src/HOLCF/UpperPD.thy
author huffman
Fri, 16 May 2008 23:25:37 +0200
changeset 26927 8684b5240f11
parent 26806 40b411ec05aa
child 26962 c8b20f615d6c
permissions -rw-r--r--
rename locales;
add completion_approx constant to ideal_completion locale;
add new set-like syntax for powerdomains;
reorganized proofs
huffman@25904
     1
(*  Title:      HOLCF/UpperPD.thy
huffman@25904
     2
    ID:         $Id$
huffman@25904
     3
    Author:     Brian Huffman
huffman@25904
     4
*)
huffman@25904
     5
huffman@25904
     6
header {* Upper powerdomain *}
huffman@25904
     7
huffman@25904
     8
theory UpperPD
huffman@25904
     9
imports CompactBasis
huffman@25904
    10
begin
huffman@25904
    11
huffman@25904
    12
subsection {* Basis preorder *}
huffman@25904
    13
huffman@25904
    14
definition
huffman@25904
    15
  upper_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<sharp>" 50) where
huffman@26420
    16
  "upper_le = (\<lambda>u v. \<forall>y\<in>Rep_pd_basis v. \<exists>x\<in>Rep_pd_basis u. x \<sqsubseteq> y)"
huffman@25904
    17
huffman@25904
    18
lemma upper_le_refl [simp]: "t \<le>\<sharp> t"
huffman@26420
    19
unfolding upper_le_def by fast
huffman@25904
    20
huffman@25904
    21
lemma upper_le_trans: "\<lbrakk>t \<le>\<sharp> u; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> t \<le>\<sharp> v"
huffman@25904
    22
unfolding upper_le_def
huffman@25904
    23
apply (rule ballI)
huffman@25904
    24
apply (drule (1) bspec, erule bexE)
huffman@25904
    25
apply (drule (1) bspec, erule bexE)
huffman@25904
    26
apply (erule rev_bexI)
huffman@26420
    27
apply (erule (1) trans_less)
huffman@25904
    28
done
huffman@25904
    29
huffman@25904
    30
interpretation upper_le: preorder [upper_le]
huffman@25904
    31
by (rule preorder.intro, rule upper_le_refl, rule upper_le_trans)
huffman@25904
    32
huffman@25904
    33
lemma upper_le_minimal [simp]: "PDUnit compact_bot \<le>\<sharp> t"
huffman@25904
    34
unfolding upper_le_def Rep_PDUnit by simp
huffman@25904
    35
huffman@26420
    36
lemma PDUnit_upper_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<sharp> PDUnit y"
huffman@25904
    37
unfolding upper_le_def Rep_PDUnit by simp
huffman@25904
    38
huffman@25904
    39
lemma PDPlus_upper_mono: "\<lbrakk>s \<le>\<sharp> t; u \<le>\<sharp> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<sharp> PDPlus t v"
huffman@25904
    40
unfolding upper_le_def Rep_PDPlus by fast
huffman@25904
    41
huffman@25904
    42
lemma PDPlus_upper_less: "PDPlus t u \<le>\<sharp> t"
huffman@26420
    43
unfolding upper_le_def Rep_PDPlus by fast
huffman@25904
    44
huffman@25904
    45
lemma upper_le_PDUnit_PDUnit_iff [simp]:
huffman@26420
    46
  "(PDUnit a \<le>\<sharp> PDUnit b) = a \<sqsubseteq> b"
huffman@25904
    47
unfolding upper_le_def Rep_PDUnit by fast
huffman@25904
    48
huffman@25904
    49
lemma upper_le_PDPlus_PDUnit_iff:
huffman@25904
    50
  "(PDPlus t u \<le>\<sharp> PDUnit a) = (t \<le>\<sharp> PDUnit a \<or> u \<le>\<sharp> PDUnit a)"
huffman@25904
    51
unfolding upper_le_def Rep_PDPlus Rep_PDUnit by fast
huffman@25904
    52
huffman@25904
    53
lemma upper_le_PDPlus_iff: "(t \<le>\<sharp> PDPlus u v) = (t \<le>\<sharp> u \<and> t \<le>\<sharp> v)"
huffman@25904
    54
unfolding upper_le_def Rep_PDPlus by fast
huffman@25904
    55
huffman@25904
    56
lemma upper_le_induct [induct set: upper_le]:
huffman@25904
    57
  assumes le: "t \<le>\<sharp> u"
huffman@26420
    58
  assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)"
huffman@25904
    59
  assumes 2: "\<And>t u a. P t (PDUnit a) \<Longrightarrow> P (PDPlus t u) (PDUnit a)"
