src/Pure/term.ML
author nipkow
Mon, 13 Mar 1995 09:38:10 +0100
changeset 949 83c588d6fee9
parent 728 9a973c3ba350
child 1029 27808dabf4af
permissions -rw-r--r--
Changed treatment of during type inference internally generated type
variables.

1. They are renamed to 'a, 'b, 'c etc away from a given set of used names.
2. They are either frozen (turned into TFrees) or left schematic (TVars)
depending on a parameter. In goals they are frozen, for instantiations they
are left schematic.
wenzelm@375
     1
(*  Title: 	Pure/term.ML
clasohm@0
     2
    ID:         $Id$
clasohm@0
     3
    Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
clasohm@0
     4
    Copyright   Cambridge University 1992
clasohm@0
     5
*)
clasohm@0
     6
clasohm@0
     7
clasohm@0
     8
(*Simply typed lambda-calculus: types, terms, and basic operations*)
clasohm@0
     9
clasohm@0
    10
clasohm@0
    11
(*Indexnames can be quickly renamed by adding an offset to the integer part,
clasohm@0
    12
  for resolution.*)
clasohm@0
    13
type indexname = string*int;
clasohm@0
    14
clasohm@0
    15
(* Types are classified by classes. *)
clasohm@0
    16
type class = string;
clasohm@0
    17
type sort  = class list;
clasohm@0
    18
clasohm@0
    19
(* The sorts attached to TFrees and TVars specify the sort of that variable *)
clasohm@0
    20
datatype typ = Type  of string * typ list
clasohm@0
    21
             | TFree of string * sort
clasohm@0
    22
	     | TVar  of indexname * sort;
clasohm@0
    23
clasohm@0
    24
infixr 5 -->;
clasohm@0
    25
fun S --> T = Type("fun",[S,T]);
clasohm@0
    26
clasohm@0
    27
(*handy for multiple args: [T1,...,Tn]--->T  gives  T1-->(T2--> ... -->T)*)
clasohm@0
    28
infixr --->;
clasohm@0
    29
val op ---> = foldr (op -->);
clasohm@0
    30
clasohm@0
    31
clasohm@0
    32
(*terms.  Bound variables are indicated by depth number.
clasohm@0
    33
  Free variables, (scheme) variables and constants have names.
clasohm@0
    34
  An term is "closed" if there every bound variable of level "lev"
clasohm@0
    35
  is enclosed by at least "lev" abstractions. 
clasohm@0
    36
clasohm@0
    37
  It is possible to create meaningless terms containing loose bound vars
clasohm@0
    38
  or type mismatches.  But such terms are not allowed in rules. *)
clasohm@0
    39
clasohm@0
    40
clasohm@0
    41
clasohm@0
    42
infix 9 $;  (*application binds tightly!*)
clasohm@0
    43
datatype term = 
clasohm@0
    44
    Const of string * typ
clasohm@0
    45
  | Free  of string * typ 
clasohm@0
    46
  | Var   of indexname * typ
clasohm@0
    47
  | Bound of int
clasohm@0
    48
  | Abs   of string*typ*term
clasohm@0
    49
  | op $  of term*term;
clasohm@0
    50
clasohm@0
    51
clasohm@0
    52
(*For errors involving type mismatches*)
clasohm@0
    53
exception TYPE of string * typ list * term list;
clasohm@0
    54
wenzelm@40
    55
fun raise_type msg tys ts = raise TYPE (msg, tys, ts);
wenzelm@40
    56
clasohm@0
    57
(*For system errors involving terms*)
clasohm@0
    58
exception TERM of string * term list;
clasohm@0
    59
wenzelm@40
    60
fun raise_term msg ts = raise TERM (msg, ts);
wenzelm@40
    61
clasohm@0
    62
clasohm@0
    63
(*Note variable naming conventions!
