doc-src/IsarRef/Thy/Spec.thy
author wenzelm
Thu, 13 Nov 2008 21:40:00 +0100
changeset 28757 7f7002ad6289
parent 28756 529798e71924
child 28758 4ce896a30f88
permissions -rw-r--r--
tuned section "Incorporating ML code";
moved method_setup to separate section "Defining proof methods";
wenzelm@26869
     1
(* $Id$ *)
wenzelm@26869
     2
wenzelm@26869
     3
theory Spec
wenzelm@26869
     4
imports Main
wenzelm@26869
     5
begin
wenzelm@26869
     6
wenzelm@27046
     7
chapter {* Theory specifications *}
wenzelm@26869
     8
wenzelm@26870
     9
section {* Defining theories \label{sec:begin-thy} *}
wenzelm@26870
    10
wenzelm@26870
    11
text {*
wenzelm@26870
    12
  \begin{matharray}{rcl}
wenzelm@26870
    13
    @{command_def "theory"} & : & \isartrans{toplevel}{theory} \\
wenzelm@27040
    14
    @{command_def (global) "end"} & : & \isartrans{theory}{toplevel} \\
wenzelm@26870
    15
  \end{matharray}
wenzelm@26870
    16
wenzelm@28745
    17
  Isabelle/Isar theories are defined via theory files, which may
wenzelm@28745
    18
  contain both specifications and proofs; occasionally definitional
wenzelm@28745
    19
  mechanisms also require some explicit proof.  The theory body may be
wenzelm@28745
    20
  sub-structured by means of \emph{local theory targets}, such as
wenzelm@28745
    21
  @{command "locale"} and @{command "class"}.
wenzelm@26870
    22
wenzelm@28745
    23
  The first proper command of a theory is @{command "theory"}, which
wenzelm@28745
    24
  indicates imports of previous theories and optional dependencies on
wenzelm@28745
    25
  other source files (usually in ML).  Just preceding the initial
wenzelm@28745
    26
  @{command "theory"} command there may be an optional @{command
wenzelm@28745
    27
  "header"} declaration, which is only relevant to document
wenzelm@28745
    28
  preparation: see also the other section markup commands in
wenzelm@28745
    29
  \secref{sec:markup}.
wenzelm@28745
    30
wenzelm@28745
    31
  A theory is concluded by a final @{command (global) "end"} command,
wenzelm@28745
    32
  one that does not belong to a local theory target.  No further
wenzelm@28745
    33
  commands may follow such a global @{command (global) "end"},
wenzelm@28745
    34
  although some user-interfaces might pretend that trailing input is
wenzelm@28745
    35
  admissible.
wenzelm@26870
    36
wenzelm@26870
    37
  \begin{rail}
wenzelm@26870
    38
    'theory' name 'imports' (name +) uses? 'begin'
wenzelm@26870
    39
    ;
wenzelm@26870
    40
wenzelm@26870
    41
    uses: 'uses' ((name | parname) +);
wenzelm@26870
    42
  \end{rail}
wenzelm@26870
    43
wenzelm@26870
    44
  \begin{descr}
wenzelm@26870
    45
wenzelm@26870
    46
  \item [@{command "theory"}~@{text "A \<IMPORTS> B\<^sub>1 \<dots>
wenzelm@26870
    47
  B\<^sub>n \<BEGIN>"}] starts a new theory @{text A} based on the
wenzelm@26870
    48
  merge of existing theories @{text "B\<^sub>1 \<dots> B\<^sub>n"}.
wenzelm@26870
    49
  
wenzelm@28745
    50
  Due to the possibility to import more than one ancestor, the
wenzelm@28745
    51
  resulting theory structure of an Isabelle session forms a directed
wenzelm@28745
    52
  acyclic graph (DAG).  Isabelle's theory loader ensures that the
wenzelm@28745
    53
  sources contributing to the development graph are always up-to-date:
wenzelm@28745
    54
  changed files are automatically reloaded whenever a theory header
wenzelm@28745
    55
  specification is processed.
wenzelm@26870
    56
  
wenzelm@26870
    57
  The optional @{keyword_def "uses"} specification declares additional
wenzelm@26870
    58
  dependencies on extra files (usually ML sources).  Files will be
wenzelm@28745
    59
  loaded immediately (as ML), unless the name is parenthesized.  The
wenzelm@28745
    60
  latter case records a dependency that needs to be resolved later in
wenzelm@28745
    61
  the text, usually via explicit @{command_ref "use"} for ML files;
wenzelm@28745
    62
  other file formats require specific load commands defined by the
wenzelm@28745
    63
  corresponding tools or packages.
wenzelm@26870
    64
  
wenzelm@27040
    65
  \item [@{command (global) "end"}] concludes the current theory
wenzelm@28745
    66
  definition.  Note that local theory targets involve a local
wenzelm@28745
    67
  @{command (local) "end"}, which is clear from the nesting.
wenzelm@26870
    68
wenzelm@26870
    69
  \end{descr}
wenzelm@26870
    70
*}
wenzelm@26870
    71
wenzelm@27040
    72
wenzelm@27040
    73
section {* Local theory targets \label{sec:target} *}
wenzelm@27040
    74
wenzelm@27040
    75
text {*
wenzelm@27040
    76
  A local theory target is a context managed separately within the
wenzelm@27040
    77
  enclosing theory.  Contexts may introduce parameters (fixed
wenzelm@27040
    78
  variables) and assumptions (hypotheses).  Definitions and theorems
wenzelm@27040
    79
  depending on the context may be added incrementally later on.  Named
wenzelm@27040
    80
  contexts refer to locales (cf.\ \secref{sec:locale}) or type classes
wenzelm@27040
    81
  (cf.\ \secref{sec:class}); the name ``@{text "-"}'' signifies the
wenzelm@27040
    82
  global theory context.
wenzelm@27040
    83
wenzelm@27040
    84
  \begin{matharray}{rcll}
wenzelm@27040
    85
    @{command_def "context"} & : & \isartrans{theory}{local{\dsh}theory} \\
wenzelm@27040
    86
    @{command_def (local) "end"} & : & \isartrans{local{\dsh}theory}{theory} \\
wenzelm@27040
    87
  \end{matharray}
wenzelm@27040
    88
wenzelm@27040
    89
  \indexouternonterm{target}
wenzelm@27040
    90
  \begin{rail}
wenzelm@27040
    91
    'context' name 'begin'
wenzelm@27040
    92
    ;
wenzelm@27040
    93
wenzelm@27040
    94
    target: '(' 'in' name ')'
wenzelm@27040
    95
    ;
wenzelm@27040
    96
  \end{rail}
wenzelm@27040
    97
wenzelm@27040
    98
  \begin{descr}
wenzelm@27040
    99
  
wenzelm@27040
   100
  \item [@{command "context"}~@{text "c \<BEGIN>"}] recommences an
wenzelm@27040
   101
  existing locale or class context @{text c}.  Note that locale and
wenzelm@27051
   102
  class definitions allow to include the @{keyword "begin"} keyword as
wenzelm@27051
   103
  well, in order to continue the local theory immediately after the
wenzelm@27051
   104
  initial specification.
wenzelm@27040
   105
  
wenzelm@27040
   106
  \item [@{command (local) "end"}] concludes the current local theory
wenzelm@27040
   107
  and continues the enclosing global theory.  Note that a global
wenzelm@27040
   108
  @{command (global) "end"} has a different meaning: it concludes the
wenzelm@27040
   109
  theory itself (\secref{sec:begin-thy}).
wenzelm@27040
   110
  
wenzelm@27040
   111
  \item [@{text "(\<IN> c)"}] given after any local theory command
wenzelm@27040
   112
  specifies an immediate target, e.g.\ ``@{command
wenzelm@27040
   113
  "definition"}~@{text "(\<IN> c) \<dots>"}'' or ``@{command
wenzelm@27040
   114
  "theorem"}~@{text "(\<IN> c) \<dots>"}''.  This works both in a local or
wenzelm@27040
   115
  global theory context; the current target context will be suspended
wenzelm@27040
   116
  for this command only.  Note that ``@{text "(\<IN> -)"}'' will
wenzelm@27040
   117
  always produce a global result independently of the current target
wenzelm@27040
   118
  context.
wenzelm@27040
   119
wenzelm@27040
   120
  \end{descr}
wenzelm@27040
   121
wenzelm@27040
   122
  The exact meaning of results produced within a local theory context
wenzelm@27040
   123
  depends on the underlying target infrastructure (locale, type class
wenzelm@27040
   124
  etc.).  The general idea is as follows, considering a context named
wenzelm@27040
   125
  @{text c} with parameter @{text x} and assumption @{text "A[x]"}.
wenzelm@27040
   126
  
