src/Tools/isac/Knowledge/Integrate.thy
author wenzelm
Tue, 15 Jun 2021 22:24:20 +0200
changeset 60303 815b0dc8b589
parent 60298 09106b85d3b4
child 60306 51ec2e101e9f
permissions -rw-r--r--
Isar command 'method' as combination of KEStore_Elems.add_mets + MethodC.prep_import, without change of semantics;
neuper@37906
     1
(* integration over the reals
neuper@37906
     2
   author: Walther Neuper
neuper@37906
     3
   050814, 08:51
neuper@37906
     4
   (c) due to copyright terms
neuper@37906
     5
*)
neuper@37906
     6
neuper@37954
     7
theory Integrate imports Diff begin
neuper@37906
     8
neuper@37906
     9
consts
neuper@37906
    10
neuper@37906
    11
  Integral            :: "[real, real]=> real" ("Integral _ D _" 91)
walther@60278
    12
(*new_c	      :: "real => real"        ("new_c _" 66)*)
walther@60278
    13
  is_f_x            :: "real => bool"        ("_ is'_f'_x" 10)
neuper@37906
    14
neuper@37906
    15
  (*descriptions in the related problems*)
neuper@37996
    16
  integrateBy         :: "real => una"
neuper@37996
    17
  antiDerivative      :: "real => una"
neuper@37996
    18
  antiDerivativeName  :: "(real => real) => una"
neuper@37906
    19
walther@60260
    20
  (*the CAS-command, eg. "Integrate (2*x \<up> 3, x)"*)
neuper@37906
    21
  Integrate           :: "[real * real] => real"
neuper@37906
    22
neuper@52148
    23
axiomatization where
neuper@37906
    24
(*stated as axioms, todo: prove as theorems
neuper@37906
    25
  'bdv' is a constant handled on the meta-level 
neuper@37906
    26
   specifically as a 'bound variable'            *)
neuper@37906
    27
walther@60269
    28
(*Ambiguous input\<^here> produces 3 parse trees -----------------------------\\*)
neuper@52148
    29
  integral_const:    "Not (bdv occurs_in u) ==> Integral u D bdv = u * bdv" and
walther@60242
    30
  integral_var:      "Integral bdv D bdv = bdv \<up> 2 / 2" and
neuper@37906
    31
neuper@37983
    32
  integral_add:      "Integral (u + v) D bdv =  
neuper@52148
    33
		     (Integral u D bdv) + (Integral v D bdv)" and
neuper@37983
    34
  integral_mult:     "[| Not (bdv occurs_in u); bdv occurs_in v |] ==>  
neuper@52148
    35
		     Integral (u * v) D bdv = u * (Integral v D bdv)" and
neuper@37906
    36
(*WN080222: this goes into sub-terms, too ...
neuper@37983
    37
  call_for_new_c:    "[| Not (matches (u + new_c v) a); Not (a is_f_x) |] ==>  
neuper@37954
    38
		     a = a + new_c a"
neuper@37906
    39
*)
walther@60242
    40
  integral_pow:      "Integral bdv \<up> n D bdv = bdv \<up> (n+1) / (n + 1)"
walther@60269
    41
(*Ambiguous input\<^here> produces 3 parse trees -----------------------------//*)
neuper@37906
    42
wneuper@59472
    43
ML \<open>
neuper@37954
    44
(** eval functions **)
neuper@37954
    45
neuper@37954
    46
val c = Free ("c", HOLogic.realT);
walther@59878
    47
(*.create a new unique variable 'c..' in a term; for use by Rule.Eval in a rls;
neuper@37954
    48
   an alternative to do this would be '(Try (Calculate new_c_) (new_c es__))'
neuper@37954
    49
   in the script; this will be possible if currying doesnt take the value
neuper@37954
    50
   from a variable, but the value '(new_c es__)' itself.*)
neuper@37954
    51
fun new_c term = 
neuper@37954
    52
    let fun selc var = 
neuper@40836
    53
	    case (Symbol.explode o id_of) var of
neuper@37954
    54
		"c"::[] => true