huffman@25904
    60
  assumes 3: "\<And>t u v. \<lbrakk>P t u; P t v\<rbrakk> \<Longrightarrow> P t (PDPlus u v)"
huffman@25904
    61
  shows "P t u"
huffman@25904
    62
using le apply (induct u arbitrary: t rule: pd_basis_induct)
huffman@25904
    63
apply (erule rev_mp)
huffman@25904
    64
apply (induct_tac t rule: pd_basis_induct)
huffman@25904
    65
apply (simp add: 1)
huffman@25904
    66
apply (simp add: upper_le_PDPlus_PDUnit_iff)
huffman@25904
    67
apply (simp add: 2)
huffman@25904
    68
apply (subst PDPlus_commute)
huffman@25904
    69
apply (simp add: 2)
huffman@25904
    70
apply (simp add: upper_le_PDPlus_iff 3)
huffman@25904
    71
done
huffman@25904
    72
huffman@25904
    73
lemma approx_pd_upper_mono1:
huffman@25904
    74
  "i \<le> j \<Longrightarrow> approx_pd i t \<le>\<sharp> approx_pd j t"
huffman@25904
    75
apply (induct t rule: pd_basis_induct)
huffman@25904
    76
apply (simp add: compact_approx_mono1)
huffman@25904
    77
apply (simp add: PDPlus_upper_mono)
huffman@25904
    78
done
huffman@25904
    79
huffman@25904
    80
lemma approx_pd_upper_le: "approx_pd i t \<le>\<sharp> t"
huffman@25904
    81
apply (induct t rule: pd_basis_induct)
huffman@25904
    82
apply (simp add: compact_approx_le)
huffman@25904
    83
apply (simp add: PDPlus_upper_mono)
huffman@25904
    84
done
huffman@25904
    85
huffman@25904
    86
lemma approx_pd_upper_mono:
huffman@25904
    87
  "t \<le>\<sharp> u \<Longrightarrow> approx_pd n t \<le>\<sharp> approx_pd n u"
huffman@25904
    88
apply (erule upper_le_induct)
huffman@25904
    89
apply (simp add: compact_approx_mono)
huffman@25904
    90
apply (simp add: upper_le_PDPlus_PDUnit_iff)
huffman@25904
    91
apply (simp add: upper_le_PDPlus_iff)
huffman@25904
    92
done
huffman@25904
    93
huffman@25904
    94
huffman@25904
    95
subsection {* Type definition *}
huffman@25904
    96
huffman@25904
    97
cpodef (open) 'a upper_pd =
huffman@26407
    98
  "{S::'a::profinite pd_basis set. upper_le.ideal S}"
huffman@25904
    99
apply (simp add: upper_le.adm_ideal)
huffman@25904
   100
apply (fast intro: upper_le.ideal_principal)
huffman@25904
   101
done
huffman@25904
   102
huffman@25904
   103
lemma ideal_Rep_upper_pd: "upper_le.ideal (Rep_upper_pd x)"
huffman@26927
   104
by (rule Rep_upper_pd [unfolded mem_Collect_eq])
huffman@25904
   105
huffman@25904
   106
definition
huffman@25904
   107
  upper_principal :: "'a pd_basis \<Rightarrow> 'a upper_pd" where
huffman@25904
   108
  "upper_principal t = Abs_upper_pd {u. u \<le>\<sharp> t}"
huffman@25904
   109
huffman@25904
   110
lemma Rep_upper_principal:
huffman@25904
   111
  "Rep_upper_pd (upper_principal t) = {u. u \<le>\<sharp> t}"
huffman@25904
   112
unfolding upper_principal_def
huffman@26927
   113
apply (rule Abs_upper_pd_inverse [unfolded mem_Collect_eq])
huffman@25904
   114
apply (rule upper_le.ideal_principal)
huffman@25904
   115
done
huffman@25904
   116
huffman@25904
   117
interpretation upper_pd:
huffman@26927
   118
  ideal_completion [upper_le approx_pd upper_principal Rep_upper_pd]
huffman@25904
   119
apply unfold_locales
huffman@25904
   120
apply (rule approx_pd_upper_le)
huffman@25904
   121
apply (rule approx_pd_idem)
huffman@25904
   122
apply (erule approx_pd_upper_mono)
huffman@25904
   123
apply (rule approx_pd_upper_mono1, simp)
huffman@25904
   124
apply (rule finite_range_approx_pd)
huffman@25904
   125
apply (rule ex_approx_pd_eq)
huffman@26420
   126
apply (rule ideal_Rep_upper_pd)
huffman@26420
   127
apply (rule cont_Rep_upper_pd)
huffman@26420
   128
apply (rule Rep_upper_principal)
berghofe@26806
   129
