src/HOL/NumberTheory/WilsonRuss.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14271 8ed6989228bb
child 15197 19e735596e51
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
wenzelm@11049
     1
(*  Title:      HOL/NumberTheory/WilsonRuss.thy
paulson@9508
     2
    ID:         $Id$
wenzelm@11049
     3
    Author:     Thomas M. Rasmussen
wenzelm@11049
     4
    Copyright   2000  University of Cambridge
paulson@13833
     5
paulson@13833
     6
Changes by Jeremy Avigad, 2003/02/21:
paulson@13833
     7
    repaired proof of prime_g_5
paulson@9508
     8
*)
paulson@9508
     9
wenzelm@11049
    10
header {* Wilson's Theorem according to Russinoff *}
wenzelm@11049
    11
wenzelm@11049
    12
theory WilsonRuss = EulerFermat:
wenzelm@11049
    13
wenzelm@11049
    14
text {*
wenzelm@11049
    15
  Wilson's Theorem following quite closely Russinoff's approach
wenzelm@11049
    16
  using Boyer-Moore (using finite sets instead of lists, though).
wenzelm@11049
    17
*}
wenzelm@11049
    18
wenzelm@11049
    19
subsection {* Definitions and lemmas *}
paulson@9508
    20
paulson@9508
    21
consts
wenzelm@11049
    22
  inv :: "int => int => int"
wenzelm@11049
    23
  wset :: "int * int => int set"
paulson@9508
    24
paulson@9508
    25
defs
wenzelm@11704
    26
  inv_def: "inv p a == (a^(nat (p - 2))) mod p"
paulson@9508
    27
wenzelm@11049
    28
recdef wset
wenzelm@11049
    29
  "measure ((\<lambda>(a, p). nat a) :: int * int => nat)"
wenzelm@11049
    30
  "wset (a, p) =
paulson@11868
    31
    (if 1 < a then
paulson@11868
    32
      let ws = wset (a - 1, p)
wenzelm@11049
    33
      in (if a \<in> ws then ws else insert a (insert (inv p a) ws)) else {})"
wenzelm@11049
    34
wenzelm@11049
    35
wenzelm@11049
    36
text {* \medskip @{term [source] inv} *}
wenzelm@11049
    37
wenzelm@13524
    38
lemma inv_is_inv_aux: "1 < m ==> Suc (nat (m - 2)) = nat (m - 1)"
paulson@13833
    39
by (subst int_int_eq [symmetric], auto)
wenzelm@11049
    40
wenzelm@11049
    41
lemma inv_is_inv:
paulson@11868
    42
    "p \<in> zprime \<Longrightarrow> 0 < a \<Longrightarrow> a < p ==> [a * inv p a = 1] (mod p)"
wenzelm@11049
    43
  apply (unfold inv_def)
wenzelm@11049
    44
  apply (subst zcong_zmod)
wenzelm@11049
    45
  apply (subst zmod_zmult1_eq [symmetric])
wenzelm@11049
    46
  apply (subst zcong_zmod [symmetric])
wenzelm@11049
    47
  apply (subst power_Suc [symmetric])
wenzelm@13524
    48
  apply (subst inv_is_inv_aux)
wenzelm@11049
    49
   apply (erule_tac [2] Little_Fermat)
wenzelm@11049
    50
   apply (erule_tac [2] zdvd_not_zless)
paulson@13833
    51
   apply (unfold zprime_def, auto)
wenzelm@11049
    52
  done
wenzelm@11049
    53
wenzelm@11049
    54
lemma inv_distinct:
paulson@11868
    55
    "p \<in> zprime \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> a \<noteq> inv p a"
wenzelm@11049
    56
  apply safe
wenzelm@11049
    57
  apply (cut_tac a = a and p = p in zcong_square)
paulson@13833