walther@59875
    55
	      |	"c"::"_"::is => (case (TermC.int_opt_of_string o implode) is of
neuper@37954
    56
				     SOME _ => true
neuper@37954
    57
				   | NONE => false)
neuper@37954
    58
              | _ => false;
neuper@40836
    59
	fun get_coeff c = case (Symbol.explode o id_of) c of
walther@59875
    60
	      		      "c"::"_"::is => (the o TermC.int_opt_of_string o implode) is
neuper@37954
    61
			    | _ => 0;
wneuper@59389
    62
        val cs = filter selc (TermC.vars term);
neuper@37954
    63
    in 
neuper@37954
    64
	case cs of
neuper@37954
    65
	    [] => c
walther@60269
    66
	  | [_] => Free ("c_2", HOLogic.realT)
neuper@37954
    67
	  | cs => 
neuper@37954
    68
	    let val max_coeff = maxl (map get_coeff cs)
neuper@37954
    69
	    in Free ("c_"^string_of_int (max_coeff + 1), HOLogic.realT) end
neuper@37954
    70
    end;
neuper@37954
    71
neuper@37954
    72
(*WN080222
walther@60278
    73
(*("new_c", ("Integrate.new_c", eval_new_c "#new_c_"))*)
walther@60278
    74
fun eval_new_c _ _ (p as (Const ("Integrate.new_c",_) $ t)) _ =
walther@59868
    75
     SOME ((UnparseC.term p) ^ " = " ^ UnparseC.term (new_c p),
neuper@37954
    76
	  Trueprop $ (mk_equality (p, new_c p)))
neuper@37954
    77
  | eval_new_c _ _ _ _ = NONE;
neuper@37954
    78
*)
neuper@37954
    79
neuper@37954
    80
(*WN080222:*)
walther@60278
    81
(*("add_new_c", ("Integrate.add_new_c", eval_add_new_c "#add_new_c_"))
neuper@37954
    82
  add a new c to a term or a fun-equation;
neuper@37954
    83
  this is _not in_ the term, because only applied to _whole_ term*)
walther@60278
    84
fun eval_add_new_c (_:string) "Integrate.add_new_c" p (_:theory) =
neuper@37954
    85
    let val p' = case p of
neuper@41922
    86
		     Const ("HOL.eq", T) $ lh $ rh => 
wneuper@59389
    87
		     Const ("HOL.eq", T) $ lh $ TermC.mk_add rh (new_c rh)
wneuper@59389
    88
		   | p => TermC.mk_add p (new_c p)
walther@59868
    89
    in SOME ((UnparseC.term p) ^ " = " ^ UnparseC.term p',
wneuper@59390
    90
	  HOLogic.Trueprop $ (TermC.mk_equality (p, p')))
neuper@37954
    91
    end
neuper@37954
    92
  | eval_add_new_c _ _ _ _ = NONE;
neuper@37954
    93
neuper@37954
    94
walther@60278
    95
(*("is_f_x", ("Integrate.is_f_x", eval_is_f_x "is_f_x_"))*)
walther@60278
    96
fun eval_is_f_x _ _(p as (Const ("Integrate.is_f_x", _)
neuper@37954
    97
					   $ arg)) _ =
wneuper@59389
    98
    if TermC.is_f_x arg
walther@59868
    99
    then SOME ((UnparseC.term p) ^ " = True",
wneuper@59390
   100
	       HOLogic.Trueprop $ (TermC.mk_equality (p, @{term True})))
walther@59868
   101
    else SOME ((UnparseC.term p) ^ " = False",
wneuper@59390
   102
	       HOLogic.Trueprop $ (TermC.mk_equality (p, @{term False})))
neuper@37954
   103
  | eval_is_f_x _ _ _ _ = NONE;
wneuper@59472
   104
\<close>
wneuper@59472
   105
setup \<open>KEStore_Elems.add_calcs
walther@60278
   106
  [("add_new_c", ("Integrate.add_new_c", eval_add_new_c "add_new_c_")),
walther@60278
   107
    ("is_f_x", ("Integrate.is_f_x", eval_is_f_x "is_f_idextifier_"))]\<close>
wneuper@59472
   108
ML \<open>
neuper@37954
   109
(** rulesets **)
neuper@37954
   110
neuper@37954
   111
(*.rulesets for integration.*)
neuper@37954
   112
val integration_rules = 
walther@59851
   113
    Rule_Def.Repeat {id="integration_rules", preconds = [], 
neuper@37954
   114
	 rew_ord = ("termlessI",termlessI), 