apply (simp only: less_upper_pd_def less_set_eq)
huffman@25904
   130
done
huffman@25904
   131
huffman@25904
   132
lemma upper_principal_less_iff [simp]:
huffman@26927
   133
  "upper_principal t \<sqsubseteq> upper_principal u \<longleftrightarrow> t \<le>\<sharp> u"
huffman@26927
   134
by (rule upper_pd.principal_less_iff)
huffman@26927
   135
huffman@26927
   136
lemma upper_principal_eq_iff:
huffman@26927
   137
  "upper_principal t = upper_principal u \<longleftrightarrow> t \<le>\<sharp> u \<and> u \<le>\<sharp> t"
huffman@26927
   138
by (rule upper_pd.principal_eq_iff)
huffman@25904
   139
huffman@25904
   140
lemma upper_principal_mono:
huffman@25904
   141
  "t \<le>\<sharp> u \<Longrightarrow> upper_principal t \<sqsubseteq> upper_principal u"
huffman@25904
   142
by (rule upper_pd.principal_mono)
huffman@25904
   143
huffman@25904
   144
lemma compact_upper_principal: "compact (upper_principal t)"
huffman@25904
   145
by (rule upper_pd.compact_principal)
huffman@25904
   146
huffman@25904
   147
lemma upper_pd_minimal: "upper_principal (PDUnit compact_bot) \<sqsubseteq> ys"
huffman@25904
   148
by (induct ys rule: upper_pd.principal_induct, simp, simp)
huffman@25904
   149
huffman@25904
   150
instance upper_pd :: (bifinite) pcpo
huffman@26927
   151
by intro_classes (fast intro: upper_pd_minimal)
huffman@25904
   152
huffman@25904
   153
lemma inst_upper_pd_pcpo: "\<bottom> = upper_principal (PDUnit compact_bot)"
huffman@25904
   154
by (rule upper_pd_minimal [THEN UU_I, symmetric])
huffman@25904
   155
huffman@25904
   156
huffman@25904
   157
subsection {* Approximation *}
huffman@25904
   158
huffman@26407
   159
instance upper_pd :: (profinite) approx ..
huffman@25904
   160
huffman@25904
   161
defs (overloaded)
huffman@26927
   162
  approx_upper_pd_def: "approx \<equiv> upper_pd.completion_approx"
huffman@26927
   163
huffman@26927
   164
instance upper_pd :: (profinite) profinite
huffman@26927
   165
apply (intro_classes, unfold approx_upper_pd_def)
huffman@26927
   166
apply (simp add: upper_pd.chain_completion_approx)
huffman@26927
   167
apply (rule upper_pd.lub_completion_approx)
huffman@26927
   168
apply (rule upper_pd.completion_approx_idem)
huffman@26927
   169
apply (rule upper_pd.finite_fixes_completion_approx)
huffman@26927
   170
done
huffman@26927
   171
huffman@26927
   172
instance upper_pd :: (bifinite) bifinite ..
huffman@25904
   173
huffman@25904
   174
lemma approx_upper_principal [simp]:
huffman@25904
   175
  "approx n\<cdot>(upper_principal t) = upper_principal (approx_pd n t)"
huffman@25904
   176
unfolding approx_upper_pd_def
huffman@26927
   177
by (rule upper_pd.completion_approx_principal)
huffman@25904
   178
huffman@25904
   179
lemma approx_eq_upper_principal:
huffman@25904
   180
  "\<exists>t\<in>Rep_upper_pd xs. approx n\<cdot>xs = upper_principal (approx_pd n t)"
huffman@25904
   181
unfolding approx_upper_pd_def
huffman@26927
   182
by (rule upper_pd.completion_approx_eq_principal)
huffman@26407
   183
huffman@25904
   184
lemma compact_imp_upper_principal:
huffman@25904
   185
  "compact xs \<Longrightarrow> \<exists>t. xs = upper_principal t"
huffman@25904
   186
apply (drule bifinite_compact_eq_approx)
huffman@25904
   187
apply (erule exE)
huffman@25904
   188
apply (erule subst)
huffman@25904
   189
apply (cut_tac n=i and xs=xs in approx_eq_upper_principal)
huffman@25904
   190
apply fast
huffman@25904
   191
done
huffman@25904
   192
huffman@25904
   193
lemma upper_principal_induct:
huffman@25904
   194
  "\<lbrakk>adm P; \<And>t. P (upper_principal t)\<rbrakk> \<Longrightarrow> P xs"
huffman@26927
   195