clasohm@0
    64
    a,b,c: string
clasohm@0
    65
    f,g,h: functions (including terms of function type)
clasohm@0
    66
    i,j,m,n: int
clasohm@0
    67
    t,u: term
clasohm@0
    68
    v,w: indexnames
clasohm@0
    69
    x,y: any
clasohm@0
    70
    A,B,C: term (denoting formulae)
clasohm@0
    71
    T,U: typ
clasohm@0
    72
*)
clasohm@0
    73
clasohm@0
    74
clasohm@0
    75
(** Discriminators **)
clasohm@0
    76
clasohm@0
    77
fun is_Const (Const _) = true
clasohm@0
    78
  | is_Const _ = false;
clasohm@0
    79
clasohm@0
    80
fun is_Free (Free _) = true
clasohm@0
    81
  | is_Free _ = false;
clasohm@0
    82
clasohm@0
    83
fun is_Var (Var _) = true
clasohm@0
    84
  | is_Var _ = false;
clasohm@0
    85
clasohm@0
    86
fun is_TVar (TVar _) = true
clasohm@0
    87
  | is_TVar _ = false;
clasohm@0
    88
clasohm@0
    89
(** Destructors **)
clasohm@0
    90
clasohm@0
    91
fun dest_Const (Const x) =  x
clasohm@0
    92
  | dest_Const t = raise TERM("dest_Const", [t]);
clasohm@0
    93
clasohm@0
    94
fun dest_Free (Free x) =  x
clasohm@0
    95
  | dest_Free t = raise TERM("dest_Free", [t]);
clasohm@0
    96
clasohm@0
    97
fun dest_Var (Var x) =  x
clasohm@0
    98
  | dest_Var t = raise TERM("dest_Var", [t]);
clasohm@0
    99
clasohm@0
   100
clasohm@0
   101
(* maps  [T1,...,Tn]--->T  to the list  [T1,T2,...,Tn]*)
clasohm@0
   102
fun binder_types (Type("fun",[S,T])) = S :: binder_types T
clasohm@0
   103
  | binder_types _   =  [];
clasohm@0
   104
clasohm@0
   105
(* maps  [T1,...,Tn]--->T  to T*)
clasohm@0
   106
fun body_type (Type("fun",[S,T])) = body_type T
clasohm@0
   107
  | body_type T   =  T;
clasohm@0
   108
clasohm@0
   109
(* maps  [T1,...,Tn]--->T  to   ([T1,T2,...,Tn], T)  *)
clasohm@0
   110
fun strip_type T : typ list * typ =
clasohm@0
   111
  (binder_types T, body_type T);
clasohm@0
   112
clasohm@0
   113
clasohm@0
   114
(*Compute the type of the term, checking that combinations are well-typed
clasohm@0
   115
  Ts = [T0,T1,...] holds types of bound variables 0, 1, ...*)
clasohm@0
   116
fun type_of1 (Ts, Const (_,T)) = T
clasohm@0
   117
  | type_of1 (Ts, Free  (_,T)) = T
clasohm@0
   118
  | type_of1 (Ts, Bound i) = (nth_elem (i,Ts)  
clasohm@0
   119
  	handle LIST _ => raise TYPE("type_of: bound variable", [], [Bound i]))
clasohm@0
   120
  | type_of1 (Ts, Var (_,T)) = T
clasohm@0
   121
  | type_of1 (Ts, Abs (_,T,body)) = T --> type_of1(T::Ts, body)
clasohm@0
   122
  | type_of1 (Ts, f$u) = 
clasohm@0
   123
      let val U = type_of1(Ts,u)
clasohm@0
   124
          and T = type_of1(Ts,f)
clasohm@0
   125
      in case T of
clasohm@0
   126
	    Type("fun",[T1,T2]) =>
clasohm@0
   127
	      if T1=U then T2  else raise TYPE
clasohm@0
   128
	         ("type_of: type mismatch in application", [T1,U], [f$u])
clasohm@0
   129
	  | _ => raise TYPE ("type_of: Rator must have function type",
clasohm@0
   130
	                        [T,U], [f$u])
clasohm@0
   131
      end;
clasohm@0
   132
clasohm@0
   133
fun type_of t : typ = type_of1 ([],t);
clasohm@0
   134
clasohm@0
   135
(*Determines the type of a term, with minimal checking*)
lcp@61
   136
fun fastype_of1 (Ts, f$u) = 
lcp@61
   137
    (case fastype_of1 (Ts,f) of
clasohm@0
   138
	Type("fun",[_,T]) => T
clasohm@0
   139
	| _ => raise TERM("fastype_of: expected function type", [f$u]))
lcp@61
   140
  | fastype_of1 (_, Const (_,T)) = T
lcp@61
   141
  | fastype_of1 (_, Free (_,T)) = T
lcp@61
   142
  | fastype_of1 (Ts, Bound i) = (nth_elem(i,Ts)
clasohm@0
   143
  	 handle LIST _ => raise TERM("fastype_of: Bound", [Bound i]))
lcp@61
   144
  | fastype_of1 (_, Var (_,T)) = T 
lcp@61
   145
  | fastype_of1 (Ts, Abs (_,T,u)) = T --> fastype_of1 (T::Ts, u);
lcp@61
   146
lcp@61
   147
fun fastype_of t : typ = fastype_of1 ([],t);
clasohm@0
   148
clasohm@0
   149
clasohm@0
   150
(* maps  (x1,...,xn)t   to   t  *)
clasohm@0
   151
fun strip_abs_body (Abs(_,_,t))  =  strip_abs_body t  
clasohm@0
   152
  | strip_abs_body u  =  u;
clasohm@0
   153
clasohm@0
   154
clasohm@0
   155
(* maps  (x1,...,xn)t   to   [x1, ..., xn]  *)
clasohm@0
   156
fun strip_abs_vars (Abs(a,T,t))  =  (a,T) :: strip_abs_vars t 
clasohm@0
   157
  | strip_abs_vars u  =  [] : (string*typ) list;
clasohm@0
   158
clasohm@0
   159
clasohm@0
   160
fun strip_qnt_body qnt =
clasohm@0
   161
let fun strip(tm as Const(c,_)$Abs(_,_,t)) = if c=qnt then strip t else tm
clasohm@0
   162
      | strip t = t
clasohm@0
   163
in strip end;
clasohm@0
   164
clasohm@0
   165
fun strip_qnt_vars qnt =
clasohm@0
   166
let fun strip(Const(c,_)$Abs(a,T,t)) = if c=qnt then (a,T)::strip t else []
