src/HOL/Matrix/Matrix.thy
author obua
Tue, 11 May 2004 20:11:08 +0200
changeset 14738 83f1a514dcb4
parent 14724 021264410f87
child 14940 b9ab8babd8b3
permissions -rw-r--r--
changes made due to new Ring_and_Field theory
obua@14593
     1
(*  Title:      HOL/Matrix/Matrix.thy
obua@14593
     2
    ID:         $Id$
obua@14593
     3
    Author:     Steven Obua
obua@14593
     4
    License:    2004 Technische Universität München
obua@14593
     5
*)
obua@14593
     6
wenzelm@14662
     7
theory Matrix = MatrixGeneral:
obua@14593
     8
obua@14593
     9
axclass almost_matrix_element < zero, plus, times
obua@14593
    10
matrix_add_assoc: "(a+b)+c = a + (b+c)"
obua@14593
    11
matrix_add_commute: "a+b = b+a"
obua@14593
    12
obua@14593
    13
matrix_mult_assoc: "(a*b)*c = a*(b*c)"
obua@14593
    14
matrix_mult_left_0[simp]: "0 * a = 0"
obua@14593
    15
matrix_mult_right_0[simp]: "a * 0 = 0"
obua@14593
    16
obua@14593
    17
matrix_left_distrib: "(a+b)*c = a*c+b*c"
obua@14593
    18
matrix_right_distrib: "a*(b+c) = a*b+a*c"
obua@14593
    19
obua@14593
    20
axclass matrix_element < almost_matrix_element
obua@14593
    21
matrix_add_0[simp]: "0+0 = 0"
obua@14593
    22
wenzelm@14691
    23
instance matrix :: (plus) plus ..
wenzelm@14691
    24
instance matrix :: (times) times ..
obua@14593
    25
obua@14593
    26
defs (overloaded)
obua@14593
    27
plus_matrix_def: "A + B == combine_matrix (op +) A B"
obua@14593
    28
times_matrix_def: "A * B == mult_matrix (op *) (op +) A B"
obua@14593
    29
obua@14593
    30
instance matrix :: (matrix_element) matrix_element
obua@14593
    31
proof -
obua@14593
    32
  note combine_matrix_assoc2 = combine_matrix_assoc[simplified associative_def, THEN spec, THEN spec, THEN spec]
obua@14593
    33
  {
obua@14593
    34
    fix A::"('a::matrix_element) matrix"
obua@14593
    35
    fix B
obua@14593
    36
    fix C
obua@14593
    37
    have "(A + B) + C = A + (B + C)"
obua@14593
    38
      apply (simp add: plus_matrix_def)
obua@14593
    39
      apply (rule combine_matrix_assoc2)
obua@14593
    40
      by (simp_all add: matrix_add_assoc)
obua@14593
    41
  }
obua@14593
    42
  note plus_assoc = this
obua@14593
    43
  {
obua@14593
    44
    fix A::"('a::matrix_element) matrix"
obua@14593
    45
    fix B
obua@14593
    46
    fix C
obua@14593
    47
    have "(A * B) * C = A * (B * C)"
obua@14593
    48
      apply (simp add: times_matrix_def)
obua@14593
    49
      apply (rule mult_matrix_assoc_simple)
obua@14593
    50
      apply (simp_all add: associative_def commutative_def distributive_def l_distributive_def r_distributive_def)
obua@14593
    51
      apply (auto)
obua@14593
    52
      apply (simp_all add: matrix_add_assoc)
obua@14593
    53
      apply (simp_all add: matrix_add_commute)
obua@14593
    54
      apply (simp_all add: matrix_mult_assoc)
obua@14593
    55
      by (simp_all add: matrix_left_distrib matrix_right_distrib)
obua@14593
    56
  }
obua@14593
    57
  note mult_assoc = this
obua@14593
    58
  note combine_matrix_commute2 = combine_matrix_commute[simplified commutative_def, THEN spec, THEN spec]
obua@14593
    59
  {
obua@14593
    60
    fix A::"('a::matrix_element) matrix"
obua@14593
    61
    fix B
obua@14593
    62
    have "A + B = B + A"
obua@14593
    63
      apply (simp add: plus_matrix_def)
obua@14593
    64
      apply (insert combine_matrix_commute2[of "op +"])
obua@14593
    65
      apply (rule combine_matrix_commute2)
obua@14593
    66
      by (simp add: matrix_add_commute)
obua@14593
    67
  }
obua@14593
    68
  note plus_commute = this
obua@14593
    69
  have plus_zero: "(0::('a::matrix_element) matrix) + 0 = 0"