by (rule upper_pd.principal_induct)
huffman@25904
   196
huffman@25904
   197
lemma upper_principal_induct2:
huffman@25904
   198
  "\<lbrakk>\<And>ys. adm (\<lambda>xs. P xs ys); \<And>xs. adm (\<lambda>ys. P xs ys);
huffman@25904
   199
    \<And>t u. P (upper_principal t) (upper_principal u)\<rbrakk> \<Longrightarrow> P xs ys"
huffman@25904
   200
apply (rule_tac x=ys in spec)
huffman@25904
   201
apply (rule_tac xs=xs in upper_principal_induct, simp)
huffman@25904
   202
apply (rule allI, rename_tac ys)
huffman@25904
   203
apply (rule_tac xs=ys in upper_principal_induct, simp)
huffman@25904
   204
apply simp
huffman@25904
   205
done
huffman@25904
   206
huffman@25904
   207
huffman@26927
   208
subsection {* Monadic unit and plus *}
huffman@25904
   209
huffman@25904
   210
definition
huffman@25904
   211
  upper_unit :: "'a \<rightarrow> 'a upper_pd" where
huffman@25904
   212
  "upper_unit = compact_basis.basis_fun (\<lambda>a. upper_principal (PDUnit a))"
huffman@25904
   213
huffman@25904
   214
definition
huffman@25904
   215
  upper_plus :: "'a upper_pd \<rightarrow> 'a upper_pd \<rightarrow> 'a upper_pd" where
huffman@25904
   216
  "upper_plus = upper_pd.basis_fun (\<lambda>t. upper_pd.basis_fun (\<lambda>u.
huffman@25904
   217
      upper_principal (PDPlus t u)))"
huffman@25904
   218
huffman@25904
   219
abbreviation
huffman@25904
   220
  upper_add :: "'a upper_pd \<Rightarrow> 'a upper_pd \<Rightarrow> 'a upper_pd"
huffman@25904
   221
    (infixl "+\<sharp>" 65) where
huffman@25904
   222
  "xs +\<sharp> ys == upper_plus\<cdot>xs\<cdot>ys"
huffman@25904
   223
huffman@26927
   224
syntax
huffman@26927
   225
  "_upper_pd" :: "args \<Rightarrow> 'a upper_pd" ("{_}\<sharp>")
huffman@26927
   226
huffman@26927
   227
translations
huffman@26927
   228
  "{x,xs}\<sharp>" == "{x}\<sharp> +\<sharp> {xs}\<sharp>"
huffman@26927
   229
  "{x}\<sharp>" == "CONST upper_unit\<cdot>x"
huffman@26927
   230
huffman@26927
   231
lemma upper_unit_Rep_compact_basis [simp]:
huffman@26927
   232
  "{Rep_compact_basis a}\<sharp> = upper_principal (PDUnit a)"
huffman@26927
   233
unfolding upper_unit_def
huffman@26927
   234
by (simp add: compact_basis.basis_fun_principal
huffman@26927
   235
    upper_principal_mono PDUnit_upper_mono)
huffman@26927
   236
huffman@25904
   237
lemma upper_plus_principal [simp]:
huffman@26927
   238
  "upper_principal t +\<sharp> upper_principal u = upper_principal (PDPlus t u)"
huffman@25904
   239
unfolding upper_plus_def
huffman@25904
   240
by (simp add: upper_pd.basis_fun_principal
huffman@25904
   241
    upper_pd.basis_fun_mono PDPlus_upper_mono)
huffman@25904
   242
huffman@26927
   243
lemma approx_upper_unit [simp]:
huffman@26927
   244
  "approx n\<cdot>{x}\<sharp> = {approx n\<cdot>x}\<sharp>"
huffman@26927
   245
apply (induct x rule: compact_basis_induct, simp)
huffman@26927
   246
apply (simp add: approx_Rep_compact_basis)
huffman@26927
   247
done
huffman@26927
   248
huffman@25904
   249
lemma approx_upper_plus [simp]:
huffman@26927
   250
  "approx n\<cdot>(xs +\<sharp> ys) = (approx n\<cdot>xs) +\<sharp> (approx n\<cdot>ys)"
huffman@25904
   251
by (induct xs ys rule: upper_principal_induct2, simp, simp, simp)
huffman@25904
   252
huffman@26927
   253
lemma upper_plus_assoc: "(xs +\<sharp> ys) +\<sharp> zs = xs +\<sharp> (ys +\<sharp> zs)"
huffman@25904
   254
apply (induct xs ys arbitrary: zs rule: upper_principal_induct2, simp, simp)
huffman@25904
   255
apply (rule_tac xs=zs in upper_principal_induct, simp)
huffman@25904
   256
apply (simp add: PDPlus_assoc)
huffman@25904
   257
done
huffman@25904
   258
huffman@26927
   259