clasohm@0
   167
      | strip t  =  [] : (string*typ) list
clasohm@0
   168
in strip end;
clasohm@0
   169
clasohm@0
   170
clasohm@0
   171
(* maps   (f, [t1,...,tn])  to  f(t1,...,tn) *)
clasohm@0
   172
val list_comb : term * term list -> term = foldl (op $);
clasohm@0
   173
clasohm@0
   174
clasohm@0
   175
(* maps   f(t1,...,tn)  to  (f, [t1,...,tn]) ; naturally tail-recursive*)
clasohm@0
   176
fun strip_comb u : term * term list = 
clasohm@0
   177
    let fun stripc (f$t, ts) = stripc (f, t::ts)
clasohm@0
   178
        |   stripc  x =  x 
clasohm@0
   179
    in  stripc(u,[])  end;
clasohm@0
   180
clasohm@0
   181
clasohm@0
   182
(* maps   f(t1,...,tn)  to  f , which is never a combination *)
clasohm@0
   183
fun head_of (f$t) = head_of f
clasohm@0
   184
  | head_of u = u;
clasohm@0
   185
clasohm@0
   186
clasohm@0
   187
(*Number of atoms and abstractions in a term*)
clasohm@0
   188
fun size_of_term (Abs (_,_,body)) = 1 + size_of_term body
clasohm@0
   189
  | size_of_term (f$t) = size_of_term f  +  size_of_term t
clasohm@0
   190
  | size_of_term _ = 1;
clasohm@0
   191
nipkow@949
   192
fun map_type_tvar f (Type(a,Ts)) = Type(a, map (map_type_tvar f) Ts)
nipkow@949
   193
  | map_type_tvar f (T as TFree _) = T
nipkow@949
   194
  | map_type_tvar f (TVar x) = f x;
nipkow@949
   195
nipkow@949
   196
fun map_type_tfree f (Type(a,Ts)) = Type(a, map (map_type_tfree f) Ts)
nipkow@949
   197
  | map_type_tfree f (TFree x) = f x
nipkow@949
   198
  | map_type_tfree f (T as TVar _) = T;
nipkow@949
   199
clasohm@0
   200
(* apply a function to all types in a term *)
clasohm@0
   201
fun map_term_types f =
clasohm@0
   202
let fun map(Const(a,T)) = Const(a, f T)
clasohm@0
   203
      | map(Free(a,T)) = Free(a, f T)
clasohm@0
   204
      | map(Var(v,T)) = Var(v, f T)
clasohm@0
   205
      | map(t as Bound _)  = t
clasohm@0
   206
      | map(Abs(a,T,t)) = Abs(a, f T, map t)
clasohm@0
   207
      | map(f$t) = map f $ map t;
clasohm@0
   208
in map end;
clasohm@0
   209
clasohm@0
   210
(* iterate a function over all types in a term *)
clasohm@0
   211
fun it_term_types f =
clasohm@0
   212
let fun iter(Const(_,T), a) = f(T,a)
clasohm@0
   213
      | iter(Free(_,T), a) = f(T,a)
clasohm@0
   214
      | iter(Var(_,T), a) = f(T,a)
clasohm@0
   215
      | iter(Abs(_,T,t), a) = iter(t,f(T,a))
clasohm@0
   216
      | iter(f$u, a) = iter(f, iter(u, a))
clasohm@0
   217
      | iter(Bound _, a) = a
clasohm@0
   218
in iter end
clasohm@0
   219
clasohm@0
   220
clasohm@0
   221
(** Connectives of higher order logic **)
clasohm@0
   222
wenzelm@375
   223
val logicC: class = "logic";
wenzelm@375
   224
val logicS: sort = [logicC];
wenzelm@375
   225
wenzelm@375
   226
fun itselfT ty = Type ("itself", [ty]);
wenzelm@375
   227
val a_itselfT = itselfT (TFree ("'a", logicS));
wenzelm@375
   228
clasohm@0
   229
val propT : typ = Type("prop",[]);
clasohm@0
   230
clasohm@0
   231
val implies = Const("==>", propT-->propT-->propT);
clasohm@0
   232
clasohm@0
   233
fun all T = Const("all", (T-->propT)-->propT);
clasohm@0
   234
clasohm@0
   235
fun equals T = Const("==", T-->T-->propT);
clasohm@0
   236
clasohm@0
   237
fun flexpair T = Const("=?=", T-->T-->propT);
clasohm@0
   238
clasohm@0
   239
(* maps  !!x1...xn. t   to   t  *)
clasohm@0
   240
fun strip_all_body (Const("all",_)$Abs(_,_,t))  =  strip_all_body t  
clasohm@0
   241
  | strip_all_body t  =  t;
clasohm@0
   242
clasohm@0
   243
(* maps  !!x1...xn. t   to   [x1, ..., xn]  *)
clasohm@0
   244
fun strip_all_vars (Const("all",_)$Abs(a,T,t))  =
clasohm@0
   245
		(a,T) :: strip_all_vars t 
clasohm@0
   246
  | strip_all_vars t  =  [] : (string*typ) list;
clasohm@0
   247
clasohm@0
   248
(*increments a term's non-local bound variables
clasohm@0
   249
  required when moving a term within abstractions
clasohm@0
   250
     inc is  increment for bound variables
clasohm@0
   251
     lev is  level at which a bound variable is considered 'loose'*)
clasohm@0
   252
fun incr_bv (inc, lev, u as Bound i) = if i>=lev then Bound(i+inc) else u 
clasohm@0
   253
  | incr_bv (inc, lev, Abs(a,T,body)) =
clasohm@0
   254
	Abs(a, T, incr_bv(inc,lev+1,body))
clasohm@0
   255
  | incr_bv (inc, lev, f$t) = 
clasohm@0
   256
      incr_bv(inc,lev,f) $ incr_bv(inc,lev,t)
clasohm@0
   257
  | incr_bv (inc, lev, u) = u;
clasohm@0
   258
clasohm@0
   259
fun incr_boundvars  0  t = t
clasohm@0
   260
  | incr_boundvars inc t = incr_bv(inc,0,t);
clasohm@0
   261
clasohm@0
   262
clasohm@0
   263
(*Accumulate all 'loose' bound vars referring to level 'lev' or beyond.