obua@14593
    70
    apply (simp add: plus_matrix_def)
obua@14593
    71
    apply (rule combine_matrix_zero)
obua@14593
    72
    by (simp)
obua@14593
    73
  have mult_left_zero: "!! A. (0::('a::matrix_element) matrix) * A = 0" by(simp add: times_matrix_def)
obua@14593
    74
  have mult_right_zero: "!! A. A * (0::('a::matrix_element) matrix) = 0" by (simp add: times_matrix_def)
obua@14593
    75
  note l_distributive_matrix2 = l_distributive_matrix[simplified l_distributive_def matrix_left_distrib, THEN spec, THEN spec, THEN spec]
obua@14593
    76
  {
wenzelm@14662
    77
    fix A::"('a::matrix_element) matrix"
wenzelm@14662
    78
    fix B
obua@14593
    79
    fix C
obua@14593
    80
    have "(A + B) * C = A * C + B * C"
obua@14593
    81
      apply (simp add: plus_matrix_def)
obua@14593
    82
      apply (simp add: times_matrix_def)
obua@14593
    83
      apply (rule l_distributive_matrix2)
obua@14593
    84
      apply (simp_all add: associative_def commutative_def l_distributive_def)
obua@14593
    85
      apply (auto)
wenzelm@14662
    86
      apply (simp_all add: matrix_add_assoc)
obua@14593
    87
      apply (simp_all add: matrix_add_commute)
obua@14593
    88
      by (simp_all add: matrix_left_distrib)
obua@14593
    89
  }
obua@14593
    90
  note left_distrib = this
obua@14593
    91
  note r_distributive_matrix2 = r_distributive_matrix[simplified r_distributive_def matrix_right_distrib, THEN spec, THEN spec, THEN spec]
obua@14593
    92
  {
wenzelm@14662
    93
    fix A::"('a::matrix_element) matrix"
wenzelm@14662
    94
    fix B
obua@14593
    95
    fix C
obua@14593
    96
    have "C * (A + B) = C * A + C * B"
obua@14593
    97
      apply (simp add: plus_matrix_def)
obua@14593
    98
      apply (simp add: times_matrix_def)
obua@14593
    99
      apply (rule r_distributive_matrix2)
obua@14593
   100
      apply (simp_all add: associative_def commutative_def r_distributive_def)
obua@14593
   101
      apply (auto)
wenzelm@14662
   102
      apply (simp_all add: matrix_add_assoc)
obua@14593
   103
      apply (simp_all add: matrix_add_commute)
obua@14593
   104
      by (simp_all add: matrix_right_distrib)
obua@14593
   105
  }
obua@14593
   106
  note right_distrib = this
obua@14593
   107
  show "OFCLASS('a matrix, matrix_element_class)"
obua@14593
   108
    apply (intro_classes)
obua@14593
   109
    apply (simp_all add: plus_assoc)
obua@14593
   110
    apply (simp_all add: plus_commute)
obua@14593
   111
    apply (simp_all add: plus_zero)
obua@14593
   112
    apply (simp_all add: mult_assoc)
obua@14593
   113
    apply (simp_all add: mult_left_zero mult_right_zero)
obua@14593
   114
    by (simp_all add: left_distrib right_distrib)
obua@14593
   115
qed
obua@14593
   116
obua@14593
   117
axclass g_almost_semiring < almost_matrix_element
obua@14593
   118
g_add_left_0[simp]: "0 + a = a"
obua@14593
   119
obua@14593
   120
lemma g_add_right_0[simp]: "(a::'a::g_almost_semiring) + 0 = a"
obua@14593
   121
by (simp add: matrix_add_commute)
obua@14593
   122
obua@14593
   123
axclass g_semiring < g_almost_semiring
obua@14593
   124
g_add_leftimp_eq: "a+b = a+c \<Longrightarrow> b = c"
obua@14593
   125
obua@14593
   126
instance g_almost_semiring < matrix_element
wenzelm@14691
   127
  by intro_classes simp
obua@14593
   128
obua@14593
   129
instance matrix :: (g_almost_semiring) g_almost_semiring
obua@14593
   130
apply (intro_classes)
obua@14593
   131
by (simp add: plus_matrix_def combine_matrix_def combine_infmatrix_def)
obua@14593
   132
obua@14593
   133