    58
     apply (cut_tac [3] a = a and p = p in inv_is_inv, auto)
paulson@11868
    59
   apply (subgoal_tac "a = 1")
wenzelm@11049
    60
    apply (rule_tac [2] m = p in zcong_zless_imp_eq)
paulson@11868
    61
        apply (subgoal_tac [7] "a = p - 1")
paulson@13833
    62
         apply (rule_tac [8] m = p in zcong_zless_imp_eq, auto)
wenzelm@11049
    63
  done
wenzelm@11049
    64
wenzelm@11049
    65
lemma inv_not_0:
paulson@11868
    66
    "p \<in> zprime \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> 0"
wenzelm@11049
    67
  apply safe
wenzelm@11049
    68
  apply (cut_tac a = a and p = p in inv_is_inv)
paulson@13833
    69
     apply (unfold zcong_def, auto)
paulson@11868
    70
  apply (subgoal_tac "\<not> p dvd 1")
wenzelm@11049
    71
   apply (rule_tac [2] zdvd_not_zless)
paulson@11868
    72
    apply (subgoal_tac "p dvd 1")
wenzelm@11049
    73
     prefer 2
paulson@13833
    74
     apply (subst zdvd_zminus_iff [symmetric], auto)
wenzelm@11049
    75
  done
wenzelm@11049
    76
wenzelm@11049
    77
lemma inv_not_1:
paulson@11868
    78
    "p \<in> zprime \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> 1"
wenzelm@11049
    79
  apply safe
wenzelm@11049
    80
  apply (cut_tac a = a and p = p in inv_is_inv)
wenzelm@11049
    81
     prefer 4
wenzelm@11049
    82
     apply simp
paulson@11868
    83
     apply (subgoal_tac "a = 1")
paulson@13833
    84
      apply (rule_tac [2] zcong_zless_imp_eq, auto)
wenzelm@11049
    85
  done
wenzelm@11049
    86
wenzelm@13524
    87
lemma inv_not_p_minus_1_aux: "[a * (p - 1) = 1] (mod p) = [a = p - 1] (mod p)"
wenzelm@11049
    88
  apply (unfold zcong_def)
obua@14738
    89
  apply (simp add: OrderedGroup.diff_diff_eq diff_diff_eq2 zdiff_zmult_distrib2)
paulson@11868
    90
  apply (rule_tac s = "p dvd -((a + 1) + (p * -a))" in trans)
paulson@14271
    91
   apply (simp add: mult_commute)
wenzelm@11049
    92
  apply (subst zdvd_zminus_iff)
wenzelm@11049
    93
  apply (subst zdvd_reduce)
paulson@11868
    94
  apply (rule_tac s = "p dvd (a + 1) + (p * -1)" in trans)
paulson@13833
    95
   apply (subst zdvd_reduce, auto)
wenzelm@11049
    96
  done
wenzelm@11049
    97
wenzelm@11049
    98
lemma inv_not_p_minus_1:
paulson@11868
    99
    "p \<in> zprime \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a \<noteq> p - 1"
wenzelm@11049
   100
  apply safe
paulson@13833
   101
  apply (cut_tac a = a and p = p in inv_is_inv, auto)
wenzelm@13524
   102
  apply (simp add: inv_not_p_minus_1_aux)
paulson@11868
   103
  apply (subgoal_tac "a = p - 1")
paulson@13833
   104
   apply (rule_tac [2] zcong_zless_imp_eq, auto)
wenzelm@11049
   105
  done
wenzelm@11049
   106
wenzelm@11049
   107
lemma inv_g_1:
paulson@11868
   108
    "p \<in> zprime \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> 1 < inv p a"
paulson@11868
   109
  apply (case_tac "0\<le> inv p a")
paulson@11868
   110
   apply (subgoal_tac "inv p a \<noteq> 1")
paulson@11868
   111