walther@59851
   115
	 erls = Rule_Def.Repeat {id="conditions_in_integration_rules", 
neuper@37954
   116
		     preconds = [], 
neuper@37954
   117
		     rew_ord = ("termlessI",termlessI), 
walther@59851
   118
		     erls = Rule_Set.Empty, 
walther@59851
   119
		     srls = Rule_Set.Empty, calc = [], errpatts = [],
neuper@37954
   120
		     rules = [(*for rewriting conditions in Thm's*)
wenzelm@60294
   121
			      \<^rule_eval>\<open>Prog_Expr.occurs_in\<close> (Prog_Expr.eval_occurs_in "#occurs_in_"),
wenzelm@60297
   122
			      \<^rule_thm>\<open>not_true\<close>,
wenzelm@60298
   123
			      \<^rule_thm>\<open>not_false\<close>
neuper@37954
   124
			      ],
walther@59878
   125
		     scr = Rule.Empty_Prog}, 
walther@59851
   126
	 srls = Rule_Set.Empty, calc = [], errpatts = [],
neuper@37954
   127
	 rules = [
wenzelm@60297
   128
		  \<^rule_thm>\<open>integral_const\<close>,
wenzelm@60297
   129
		  \<^rule_thm>\<open>integral_var\<close>,
wenzelm@60297
   130
		  \<^rule_thm>\<open>integral_add\<close>,
wenzelm@60297
   131
		  \<^rule_thm>\<open>integral_mult\<close>,
wenzelm@60297
   132
		  \<^rule_thm>\<open>integral_pow\<close>,
wenzelm@60294
   133
		  \<^rule_eval>\<open>plus\<close> (**)(eval_binop "#add_")(*for n+1*)
neuper@37954
   134
		  ],
walther@59878
   135
	 scr = Rule.Empty_Prog};
wneuper@59472
   136
\<close>
wneuper@59472
   137
ML \<open>
neuper@37954
   138
val add_new_c = 
walther@59878
   139
    Rule_Set.Sequence {id="add_new_c", preconds = [], 
neuper@37954
   140
	 rew_ord = ("termlessI",termlessI), 
walther@59851
   141
	 erls = Rule_Def.Repeat {id="conditions_in_add_new_c", 
neuper@37954
   142
		     preconds = [], 
neuper@37954
   143
		     rew_ord = ("termlessI",termlessI), 
walther@59851
   144
		     erls = Rule_Set.Empty, 
walther@59851
   145
		     srls = Rule_Set.Empty, calc = [], errpatts = [],
wenzelm@60294
   146
		     rules = [\<^rule_eval>\<open>Prog_Expr.matches\<close> (Prog_Expr.eval_matches""),
wenzelm@60294
   147
			      \<^rule_eval>\<open>Integrate.is_f_x\<close> (eval_is_f_x "is_f_x_"),
wenzelm@60297
   148
			      \<^rule_thm>\<open>not_true\<close>,
wenzelm@60297
   149
			      \<^rule_thm>\<open>not_false\<close>
neuper@37954
   150
			      ],
walther@59878
   151
		     scr = Rule.Empty_Prog}, 
walther@59851
   152
	 srls = Rule_Set.Empty, calc = [], errpatts = [],
wenzelm@60297
   153
	 rules = [ (*\<^rule_thm>\<open>call_for_new_c\<close>,*)
walther@60278
   154
		   Rule.Cal1 ("Integrate.add_new_c", eval_add_new_c "new_c_")
neuper@37954
   155
		   ],
walther@59878
   156
	 scr = Rule.Empty_Prog};
wneuper@59472
   157
\<close>
wneuper@59472
   158
ML \<open>
neuper@37954
   159
neuper@37954
   160
(*.rulesets for simplifying Integrals.*)
neuper@37954
   161
neuper@37954
   162
(*.for simplify_Integral adapted from 'norm_Rational_rls'.*)
neuper@37954
   163
val norm_Rational_rls_noadd_fractions = 
walther@59851
   164
Rule_Def.Repeat {id = "norm_Rational_rls_noadd_fractions", preconds = [], 
walther@59857
   165
     rew_ord = ("dummy_ord",Rewrite_Ord.dummy_ord), 
walther@59851
   166
     erls = norm_rat_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
wneuper@59416
   167
     rules = [(*Rule.Rls_ add_fractions_p_rls,!!!*)
wneuper@59416
   168
	      Rule.Rls_ (*rat_mult_div_pow original corrected WN051028*)
walther@59851
   169