clasohm@0
   264
   (Bound 0) is loose at level 0 *)
clasohm@0
   265
fun add_loose_bnos (Bound i, lev, js) = 
clasohm@0
   266
	if i<lev then js  else  (i-lev) :: js
clasohm@0
   267
  | add_loose_bnos (Abs (_,_,t), lev, js) = add_loose_bnos (t, lev+1, js)
clasohm@0
   268
  | add_loose_bnos (f$t, lev, js) =
clasohm@0
   269
	add_loose_bnos (f, lev, add_loose_bnos (t, lev, js)) 
clasohm@0
   270
  | add_loose_bnos (_, _, js) = js;
clasohm@0
   271
clasohm@0
   272
fun loose_bnos t = add_loose_bnos (t, 0, []);
clasohm@0
   273
clasohm@0
   274
(* loose_bvar(t,k) iff t contains a 'loose' bound variable referring to
clasohm@0
   275
   level k or beyond. *)
clasohm@0
   276
fun loose_bvar(Bound i,k) = i >= k
clasohm@0
   277
  | loose_bvar(f$t, k) = loose_bvar(f,k) orelse loose_bvar(t,k)
clasohm@0
   278
  | loose_bvar(Abs(_,_,t),k) = loose_bvar(t,k+1)
clasohm@0
   279
  | loose_bvar _ = false;
clasohm@0
   280
clasohm@0
   281
clasohm@0
   282
(*Substitute arguments for loose bound variables.
clasohm@0
   283
  Beta-reduction of arg(n-1)...arg0 into t replacing (Bound i) with (argi).
clasohm@0
   284
  Note that for ((x,y)c)(a,b), the bound vars in c are x=1 and y=0
clasohm@0
   285
	and the appropriate call is  subst_bounds([b,a], c) .
clasohm@0
   286
  Loose bound variables >=n are reduced by "n" to
clasohm@0
   287
     compensate for the disappearance of lambdas.
clasohm@0
   288
*)
clasohm@0
   289
fun subst_bounds (args: term list, t) : term = 
clasohm@0
   290
  let val n = length args;
clasohm@0
   291
      fun subst (t as Bound i, lev) =
clasohm@0
   292
 	    if i<lev then  t    (*var is locally bound*)
clasohm@0
   293
	    else  (case (drop (i-lev,args)) of
clasohm@0
   294
		  []     => Bound(i-n)  (*loose: change it*)
clasohm@0
   295
	        | arg::_ => incr_boundvars lev arg)
clasohm@0
   296
	| subst (Abs(a,T,body), lev) = Abs(a, T,  subst(body,lev+1))
clasohm@0
   297
	| subst (f$t, lev) =  subst(f,lev)  $  subst(t,lev)
clasohm@0
   298
	| subst (t,lev) = t
clasohm@0
   299
  in   case args of [] => t  | _ => subst (t,0)  end;
clasohm@0
   300
clasohm@0
   301
(*beta-reduce if possible, else form application*)
clasohm@0
   302
fun betapply (Abs(_,_,t), u) = subst_bounds([u],t)
clasohm@0
   303
  | betapply (f,u) = f$u;
clasohm@0
   304
clasohm@0
   305
(*Tests whether 2 terms are alpha-convertible and have same type.