    apply (subgoal_tac "inv p a \<noteq> 0")
wenzelm@11049
   112
     apply (subst order_less_le)
wenzelm@11049
   113
     apply (subst zle_add1_eq_le [symmetric])
wenzelm@11049
   114
     apply (subst order_less_le)
wenzelm@11049
   115
     apply (rule_tac [2] inv_not_0)
paulson@13833
   116
       apply (rule_tac [5] inv_not_1, auto)
paulson@13833
   117
  apply (unfold inv_def zprime_def, simp)
wenzelm@11049
   118
  done
wenzelm@11049
   119
wenzelm@11049
   120
lemma inv_less_p_minus_1:
paulson@11868
   121
    "p \<in> zprime \<Longrightarrow> 1 < a \<Longrightarrow> a < p - 1 ==> inv p a < p - 1"
wenzelm@11049
   122
  apply (case_tac "inv p a < p")
wenzelm@11049
   123
   apply (subst order_less_le)
paulson@13833
   124
   apply (simp add: inv_not_p_minus_1, auto)
paulson@13833
   125
  apply (unfold inv_def zprime_def, simp)
wenzelm@11049
   126
  done
wenzelm@11049
   127
wenzelm@13524
   128
lemma inv_inv_aux: "5 \<le> p ==>
paulson@11868
   129
    nat (p - 2) * nat (p - 2) = Suc (nat (p - 1) * nat (p - 3))"
wenzelm@11049
   130
  apply (subst int_int_eq [symmetric])
wenzelm@11049
   131
  apply (simp add: zmult_int [symmetric])
wenzelm@11049
   132
  apply (simp add: zdiff_zmult_distrib zdiff_zmult_distrib2)
wenzelm@11049
   133
  done
wenzelm@11049
   134
wenzelm@11049
   135
lemma zcong_zpower_zmult:
paulson@11868
   136
    "[x^y = 1] (mod p) \<Longrightarrow> [x^(y * z) = 1] (mod p)"
wenzelm@11049
   137
  apply (induct z)
wenzelm@11049
   138
   apply (auto simp add: zpower_zadd_distrib)
paulson@11868
   139
  apply (subgoal_tac "zcong (x^y * x^(y * n)) (1 * 1) p")
paulson@13833
   140
   apply (rule_tac [2] zcong_zmult, simp_all)
wenzelm@11049
   141
  done
wenzelm@11049
   142
wenzelm@11049
   143
lemma inv_inv: "p \<in> zprime \<Longrightarrow>
paulson@11868
   144
    5 \<le> p \<Longrightarrow> 0 < a \<Longrightarrow> a < p ==> inv p (inv p a) = a"
wenzelm@11049
   145
  apply (unfold inv_def)
wenzelm@11049
   146
  apply (subst zpower_zmod)
wenzelm@11049
   147
  apply (subst zpower_zpower)
wenzelm@11049
   148
  apply (rule zcong_zless_imp_eq)
wenzelm@11049
   149
      prefer 5
wenzelm@11049
   150
      apply (subst zcong_zmod)
wenzelm@11049
   151
      apply (subst mod_mod_trivial)
wenzelm@11049
   152
      apply (subst zcong_zmod [symmetric])
wenzelm@13524
   153
      apply (subst inv_inv_aux)
wenzelm@11049
   154
       apply (subgoal_tac [2]
paulson@11868
   155
	 "zcong (a * a^(nat (p - 1) * nat (p - 3))) (a * 1) p")
wenzelm@11049
   156
        apply (rule_tac [3] zcong_zmult)
wenzelm@11049
   157
         apply (rule_tac [4] zcong_zpower_zmult)
wenzelm@11049
   158
         apply (erule_tac [4] Little_Fermat)
paulson@13833
   159
         apply (rule_tac [4] zdvd_not_zless, simp_all)
wenzelm@11049
   160
  done
wenzelm@11049
   161
wenzelm@11049
   162
wenzelm@11049
   163
text {* \medskip @{term wset} *}
wenzelm@11049
   164
wenzelm@11049
   165
declare wset.simps [simp del]
wenzelm@11049