wenzelm@27040
   127
  Definitions are exported by introducing a global version with
wenzelm@27040
   128
  additional arguments; a syntactic abbreviation links the long form
wenzelm@27040
   129
  with the abstract version of the target context.  For example,
wenzelm@27040
   130
  @{text "a \<equiv> t[x]"} becomes @{text "c.a ?x \<equiv> t[?x]"} at the theory
wenzelm@27040
   131
  level (for arbitrary @{text "?x"}), together with a local
wenzelm@27040
   132
  abbreviation @{text "c \<equiv> c.a x"} in the target context (for the
wenzelm@27040
   133
  fixed parameter @{text x}).
wenzelm@27040
   134
wenzelm@27040
   135
  Theorems are exported by discharging the assumptions and
wenzelm@27040
   136
  generalizing the parameters of the context.  For example, @{text "a:
wenzelm@27040
   137
  B[x]"} becomes @{text "c.a: A[?x] \<Longrightarrow> B[?x]"}, again for arbitrary
wenzelm@27040
   138
  @{text "?x"}.
wenzelm@27040
   139
*}
wenzelm@27040
   140
wenzelm@27040
   141
wenzelm@27040
   142
section {* Basic specification elements *}
wenzelm@27040
   143
wenzelm@27040
   144
text {*
wenzelm@27040
   145
  \begin{matharray}{rcll}
wenzelm@28114
   146
    @{command_def "axiomatization"} & : & \isarkeep{theory} & (axiomatic!)\\
wenzelm@27040
   147
    @{command_def "definition"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
   148
    @{attribute_def "defn"} & : & \isaratt \\
wenzelm@27040
   149
    @{command_def "abbreviation"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
   150
    @{command_def "print_abbrevs"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
wenzelm@27040
   151
    @{command_def "notation"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
   152
    @{command_def "no_notation"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
   153
  \end{matharray}
wenzelm@27040
   154
wenzelm@27040
   155
  These specification mechanisms provide a slightly more abstract view
wenzelm@27040
   156
  than the underlying primitives of @{command "consts"}, @{command
wenzelm@27040
   157
  "defs"} (see \secref{sec:consts}), and @{command "axioms"} (see
wenzelm@27040
   158
  \secref{sec:axms-thms}).  In particular, type-inference is commonly
wenzelm@27040
   159
  available, and result names need not be given.
wenzelm@27040
   160
wenzelm@27040
   161
  \begin{rail}
wenzelm@27040
   162
    'axiomatization' target? fixes? ('where' specs)?
wenzelm@27040
   163
    ;
wenzelm@27040
   164
    'definition' target? (decl 'where')? thmdecl? prop
wenzelm@27040
   165
    ;
wenzelm@27040
   166
    'abbreviation' target? mode? (decl 'where')? prop
wenzelm@27040
   167
    ;
wenzelm@27040
   168
    ('notation' | 'no\_notation') target? mode? (nameref structmixfix + 'and')
wenzelm@27040
   169
    ;
wenzelm@27040
   170
wenzelm@27040
   171
    fixes: ((name ('::' type)? mixfix? | vars) + 'and')
wenzelm@27040
   172
    ;
wenzelm@27040
   173
    specs: (thmdecl? props + 'and')
wenzelm@27040
   174
    ;
wenzelm@27040
   175
    decl: name ('::' type)? mixfix?
wenzelm@27040
   176
    ;
wenzelm@27040
   177
  \end{rail}
wenzelm@27040
   178
wenzelm@27040
   179
  \begin{descr}
wenzelm@27040
   180
  
wenzelm@27040
   181
  \item [@{command "axiomatization"}~@{text "c\<^sub>1 \<dots> c\<^sub>m
wenzelm@27040
   182
  \<WHERE> \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}] introduces several constants
wenzelm@27040
   183
  simultaneously and states axiomatic properties for these.  The
wenzelm@27040
   184
  constants are marked as being specified once and for all, which
wenzelm@27040
   185
  prevents additional specifications being issued later on.
wenzelm@27040
   186
  
wenzelm@27040
   187
  Note that axiomatic specifications are only appropriate when
wenzelm@28114
   188
  declaring a new logical system; axiomatic specifications are
wenzelm@28114
   189
  restricted to global theory contexts.  Normal applications should
wenzelm@28114
   190
  only use definitional mechanisms!
wenzelm@27040
   191
wenzelm@27040
   192
  \item [@{command "definition"}~@{text "c \<WHERE> eq"}] produces an
wenzelm@27040
   193
  internal definition @{text "c \<equiv> t"} according to the specification
wenzelm@27040
   194
  given as @{text eq}, which is then turned into a proven fact.  The
wenzelm@27040
   195
  given proposition may deviate from internal meta-level equality
wenzelm@27040
   196
  according to the rewrite rules declared as @{attribute defn} by the
wenzelm@27040
   197
  object-logic.  This usually covers object-level equality @{text "x =
wenzelm@27040
   198
  y"} and equivalence @{text "A \<leftrightarrow> B"}.  End-users normally need not
wenzelm@27040
   199
  change the @{attribute defn} setup.
wenzelm@27040
   200
  
wenzelm@27040
   201
  Definitions may be presented with explicit arguments on the LHS, as
wenzelm@27040
   202
  well as additional conditions, e.g.\ @{text "f x y = t"} instead of
wenzelm@27040
   203
  @{text "f \<equiv> \<lambda>x y. t"} and @{text "y \<noteq> 0 \<Longrightarrow> g x y = u"} instead of an
wenzelm@27040
   204
  unrestricted @{text "g \<equiv> \<lambda>x y. u"}.
wenzelm@27040
   205
  
wenzelm@27040
   206
  \item [@{command "abbreviation"}~@{text "c \<WHERE> eq"}] introduces
wenzelm@27040
   207
  a syntactic constant which is associated with a certain term
wenzelm@27040
   208
  according to the meta-level equality @{text eq}.
wenzelm@27040
   209
  
wenzelm@27040
   210
  Abbreviations participate in the usual type-inference process, but
wenzelm@27040
   211
  are expanded before the logic ever sees them.  Pretty printing of
wenzelm@27040
   212
  terms involves higher-order rewriting with rules stemming from
wenzelm@27040
   213
  reverted abbreviations.  This needs some care to avoid overlapping
wenzelm@27040
   214
  or looping syntactic replacements!
wenzelm@27040
   215
  
wenzelm@27040
   216
  The optional @{text mode} specification restricts output to a
wenzelm@27040
   217
  particular print mode; using ``@{text input}'' here achieves the
wenzelm@27040
   218
  effect of one-way abbreviations.  The mode may also include an
wenzelm@27040
   219
  ``@{keyword "output"}'' qualifier that affects the concrete syntax
wenzelm@27040
   220
  declared for abbreviations, cf.\ @{command "syntax"} in
wenzelm@27040
   221
  \secref{sec:syn-trans}.
wenzelm@27040
   222
  
wenzelm@27040
   223
  \item [@{command "print_abbrevs"}] prints all constant abbreviations
wenzelm@27040
   224
  of the current context.
wenzelm@27040
   225
  
wenzelm@27040
   226
  \item [@{command "notation"}~@{text "c (mx)"}] associates mixfix
wenzelm@27040
   227
  syntax with an existing constant or fixed variable.  This is a
wenzelm@27040
   228
  robust interface to the underlying @{command "syntax"} primitive
wenzelm@27040
   229
  (\secref{sec:syn-trans}).  Type declaration and internal syntactic
wenzelm@27040
   230
  representation of the given entity is retrieved from the context.
wenzelm@27040
   231
  