lemma upper_plus_commute: "xs +\<sharp> ys = ys +\<sharp> xs"
huffman@26927
   260
apply (induct xs ys rule: upper_principal_induct2, simp, simp)
huffman@26927
   261
apply (simp add: PDPlus_commute)
huffman@26927
   262
done
huffman@26927
   263
huffman@26927
   264
lemma upper_plus_absorb: "xs +\<sharp> xs = xs"
huffman@25904
   265
apply (induct xs rule: upper_principal_induct, simp)
huffman@25904
   266
apply (simp add: PDPlus_absorb)
huffman@25904
   267
done
huffman@25904
   268
huffman@26927
   269
interpretation aci_upper_plus: ab_semigroup_idem_mult ["op +\<sharp>"]
huffman@26927
   270
  by unfold_locales
huffman@26927
   271
    (rule upper_plus_assoc upper_plus_commute upper_plus_absorb)+
huffman@26927
   272
huffman@26927
   273
lemma upper_plus_left_commute: "xs +\<sharp> (ys +\<sharp> zs) = ys +\<sharp> (xs +\<sharp> zs)"
huffman@26927
   274
by (rule aci_upper_plus.mult_left_commute)
huffman@26927
   275
huffman@26927
   276
lemma upper_plus_left_absorb: "xs +\<sharp> (xs +\<sharp> ys) = xs +\<sharp> ys"
huffman@26927
   277
by (rule aci_upper_plus.mult_left_idem)
huffman@26927
   278
huffman@26927
   279
lemmas upper_plus_aci = aci_upper_plus.mult_ac_idem
huffman@26927
   280
huffman@26927
   281
lemma upper_plus_less1: "xs +\<sharp> ys \<sqsubseteq> xs"
huffman@25904
   282
apply (induct xs ys rule: upper_principal_induct2, simp, simp)
huffman@25904
   283
apply (simp add: PDPlus_upper_less)
huffman@25904
   284
done
huffman@25904
   285
huffman@26927
   286
lemma upper_plus_less2: "xs +\<sharp> ys \<sqsubseteq> ys"
huffman@25904
   287
by (subst upper_plus_commute, rule upper_plus_less1)
huffman@25904
   288
huffman@26927
   289
lemma upper_plus_greatest: "\<lbrakk>xs \<sqsubseteq> ys; xs \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> xs \<sqsubseteq> ys +\<sharp> zs"
huffman@25904
   290
apply (subst upper_plus_absorb [of xs, symmetric])
huffman@25904
   291
apply (erule (1) monofun_cfun [OF monofun_cfun_arg])
huffman@25904
   292
done
huffman@25904
   293
huffman@25904
   294
lemma upper_less_plus_iff:
huffman@26927
   295
  "xs \<sqsubseteq> ys +\<sharp> zs \<longleftrightarrow> xs \<sqsubseteq> ys \<and> xs \<sqsubseteq> zs"
huffman@25904
   296
apply safe
huffman@25904
   297
apply (erule trans_less [OF _ upper_plus_less1])
huffman@25904
   298
apply (erule trans_less [OF _ upper_plus_less2])
huffman@25904
   299
apply (erule (1) upper_plus_greatest)
huffman@25904
   300
done
huffman@25904
   301
huffman@25904
   302
lemma upper_plus_less_unit_iff:
huffman@26927
   303
  "xs +\<sharp> ys \<sqsubseteq> {z}\<sharp> \<longleftrightarrow> xs \<sqsubseteq> {z}\<sharp> \<or> ys \<sqsubseteq> {z}\<sharp>"
huffman@25904
   304
 apply (rule iffI)
huffman@25904
   305
  apply (subgoal_tac
huffman@26927
   306
    "adm (\<lambda>f. f\<cdot>xs \<sqsubseteq> f\<cdot>{z}\<sharp> \<or> f\<cdot>ys \<sqsubseteq> f\<cdot>{z}\<sharp>)")
huffman@25925
   307
   apply (drule admD, rule chain_approx)
huffman@25904
   308
    apply (drule_tac f="approx i" in monofun_cfun_arg)
huffman@25904
   309
    apply (cut_tac xs="approx i\<cdot>xs" in compact_imp_upper_principal, simp)
huffman@25904
   310
    apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_upper_principal, simp)
huffman@25904
   311
    apply (cut_tac x="approx i\<cdot>z" in compact_imp_Rep_compact_basis, simp)
huffman@25904
   312
    apply (clarify, simp add: upper_le_PDPlus_PDUnit_iff)
huffman@25904
   313
   apply simp
huffman@25904
   314
  apply simp
huffman@25904
   315
 apply (erule disjE)
huffman@25904
   316
  apply (erule trans_less [OF upper_plus_less1])
huffman@25904
   317
 apply (erule trans_less [OF upper_plus_less2])