lemma RepAbs_matrix_eq_left: " Rep_matrix(Abs_matrix f) = g \<Longrightarrow> \<exists>m. \<forall>j i. m \<le> j \<longrightarrow> f j i = 0 \<Longrightarrow> \<exists>n. \<forall>j i. n \<le> i \<longrightarrow> f j i = 0 \<Longrightarrow> f = g"
obua@14593
   134
by (simp add: RepAbs_matrix)
obua@14593
   135
obua@14593
   136
lemma RepAbs_matrix_eq_right: "g = Rep_matrix(Abs_matrix f) \<Longrightarrow> \<exists>m. \<forall>j i. m \<le> j \<longrightarrow> f j i = 0 \<Longrightarrow> \<exists>n. \<forall>j i. n \<le> i \<longrightarrow> f j i = 0 \<Longrightarrow> g = f"
obua@14593
   137
by (simp add: RepAbs_matrix)
obua@14593
   138
obua@14593
   139
instance matrix :: (g_semiring) g_semiring
obua@14593
   140
apply (intro_classes)
obua@14593
   141
apply (simp add: plus_matrix_def combine_matrix_def combine_infmatrix_def)
obua@14593
   142
apply (subst Rep_matrix_inject[THEN sym])
obua@14593
   143
apply (drule ssubst[OF Rep_matrix_inject, of "% x. x"])
obua@14593
   144
apply (drule RepAbs_matrix_eq_left)
obua@14593
   145
apply (auto)
obua@14593
   146
apply (rule_tac x="max (nrows a) (nrows b)" in exI, simp add: nrows_le)
obua@14593
   147
apply (rule_tac x="max (ncols a) (ncols b)" in exI, simp add: ncols_le)
obua@14593
   148
apply (drule RepAbs_matrix_eq_right)
obua@14593
   149
apply (rule_tac x="max (nrows a) (nrows c)" in exI, simp add: nrows_le)
obua@14593
   150
apply (rule_tac x="max (ncols a) (ncols c)" in exI, simp add: ncols_le)
obua@14593
   151
apply (rule ext)+
obua@14593
   152
apply (drule_tac x="x" and y="x" in comb, simp)
obua@14593
   153
apply (drule_tac x="xa" and y="xa" in comb, simp)
obua@14593
   154
apply (drule g_add_leftimp_eq)
obua@14593
   155
by simp
obua@14593
   156
obua@14593
   157
axclass pordered_matrix_element < matrix_element, order, zero
obua@14593
   158
pordered_add_right_mono: "a <= b \<Longrightarrow> a + c <= b + c"
obua@14593
   159
pordered_mult_left: "0 <= c \<Longrightarrow> a <= b \<Longrightarrow> c*a <= c*b"
obua@14593
   160
pordered_mult_right: "0 <= c \<Longrightarrow> a <= b \<Longrightarrow> a*c <= b*c"
obua@14593
   161
obua@14593
   162
lemma pordered_add_left_mono: "(a::'a::pordered_matrix_element) <= b \<Longrightarrow> c + a <= c + b"
obua@14593
   163
apply (insert pordered_add_right_mono[of a b c])
obua@14593
   164
by (simp add: matrix_add_commute)
obua@14593
   165
obua@14593
   166
lemma pordered_add: "(a::'a::pordered_matrix_element) <= b \<Longrightarrow> (c::'a::pordered_matrix_element) <= d \<Longrightarrow> a+c <= b+d"
obua@14593
   167
proof -
obua@14593
   168
  assume p1:"a <= b"
obua@14593
   169
  assume p2:"c <= d"
wenzelm@14662
   170
  have "a+c <= b+c" by (rule pordered_add_right_mono)
obua@14593
   171
  also have "\<dots> <= b+d" by (rule pordered_add_left_mono)
obua@14593
   172
  ultimately show "a+c <= b+d" by simp
obua@14593
   173
qed
obua@14593
   174
wenzelm@14662
   175
instance matrix :: (pordered_matrix_element) pordered_matrix_element
obua@14593
   176
apply (intro_classes)
obua@14593
   177
apply (simp_all add: plus_matrix_def times_matrix_def)
obua@14593
   178
apply (rule le_combine_matrix)
obua@14593
   179
apply (simp_all)
obua@14593
   180
apply (simp_all add: pordered_add)
obua@14593
   181
apply (rule le_left_mult)
obua@14593
   182
apply (simp_all add: matrix_add_0 g_add_left_0 pordered_add pordered_mult_left matrix_mult_left_0 matrix_mult_right_0)
obua@14593
   183
apply (rule le_right_mult)
obua@14593
   184
by (simp_all add: pordered_add pordered_mult_right)
obua@14593
   185
obua@14593
   186
axclass pordered_g_semiring < g_semiring, pordered_matrix_element
obua@14593
   187
wenzelm@14691
   188
instance matrix :: (pordered_g_semiring) pordered_g_semiring ..