wenzelm@27040
   232
  \item [@{command "no_notation"}] is similar to @{command
wenzelm@27040
   233
  "notation"}, but removes the specified syntax annotation from the
wenzelm@27040
   234
  present context.
wenzelm@27040
   235
wenzelm@27040
   236
  \end{descr}
wenzelm@27040
   237
wenzelm@27040
   238
  All of these specifications support local theory targets (cf.\
wenzelm@27040
   239
  \secref{sec:target}).
wenzelm@27040
   240
*}
wenzelm@27040
   241
wenzelm@27040
   242
wenzelm@27040
   243
section {* Generic declarations *}
wenzelm@27040
   244
wenzelm@27040
   245
text {*
wenzelm@27040
   246
  Arbitrary operations on the background context may be wrapped-up as
wenzelm@27040
   247
  generic declaration elements.  Since the underlying concept of local
wenzelm@27040
   248
  theories may be subject to later re-interpretation, there is an
wenzelm@27040
   249
  additional dependency on a morphism that tells the difference of the
wenzelm@27040
   250
  original declaration context wrt.\ the application context
wenzelm@27040
   251
  encountered later on.  A fact declaration is an important special
wenzelm@27040
   252
  case: it consists of a theorem which is applied to the context by
wenzelm@27040
   253
  means of an attribute.
wenzelm@27040
   254
wenzelm@27040
   255
  \begin{matharray}{rcl}
wenzelm@27040
   256
    @{command_def "declaration"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
   257
    @{command_def "declare"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
   258
  \end{matharray}
wenzelm@27040
   259
wenzelm@27040
   260
  \begin{rail}
wenzelm@27040
   261
    'declaration' target? text
wenzelm@27040
   262
    ;
wenzelm@27040
   263
    'declare' target? (thmrefs + 'and')
wenzelm@27040
   264
    ;
wenzelm@27040
   265
  \end{rail}
wenzelm@27040
   266
wenzelm@27040
   267
  \begin{descr}
wenzelm@27040
   268
wenzelm@27040
   269
  \item [@{command "declaration"}~@{text d}] adds the declaration
wenzelm@27040
   270
  function @{text d} of ML type @{ML_type declaration}, to the current
wenzelm@27040
   271
  local theory under construction.  In later application contexts, the
wenzelm@27040
   272
  function is transformed according to the morphisms being involved in
wenzelm@27040
   273
  the interpretation hierarchy.
wenzelm@27040
   274
wenzelm@27040
   275
  \item [@{command "declare"}~@{text thms}] declares theorems to the
wenzelm@27040
   276
  current local theory context.  No theorem binding is involved here,
wenzelm@27040
   277
  unlike @{command "theorems"} or @{command "lemmas"} (cf.\
wenzelm@27040
   278
  \secref{sec:axms-thms}), so @{command "declare"} only has the effect
wenzelm@27040
   279
  of applying attributes as included in the theorem specification.
wenzelm@27040
   280
wenzelm@27040
   281
  \end{descr}
wenzelm@27040
   282
*}
wenzelm@27040
   283
wenzelm@27040
   284
wenzelm@27040
   285
section {* Locales \label{sec:locale} *}
wenzelm@27040
   286
wenzelm@27040
   287
text {*
wenzelm@27040
   288
  Locales are named local contexts, consisting of a list of
wenzelm@27040
   289
  declaration elements that are modeled after the Isar proof context
wenzelm@27040
   290
  commands (cf.\ \secref{sec:proof-context}).
wenzelm@27040
   291
*}
wenzelm@27040
   292
wenzelm@27040
   293
wenzelm@27040
   294
subsection {* Locale specifications *}
wenzelm@27040
   295
wenzelm@27040
   296
text {*
wenzelm@27040
   297
  \begin{matharray}{rcl}
wenzelm@27040
   298
    @{command_def "locale"} & : & \isartrans{theory}{local{\dsh}theory} \\
wenzelm@27040
   299
    @{command_def "print_locale"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
wenzelm@27040
   300
    @{command_def "print_locales"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
wenzelm@27040
   301
    @{method_def intro_locales} & : & \isarmeth \\
wenzelm@27040
   302
    @{method_def unfold_locales} & : & \isarmeth \\
wenzelm@27040
   303
  \end{matharray}
wenzelm@27040
   304
wenzelm@27040
   305
  \indexouternonterm{contextexpr}\indexouternonterm{contextelem}
wenzelm@27040
   306
  \indexisarelem{fixes}\indexisarelem{constrains}\indexisarelem{assumes}
wenzelm@27040
   307
  \indexisarelem{defines}\indexisarelem{notes}\indexisarelem{includes}
wenzelm@27040
   308
  \begin{rail}
haftmann@27681
   309
    'locale' name ('=' localeexpr)? 'begin'?
wenzelm@27040
   310
    ;
wenzelm@27040
   311
    'print\_locale' '!'? localeexpr
wenzelm@27040
   312
    ;
wenzelm@27040
   313
    localeexpr: ((contextexpr '+' (contextelem+)) | contextexpr | (contextelem+))
wenzelm@27040
   314
    ;
wenzelm@27040
   315
wenzelm@27040
   316
    contextexpr: nameref | '(' contextexpr ')' |
wenzelm@27040
   317
    (contextexpr (name mixfix? +)) | (contextexpr + '+')
wenzelm@27040
   318
    ;
wenzelm@27040
   319
    contextelem: fixes | constrains | assumes | defines | notes
wenzelm@27040
   320
    ;
wenzelm@27040
   321
    fixes: 'fixes' ((name ('::' type)? structmixfix? | vars) + 'and')
wenzelm@27040
   322
    ;
wenzelm@27040
   323
    constrains: 'constrains' (name '::' type + 'and')
wenzelm@27040
   324
    ;
wenzelm@27040
   325
    assumes: 'assumes' (thmdecl? props + 'and')
wenzelm@27040
   326
    ;
wenzelm@27040
   327
    defines: 'defines' (thmdecl? prop proppat? + 'and')
wenzelm@27040
   328
    ;
wenzelm@27040
   329
    notes: 'notes' (thmdef? thmrefs + 'and')
wenzelm@27040
   330
    ;
wenzelm@27040
   331
    includes: 'includes' contextexpr
wenzelm@27040
   332
    ;
wenzelm@27040
   333
  \end{rail}
wenzelm@27040
   334
wenzelm@27040
   335
  \begin{descr}
wenzelm@27040
   336
  
wenzelm@27040
   337
  \item [@{command "locale"}~@{text "loc = import + body"}] defines a
wenzelm@27040
   338
  new locale @{text loc} as a context consisting of a certain view of
wenzelm@27040
   339
  existing locales (@{text import}) plus some additional elements
wenzelm@27040
   340
  (@{text body}).  Both @{text import} and @{text body} are optional;
wenzelm@27040
   341
  the degenerate form @{command "locale"}~@{text loc} defines an empty
wenzelm@27040
   342
  locale, which may still be useful to collect declarations of facts
wenzelm@27040
   343
  later on.  Type-inference on locale expressions automatically takes
wenzelm@27040
   344
  care of the most general typing that the combined context elements
wenzelm@27040
   345
  may acquire.
wenzelm@27040
   346
wenzelm@27040
   347
  The @{text import} consists of a structured context expression,
wenzelm@27040
   348
  consisting of references to existing locales, renamed contexts, or
wenzelm@27040
   349
  merged contexts.  Renaming uses positional notation: @{text "c
wenzelm@27040
   350
  x\<^sub>1 \<dots> x\<^sub>n"} means that (a prefix of) the fixed
wenzelm@27040
   351
  parameters of context @{text c} are named @{text "x\<^sub>1, \<dots>,
wenzelm@27040
   352
  x\<^sub>n"}; a ``@{text _}'' (underscore) means to skip that
wenzelm@27040
   353
  position.  Renaming by default deletes concrete syntax, but new
wenzelm@27040
   354
  syntax may by specified with a mixfix annotation.  An exeption of
wenzelm@27040
   355
  this rule is the special syntax declared with ``@{text
wenzelm@27040
   356
  "(\<STRUCTURE>)"}'' (see below), which is neither deleted nor can it
wenzelm@27040
   357
  be changed.  Merging proceeds from left-to-right, suppressing any
wenzelm@27040
   358
  duplicates stemming from different paths through the import
wenzelm@27040
   359
  hierarchy.
wenzelm@27040
   360
wenzelm@27040
   361
  The @{text body} consists of basic context elements, further context
wenzelm@27040
   362
  expressions may be included as well.
wenzelm@27040
   363
wenzelm@27040
   364
  \begin{descr}
wenzelm@27040
   365
wenzelm@27040
   366
  \item [@{element "fixes"}~@{text "x :: \<tau> (mx)"}] declares a local
wenzelm@27040
   367
  parameter of type @{text \<tau>} and mixfix annotation @{text mx} (both
wenzelm@27040
   368
  are optional).  The special syntax declaration ``@{text
wenzelm@27040
   369
  "(\<STRUCTURE>)"}'' means that @{text x} may be referenced
wenzelm@27040
   370
  implicitly in this context.
wenzelm@27040
   371
wenzelm@27040
   372
  \item [@{element "constrains"}~@{text "x :: \<tau>"}] introduces a type
wenzelm@27040
   373
  constraint @{text \<tau>} on the local parameter @{text x}.
wenzelm@27040
   374
wenzelm@27040
   375
  \item [@{element "assumes"}~@{text "a: \<phi>\<^sub>1 \<dots> \<phi>\<^sub>n"}]
wenzelm@27040
   376
  introduces local premises, similar to @{command "assume"} within a
wenzelm@27040
   377
  proof (cf.\ \secref{sec:proof-context}).
wenzelm@27040
   378
wenzelm@27040
   379
  \item [@{element "defines"}~@{text "a: x \<equiv> t"}] defines a previously
wenzelm@27040
   380
  declared parameter.  This is similar to @{command "def"} within a
wenzelm@27040
   381
  proof (cf.\ \secref{sec:proof-context}), but @{element "defines"}
wenzelm@27040
   382
  takes an equational proposition instead of variable-term pair.  The
wenzelm@27040
   383
  left-hand side of the equation may have additional arguments, e.g.\
wenzelm@27040
   384
  ``@{element "defines"}~@{text "f x\<^sub>1 \<dots> x\<^sub>n \<equiv> t"}''.
wenzelm@27040
   385
wenzelm@27040
   386
  \item [@{element "notes"}~@{text "a = b\<^sub>1 \<dots> b\<^sub>n"}]
wenzelm@27040
   387
  reconsiders facts within a local context.  Most notably, this may
wenzelm@27040
   388
  include arbitrary declarations in any attribute specifications
wenzelm@27040
   389
  included here, e.g.\ a local @{attribute simp} rule.
wenzelm@27040
   390
ballarin@28728
   391
  The initial @{text import} specification of a locale
wenzelm@27040
   392
  expression maintains a dynamic relation to the locales being
wenzelm@27040
   393
  referenced (benefiting from any later fact declarations in the
wenzelm@27040
   394
  obvious manner).
wenzelm@27040
   395
wenzelm@27040
   396
  \end{descr}
wenzelm@27040
   397
  