		  (Rule_Def.Repeat {id = "rat_mult_div_pow", preconds = [], 
walther@59857
   170
		       rew_ord = ("dummy_ord",Rewrite_Ord.dummy_ord), 
walther@59852
   171
		       erls = (*FIXME.WN051028 Rule_Set.empty,*)
walther@59852
   172
		       Rule_Set.append_rules "Rule_Set.empty-is_polyexp" Rule_Set.empty
wenzelm@60294
   173
				  [\<^rule_eval>\<open>is_polyexp\<close> (eval_is_polyexp "")],
walther@59851
   174
				  srls = Rule_Set.Empty, calc = [], errpatts = [],
wenzelm@60297
   175
				  rules = [\<^rule_thm>\<open>rat_mult\<close>,
neuper@37954
   176
	       (*"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
wenzelm@60297
   177
	       \<^rule_thm>\<open>rat_mult_poly_l\<close>,
neuper@37954
   178
	       (*"?c is_polyexp ==> ?c * (?a / ?b) = ?c * ?a / ?b"*)
wenzelm@60297
   179
	       \<^rule_thm>\<open>rat_mult_poly_r\<close>,
neuper@37954
   180
	       (*"?c is_polyexp ==> ?a / ?b * ?c = ?a * ?c / ?b"*)
neuper@37954
   181
wenzelm@60298
   182
	       \<^rule_thm>\<open>real_divide_divide1_mg\<close>,
neuper@37954
   183
	       (*"y ~= 0 ==> (u / v) / (y / z) = (u * z) / (y * v)"*)
wenzelm@60298
   184
	       \<^rule_thm>\<open>divide_divide_eq_right\<close>,
neuper@37954
   185
	       (*"?x / (?y / ?z) = ?x * ?z / ?y"*)
wenzelm@60298
   186
	       \<^rule_thm>\<open>divide_divide_eq_left\<close>,
neuper@37954
   187
	       (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
wenzelm@60294
   188
	       \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e"),
neuper@37954
   189
	      
wenzelm@60297
   190
	       \<^rule_thm>\<open>rat_power\<close>
walther@60260
   191
		(*"(?a / ?b)  \<up>  ?n = ?a  \<up>  ?n / ?b  \<up>  ?n"*)
neuper@37954
   192
	       ],
walther@59878
   193
      scr = Rule.Empty_Prog
neuper@37954
   194
      }),
wneuper@59416
   195
		Rule.Rls_ make_rat_poly_with_parentheses,
wneuper@59416
   196
		Rule.Rls_ cancel_p_rls,(*FIXME:cancel_p does NOT order sometimes*)
wneuper@59416
   197
		Rule.Rls_ rat_reduce_1
neuper@37954
   198
		],
walther@59878
   199
       scr = Rule.Empty_Prog
wneuper@59406
   200
       };
neuper@37954
   201
neuper@37954
   202
(*.for simplify_Integral adapted from 'norm_Rational'.*)
neuper@37954
   203
val norm_Rational_noadd_fractions = 
walther@59878
   204
   Rule_Set.Sequence {id = "norm_Rational_noadd_fractions", preconds = [], 
walther@59857
   205
       rew_ord = ("dummy_ord",Rewrite_Ord.dummy_ord), 
walther@59851
   206
       erls = norm_rat_erls, srls = Rule_Set.Empty, calc = [], errpatts = [],
wneuper@59416
   207
       rules = [Rule.Rls_ discard_minus,
wneuper@59416
   208
		Rule.Rls_ rat_mult_poly,(* removes double fractions like a/b/c    *)
wneuper@59416
   209
		Rule.Rls_ make_rat_poly_with_parentheses, (*WN0510 also in(#)below*)
wneuper@59416
   210
		Rule.Rls_ cancel_p_rls, (*FIXME.MG:cancel_p does NOT order sometim*)
wneuper@59416
   211
		Rule.Rls_ norm_Rational_rls_noadd_fractions,(* the main rls (#)   *)
wneuper@59416
   212
		Rule.Rls_ discard_parentheses1 (* mult only                       *)
neuper@37954
   213
		],
walther@59878
   214
       scr = Rule.Empty_Prog
wneuper@59406
   215
       };
neuper@37954
   216
neuper@37954
   217
(*.simplify terms before and after Integration such that  
neuper@37954
   218
   ..a.x^2/2 + b.x^3/3.. is made to ..a/2.x^2 + b/3.x^3.. (and NO
neuper@37954
   219
   common denominator as done by norm_Rational or make_ratpoly_in.