obua@14593
   189
obua@14593
   190
lemma nrows_mult: "nrows ((A::('a::matrix_element) matrix) * B) <= nrows A"
obua@14593
   191
by (simp add: times_matrix_def mult_nrows)
obua@14593
   192
obua@14593
   193
lemma ncols_mult: "ncols ((A::('a::matrix_element) matrix) * B) <= ncols B"
obua@14593
   194
by (simp add: times_matrix_def mult_ncols)
obua@14593
   195
obua@14724
   196
(*
obua@14593
   197
constdefs
obua@14738
   198
  one_matrix :: "nat \<Rightarrow> ('a::comm_semiring_1_cancel) matrix"
obua@14593
   199
  "one_matrix n == Abs_matrix (% j i. if j = i & j < n then 1 else 0)"
obua@14593
   200
obua@14593
   201
lemma Rep_one_matrix[simp]: "Rep_matrix (one_matrix n) j i = (if (j = i & j < n) then 1 else 0)"
obua@14593
   202
apply (simp add: one_matrix_def)
obua@14593
   203
apply (subst RepAbs_matrix)
obua@14593
   204
apply (rule exI[of _ n], simp add: split_if)+
obua@14593
   205
by (simp add: split_if, arith)
obua@14593
   206
obua@14593
   207
lemma nrows_one_matrix[simp]: "nrows (one_matrix n) = n" (is "?r = _")
obua@14593
   208
proof -
obua@14593
   209
  have "?r <= n" by (simp add: nrows_le)
obua@14593
   210
  moreover have "n <= ?r" by (simp add: le_nrows, arith)
obua@14593
   211
  ultimately show "?r = n" by simp
obua@14593
   212
qed
obua@14593
   213
obua@14593
   214
lemma ncols_one_matrix[simp]: "ncols (one_matrix n) = n" (is "?r = _")
obua@14593
   215
proof -
obua@14593
   216
  have "?r <= n" by (simp add: ncols_le)
obua@14593
   217
  moreover have "n <= ?r" by (simp add: le_ncols, arith)
obua@14593
   218
  ultimately show "?r = n" by simp
obua@14593
   219
qed
obua@14593
   220
obua@14593
   221
lemma one_matrix_mult_right: "ncols A <= n \<Longrightarrow> A * (one_matrix n) = A"
obua@14593
   222
apply (subst Rep_matrix_inject[THEN sym])
obua@14593
   223
apply (rule ext)+
obua@14593
   224
apply (simp add: times_matrix_def Rep_mult_matrix)
obua@14593
   225
apply (rule_tac j1="xa" in ssubst[OF foldseq_almostzero])
obua@14593
   226
apply (simp_all)
obua@14593
   227
by (simp add: max_def ncols)
obua@14593
   228
obua@14593
   229
lemma one_matrix_mult_left: "nrows A <= n \<Longrightarrow> (one_matrix n) * A = A"
obua@14593
   230
apply (subst Rep_matrix_inject[THEN sym])
obua@14593
   231
apply (rule ext)+
obua@14593
   232
apply (simp add: times_matrix_def Rep_mult_matrix)
obua@14593
   233
apply (rule_tac j1="x" in ssubst[OF foldseq_almostzero])
obua@14593
   234
apply (simp_all)
obua@14593
   235
by (simp add: max_def nrows)
obua@14593
   236
wenzelm@14662
   237
constdefs
obua@14738
   238
  right_inverse_matrix :: "('a::comm_semiring_1_cancel) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
wenzelm@14662
   239
  "right_inverse_matrix A X == (A * X = one_matrix (max (nrows A) (ncols X)))"
obua@14738
   240
  inverse_matrix :: "('a::comm_semiring_1_cancel) matrix \<Rightarrow> 'a matrix \<Rightarrow> bool"
obua@14593
   241
  "inverse_matrix A X == (right_inverse_matrix A X) \<and> (right_inverse_matrix X A)"
obua@14593
   242
obua@14593
   243
lemma right_inverse_matrix_dim: "right_inverse_matrix A X \<Longrightarrow> nrows A = ncols X"
obua@14593
   244
apply (insert ncols_mult[of A X], insert nrows_mult[of A X])
obua@14593
   245
by (simp add: right_inverse_matrix_def)
obua@14593
   246
wenzelm@14662
   247
text {* to be continued \dots *}
obua@14724
   248
*)
obua@14593
   249
end