wenzelm@27040
   398
  Note that ``@{text "(\<IS> p\<^sub>1 \<dots> p\<^sub>n)"}'' patterns given
wenzelm@27040
   399
  in the syntax of @{element "assumes"} and @{element "defines"} above
wenzelm@27040
   400
  are illegal in locale definitions.  In the long goal format of
wenzelm@27040
   401
  \secref{sec:goals}, term bindings may be included as expected,
wenzelm@27040
   402
  though.
wenzelm@27040
   403
  
wenzelm@27040
   404
  \medskip By default, locale specifications are ``closed up'' by
wenzelm@27040
   405
  turning the given text into a predicate definition @{text
wenzelm@27040
   406
  loc_axioms} and deriving the original assumptions as local lemmas
wenzelm@27040
   407
  (modulo local definitions).  The predicate statement covers only the
wenzelm@27040
   408
  newly specified assumptions, omitting the content of included locale
wenzelm@27040
   409
  expressions.  The full cumulative view is only provided on export,
wenzelm@27040
   410
  involving another predicate @{text loc} that refers to the complete
wenzelm@27040
   411
  specification text.
wenzelm@27040
   412
  
wenzelm@27040
   413
  In any case, the predicate arguments are those locale parameters
wenzelm@27040
   414
  that actually occur in the respective piece of text.  Also note that
wenzelm@27040
   415
  these predicates operate at the meta-level in theory, but the locale
wenzelm@27040
   416
  packages attempts to internalize statements according to the
wenzelm@27040
   417
  object-logic setup (e.g.\ replacing @{text \<And>} by @{text \<forall>}, and
wenzelm@27040
   418
  @{text "\<Longrightarrow>"} by @{text "\<longrightarrow>"} in HOL; see also
wenzelm@27040
   419
  \secref{sec:object-logic}).  Separate introduction rules @{text
wenzelm@27040
   420
  loc_axioms.intro} and @{text loc.intro} are provided as well.
wenzelm@27040
   421
  
wenzelm@27040
   422
  \item [@{command "print_locale"}~@{text "import + body"}] prints the
wenzelm@27040
   423
  specified locale expression in a flattened form.  The notable
wenzelm@27040
   424
  special case @{command "print_locale"}~@{text loc} just prints the
wenzelm@27040
   425
  contents of the named locale, but keep in mind that type-inference
wenzelm@27040
   426
  will normalize type variables according to the usual alphabetical
wenzelm@27040
   427
  order.  The command omits @{element "notes"} elements by default.
wenzelm@27040
   428
  Use @{command "print_locale"}@{text "!"} to get them included.
wenzelm@27040
   429
wenzelm@27040
   430
  \item [@{command "print_locales"}] prints the names of all locales
wenzelm@27040
   431
  of the current theory.
wenzelm@27040
   432
wenzelm@27040
   433
  \item [@{method intro_locales} and @{method unfold_locales}]
wenzelm@27040
   434
  repeatedly expand all introduction rules of locale predicates of the
wenzelm@27040
   435
  theory.  While @{method intro_locales} only applies the @{text
wenzelm@27040
   436
  loc.intro} introduction rules and therefore does not decend to
wenzelm@27040
   437
  assumptions, @{method unfold_locales} is more aggressive and applies
wenzelm@27040
   438
  @{text loc_axioms.intro} as well.  Both methods are aware of locale
ballarin@28728
   439
  specifications entailed by the context, both from target statements,
ballarin@28728
   440
  and from interpretations (see below).  New goals that are entailed
ballarin@28728
   441
  by the current context are discharged automatically.
wenzelm@27040
   442
wenzelm@27040
   443
  \end{descr}
wenzelm@27040
   444
*}
wenzelm@27040
   445
wenzelm@27040
   446
wenzelm@27040
   447
subsection {* Interpretation of locales *}
wenzelm@27040
   448
wenzelm@27040
   449
text {*
wenzelm@27040
   450
  Locale expressions (more precisely, \emph{context expressions}) may
wenzelm@27040
   451
  be instantiated, and the instantiated facts added to the current
wenzelm@27040
   452
  context.  This requires a proof of the instantiated specification
wenzelm@27040
   453
  and is called \emph{locale interpretation}.  Interpretation is
wenzelm@27040
   454
  possible in theories and locales (command @{command
wenzelm@27040
   455
  "interpretation"}) and also within a proof body (command @{command
wenzelm@27040
   456
  "interpret"}).
wenzelm@27040
   457
wenzelm@27040
   458
  \begin{matharray}{rcl}
wenzelm@27040
   459
    @{command_def "interpretation"} & : & \isartrans{theory}{proof(prove)} \\
wenzelm@27040
   460
    @{command_def "interpret"} & : & \isartrans{proof(state) ~|~ proof(chain)}{proof(prove)} \\
wenzelm@27040
   461
    @{command_def "print_interps"}@{text "\<^sup>*"} & : &  \isarkeep{theory~|~proof} \\
wenzelm@27040
   462
  \end{matharray}
wenzelm@27040
   463
wenzelm@27040
   464
  \indexouternonterm{interp}
wenzelm@27040
   465
  \begin{rail}
wenzelm@27040
   466
    'interpretation' (interp | name ('<' | subseteq) contextexpr)
wenzelm@27040
   467
    ;
wenzelm@27040
   468
    'interpret' interp
wenzelm@27040
   469
    ;
wenzelm@27040
   470
    'print\_interps' '!'? name
wenzelm@27040
   471
    ;
wenzelm@27040
   472
    instantiation: ('[' (inst+) ']')?
wenzelm@27040
   473
    ;
ballarin@28085
   474
    interp: (name ':')? \\ (contextexpr instantiation |
wenzelm@27040
   475
      name instantiation 'where' (thmdecl? prop + 'and'))
wenzelm@27040
   476
    ;
wenzelm@27040
   477
  \end{rail}
wenzelm@27040
   478
wenzelm@27040
   479
  \begin{descr}
wenzelm@27040
   480
wenzelm@27040
   481
  \item [@{command "interpretation"}~@{text "expr insts \<WHERE> eqns"}]
wenzelm@27040
   482
wenzelm@27040
   483
  The first form of @{command "interpretation"} interprets @{text
wenzelm@27040
   484
  expr} in the theory.  The instantiation is given as a list of terms
wenzelm@27040
   485
  @{text insts} and is positional.  All parameters must receive an
wenzelm@27040
   486
  instantiation term --- with the exception of defined parameters.
wenzelm@27040
   487
  These are, if omitted, derived from the defining equation and other
wenzelm@27040
   488
  instantiations.  Use ``@{text _}'' to omit an instantiation term.
wenzelm@27040
   489
wenzelm@27040
   490
  The command generates proof obligations for the instantiated
wenzelm@27040
   491
  specifications (assumes and defines elements).  Once these are
wenzelm@27040
   492
  discharged by the user, instantiated facts are added to the theory
wenzelm@27040
   493
  in a post-processing phase.
wenzelm@27040
   494
wenzelm@27040
   495
  Additional equations, which are unfolded in facts during
wenzelm@27040
   496
  post-processing, may be given after the keyword @{keyword "where"}.
wenzelm@27040
   497
  This is useful for interpreting concepts introduced through
wenzelm@27040
   498
  definition specification elements.  The equations must be proved.
wenzelm@27040
   499
  Note that if equations are present, the context expression is
wenzelm@27040
   500
  restricted to a locale name.
wenzelm@27040
   501
wenzelm@27040
   502
  The command is aware of interpretations already active in the
ballarin@28085
   503
  theory, but does not simplify the goal automatically.  In order to
ballarin@28085
   504
  simplify the proof obligations use methods @{method intro_locales}
ballarin@28085
   505
  or @{method unfold_locales}.  Post-processing is not applied to
ballarin@28085
   506
  facts of interpretations that are already active.  This avoids
ballarin@28085
   507
  duplication of interpreted facts, in particular.  Note that, in the
ballarin@28085
   508
  case of a locale with import, parts of the interpretation may
ballarin@28085
   509
  already be active.  The command will only process facts for new
ballarin@28085
   510
  parts.
wenzelm@27040
   511
ballarin@28085
   512
  The context expression may be preceded by a name, which takes effect
ballarin@28085
   513
  in the post-processing of facts.  It is used to prefix fact names,
ballarin@28085
   514
  for example to avoid accidental hiding of other facts.
wenzelm@27040
   515
wenzelm@27040
   516
  Adding facts to locales has the effect of adding interpreted facts
wenzelm@27040
   517
  to the theory for all active interpretations also.  That is,
wenzelm@27040
   518
  interpretations dynamically participate in any facts added to
wenzelm@27040
   519
  locales.
wenzelm@27040
   520
wenzelm@27040
   521
  \item [@{command "interpretation"}~@{text "name \<subseteq> expr"}]
wenzelm@27040
   522
wenzelm@27040
   523
  This form of the command interprets @{text expr} in the locale
wenzelm@27040
   524
  @{text name}.  It requires a proof that the specification of @{text
wenzelm@27040
   525
  name} implies the specification of @{text expr}.  As in the
wenzelm@27040
   526
  localized version of the theorem command, the proof is in the
wenzelm@27040
   527
  context of @{text name}.  After the proof obligation has been
wenzelm@27040
   528
  dischared, the facts of @{text expr} become part of locale @{text
wenzelm@27040
   529
  name} as \emph{derived} context elements and are available when the
wenzelm@27040
   530
  context @{text name} is subsequently entered.  Note that, like
wenzelm@27040
   531
  import, this is dynamic: facts added to a locale part of @{text
wenzelm@27040
   532
  expr} after interpretation become also available in @{text name}.
wenzelm@27040
   533
  Like facts of renamed context elements, facts obtained by
wenzelm@27040
   534
  interpretation may be accessed by prefixing with the parameter
wenzelm@27040
   535
  renaming (where the parameters are separated by ``@{text _}'').
wenzelm@27040
   536
wenzelm@27040
   537
  Unlike interpretation in theories, instantiation is confined to the
wenzelm@27040
   538
  renaming of parameters, which may be specified as part of the
wenzelm@27040
   539
  context expression @{text expr}.  Using defined parameters in @{text
wenzelm@27040
   540
  name} one may achieve an effect similar to instantiation, though.
wenzelm@27040
   541
wenzelm@27040
   542
  Only specification fragments of @{text expr} that are not already
wenzelm@27040
   543
  part of @{text name} (be it imported, derived or a derived fragment
wenzelm@27040
   544
  of the import) are considered by interpretation.  This enables
wenzelm@27040
   545
  circular interpretations.
wenzelm@27040
   546
wenzelm@27040
   547
  If interpretations of @{text name} exist in the current theory, the
wenzelm@27040
   548
  command adds interpretations for @{text expr} as well, with the same
wenzelm@27040
   549
  prefix and attributes, although only for fragments of @{text expr}
wenzelm@27040
   550
  that are not interpreted in the theory already.
wenzelm@27040
   551
wenzelm@27040
   552
  \item [@{command "interpret"}~@{text "expr insts \<WHERE> eqns"}]
wenzelm@27040
   553
  interprets @{text expr} in the proof context and is otherwise
wenzelm@27040
   554
  similar to interpretation in theories.
wenzelm@27040
   555
wenzelm@27040
   556
  \item [@{command "print_interps"}~@{text loc}] prints the
wenzelm@27040
   557
  interpretations of a particular locale @{text loc} that are active
wenzelm@27040
   558
  in the current context, either theory or proof context.  The
wenzelm@27040
   559
  exclamation point argument triggers printing of \emph{witness}
wenzelm@27040
   560
  theorems justifying interpretations.  These are normally omitted
wenzelm@27040
   561
  from the output.
wenzelm@27040
   562
  