neuper@37954
   220
   This is a copy from 'make_ratpoly_in' with respective reduction of rules and
neuper@37954
   221
   *1* expand the term, ie. distribute * and / over +
neuper@37954
   222
.*)
neuper@37954
   223
val separate_bdv2 =
walther@59852
   224
    Rule_Set.append_rules "separate_bdv2"
neuper@37954
   225
	       collect_bdv
wenzelm@60297
   226
	       [\<^rule_thm>\<open>separate_bdv\<close>,
neuper@37954
   227
		(*"?a * ?bdv / ?b = ?a / ?b * ?bdv"*)
wenzelm@60297
   228
		\<^rule_thm>\<open>separate_bdv_n\<close>,
wenzelm@60297
   229
		\<^rule_thm>\<open>separate_1_bdv\<close>,
neuper@37954
   230
		(*"?bdv / ?b = (1 / ?b) * ?bdv"*)
wenzelm@60297
   231
		\<^rule_thm>\<open>separate_1_bdv_n\<close>(*,
walther@60260
   232
			  (*"?bdv  \<up>  ?n / ?b = 1 / ?b * ?bdv  \<up>  ?n"*)
wenzelm@60298
   233
			  *****\<^rule_thm>\<open>add_divide_distrib\<close>
neuper@37954
   234
			  (*"(?x + ?y) / ?z = ?x / ?z + ?y / ?z"*)----------*)
neuper@37954
   235
		];
neuper@37954
   236
val simplify_Integral = 
walther@59878
   237
  Rule_Set.Sequence {id = "simplify_Integral", preconds = []:term list, 
walther@59857
   238
       rew_ord = ("dummy_ord", Rewrite_Ord.dummy_ord),
walther@59851
   239
      erls = Atools_erls, srls = Rule_Set.Empty,
neuper@42451
   240
      calc = [],  errpatts = [],
wenzelm@60297
   241
      rules = [\<^rule_thm>\<open>distrib_right\<close>,
neuper@37954
   242
 	       (*"(?z1.0 + ?z2.0) * ?w = ?z1.0 * ?w + ?z2.0 * ?w"*)
wenzelm@60297
   243
	       \<^rule_thm>\<open>add_divide_distrib\<close>,
neuper@37954
   244
 	       (*"(?x + ?y) / ?z = ?x / ?z + ?y / ?z"*)
neuper@37954
   245
	       (*^^^^^ *1* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^*)
wneuper@59416
   246
	       Rule.Rls_ norm_Rational_noadd_fractions,
wneuper@59416
   247
	       Rule.Rls_ order_add_mult_in,
wneuper@59416
   248
	       Rule.Rls_ discard_parentheses,
wneuper@59416
   249
	       (*Rule.Rls_ collect_bdv, from make_polynomial_in*)
wneuper@59416
   250
	       Rule.Rls_ separate_bdv2,
wenzelm@60294
   251
	       \<^rule_eval>\<open>divide\<close> (Prog_Expr.eval_cancel "#divide_e")
neuper@37954
   252
	       ],
walther@59878
   253
      scr = Rule.Empty_Prog};      
neuper@37954
   254
neuper@37954
   255
neuper@37954
   256
(*simplify terms before and after Integration such that  
neuper@37954
   257
   ..a.x^2/2 + b.x^3/3.. is made to ..a/2.x^2 + b/3.x^3.. (and NO
neuper@37954
   258
   common denominator as done by norm_Rational or make_ratpoly_in.
neuper@37954
   259
   This is a copy from 'make_polynomial_in' with insertions from 
neuper@37954
   260
   'make_ratpoly_in' 
neuper@37954
   261
THIS IS KEPT FOR COMPARISON ............................................   