clasohm@0
   306
  Note that constants and Vars may have more than one type.*)
clasohm@0
   307
infix aconv;
clasohm@0
   308
fun (Const(a,T)) aconv (Const(b,U)) = a=b  andalso  T=U
clasohm@0
   309
  | (Free(a,T)) aconv (Free(b,U)) = a=b  andalso  T=U
clasohm@0
   310
  | (Var(v,T)) aconv (Var(w,U)) =   v=w  andalso  T=U
clasohm@0
   311
  | (Bound i) aconv (Bound j)  =   i=j
clasohm@0
   312
  | (Abs(_,T,t)) aconv (Abs(_,U,u)) = t aconv u  andalso  T=U
clasohm@0
   313
  | (f$t) aconv (g$u) = (f aconv g) andalso (t aconv u)
clasohm@0
   314
  | _ aconv _  =  false;
clasohm@0
   315
clasohm@0
   316
(*are two term lists alpha-convertible in corresponding elements?*)
clasohm@0
   317
fun aconvs ([],[]) = true
clasohm@0
   318
  | aconvs (t::ts, u::us) = t aconv u andalso aconvs(ts,us)
clasohm@0
   319
  | aconvs _ = false;
clasohm@0
   320
clasohm@0
   321
(*A fast unification filter: true unless the two terms cannot be unified. 
clasohm@0
   322
  Terms must be NORMAL.  Treats all Vars as distinct. *)
clasohm@0
   323
fun could_unify (t,u) =
clasohm@0
   324
  let fun matchrands (f$t, g$u) = could_unify(t,u) andalso  matchrands(f,g)
clasohm@0
   325
	| matchrands _ = true
clasohm@0
   326
  in case (head_of t , head_of u) of
clasohm@0
   327
	(_, Var _) => true
clasohm@0
   328
      | (Var _, _) => true
clasohm@0
   329
      | (Const(a,_), Const(b,_)) =>  a=b andalso matchrands(t,u)
clasohm@0
   330
      | (Free(a,_), Free(b,_)) =>  a=b andalso matchrands(t,u)
clasohm@0
   331
      | (Bound i, Bound j) =>  i=j andalso matchrands(t,u)
clasohm@0
   332
      | (Abs _, _) =>  true   (*because of possible eta equality*)
clasohm@0
   333
      | (_, Abs _) =>  true
clasohm@0
   334
      | _ => false
clasohm@0
   335
  end;
clasohm@0
   336
clasohm@0
   337
(*Substitute new for free occurrences of old in a term*)
clasohm@0
   338
fun subst_free [] = (fn t=>t)
clasohm@0
   339
  | subst_free pairs =
clasohm@0
   340
      let fun substf u = 
clasohm@0
   341
	    case gen_assoc (op aconv) (pairs, u) of
clasohm@0
   342
		Some u' => u'
clasohm@0
   343
	      | None => (case u of Abs(a,T,t) => Abs(a, T, substf t)
clasohm@0
   344
				 | t$u' => substf t $ substf u'
clasohm@0
   345
				 | _ => u)
clasohm@0
   346
      in  substf  end;
clasohm@0
   347
clasohm@0
   348
(*a total, irreflexive ordering on index names*)
clasohm@0
   349
fun xless ((a,i), (b,j): indexname) = i<j  orelse  (i=j andalso a<b);
clasohm@0
   350
clasohm@0
   351
clasohm@0
   352
(*Abstraction of the term "body" over its occurrences of v, 
clasohm@0
   353
    which must contain no loose bound variables.
clasohm@0
   354
  The resulting term is ready to become the body of an Abs.*)
clasohm@0
   355
fun abstract_over (v,body) =
clasohm@0
   356
  let fun abst (lev,u) = if (v aconv u) then (Bound lev) else
clasohm@0
   357
      (case u of
clasohm@0
   358
          Abs(a,T,t) => Abs(a, T, abst(lev+1, t))
clasohm@0
   359
	| f$rand => abst(lev,f) $ abst(lev,rand)
clasohm@0
   360
	| _ => u)
clasohm@0
   361
  in  abst(0,body)  end;
clasohm@0
   362
clasohm@0
   363
clasohm@0
   364
(*Form an abstraction over a free variable.*)
clasohm@0
   365
fun absfree (a,T,body) = Abs(a, T, abstract_over (Free(a,T), body));
clasohm@0
   366
clasohm@0
   367
(*Abstraction over a list of free variables*)
clasohm@0
   368
fun list_abs_free ([ ] ,     t) = t
clasohm@0
   369
  | list_abs_free ((a,T)::vars, t) = 
clasohm@0
   370
      absfree(a, T, list_abs_free(vars,t));
clasohm@0
   371
clasohm@0
   372
(*Quantification over a list of free variables*)
clasohm@0
   373
fun list_all_free ([], t: term) = t
clasohm@0
   374
  | list_all_free ((a,T)::vars, t) = 
clasohm@0
   375
        (all T) $ (absfree(a, T, list_all_free(vars,t)));
clasohm@0
   376
clasohm@0
   377
(*Quantification over a list of variables (already bound in body) *)
clasohm@0
   378
fun list_all ([], t) = t
clasohm@0
   379
  | list_all ((a,T)::vars, t) = 
clasohm@0
   380
        (all T) $ (Abs(a, T, list_all(vars,t)));
clasohm@0
   381
clasohm@0
   382
(*Replace the ATOMIC term ti by ui;    instl = [(t1,u1), ..., (tn,un)]. 