wenzelm@27040
   563
  \end{descr}
wenzelm@27040
   564
wenzelm@27040
   565
  \begin{warn}
wenzelm@27040
   566
    Since attributes are applied to interpreted theorems,
wenzelm@27040
   567
    interpretation may modify the context of common proof tools, e.g.\
wenzelm@27040
   568
    the Simplifier or Classical Reasoner.  Since the behavior of such
wenzelm@27040
   569
    automated reasoning tools is \emph{not} stable under
wenzelm@27040
   570
    interpretation morphisms, manual declarations might have to be
wenzelm@27040
   571
    issued.
wenzelm@27040
   572
  \end{warn}
wenzelm@27040
   573
wenzelm@27040
   574
  \begin{warn}
wenzelm@27040
   575
    An interpretation in a theory may subsume previous
wenzelm@27040
   576
    interpretations.  This happens if the same specification fragment
wenzelm@27040
   577
    is interpreted twice and the instantiation of the second
wenzelm@27040
   578
    interpretation is more general than the interpretation of the
wenzelm@27040
   579
    first.  A warning is issued, since it is likely that these could
wenzelm@27040
   580
    have been generalized in the first place.  The locale package does
wenzelm@27040
   581
    not attempt to remove subsumed interpretations.
wenzelm@27040
   582
  \end{warn}
wenzelm@27040
   583
*}
wenzelm@27040
   584
wenzelm@27040
   585
wenzelm@27040
   586
section {* Classes \label{sec:class} *}
wenzelm@27040
   587
wenzelm@27040
   588
text {*
wenzelm@27040
   589
  A class is a particular locale with \emph{exactly one} type variable
wenzelm@27040
   590
  @{text \<alpha>}.  Beyond the underlying locale, a corresponding type class
wenzelm@27040
   591
  is established which is interpreted logically as axiomatic type
wenzelm@27040
   592
  class \cite{Wenzel:1997:TPHOL} whose logical content are the
wenzelm@27040
   593
  assumptions of the locale.  Thus, classes provide the full
wenzelm@27040
   594
  generality of locales combined with the commodity of type classes
wenzelm@27040
   595
  (notably type-inference).  See \cite{isabelle-classes} for a short
wenzelm@27040
   596
  tutorial.
wenzelm@27040
   597
wenzelm@27040
   598
  \begin{matharray}{rcl}
wenzelm@27040
   599
    @{command_def "class"} & : & \isartrans{theory}{local{\dsh}theory} \\
wenzelm@27040
   600
    @{command_def "instantiation"} & : & \isartrans{theory}{local{\dsh}theory} \\
wenzelm@27040
   601
    @{command_def "instance"} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
wenzelm@27040
   602
    @{command_def "subclass"} & : & \isartrans{local{\dsh}theory}{local{\dsh}theory} \\
wenzelm@27040
   603
    @{command_def "print_classes"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
wenzelm@27040
   604
    @{method_def intro_classes} & : & \isarmeth \\
wenzelm@27040
   605
  \end{matharray}
wenzelm@27040
   606
wenzelm@27040
   607
  \begin{rail}
wenzelm@27040
   608
    'class' name '=' ((superclassexpr '+' (contextelem+)) | superclassexpr | (contextelem+)) \\
wenzelm@27040
   609
      'begin'?
wenzelm@27040
   610
    ;
wenzelm@27040
   611
    'instantiation' (nameref + 'and') '::' arity 'begin'
wenzelm@27040
   612
    ;
wenzelm@27040
   613
    'instance'
wenzelm@27040
   614
    ;
wenzelm@27040
   615
    'subclass' target? nameref
wenzelm@27040
   616
    ;
wenzelm@27040
   617
    'print\_classes'
wenzelm@27040
   618
    ;
wenzelm@27040
   619
wenzelm@27040
   620
    superclassexpr: nameref | (nameref '+' superclassexpr)
wenzelm@27040
   621
    ;
wenzelm@27040
   622
  \end{rail}
wenzelm@27040
   623
wenzelm@27040
   624
  \begin{descr}
wenzelm@27040
   625
wenzelm@27040
   626
  \item [@{command "class"}~@{text "c = superclasses + body"}] defines
wenzelm@27040
   627
  a new class @{text c}, inheriting from @{text superclasses}.  This
wenzelm@27040
   628
  introduces a locale @{text c} with import of all locales @{text
wenzelm@27040
   629
  superclasses}.
wenzelm@27040
   630
wenzelm@27040
   631
  Any @{element "fixes"} in @{text body} are lifted to the global
wenzelm@27040
   632
  theory level (\emph{class operations} @{text "f\<^sub>1, \<dots>,
wenzelm@27040
   633
  f\<^sub>n"} of class @{text c}), mapping the local type parameter
wenzelm@27040
   634
  @{text \<alpha>} to a schematic type variable @{text "?\<alpha> :: c"}.
wenzelm@27040
   635
wenzelm@27040
   636
  Likewise, @{element "assumes"} in @{text body} are also lifted,
wenzelm@27040
   637
  mapping each local parameter @{text "f :: \<tau>[\<alpha>]"} to its
wenzelm@27040
   638
  corresponding global constant @{text "f :: \<tau>[?\<alpha> :: c]"}.  The
wenzelm@27040
   639
  corresponding introduction rule is provided as @{text
wenzelm@27040
   640
  c_class_axioms.intro}.  This rule should be rarely needed directly
wenzelm@27040
   641
  --- the @{method intro_classes} method takes care of the details of
wenzelm@27040
   642
  class membership proofs.
wenzelm@27040
   643
wenzelm@27040
   644
  \item [@{command "instantiation"}~@{text "t :: (s\<^sub>1, \<dots>,
wenzelm@27040
   645
  s\<^sub>n) s \<BEGIN>"}] opens a theory target (cf.\
wenzelm@27040
   646
  \secref{sec:target}) which allows to specify class operations @{text
wenzelm@27040
   647
  "f\<^sub>1, \<dots>, f\<^sub>n"} corresponding to sort @{text s} at the
wenzelm@27040
   648
  particular type instance @{text "(\<alpha>\<^sub>1 :: s\<^sub>1, \<dots>,
wenzelm@27040
   649
  \<alpha>\<^sub>n :: s\<^sub>n) t"}.  A plain @{command "instance"} command
wenzelm@27040
   650
  in the target body poses a goal stating these type arities.  The
wenzelm@27040
   651
  target is concluded by an @{command_ref (local) "end"} command.
wenzelm@27040
   652
wenzelm@27040
   653
  Note that a list of simultaneous type constructors may be given;
wenzelm@27040
   654
  this corresponds nicely to mutual recursive type definitions, e.g.\
wenzelm@27040
   655
  in Isabelle/HOL.
wenzelm@27040
   656
wenzelm@27040
   657
  \item [@{command "instance"}] in an instantiation target body sets
wenzelm@27040
   658
  up a goal stating the type arities claimed at the opening @{command
wenzelm@27040
   659
  "instantiation"}.  The proof would usually proceed by @{method
wenzelm@27040
   660
  intro_classes}, and then establish the characteristic theorems of
wenzelm@27040
   661
  the type classes involved.  After finishing the proof, the
wenzelm@27040
   662
  background theory will be augmented by the proven type arities.
wenzelm@27040
   663
wenzelm@27040
   664
  \item [@{command "subclass"}~@{text c}] in a class context for class
wenzelm@27040
   665
  @{text d} sets up a goal stating that class @{text c} is logically
wenzelm@27040
   666
  contained in class @{text d}.  After finishing the proof, class
wenzelm@27040
   667
  @{text d} is proven to be subclass @{text c} and the locale @{text
wenzelm@27040
   668
  c} is interpreted into @{text d} simultaneously.
wenzelm@27040
   669
wenzelm@27040
   670
  \item [@{command "print_classes"}] prints all classes in the current
wenzelm@27040
   671
  theory.
wenzelm@27040
   672
wenzelm@27040
   673
  \item [@{method intro_classes}] repeatedly expands all class
wenzelm@27040
   674
  introduction rules of this theory.  Note that this method usually
wenzelm@27040
   675
  needs not be named explicitly, as it is already included in the
wenzelm@27040
   676
  default proof step (e.g.\ of @{command "proof"}).  In particular,
wenzelm@27040
   677
  instantiation of trivial (syntactic) classes may be performed by a
wenzelm@27040
   678
  single ``@{command ".."}'' proof step.
wenzelm@27040
   679
wenzelm@27040
   680
  \end{descr}
wenzelm@27040
   681
*}
wenzelm@27040
   682
wenzelm@27040
   683
wenzelm@27040
   684
subsection {* The class target *}
wenzelm@27040
   685
wenzelm@27040
   686
text {*
wenzelm@27040
   687
  %FIXME check
wenzelm@27040
   688
wenzelm@27040
   689
  A named context may refer to a locale (cf.\ \secref{sec:target}).
wenzelm@27040
   690
  If this locale is also a class @{text c}, apart from the common
wenzelm@27040
   691
  locale target behaviour the following happens.
wenzelm@27040
   692
wenzelm@27040
   693
  \begin{itemize}
wenzelm@27040
   694
wenzelm@27040
   695
  \item Local constant declarations @{text "g[\<alpha>]"} referring to the
wenzelm@27040
   696
  local type parameter @{text \<alpha>} and local parameters @{text "f[\<alpha>]"}
wenzelm@27040
   697
  are accompanied by theory-level constants @{text "g[?\<alpha> :: c]"}
wenzelm@27040
   698
  referring to theory-level class operations @{text "f[?\<alpha> :: c]"}.
wenzelm@27040
   699
wenzelm@27040
   700
  \item Local theorem bindings are lifted as are assumptions.
wenzelm@27040
   701
wenzelm@27040
   702
  \item Local syntax refers to local operations @{text "g[\<alpha>]"} and
wenzelm@27040
   703
  global operations @{text "g[?\<alpha> :: c]"} uniformly.  Type inference
wenzelm@27040
   704
  resolves ambiguities.  In rare cases, manual type annotations are
wenzelm@27040
   705
  needed.
wenzelm@27040
   706
  