   166
wenzelm@11049
   167
lemma wset_induct:
wenzelm@11049
   168
  "(!!a p. P {} a p) \<Longrightarrow>
paulson@11868
   169
    (!!a p. 1 < (a::int) \<Longrightarrow> P (wset (a - 1, p)) (a - 1) p
wenzelm@11049
   170
      ==> P (wset (a, p)) a p)
wenzelm@11049
   171
    ==> P (wset (u, v)) u v"
wenzelm@11049
   172
proof -
wenzelm@11549
   173
  case rule_context
wenzelm@11049
   174
  show ?thesis
paulson@13833
   175
    apply (rule wset.induct, safe)
paulson@11868
   176
     apply (case_tac [2] "1 < a")
paulson@13833
   177
      apply (rule_tac [2] rule_context, simp_all)
wenzelm@11549
   178
      apply (simp_all add: wset.simps rule_context)
wenzelm@11049
   179
    done
wenzelm@11049
   180
qed
wenzelm@11049
   181
wenzelm@11049
   182
lemma wset_mem_imp_or [rule_format]:
paulson@11868
   183
  "1 < a \<Longrightarrow> b \<notin> wset (a - 1, p)
wenzelm@11049
   184
    ==> b \<in> wset (a, p) --> b = a \<or> b = inv p a"
wenzelm@11049
   185
  apply (subst wset.simps)
paulson@13833
   186
  apply (unfold Let_def, simp)
wenzelm@11049
   187
  done
wenzelm@11049
   188
paulson@11868
   189
lemma wset_mem_mem [simp]: "1 < a ==> a \<in> wset (a, p)"
wenzelm@11049
   190
  apply (subst wset.simps)
paulson@13833
   191
  apply (unfold Let_def, simp)
wenzelm@11049
   192
  done
wenzelm@11049
   193
paulson@11868
   194
lemma wset_subset: "1 < a \<Longrightarrow> b \<in> wset (a - 1, p) ==> b \<in> wset (a, p)"
wenzelm@11049
   195
  apply (subst wset.simps)
paulson@13833
   196
  apply (unfold Let_def, auto)
wenzelm@11049
   197
  done
wenzelm@11049
   198
wenzelm@11049
   199
lemma wset_g_1 [rule_format]:
paulson@11868
   200
    "p \<in> zprime --> a < p - 1 --> b \<in> wset (a, p) --> 1 < b"
paulson@13833
   201
  apply (induct a p rule: wset_induct, auto)
wenzelm@11049
   202
  apply (case_tac "b = a")
wenzelm@11049
   203
   apply (case_tac [2] "b = inv p a")
wenzelm@11049
   204
    apply (subgoal_tac [3] "b = a \<or> b = inv p a")
wenzelm@11049
   205
     apply (rule_tac [4] wset_mem_imp_or)
wenzelm@11049
   206
       prefer 2
wenzelm@11049
   207
       apply simp
paulson@13833
   208
       apply (rule inv_g_1, auto)
wenzelm@11049
   209
  done
wenzelm@11049
   210
wenzelm@11049
   211
lemma wset_less [rule_format]:
paulson@11868
   212
    "p \<in> zprime --> a < p - 1 --> b \<in> wset (a, p) --> b < p - 1"
paulson@13833
   213
  apply (induct a p rule: wset_induct, auto)
wenzelm@11049
   214
  apply (case_tac "b = a")
wenzelm@11049
   215
   apply (case_tac [2] "b = inv p a")
wenzelm@11049
   216
    apply (subgoal_tac [3] "b = a \<or> b = inv p a")
wenzelm@11049
   217
     apply (rule_tac [4] wset_mem_imp_or)
wenzelm@11049
   218
       prefer 2
wenzelm@11049
   219
       apply simp
paulson@13833
   220
       apply (rule inv_less_p_minus_1, auto)
wenzelm@11049
   221
  done
wenzelm@11049
   222
wenzelm@11049
   223
lemma wset_mem [rule_format]:
wenzelm@11049
   224
  "p \<in> zprime -->
paulson@11868