clasohm@0
   383
  A simultaneous substitution:  [ (a,b), (b,a) ] swaps a and b.  *)
clasohm@0
   384
fun subst_atomic [] t = t : term
clasohm@0
   385
  | subst_atomic (instl: (term*term) list) t =
clasohm@0
   386
      let fun subst (Abs(a,T,body)) = Abs(a, T, subst body)
clasohm@0
   387
	    | subst (f$t') = subst f $ subst t'
clasohm@0
   388
	    | subst t = (case assoc(instl,t) of
clasohm@0
   389
		           Some u => u  |  None => t)
clasohm@0
   390
      in  subst t  end;
clasohm@0
   391
lcp@728
   392
(*Substitute for type Vars in a type*)
clasohm@0
   393
fun typ_subst_TVars iTs T = if null iTs then T else
clasohm@0
   394
  let fun subst(Type(a,Ts)) = Type(a, map subst Ts)
clasohm@0
   395
	| subst(T as TFree _) = T
clasohm@0
   396
	| subst(T as TVar(ixn,_)) =
clasohm@0
   397
            (case assoc(iTs,ixn) of None => T | Some(U) => U)
clasohm@0
   398
  in subst T end;
clasohm@0
   399
lcp@728
   400
(*Substitute for type Vars in a term*)
clasohm@0
   401
val subst_TVars = map_term_types o typ_subst_TVars;
clasohm@0
   402
lcp@728
   403
(*Substitute for Vars in a term; see also envir/norm_term*)
clasohm@0
   404
fun subst_Vars itms t = if null itms then t else
clasohm@0
   405
  let fun subst(v as Var(ixn,_)) =
clasohm@0
   406
            (case assoc(itms,ixn) of None => v | Some t => t)
clasohm@0
   407
        | subst(Abs(a,T,t)) = Abs(a,T,subst t)
clasohm@0
   408
        | subst(f$t) = subst f $ subst t
clasohm@0
   409
        | subst(t) = t
clasohm@0
   410
  in subst t end;
clasohm@0
   411
lcp@728
   412
(*Substitute for type/term Vars in a term; see also envir/norm_term*)
clasohm@0
   413
fun subst_vars(iTs,itms) = if null iTs then subst_Vars itms else
clasohm@0
   414
  let fun subst(Const(a,T)) = Const(a,typ_subst_TVars iTs T)
clasohm@0
   415
        | subst(Free(a,T)) = Free(a,typ_subst_TVars iTs T)
clasohm@0
   416
        | subst(v as Var(ixn,T)) = (case assoc(itms,ixn) of
clasohm@0
   417
            None   => Var(ixn,typ_subst_TVars iTs T)
clasohm@0
   418
          | Some t => t)
clasohm@0
   419
        | subst(b as Bound _) = b
clasohm@0
   420
        | subst(Abs(a,T,t)) = Abs(a,typ_subst_TVars iTs T,subst t)
clasohm@0
   421
        | subst(f$t) = subst f $ subst t
clasohm@0
   422
  in subst end;
clasohm@0
   423
clasohm@0
   424
clasohm@0
   425
(*Computing the maximum index of a typ*)
clasohm@0
   426
fun maxidx_of_typ(Type(_,Ts)) =
clasohm@0
   427
	if Ts=[] then ~1 else max(map maxidx_of_typ Ts)
clasohm@0
   428
  | maxidx_of_typ(TFree _) = ~1
clasohm@0
   429
  | maxidx_of_typ(TVar((_,i),_)) = i;
clasohm@0
   430
clasohm@0
   431
clasohm@0
   432
(*Computing the maximum index of a term*)
clasohm@0
   433
fun maxidx_of_term (Const(_,T)) = maxidx_of_typ T
clasohm@0
   434
  | maxidx_of_term (Bound _) = ~1
clasohm@0
   435
  | maxidx_of_term (Free(_,T)) = maxidx_of_typ T
clasohm@0
   436
  | maxidx_of_term (Var ((_,i), T)) = max[i, maxidx_of_typ T]
clasohm@0
   437
  | maxidx_of_term (Abs (_,T,body)) = max[maxidx_of_term body, maxidx_of_typ T]
clasohm@0
   438
  | maxidx_of_term (f$t) = max [maxidx_of_term f,  maxidx_of_term t];
clasohm@0
   439
clasohm@0
   440
clasohm@0
   441
(* Increment the index of all Poly's in T by k *)
nipkow@949
   442
fun incr_tvar k = map_type_tvar (fn ((a,i),S) => TVar((a,i+k),S));
clasohm@0
   443
clasohm@0
   444
clasohm@0
   445
(**** Syntax-related declarations ****)
clasohm@0
   446
clasohm@0
   447
clasohm@0
   448
(*Dummy type for parsing.  Will be replaced during type inference. *)
clasohm@0
   449
val dummyT = Type("dummy",[]);
clasohm@0
   450
clasohm@0
   451
(*scan a numeral of the given radix, normally 10*)
clasohm@0
   452
fun scan_radixint (radix: int, cs) : int * string list =
clasohm@0
   453
  let val zero = ord"0"
clasohm@0
   454
      val limit = zero+radix
clasohm@0
   455
      fun scan (num,[]) = (num,[])
clasohm@0
   456
	| scan (num, c::cs) =
clasohm@0
   457
	      if  zero <= ord c  andalso  ord c < limit
clasohm@0
   458
	      then scan(radix*num + ord c - zero, cs)
clasohm@0
   459
	      else (num, c::cs)
clasohm@0
   460
  in  scan(0,cs)  end;
clasohm@0
   461
clasohm@0
   462
fun scan_int cs = scan_radixint(10,cs);
clasohm@0
   463
clasohm@0
   464
clasohm@0
   465
(*** Printing ***)
clasohm@0
   466
clasohm@0
   467
clasohm@0
   468
(*Makes a variant of the name c distinct from the names in bs.