wenzelm@27040
   707
  \end{itemize}
wenzelm@27040
   708
*}
wenzelm@27040
   709
wenzelm@27040
   710
wenzelm@27053
   711
subsection {* Old-style axiomatic type classes \label{sec:axclass} *}
wenzelm@27040
   712
wenzelm@27040
   713
text {*
wenzelm@27040
   714
  \begin{matharray}{rcl}
wenzelm@27040
   715
    @{command_def "axclass"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   716
    @{command_def "instance"} & : & \isartrans{theory}{proof(prove)} \\
wenzelm@27040
   717
  \end{matharray}
wenzelm@27040
   718
wenzelm@27040
   719
  Axiomatic type classes are Isabelle/Pure's primitive
wenzelm@27040
   720
  \emph{definitional} interface to type classes.  For practical
wenzelm@27040
   721
  applications, you should consider using classes
wenzelm@27040
   722
  (cf.~\secref{sec:classes}) which provide high level interface.
wenzelm@27040
   723
wenzelm@27040
   724
  \begin{rail}
wenzelm@27040
   725
    'axclass' classdecl (axmdecl prop +)
wenzelm@27040
   726
    ;
wenzelm@27040
   727
    'instance' (nameref ('<' | subseteq) nameref | nameref '::' arity)
wenzelm@27040
   728
    ;
wenzelm@27040
   729
  \end{rail}
wenzelm@27040
   730
wenzelm@27040
   731
  \begin{descr}
wenzelm@27040
   732
  
wenzelm@27040
   733
  \item [@{command "axclass"}~@{text "c \<subseteq> c\<^sub>1, \<dots>, c\<^sub>n
wenzelm@27040
   734
  axms"}] defines an axiomatic type class as the intersection of
wenzelm@27040
   735
  existing classes, with additional axioms holding.  Class axioms may
wenzelm@27040
   736
  not contain more than one type variable.  The class axioms (with
wenzelm@27040
   737
  implicit sort constraints added) are bound to the given names.
wenzelm@27040
   738
  Furthermore a class introduction rule is generated (being bound as
wenzelm@27040
   739
  @{text c_class.intro}); this rule is employed by method @{method
wenzelm@27040
   740
  intro_classes} to support instantiation proofs of this class.
wenzelm@27040
   741
  
wenzelm@27040
   742
  The ``class axioms'' are stored as theorems according to the given
wenzelm@27040
   743
  name specifications, adding @{text "c_class"} as name space prefix;
wenzelm@27040
   744
  the same facts are also stored collectively as @{text
wenzelm@27040
   745
  c_class.axioms}.
wenzelm@27040
   746
  