huffman@25904
   318
done
huffman@25904
   319
huffman@26927
   320
lemma upper_unit_less_iff [simp]: "{x}\<sharp> \<sqsubseteq> {y}\<sharp> \<longleftrightarrow> x \<sqsubseteq> y"
huffman@26927
   321
 apply (rule iffI)
huffman@26927
   322
  apply (rule bifinite_less_ext)
huffman@26927
   323
  apply (drule_tac f="approx i" in monofun_cfun_arg, simp)
huffman@26927
   324
  apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp)
huffman@26927
   325
  apply (cut_tac x="approx i\<cdot>y" in compact_imp_Rep_compact_basis, simp)
huffman@26927
   326
  apply (clarify, simp add: compact_le_def)
huffman@26927
   327
 apply (erule monofun_cfun_arg)
huffman@26927
   328
done
huffman@26927
   329
huffman@25904
   330
lemmas upper_pd_less_simps =
huffman@25904
   331
  upper_unit_less_iff
huffman@25904
   332
  upper_less_plus_iff
huffman@25904
   333
  upper_plus_less_unit_iff
huffman@25904
   334
huffman@26927
   335
lemma upper_unit_eq_iff [simp]: "{x}\<sharp> = {y}\<sharp> \<longleftrightarrow> x = y"
huffman@26927
   336
unfolding po_eq_conv by simp
huffman@26927
   337
huffman@26927
   338
lemma upper_unit_strict [simp]: "{\<bottom>}\<sharp> = \<bottom>"
huffman@26927
   339
unfolding inst_upper_pd_pcpo Rep_compact_bot [symmetric] by simp
huffman@26927
   340
huffman@26927
   341
lemma upper_plus_strict1 [simp]: "\<bottom> +\<sharp> ys = \<bottom>"
huffman@26927
   342
by (rule UU_I, rule upper_plus_less1)
huffman@26927
   343
huffman@26927
   344
lemma upper_plus_strict2 [simp]: "xs +\<sharp> \<bottom> = \<bottom>"
huffman@26927
   345
by (rule UU_I, rule upper_plus_less2)
huffman@26927
   346
huffman@26927
   347
lemma upper_unit_strict_iff [simp]: "{x}\<sharp> = \<bottom> \<longleftrightarrow> x = \<bottom>"
huffman@26927
   348
unfolding upper_unit_strict [symmetric] by (rule upper_unit_eq_iff)
huffman@26927
   349
huffman@26927
   350
lemma upper_plus_strict_iff [simp]:
huffman@26927
   351
  "xs +\<sharp> ys = \<bottom> \<longleftrightarrow> xs = \<bottom> \<or> ys = \<bottom>"
huffman@26927
   352
apply (rule iffI)
huffman@26927
   353
apply (erule rev_mp)
huffman@26927
   354
apply (rule upper_principal_induct2 [where xs=xs and ys=ys], simp, simp)
huffman@26927
   355
apply (simp add: inst_upper_pd_pcpo upper_principal_eq_iff
huffman@26927
   356
                 upper_le_PDPlus_PDUnit_iff)
huffman@26927
   357
apply auto
huffman@26927
   358
done
huffman@26927
   359
huffman@26927
   360
lemma compact_upper_unit_iff [simp]: "compact {x}\<sharp> \<longleftrightarrow> compact x"
huffman@26927
   361
unfolding bifinite_compact_iff by simp
huffman@26927
   362
huffman@26927
   363
lemma compact_upper_plus [simp]:
huffman@26927
   364
  "\<lbrakk>compact xs; compact ys\<rbrakk> \<Longrightarrow> compact (xs +\<sharp> ys)"
huffman@26927
   365
apply (drule compact_imp_upper_principal)+
huffman@26927
   366
apply (auto simp add: compact_upper_principal)
huffman@26927
   367
done
huffman@26927
   368
huffman@25904
   369
huffman@25904
   370
subsection {* Induction rules *}
huffman@25904
   371
huffman@25904
   372
lemma upper_pd_induct1:
huffman@25904
   373
  assumes P: "adm P"
huffman@26927
   374
  assumes unit: "\<And>x. P {x}\<sharp>"
huffman@26927
   375
  assumes insert: "\<And>x ys. \<lbrakk>P {x}\<sharp>; P ys\<rbrakk> \<Longrightarrow> P ({x}\<sharp> +\<sharp> ys)"
huffman@25904
   376
  shows "P (xs::'a upper_pd)"
huffman@25904
   377
apply (induct xs rule: upper_principal_induct, rule P)
huffman@25904
   378
apply (induct_tac t rule: pd_basis_induct1)
huffman@25904
   379
apply (simp only: upper_unit_Rep_compact_basis [symmetric])
huffman@25904
   380