s1210629013@55444
   262
* val simplify_Integral = prep_rls'(
walther@59878
   263
*   Rule_Set.Sequence {id = "", preconds = []:term list, 
walther@59857
   264
*        rew_ord = ("dummy_ord", Rewrite_Ord.dummy_ord),
walther@59851
   265
*       erls = Atools_erls, srls = Rule_Set.Empty,
neuper@37954
   266
*       calc = [], (*asm_thm = [],*)
wneuper@59416
   267
*       rules = [Rule.Rls_ expand_poly,
wneuper@59416
   268
* 	       Rule.Rls_ order_add_mult_in,
wneuper@59416
   269
* 	       Rule.Rls_ simplify_power,
wneuper@59416
   270
* 	       Rule.Rls_ collect_numerals,
wneuper@59416
   271
* 	       Rule.Rls_ reduce_012,
wenzelm@60297
   272
* 	       \<^rule_thm>\<open>realpow_oneI\<close>,
wneuper@59416
   273
* 	       Rule.Rls_ discard_parentheses,
wneuper@59416
   274
* 	       Rule.Rls_ collect_bdv,
neuper@37954
   275
* 	       (*below inserted from 'make_ratpoly_in'*)
walther@59852
   276
* 	       Rule.Rls_ (Rule_Set.append_rules "separate_bdv"
neuper@37954
   277
* 			 collect_bdv
wenzelm@60297
   278
* 			 [\<^rule_thm>\<open>separate_bdv\<close>,
neuper@37954
   279
* 			  (*"?a * ?bdv / ?b = ?a / ?b * ?bdv"*)
wenzelm@60297
   280
* 			  \<^rule_thm>\<open>separate_bdv_n\<close>,
wenzelm@60297
   281
* 			  \<^rule_thm>\<open>separate_1_bdv\<close>,
neuper@37954
   282
* 			  (*"?bdv / ?b = (1 / ?b) * ?bdv"*)
wenzelm@60297
   283
* 			  \<^rule_thm>\<open>separate_1_bdv_n\<close>(*,
walther@60260
   284
* 			  (*"?bdv  \<up>  ?n / ?b = 1 / ?b * ?bdv  \<up>  ?n"*)
wenzelm@60298
   285
* 			  \<^rule_thm>\<open>add_divide_distrib\<close>
neuper@37954
   286
* 			   (*"(?x + ?y) / ?z = ?x / ?z + ?y / ?z"*)*)
neuper@37954
   287
* 			  ]),
wenzelm@60294
   288
* 	       \<^rule_eval>\<open>divide\<close> (eval_cancel "#divide_e")
neuper@37954
   289
* 	       ],
walther@59878
   290
*       scr = Rule.Empty_Prog
wneuper@59406
   291
*       }); 
neuper@37954
   292
.......................................................................*)
neuper@37954
   293
neuper@37954
   294
val integration = 
walther@59878
   295
    Rule_Set.Sequence {id="integration", preconds = [], 
neuper@37954
   296
	 rew_ord = ("termlessI",termlessI), 
walther@59851
   297
	 erls = Rule_Def.Repeat {id="conditions_in_integration", 
neuper@37954
   298
		     preconds = [], 
neuper@37954
   299
		     rew_ord = ("termlessI",termlessI), 
walther@59851
   300
		     erls = Rule_Set.Empty, 
walther@59851
   301
		     srls = Rule_Set.Empty, calc = [], errpatts = [],
neuper@37954
   302
		     rules = [],
walther@59878
   303
		     scr = Rule.Empty_Prog}, 
walther@59851
   304
	 srls = Rule_Set.Empty, calc = [], errpatts = [],
wneuper@59416
   305
	 rules = [ Rule.Rls_ integration_rules,
wneuper@59416
   306
		   Rule.Rls_ add_new_c,
wneuper@59416
   307
		   Rule.Rls_ simplify_Integral
neuper@37954
   308
		   ],
walther@59878
   309
	 scr = Rule.Empty_Prog};
s1210629013@55444
   310
walther@59618
   311
val prep_rls' = Auto_Prog.prep_rls @{theory};
wneuper@59472
   312
\<close>
wenzelm@60289
   313
rule_set_knowledge
wenzelm@60286
   314
  integration_rules = \<open>prep_rls' integration_rules\<close> and
wenzelm@60286
   315
  add_new_c = \<open>prep_rls' add_new_c\<close> and
wenzelm@60286
   316
  simplify_Integral = \<open>prep_rls' simplify_Integral\<close> and
wenzelm@60286
   317
  integration = \<open>prep_rls' integration\<close> and
wenzelm@60286
   318
  separate_bdv2 = \<open>prep_rls' separate_bdv2\<close> and
wenzelm@60286
   319
  norm_Rational_noadd_fractions = \<open>prep_rls' norm_Rational_noadd_fractions\<close> and