clasohm@0
   469
  First attaches the suffix "a" and then increments this. *)
clasohm@0
   470
fun variant bs c : string =
clasohm@0
   471
  let fun vary2 c = if (c mem bs) then  vary2 (bump_string c)  else  c
clasohm@0
   472
      fun vary1 c = if (c mem bs) then  vary2 (c ^ "a")  else  c
clasohm@0
   473
  in  vary1 (if c="" then "u" else c)  end;
clasohm@0
   474
clasohm@0
   475
(*Create variants of the list of names, with priority to the first ones*)
clasohm@0
   476
fun variantlist ([], used) = []
clasohm@0
   477
  | variantlist(b::bs, used) = 
clasohm@0
   478
      let val b' = variant used b
clasohm@0
   479
      in  b' :: variantlist (bs, b'::used)  end;
clasohm@0
   480
clasohm@0
   481
(** TFrees and TVars **)
clasohm@0
   482
clasohm@0
   483
(*maps  (bs,v)  to   v'::bs    this reverses the identifiers bs*)
clasohm@0
   484
fun add_new_id (bs, c) : string list =  variant bs c  ::  bs;
clasohm@0
   485
clasohm@0
   486
(*Accumulates the names in the term, suppressing duplicates.
clasohm@0
   487
  Includes Frees and Consts.  For choosing unambiguous bound var names.*)
clasohm@0
   488
fun add_term_names (Const(a,_), bs) = a ins bs
clasohm@0
   489
  | add_term_names (Free(a,_), bs) = a ins bs
clasohm@0
   490
  | add_term_names (f$u, bs) = add_term_names (f, add_term_names(u, bs))
clasohm@0
   491
  | add_term_names (Abs(_,_,t), bs) = add_term_names(t,bs)
clasohm@0
   492
  | add_term_names (_, bs) = bs;
clasohm@0
   493
clasohm@0
   494
(*Accumulates the TVars in a type, suppressing duplicates. *)
clasohm@0
   495
fun add_typ_tvars(Type(_,Ts),vs) = foldr add_typ_tvars (Ts,vs)
clasohm@0
   496
  | add_typ_tvars(TFree(_),vs) = vs
clasohm@0
   497
  | add_typ_tvars(TVar(v),vs) = v ins vs;
clasohm@0
   498
clasohm@0
   499
(*Accumulates the TFrees in a type, suppressing duplicates. *)
clasohm@0
   500
fun add_typ_tfree_names(Type(_,Ts),fs) = foldr add_typ_tfree_names (Ts,fs)
clasohm@0
   501
  | add_typ_tfree_names(TFree(f,_),fs) = f ins fs
clasohm@0
   502
  | add_typ_tfree_names(TVar(_),fs) = fs;
clasohm@0
   503
clasohm@0
   504
fun add_typ_tfrees(Type(_,Ts),fs) = foldr add_typ_tfrees (Ts,fs)
clasohm@0
   505
  | add_typ_tfrees(TFree(f),fs) = f ins fs
clasohm@0
   506
  | add_typ_tfrees(TVar(_),fs) = fs;
clasohm@0
   507
nipkow@949
   508
fun add_typ_varnames(Type(_,Ts),nms) = foldr add_typ_varnames (Ts,nms)
nipkow@949
   509
  | add_typ_varnames(TFree(nm,_),nms) = nm ins nms
nipkow@949
   510
  | add_typ_varnames(TVar((nm,_),_),nms) = nm ins nms;
nipkow@949
   511
clasohm@0
   512
(*Accumulates the TVars in a term, suppressing duplicates. *)
clasohm@0
   513
val add_term_tvars = it_term_types add_typ_tvars;
clasohm@0
   514
clasohm@0
   515
(*Accumulates the TFrees in a term, suppressing duplicates. *)
clasohm@0
   516
val add_term_tfrees = it_term_types add_typ_tfrees;
clasohm@0
   517
val add_term_tfree_names = it_term_types add_typ_tfree_names;
clasohm@0
   518
nipkow@949
   519
val add_term_tvarnames = it_term_types add_typ_varnames;
nipkow@949
   520
clasohm@0
   521
(*Non-list versions*)
clasohm@0
   522
fun typ_tfrees T = add_typ_tfrees(T,[]);
clasohm@0
   523
fun typ_tvars T = add_typ_tvars(T,[]);
clasohm@0
   524
fun term_tfrees t = add_term_tfrees(t,[]);
clasohm@0
   525
fun term_tvars t = add_term_tvars(t,[]);
clasohm@0
   526
nipkow@949
   527
(*special code to enforce left-to-right collection of TVar-indexnames*)