apply (rule unit)
huffman@25904
   381
apply (simp only: upper_unit_Rep_compact_basis [symmetric]
huffman@25904
   382
                  upper_plus_principal [symmetric])
huffman@25904
   383
apply (erule insert [OF unit])
huffman@25904
   384
done
huffman@25904
   385
huffman@25904
   386
lemma upper_pd_induct:
huffman@25904
   387
  assumes P: "adm P"
huffman@26927
   388
  assumes unit: "\<And>x. P {x}\<sharp>"
huffman@26927
   389
  assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (xs +\<sharp> ys)"
huffman@25904
   390
  shows "P (xs::'a upper_pd)"
huffman@25904
   391
apply (induct xs rule: upper_principal_induct, rule P)
huffman@25904
   392
apply (induct_tac t rule: pd_basis_induct)
huffman@25904
   393
apply (simp only: upper_unit_Rep_compact_basis [symmetric] unit)
huffman@25904
   394
apply (simp only: upper_plus_principal [symmetric] plus)
huffman@25904
   395
done
huffman@25904
   396
huffman@25904
   397
huffman@25904
   398
subsection {* Monadic bind *}
huffman@25904
   399
huffman@25904
   400
definition
huffman@25904
   401
  upper_bind_basis ::
huffman@25904
   402
  "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
huffman@25904
   403
  "upper_bind_basis = fold_pd
huffman@25904
   404
    (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a))
huffman@26927
   405
    (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)"
huffman@25904
   406
huffman@26927
   407
lemma ACI_upper_bind:
huffman@26927
   408
  "ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. x\<cdot>f +\<sharp> y\<cdot>f)"
huffman@25904
   409
apply unfold_locales
haftmann@26041
   410
apply (simp add: upper_plus_assoc)
huffman@25904
   411
apply (simp add: upper_plus_commute)
huffman@25904
   412
apply (simp add: upper_plus_absorb eta_cfun)
huffman@25904
   413
done
huffman@25904
   414
huffman@25904
   415
lemma upper_bind_basis_simps [simp]:
huffman@25904
   416
  "upper_bind_basis (PDUnit a) =
huffman@25904
   417
    (\<Lambda> f. f\<cdot>(Rep_compact_basis a))"
huffman@25904
   418
  "upper_bind_basis (PDPlus t u) =
huffman@26927
   419
    (\<Lambda> f. upper_bind_basis t\<cdot>f +\<sharp> upper_bind_basis u\<cdot>f)"
huffman@25904
   420
unfolding upper_bind_basis_def
huffman@25904
   421
apply -
huffman@26927
   422
apply (rule fold_pd_PDUnit [OF ACI_upper_bind])
huffman@26927
   423
apply (rule fold_pd_PDPlus [OF ACI_upper_bind])
huffman@25904
   424
done
huffman@25904
   425
huffman@25904
   426
lemma upper_bind_basis_mono:
huffman@25904
   427
  "t \<le>\<sharp> u \<Longrightarrow> upper_bind_basis t \<sqsubseteq> upper_bind_basis u"
huffman@25904
   428
unfolding expand_cfun_less
huffman@25904
   429
apply (erule upper_le_induct, safe)
huffman@25904
   430
apply (simp add: compact_le_def monofun_cfun)
huffman@25904
   431
apply (simp add: trans_less [OF upper_plus_less1])
huffman@25904
   432
apply (simp add: upper_less_plus_iff)
huffman@25904
   433
done
huffman@25904
   434
huffman@25904
   435
definition
huffman@25904
   436
  upper_bind :: "'a upper_pd \<rightarrow> ('a \<rightarrow> 'b upper_pd) \<rightarrow> 'b upper_pd" where
huffman@25904
   437
  "upper_bind = upper_pd.basis_fun upper_bind_basis"
huffman@25904
   438
huffman@25904
   439
lemma upper_bind_principal [simp]:
huffman@25904
   440
  "upper_bind\<cdot>(upper_principal t) = upper_bind_basis t"
huffman@25904
   441
unfolding upper_bind_def
huffman@25904
   442
apply (rule upper_pd.basis_fun_principal)
huffman@25904
   443
apply (erule upper_bind_basis_mono)
huffman@25904
   444
done
huffman@25904
   445
huffman@25904
   446
lemma upper_bind_unit [simp]:
huffman@26927
   447
