
fun prolog_step_tac' horns =
blanchet@39574
   734
    let val (horn0s, _) = (*0 subgoals vs 1 or more*)
paulson@9840
   735
            take_prefix Thm.no_prems horns
paulson@9840
   736
        val nrtac = net_resolve_tac horns
paulson@9840
   737
    in  fn i => eq_assume_tac i ORELSE
paulson@9840
   738
                match_tac horn0s i ORELSE  (*no backtracking if unit MATCHES*)
paulson@9840
   739
                ((assume_tac i APPEND nrtac i) THEN check_tac)
paulson@9840
   740
    end;
paulson@9840
   741
wenzelm@9869
   742
fun iter_deepen_prolog_tac horns =
wenzelm@39069
   743
    ITER_DEEPEN iter_deepen_limit (has_fewer_prems 1) (prolog_step_tac' horns);
paulson@9840
   744
blanchet@44835
   745
fun iter_deepen_meson_tac ctxt ths = ctxt |> MESON all_tac (make_clauses ctxt)
wenzelm@32111
   746
  (fn cls =>
wenzelm@32111
   747
    (case (gocls (cls @ ths)) of
wenzelm@32111
   748
      [] => no_tac  (*no goal clauses*)
wenzelm@32111
   749
    | goes =>
wenzelm@32111
   750
        let
wenzelm@32111
   751
          val horns = make_horns (cls @ ths)
blanchet@40160
   752
          val _ = trace_msg ctxt (fn () =>
wenzelm@32111
   753
            cat_lines ("meson method called:" ::
wenzelm@32274
   754
              map (Display.string_of_thm ctxt) (cls @ ths) @
wenzelm@32274
   755
              ["clauses:"] @ map (Display.string_of_thm ctxt) horns))
wenzelm@39069
   756
        in
wenzelm@39069
   757
          THEN_ITER_DEEPEN iter_deepen_limit
wenzelm@39069
   758
            (resolve_tac goes 1) (has_fewer_prems 1) (prolog_step_tac' horns)
wenzelm@39069
   759
        end));
paulson@9840
   760
wenzelm@32274
   761
fun meson_tac ctxt ths =
wenzelm@43665
   762
  SELECT_GOAL (TRY (safe_tac ctxt) THEN TRYALL (iter_deepen_meson_tac ctxt ths));
wenzelm@9869
   763
wenzelm@9869
   764
paulson@14813
   765
(**** Code to support ordinary resolution, rather than Model Elimination ****)
paulson@14744
   766
wenzelm@24300
   767
(*Convert a list of clauses (disjunctions) to meta-level clauses (==>),
paulson@15008
   768
  with no contrapositives, for ordinary resolution.*)
paulson@14744
   769
paulson@14744
   770
(*Rules to convert the head literal into a negated assumption. If the head
paulson@14744
   771
  literal is already negated, then using notEfalse instead of notEfalse'
paulson@14744
   772
  prevents a double negation.*)
wenzelm@27239
   773
val notEfalse = read_instantiate @{context} [(("R", 0), "False")] notE;
paulson@14744
   774
val notEfalse' = rotate_prems 1 notEfalse;
paulson@14744
   775
wenzelm@24300
   776
fun negated_asm_of_head th =
paulson@14744
   777
    th RS notEfalse handle THM _ => th RS notEfalse';
paulson@14744
   778
paulson@26066
   779
(*Converting one theorem from a disjunction to a meta-level clause*)
paulson@26066
   780
fun make_meta_clause th =
wenzelm@33832
   781
  let val (fth,thaw) = Drule.legacy_freeze_thaw_robust th
paulson@26066
   782
  in  
wenzelm@35845
   783
      (zero_var_indexes o Thm.varifyT_global o thaw 0 o 
paulson@26066
   784
       negated_asm_of_head o make_horn resolution_clause_rules) fth
paulson@26066
   785
  end;
wenzelm@24300
   786
paulson@14744
   787
fun make_meta_clauses ths =
paulson@14744
   788
    name_thms "MClause#"
wenzelm@22360
   789
      (distinct Thm.eq_thm_prop (map make_meta_clause ths));
paulson@14744
   790
paulson@9840
   791
end;