nipkow@949
   528
nipkow@949
   529
fun add_typ_ixns(ixns,Type(_,Ts)) = foldl add_typ_ixns (ixns,Ts)
nipkow@949
   530
  | add_typ_ixns(ixns,TVar(ixn,_)) = if ixn mem ixns then ixns else ixns@[ixn]
nipkow@949
   531
  | add_typ_ixns(ixns,TFree(_)) = ixns;
nipkow@949
   532
nipkow@949
   533
fun add_term_tvar_ixns(Const(_,T),ixns) = add_typ_ixns(ixns,T)
nipkow@949
   534
  | add_term_tvar_ixns(Free(_,T),ixns) = add_typ_ixns(ixns,T)
nipkow@949
   535
  | add_term_tvar_ixns(Var(_,T),ixns) = add_typ_ixns(ixns,T)
nipkow@949
   536
  | add_term_tvar_ixns(Bound _,ixns) = ixns
nipkow@949
   537
  | add_term_tvar_ixns(Abs(_,T,t),ixns) =
nipkow@949
   538
      add_term_tvar_ixns(t,add_typ_ixns(ixns,T))
nipkow@949
   539
  | add_term_tvar_ixns(f$t,ixns) =
nipkow@949
   540
      add_term_tvar_ixns(t,add_term_tvar_ixns(f,ixns));
nipkow@949
   541
clasohm@0
   542
(** Frees and Vars **)
clasohm@0
   543
clasohm@0
   544
(*a partial ordering (not reflexive) for atomic terms*)
clasohm@0
   545
fun atless (Const (a,_), Const (b,_))  =  a<b
clasohm@0
   546
  | atless (Free (a,_), Free (b,_)) =  a<b
clasohm@0
   547
  | atless (Var(v,_), Var(w,_))  =  xless(v,w)
clasohm@0
   548
  | atless (Bound i, Bound j)  =   i<j
clasohm@0
   549
  | atless _  =  false;
clasohm@0
   550
clasohm@0
   551
(*insert atomic term into partially sorted list, suppressing duplicates (?)*)
clasohm@0
   552
fun insert_aterm (t,us) =
clasohm@0
   553
  let fun inserta [] = [t]
clasohm@0
   554
        | inserta (us as u::us') = 
clasohm@0
   555
	      if atless(t,u) then t::us
clasohm@0
   556
	      else if t=u then us (*duplicate*)
clasohm@0
   557
	      else u :: inserta(us')
clasohm@0
   558
  in  inserta us  end;
clasohm@0
   559
clasohm@0
   560
(*Accumulates the Vars in the term, suppressing duplicates*)
clasohm@0
   561
fun add_term_vars (t, vars: term list) = case t of
clasohm@0
   562
    Var   _ => insert_aterm(t,vars)
clasohm@0
   563
  | Abs (_,_,body) => add_term_vars(body,vars)
clasohm@0
   564
  | f$t =>  add_term_vars (f, add_term_vars(t, vars))
clasohm@0
   565
  | _ => vars;
clasohm@0
   566
clasohm@0
   567
fun term_vars t = add_term_vars(t,[]);
clasohm@0
   568
clasohm@0
   569
(*Accumulates the Frees in the term, suppressing duplicates*)
clasohm@0
   570
fun add_term_frees (t, frees: term list) = case t of
clasohm@0
   571
    Free   _ => insert_aterm(t,frees)
clasohm@0
   572
  | Abs (_,_,body) => add_term_frees(body,frees)
clasohm@0
   573
  | f$t =>  add_term_frees (f, add_term_frees(t, frees))
clasohm@0
   574
  | _ => frees;
clasohm@0
   575
clasohm@0
   576
fun term_frees t = add_term_frees(t,[]);
clasohm@0
   577
clasohm@0
   578
(*Given an abstraction over P, replaces the bound variable by a Free variable
clasohm@0
   579
  having a unique name. *)
clasohm@0
   580
fun variant_abs (a,T,P) =
clasohm@0
   581
  let val b = variant (add_term_names(P,[])) a
clasohm@0
   582
  in  (b,  subst_bounds ([Free(b,T)], P))  end;
clasohm@0
   583
clasohm@0
   584
(* renames and reverses the strings in vars away from names *)
clasohm@0
   585
fun rename_aTs names vars : (string*typ)list =
clasohm@0
   586
  let fun rename_aT (vars,(a,T)) =
clasohm@0
   587
		(variant (map #1 vars @ names) a, T) :: vars
clasohm@0
   588
  in foldl rename_aT ([],vars) end;
clasohm@0
   589
clasohm@0
   590
fun rename_wrt_term t = rename_aTs (add_term_names(t,[]));