  "upper_bind\<cdot>{x}\<sharp>\<cdot>f = f\<cdot>x"
huffman@25904
   448
by (induct x rule: compact_basis_induct, simp, simp)
huffman@25904
   449
huffman@25904
   450
lemma upper_bind_plus [simp]:
huffman@26927
   451
  "upper_bind\<cdot>(xs +\<sharp> ys)\<cdot>f = upper_bind\<cdot>xs\<cdot>f +\<sharp> upper_bind\<cdot>ys\<cdot>f"
huffman@25904
   452
by (induct xs ys rule: upper_principal_induct2, simp, simp, simp)
huffman@25904
   453
huffman@25904
   454
lemma upper_bind_strict [simp]: "upper_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>"
huffman@25904
   455
unfolding upper_unit_strict [symmetric] by (rule upper_bind_unit)
huffman@25904
   456
huffman@25904
   457
huffman@25904
   458
subsection {* Map and join *}
huffman@25904
   459
huffman@25904
   460
definition
huffman@25904
   461
  upper_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a upper_pd \<rightarrow> 'b upper_pd" where
huffman@26927
   462
  "upper_map = (\<Lambda> f xs. upper_bind\<cdot>xs\<cdot>(\<Lambda> x. {f\<cdot>x}\<sharp>))"
huffman@25904
   463
huffman@25904
   464
definition
huffman@25904
   465
  upper_join :: "'a upper_pd upper_pd \<rightarrow> 'a upper_pd" where
huffman@25904
   466
  "upper_join = (\<Lambda> xss. upper_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))"
huffman@25904
   467
huffman@25904
   468
lemma upper_map_unit [simp]:
huffman@26927
   469
  "upper_map\<cdot>f\<cdot>{x}\<sharp> = {f\<cdot>x}\<sharp>"
huffman@25904
   470
unfolding upper_map_def by simp
huffman@25904
   471
huffman@25904
   472
lemma upper_map_plus [simp]:
huffman@26927
   473
  "upper_map\<cdot>f\<cdot>(xs +\<sharp> ys) = upper_map\<cdot>f\<cdot>xs +\<sharp> upper_map\<cdot>f\<cdot>ys"
huffman@25904
   474
unfolding upper_map_def by simp
huffman@25904
   475
huffman@25904
   476
lemma upper_join_unit [simp]:
huffman@26927
   477
  "upper_join\<cdot>{xs}\<sharp> = xs"
huffman@25904
   478
unfolding upper_join_def by simp
huffman@25904
   479
huffman@25904
   480
lemma upper_join_plus [simp]:
huffman@26927
   481
  "upper_join\<cdot>(xss +\<sharp> yss) = upper_join\<cdot>xss +\<sharp> upper_join\<cdot>yss"
huffman@25904
   482
unfolding upper_join_def by simp
huffman@25904
   483
huffman@25904
   484
lemma upper_map_ident: "upper_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs"
huffman@25904
   485
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   486
huffman@25904
   487
lemma upper_map_map:
huffman@25904
   488
  "upper_map\<cdot>f\<cdot>(upper_map\<cdot>g\<cdot>xs) = upper_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs"
huffman@25904
   489
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   490
huffman@25904
   491
lemma upper_join_map_unit:
huffman@25904
   492
  "upper_join\<cdot>(upper_map\<cdot>upper_unit\<cdot>xs) = xs"
huffman@25904
   493
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   494
huffman@25904
   495
lemma upper_join_map_join:
huffman@25904
   496
  "upper_join\<cdot>(upper_map\<cdot>upper_join\<cdot>xsss) = upper_join\<cdot>(upper_join\<cdot>xsss)"
huffman@25904
   497
by (induct xsss rule: upper_pd_induct, simp_all)
huffman@25904
   498
huffman@25904
   499
lemma upper_join_map_map:
huffman@25904
   500
  "upper_join\<cdot>(upper_map\<cdot>(upper_map\<cdot>f)\<cdot>xss) =
huffman@25904
   501
   upper_map\<cdot>f\<cdot>(upper_join\<cdot>xss)"
huffman@25904
   502
by (induct xss rule: upper_pd_induct, simp_all)
huffman@25904
   503
huffman@25904
   504
lemma upper_map_approx: "upper_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs"
huffman@25904
   505
by (induct xs rule: upper_pd_induct, simp_all)
huffman@25904
   506
huffman@25904
   507
end