wenzelm@27040
   747
  \item [@{command "instance"}~@{text "c\<^sub>1 \<subseteq> c\<^sub>2"} and
wenzelm@27040
   748
  @{command "instance"}~@{text "t :: (s\<^sub>1, \<dots>, s\<^sub>n) s"}]
wenzelm@27040
   749
  setup a goal stating a class relation or type arity.  The proof
wenzelm@27040
   750
  would usually proceed by @{method intro_classes}, and then establish
wenzelm@27040
   751
  the characteristic theorems of the type classes involved.  After
wenzelm@27040
   752
  finishing the proof, the theory will be augmented by a type
wenzelm@27040
   753
  signature declaration corresponding to the resulting theorem.
wenzelm@27040
   754
wenzelm@27040
   755
  \end{descr}
wenzelm@27040
   756
*}
wenzelm@27040
   757
wenzelm@27040
   758
wenzelm@27040
   759
section {* Unrestricted overloading *}
wenzelm@27040
   760
wenzelm@27040
   761
text {*
wenzelm@27040
   762
  Isabelle/Pure's definitional schemes support certain forms of
wenzelm@27040
   763
  overloading (see \secref{sec:consts}).  At most occassions
wenzelm@27040
   764
  overloading will be used in a Haskell-like fashion together with
wenzelm@27040
   765
  type classes by means of @{command "instantiation"} (see
wenzelm@27040
   766
  \secref{sec:class}).  Sometimes low-level overloading is desirable.
wenzelm@27040
   767
  The @{command "overloading"} target provides a convenient view for
wenzelm@27040
   768
  end-users.
wenzelm@27040
   769
wenzelm@27040
   770
  \begin{matharray}{rcl}
wenzelm@27040
   771
    @{command_def "overloading"} & : & \isartrans{theory}{local{\dsh}theory} \\
wenzelm@27040
   772
  \end{matharray}
wenzelm@27040
   773
wenzelm@27040
   774
  \begin{rail}
wenzelm@27040
   775
    'overloading' \\
wenzelm@27040
   776
    ( string ( '==' | equiv ) term ( '(' 'unchecked' ')' )? + ) 'begin'
wenzelm@27040
   777
  \end{rail}
wenzelm@27040
   778
wenzelm@27040
   779
  \begin{descr}
wenzelm@27040
   780
wenzelm@27040
   781
  \item [@{command "overloading"}~@{text "x\<^sub>1 \<equiv> c\<^sub>1 ::
wenzelm@27040
   782
  \<tau>\<^sub>1 \<AND> \<dots> x\<^sub>n \<equiv> c\<^sub>n :: \<tau>\<^sub>n \<BEGIN>"}]
wenzelm@27040
   783
  opens a theory target (cf.\ \secref{sec:target}) which allows to
wenzelm@27040
   784
  specify constants with overloaded definitions.  These are identified
wenzelm@27040
   785
  by an explicitly given mapping from variable names @{text
wenzelm@27040
   786
  "x\<^sub>i"} to constants @{text "c\<^sub>i"} at particular type
wenzelm@27040
   787
  instances.  The definitions themselves are established using common
wenzelm@27040
   788
  specification tools, using the names @{text "x\<^sub>i"} as
wenzelm@27040
   789
  reference to the corresponding constants.  The target is concluded
wenzelm@27040
   790
  by @{command (local) "end"}.
wenzelm@27040
   791
wenzelm@27040
   792
  A @{text "(unchecked)"} option disables global dependency checks for
wenzelm@27040
   793
  the corresponding definition, which is occasionally useful for
wenzelm@27040
   794
  exotic overloading.  It is at the discretion of the user to avoid
wenzelm@27040
   795
  malformed theory specifications!
wenzelm@27040
   796
wenzelm@27040
   797
  \end{descr}
wenzelm@27040
   798
*}
wenzelm@27040
   799
wenzelm@27040
   800
wenzelm@27040
   801
section {* Incorporating ML code \label{sec:ML} *}
wenzelm@27040
   802
wenzelm@27040
   803
text {*
wenzelm@27040
   804
  \begin{matharray}{rcl}
wenzelm@27040
   805
    @{command_def "use"} & : & \isarkeep{theory~|~local{\dsh}theory} \\
wenzelm@27040
   806
    @{command_def "ML"} & : & \isarkeep{theory~|~local{\dsh}theory} \\
wenzelm@28281
   807
    @{command_def "ML_prf"} & : & \isarkeep{proof} \\
wenzelm@27040
   808
    @{command_def "ML_val"} & : & \isartrans{\cdot}{\cdot} \\
wenzelm@27040
   809
    @{command_def "ML_command"} & : & \isartrans{\cdot}{\cdot} \\
wenzelm@27040
   810
    @{command_def "setup"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   811
  \end{matharray}
wenzelm@27040
   812
wenzelm@27040
   813
  \begin{rail}
wenzelm@27040
   814
    'use' name
wenzelm@27040
   815
    ;
wenzelm@28757
   816
    ('ML' | 'ML\_prf' | 'ML\_val' | 'ML\_command' | 'setup') text
wenzelm@27040
   817
    ;
wenzelm@27040
   818
  \end{rail}
wenzelm@27040
   819
wenzelm@27040
   820
  \begin{descr}
wenzelm@27040
   821
wenzelm@27040
   822
  \item [@{command "use"}~@{text "file"}] reads and executes ML
wenzelm@27040
   823
  commands from @{text "file"}.  The current theory context is passed
wenzelm@28757
   824
  down to the ML toplevel and may be modified, using @{ML [source=false]
wenzelm@27040
   825
  "Context.>>"} or derived ML commands.  The file name is checked with
wenzelm@27040
   826
  the @{keyword_ref "uses"} dependency declaration given in the theory
wenzelm@27040
   827
  header (see also \secref{sec:begin-thy}).
wenzelm@28281
   828
wenzelm@28281
   829
  Top-level ML bindings are stored within the (global or local) theory
wenzelm@28281
   830
  context.
wenzelm@27040
   831
  
wenzelm@27040
   832
  \item [@{command "ML"}~@{text "text"}] is similar to @{command
wenzelm@27040
   833
  "use"}, but executes ML commands directly from the given @{text
wenzelm@28281
   834
  "text"}.  Top-level ML bindings are stored within the (global or
wenzelm@28281
   835
  local) theory context.
wenzelm@28281
   836
wenzelm@28281
   837
  \item [@{command "ML_prf"}] is analogous to @{command "ML"} but
wenzelm@28281
   838
  works within a proof context.
wenzelm@28281
   839
wenzelm@28281
   840
  Top-level ML bindings are stored within the proof context in a
wenzelm@28281
   841
  purely sequential fashion, disregarding the nested proof structure.
wenzelm@28281
   842
  ML bindings introduced by @{command "ML_prf"} are discarded at the
wenzelm@28281
   843
  end of the proof.
wenzelm@27040
   844
wenzelm@27040
   845
  \item [@{command "ML_val"} and @{command "ML_command"}] are
wenzelm@27040
   846
  diagnostic versions of @{command "ML"}, which means that the context
wenzelm@27040
   847
  may not be updated.  @{command "ML_val"} echos the bindings produced
wenzelm@27040
   848
  at the ML toplevel, but @{command "ML_command"} is silent.
wenzelm@27040
   849
  
wenzelm@27040
   850
  \item [@{command "setup"}~@{text "text"}] changes the current theory
wenzelm@27040
   851
  context by applying @{text "text"}, which refers to an ML expression
wenzelm@28757
   852
  of type @{ML_type [source=false] "theory -> theory"}.  This enables
wenzelm@28757
   853
  to initialize any object-logic specific tools and packages written
wenzelm@28757
   854
  in ML, for example.
wenzelm@27040
   855
  
wenzelm@27040
   856
  \end{descr}
wenzelm@27040
   857
*}
wenzelm@27040
   858
wenzelm@27040
   859
wenzelm@27040
   860
section {* Primitive specification elements *}
wenzelm@27040
   861
wenzelm@27040
   862
subsection {* Type classes and sorts \label{sec:classes} *}
wenzelm@27040
   863
wenzelm@27040
   864
text {*
wenzelm@27040
   865
  \begin{matharray}{rcll}
wenzelm@27040
   866
    @{command_def "classes"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   867
    @{command_def "classrel"} & : & \isartrans{theory}{theory} & (axiomatic!) \\
wenzelm@27040
   868
    @{command_def "defaultsort"} & : & \isartrans{theory}{theory} \\
wenzelm@27059
   869
    @{command_def "class_deps"}@{text "\<^sup>*"} & : & \isarkeep{theory~|~proof} \\
wenzelm@27040
   870
  \end{matharray}
wenzelm@27040
   871
wenzelm@27040
   872
  \begin{rail}
wenzelm@27040
   873
    'classes' (classdecl +)
wenzelm@27040
   874
    ;
wenzelm@27040
   875
    'classrel' (nameref ('<' | subseteq) nameref + 'and')
wenzelm@27040
   876
    ;
wenzelm@27040
   877
    'defaultsort' sort
wenzelm@27040
   878
    ;
wenzelm@27040
   879
  \end{rail}
wenzelm@27040
   880
wenzelm@27040
   881
  \begin{descr}
wenzelm@27040
   882
wenzelm@27040
   883
  \item [@{command "classes"}~@{text "c \<subseteq> c\<^sub>1, \<dots>, c\<^sub>n"}]
wenzelm@27040
   884
  declares class @{text c} to be a subclass of existing classes @{text
wenzelm@27040
   885
  "c\<^sub>1, \<dots>, c\<^sub>n"}.  Cyclic class structures are not permitted.
wenzelm@27040
   886
wenzelm@27040
   887
  \item [@{command "classrel"}~@{text "c\<^sub>1 \<subseteq> c\<^sub>2"}] states
wenzelm@27040
   888
  subclass relations between existing classes @{text "c\<^sub>1"} and
wenzelm@27040
   889
  @{text "c\<^sub>2"}.  This is done axiomatically!  The @{command_ref
wenzelm@27040
   890
  "instance"} command (see \secref{sec:axclass}) provides a way to
wenzelm@27040
   891
  introduce proven class relations.
wenzelm@27040
   892
wenzelm@27040
   893
  \item [@{command "defaultsort"}~@{text s}] makes sort @{text s} the
wenzelm@27040
   894
  new default sort for any type variables given without sort
wenzelm@27040
   895
  constraints.  Usually, the default sort would be only changed when
wenzelm@27040
   896
  defining a new object-logic.
wenzelm@27040
   897
wenzelm@27040
   898
  \item [@{command "class_deps"}] visualizes the subclass relation,
wenzelm@27040
   899
  using Isabelle's graph browser tool (see also \cite{isabelle-sys}).
wenzelm@27040
   900
wenzelm@27040
   901
  \end{descr}
wenzelm@27040
   902
*}
wenzelm@27040
   903
wenzelm@27040
   904
wenzelm@27040
   905
subsection {* Types and type abbreviations \label{sec:types-pure} *}
wenzelm@27040
   906
wenzelm@27040
   907
text {*
wenzelm@27040
   908
  \begin{matharray}{rcll}
wenzelm@27040
   909
    @{command_def "types"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   910
    @{command_def "typedecl"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   911
    @{command_def "nonterminals"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   912
    @{command_def "arities"} & : & \isartrans{theory}{theory} & (axiomatic!) \\
wenzelm@27040
   913
  \end{matharray}
wenzelm@27040
   914
wenzelm@27040
   915
  \begin{rail}
wenzelm@27040
   916
    'types' (typespec '=' type infix? +)
wenzelm@27040
   917
    ;
wenzelm@27040
   918
    'typedecl' typespec infix?
wenzelm@27040
   919
    ;
wenzelm@27040
   920
    'nonterminals' (name +)
wenzelm@27040
   921
    ;
wenzelm@27040
   922
    'arities' (nameref '::' arity +)
wenzelm@27040
   923
    ;
wenzelm@27040
   924
  \end{rail}
wenzelm@27040
   925
wenzelm@27040
   926
  \begin{descr}
wenzelm@27040
   927
wenzelm@27040
   928
  \item [@{command "types"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t = \<tau>"}]
wenzelm@27040
   929
  introduces \emph{type synonym} @{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t"}
wenzelm@27040
   930
  for existing type @{text "\<tau>"}.  Unlike actual type definitions, as
wenzelm@27040
   931
  are available in Isabelle/HOL for example, type synonyms are just
wenzelm@27040
   932
  purely syntactic abbreviations without any logical significance.
wenzelm@27040
   933
  Internally, type synonyms are fully expanded.
wenzelm@27040
   934
  