   225
    a < p - 1 --> 1 < b --> b \<le> a --> b \<in> wset (a, p)"
paulson@13833
   226
  apply (induct a p rule: wset.induct, auto)
wenzelm@11049
   227
   apply (subgoal_tac "b = a")
wenzelm@11049
   228
    apply (rule_tac [2] zle_anti_sym)
wenzelm@11049
   229
     apply (rule_tac [4] wset_subset)
wenzelm@11049
   230
      apply (simp (no_asm_simp))
wenzelm@11049
   231
     apply auto
wenzelm@11049
   232
  done
wenzelm@11049
   233
wenzelm@11049
   234
lemma wset_mem_inv_mem [rule_format]:
paulson@11868
   235
  "p \<in> zprime --> 5 \<le> p --> a < p - 1 --> b \<in> wset (a, p)
wenzelm@11049
   236
    --> inv p b \<in> wset (a, p)"
paulson@13833
   237
  apply (induct a p rule: wset_induct, auto)
wenzelm@11049
   238
   apply (case_tac "b = a")
wenzelm@11049
   239
    apply (subst wset.simps)
wenzelm@11049
   240
    apply (unfold Let_def)
paulson@13833
   241
    apply (rule_tac [3] wset_subset, auto)
wenzelm@11049
   242
  apply (case_tac "b = inv p a")
wenzelm@11049
   243
   apply (simp (no_asm_simp))
wenzelm@11049
   244
   apply (subst inv_inv)
wenzelm@11049
   245
       apply (subgoal_tac [6] "b = a \<or> b = inv p a")
paulson@13833
   246
        apply (rule_tac [7] wset_mem_imp_or, auto)
wenzelm@11049
   247
  done
wenzelm@11049
   248
wenzelm@11049
   249
lemma wset_inv_mem_mem:
paulson@11868
   250
  "p \<in> zprime \<Longrightarrow> 5 \<le> p \<Longrightarrow> a < p - 1 \<Longrightarrow> 1 < b \<Longrightarrow> b < p - 1
wenzelm@11049
   251
    \<Longrightarrow> inv p b \<in> wset (a, p) \<Longrightarrow> b \<in> wset (a, p)"
wenzelm@11049
   252
  apply (rule_tac s = "inv p (inv p b)" and t = b in subst)
wenzelm@11049
   253
   apply (rule_tac [2] wset_mem_inv_mem)
paulson@13833
   254
      apply (rule inv_inv, simp_all)
wenzelm@11049
   255
  done
wenzelm@11049
   256
wenzelm@11049
   257
lemma wset_fin: "finite (wset (a, p))"
wenzelm@11049
   258
  apply (induct a p rule: wset_induct)
wenzelm@11049
   259
   prefer 2
wenzelm@11049
   260
   apply (subst wset.simps)
paulson@13833
   261
   apply (unfold Let_def, auto)
wenzelm@11049
   262
  done
wenzelm@11049
   263
wenzelm@11049
   264
lemma wset_zcong_prod_1 [rule_format]:
wenzelm@11049
   265
  "p \<in> zprime -->
paulson@11868
   266
    5 \<le> p --> a < p - 1 --> [setprod (wset (a, p)) = 1] (mod p)"
wenzelm@11049
   267
  apply (induct a p rule: wset_induct)
wenzelm@11049
   268
   prefer 2
wenzelm@11049
   269
   apply (subst wset.simps)
paulson@13833
   270
   apply (unfold Let_def, auto)
wenzelm@11049
   271
  apply (subst setprod_insert)
wenzelm@11049
   272
    apply (tactic {* stac (thm "setprod_insert") 3 *})
wenzelm@11049
   273
      apply (subgoal_tac [5]
paulson@11868
   274
	"zcong (a * inv p a * setprod (wset (a - 1, p))) (1 * 1) p")
wenzelm@11049
   275
       prefer 5
wenzelm@11049
   276
       apply (simp add: zmult_assoc)
wenzelm@11049
   277
      apply (rule_tac [5] zcong_zmult)
wenzelm@11049
   278
       apply (rule_tac [5] inv_is_inv)