wenzelm@60286
   320
  norm_Rational_rls_noadd_fractions = \<open>prep_rls' norm_Rational_rls_noadd_fractions\<close>
neuper@37954
   321
neuper@37954
   322
(** problems **)
wneuper@59472
   323
setup \<open>KEStore_Elems.add_pbts
wenzelm@60290
   324
  [(Problem.prep_input @{theory} "pbl_fun_integ" [] Problem.id_empty
walther@59997
   325
      (["integrate", "function"],
s1210629013@55339
   326
        [("#Given" ,["functionTerm f_f", "integrateBy v_v"]),
s1210629013@55339
   327
          ("#Find"  ,["antiDerivative F_F"])],
walther@59852
   328
        Rule_Set.append_rules "empty" Rule_Set.empty [(*for preds in where_*)], 
s1210629013@55339
   329
        SOME "Integrate (f_f, v_v)", 
walther@59997
   330
        [["diff", "integration"]])),
s1210629013@55339
   331
    (*here "named" is used differently from Differentiation"*)
wenzelm@60290
   332
    (Problem.prep_input @{theory} "pbl_fun_integ_nam" [] Problem.id_empty
walther@59997
   333
      (["named", "integrate", "function"],
s1210629013@55339
   334
        [("#Given" ,["functionTerm f_f", "integrateBy v_v"]),
s1210629013@55339
   335
          ("#Find"  ,["antiDerivativeName F_F"])],
walther@59852
   336
        Rule_Set.append_rules "empty" Rule_Set.empty [(*for preds in where_*)], 
s1210629013@55339
   337
        SOME "Integrate (f_f, v_v)", 
walther@59997
   338
        [["diff", "integration", "named"]]))]\<close>
s1210629013@55380
   339
neuper@37954
   340
(** methods **)
wneuper@59545
   341
wneuper@59504
   342
partial_function (tailrec) integrate :: "real \<Rightarrow> real \<Rightarrow> real"
wneuper@59504
   343
  where
walther@59635
   344
"integrate f_f v_v = (
walther@59635
   345
  let
walther@59635
   346
    t_t = Take (Integral f_f D v_v)
walther@59635
   347
  in
walther@59635
   348
    (Rewrite_Set_Inst [(''bdv'', v_v)] ''integration'') t_t)"
wenzelm@60303
   349
wenzelm@60303
   350
method met_diffint : "diff/integration" =
wenzelm@60303
   351
  \<open>{rew_ord'="tless_true", rls'=Atools_erls, calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
wenzelm@60303
   352
	  crls = Atools_erls, errpats = [], nrls = Rule_Set.empty}\<close>
wenzelm@60303
   353
  Program: integrate.simps
wenzelm@60303
   354
  Given: "functionTerm f_f" "integrateBy v_v"
wenzelm@60303
   355
  Find: "antiDerivative F_F"
wneuper@59545
   356
wneuper@59504
   357
partial_function (tailrec) intergrate_named :: "real \<Rightarrow> real \<Rightarrow> (real \<Rightarrow> real) \<Rightarrow> bool"
walther@59635
   358
  where
walther@59635
   359
"intergrate_named f_f v_v F_F =(
walther@59635
   360
  let
walther@59635
   361
    t_t = Take (F_F v_v = Integral f_f D v_v)
walther@59635
   362
  in (
walther@59637
   363
    (Try (Rewrite_Set_Inst [(''bdv'', v_v)] ''simplify_Integral'')) #>
walther@59635
   364
    (Rewrite_Set_Inst [(''bdv'', v_v)] ''integration'')
walther@59635
   365
    ) t_t)"
wenzelm@60303
   366
wenzelm@60303
   367
method met_diffint_named : "diff/integration/named" =
wenzelm@60303
   368
  \<open>{rew_ord'="tless_true", rls'=Atools_erls, calc = [], srls = Rule_Set.empty, prls=Rule_Set.empty,
wenzelm@60303
   369
    crls = Atools_erls, errpats = [], nrls = Rule_Set.empty}\<close>
wenzelm@60303
   370
  Program: intergrate_named.simps
wenzelm@60303
   371
  Given: "functionTerm f_f" "integrateBy v_v"
wenzelm@60303
   372
  Find: "antiDerivativeName F_F"
wenzelm@60303
   373
wenzelm@60303
   374
ML \<open>
walther@60278
   375
\<close> ML \<open>
wneuper@59472
   376
\<close>
neuper@37954
   377
neuper@37906
   378
end