wenzelm@11049
   279
         apply (tactic "Clarify_tac 4")
paulson@11868
   280
         apply (subgoal_tac [4] "a \<in> wset (a - 1, p)")
wenzelm@11049
   281
          apply (rule_tac [5] wset_inv_mem_mem)
wenzelm@11049
   282
               apply (simp_all add: wset_fin)
paulson@13833
   283
  apply (rule inv_distinct, auto)
wenzelm@11049
   284
  done
wenzelm@11049
   285
wenzelm@11704
   286
lemma d22set_eq_wset: "p \<in> zprime ==> d22set (p - 2) = wset (p - 2, p)"
wenzelm@11049
   287
  apply safe
wenzelm@11049
   288
   apply (erule wset_mem)
wenzelm@11049
   289
     apply (rule_tac [2] d22set_g_1)
wenzelm@11049
   290
     apply (rule_tac [3] d22set_le)
wenzelm@11049
   291
     apply (rule_tac [4] d22set_mem)
wenzelm@11049
   292
      apply (erule_tac [4] wset_g_1)
wenzelm@11049
   293
       prefer 6
wenzelm@11049
   294
       apply (subst zle_add1_eq_le [symmetric])
paulson@11868
   295
       apply (subgoal_tac "p - 2 + 1 = p - 1")
wenzelm@11049
   296
        apply (simp (no_asm_simp))
paulson@13833
   297
        apply (erule wset_less, auto)
wenzelm@11049
   298
  done
wenzelm@11049
   299
wenzelm@11049
   300
wenzelm@11049
   301
subsection {* Wilson *}
wenzelm@11049
   302
wenzelm@11704
   303
lemma prime_g_5: "p \<in> zprime \<Longrightarrow> p \<noteq> 2 \<Longrightarrow> p \<noteq> 3 ==> 5 \<le> p"
wenzelm@11049
   304
  apply (unfold zprime_def dvd_def)
paulson@13833
   305
  apply (case_tac "p = 4", auto)
wenzelm@11049
   306
   apply (rule notE)
wenzelm@11049
   307
    prefer 2
wenzelm@11049
   308
    apply assumption
wenzelm@11049
   309
   apply (simp (no_asm))
paulson@13833
   310
   apply (rule_tac x = 2 in exI)
paulson@13833
   311
   apply (safe, arith)
paulson@13833
   312
     apply (rule_tac x = 2 in exI, auto)
wenzelm@11049
   313
  done
wenzelm@11049
   314
wenzelm@11049
   315
theorem Wilson_Russ:
paulson@11868
   316
    "p \<in> zprime ==> [zfact (p - 1) = -1] (mod p)"
paulson@11868
   317
  apply (subgoal_tac "[(p - 1) * zfact (p - 2) = -1 * 1] (mod p)")
wenzelm@11049
   318
   apply (rule_tac [2] zcong_zmult)
wenzelm@11049
   319
    apply (simp only: zprime_def)
wenzelm@11049
   320
    apply (subst zfact.simps)
paulson@13833
   321
    apply (rule_tac t = "p - 1 - 1" and s = "p - 2" in subst, auto)
wenzelm@11049
   322
   apply (simp only: zcong_def)
wenzelm@11049
   323
   apply (simp (no_asm_simp))
wenzelm@11704
   324
  apply (case_tac "p = 2")
wenzelm@11049
   325
   apply (simp add: zfact.simps)
wenzelm@11704
   326
  apply (case_tac "p = 3")
wenzelm@11049
   327
   apply (simp add: zfact.simps)
wenzelm@11704
   328
  apply (subgoal_tac "5 \<le> p")
wenzelm@11049
   329
   apply (erule_tac [2] prime_g_5)
wenzelm@11049
   330
    apply (subst d22set_prod_zfact [symmetric])
wenzelm@11049
   331
    apply (subst d22set_eq_wset)
paulson@13833
   332
     apply (rule_tac [2] wset_zcong_prod_1, auto)
wenzelm@11049
   333
  done
paulson@9508
   334
paulson@9508
   335
end