wenzelm@27040
   935
  \item [@{command "typedecl"}~@{text "(\<alpha>\<^sub>1, \<dots>, \<alpha>\<^sub>n) t"}]
wenzelm@27040
   936
  declares a new type constructor @{text t}, intended as an actual
wenzelm@27040
   937
  logical type (of the object-logic, if available).
wenzelm@27040
   938
wenzelm@27040
   939
  \item [@{command "nonterminals"}~@{text c}] declares type
wenzelm@27040
   940
  constructors @{text c} (without arguments) to act as purely
wenzelm@27040
   941
  syntactic types, i.e.\ nonterminal symbols of Isabelle's inner
wenzelm@27040
   942
  syntax of terms or types.
wenzelm@27040
   943
wenzelm@27040
   944
  \item [@{command "arities"}~@{text "t :: (s\<^sub>1, \<dots>, s\<^sub>n)
wenzelm@27040
   945
  s"}] augments Isabelle's order-sorted signature of types by new type
wenzelm@27040
   946
  constructor arities.  This is done axiomatically!  The @{command_ref
wenzelm@27040
   947
  "instance"} command (see \S\ref{sec:axclass}) provides a way to
wenzelm@27040
   948
  introduce proven type arities.
wenzelm@27040
   949
wenzelm@27040
   950
  \end{descr}
wenzelm@27040
   951
*}
wenzelm@27040
   952
wenzelm@27040
   953
wenzelm@27040
   954
subsection {* Constants and definitions \label{sec:consts} *}
wenzelm@27040
   955
wenzelm@27040
   956
text {*
wenzelm@27040
   957
  Definitions essentially express abbreviations within the logic.  The
wenzelm@27040
   958
  simplest form of a definition is @{text "c :: \<sigma> \<equiv> t"}, where @{text
wenzelm@27040
   959
  c} is a newly declared constant.  Isabelle also allows derived forms
wenzelm@27040
   960
  where the arguments of @{text c} appear on the left, abbreviating a
wenzelm@27040
   961
  prefix of @{text \<lambda>}-abstractions, e.g.\ @{text "c \<equiv> \<lambda>x y. t"} may be
wenzelm@27040
   962
  written more conveniently as @{text "c x y \<equiv> t"}.  Moreover,
wenzelm@27040
   963
  definitions may be weakened by adding arbitrary pre-conditions:
wenzelm@27040
   964
  @{text "A \<Longrightarrow> c x y \<equiv> t"}.
wenzelm@27040
   965
wenzelm@27040
   966
  \medskip The built-in well-formedness conditions for definitional
wenzelm@27040
   967
  specifications are:
wenzelm@27040
   968
wenzelm@27040
   969
  \begin{itemize}
wenzelm@27040
   970
wenzelm@27040
   971
  \item Arguments (on the left-hand side) must be distinct variables.
wenzelm@27040
   972
wenzelm@27040
   973
  \item All variables on the right-hand side must also appear on the
wenzelm@27040
   974
  left-hand side.
wenzelm@27040
   975
wenzelm@27040
   976
  \item All type variables on the right-hand side must also appear on
wenzelm@27040
   977
  the left-hand side; this prohibits @{text "0 :: nat \<equiv> length ([] ::
wenzelm@27040
   978
  \<alpha> list)"} for example.
wenzelm@27040
   979
wenzelm@27040
   980
  \item The definition must not be recursive.  Most object-logics
wenzelm@27040
   981
  provide definitional principles that can be used to express
wenzelm@27040
   982
  recursion safely.
wenzelm@27040
   983
wenzelm@27040
   984
  \end{itemize}
wenzelm@27040
   985
wenzelm@27040
   986
  Overloading means that a constant being declared as @{text "c :: \<alpha>
wenzelm@27040
   987
  decl"} may be defined separately on type instances @{text "c ::
wenzelm@27040
   988
  (\<beta>\<^sub>1, \<dots>, \<beta>\<^sub>n) t decl"} for each type constructor @{text
wenzelm@27040
   989
  t}.  The right-hand side may mention overloaded constants
wenzelm@27040
   990
  recursively at type instances corresponding to the immediate
wenzelm@27040
   991
  argument types @{text "\<beta>\<^sub>1, \<dots>, \<beta>\<^sub>n"}.  Incomplete
wenzelm@27040
   992
  specification patterns impose global constraints on all occurrences,
wenzelm@27040
   993
  e.g.\ @{text "d :: \<alpha> \<times> \<alpha>"} on the left-hand side means that all
wenzelm@27040
   994
  corresponding occurrences on some right-hand side need to be an
wenzelm@27040
   995
  instance of this, general @{text "d :: \<alpha> \<times> \<beta>"} will be disallowed.
wenzelm@27040
   996
wenzelm@27040
   997
  \begin{matharray}{rcl}
wenzelm@27040
   998
    @{command_def "consts"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
   999
    @{command_def "defs"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1000
    @{command_def "constdefs"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1001
  \end{matharray}
wenzelm@27040
  1002
wenzelm@27040
  1003
  \begin{rail}
wenzelm@27040
  1004
    'consts' ((name '::' type mixfix?) +)
wenzelm@27040
  1005
    ;
wenzelm@27040
  1006
    'defs' ('(' 'unchecked'? 'overloaded'? ')')? \\ (axmdecl prop +)
wenzelm@27040
  1007
    ;
wenzelm@27040
  1008
  \end{rail}
wenzelm@27040
  1009
wenzelm@27040
  1010
  \begin{rail}
wenzelm@27040
  1011
    'constdefs' structs? (constdecl? constdef +)
wenzelm@27040
  1012
    ;
wenzelm@27040
  1013
wenzelm@27040
  1014
    structs: '(' 'structure' (vars + 'and') ')'
wenzelm@27040
  1015
    ;
wenzelm@27040
  1016
    constdecl:  ((name '::' type mixfix | name '::' type | name mixfix) 'where'?) | name 'where'
wenzelm@27040
  1017
    ;
wenzelm@27040
  1018
    constdef: thmdecl? prop
wenzelm@27040
  1019
    ;
wenzelm@27040
  1020
  \end{rail}
wenzelm@27040
  1021
wenzelm@27040
  1022
  \begin{descr}
wenzelm@27040
  1023
wenzelm@27040
  1024
  \item [@{command "consts"}~@{text "c :: \<sigma>"}] declares constant
wenzelm@27040
  1025
  @{text c} to have any instance of type scheme @{text \<sigma>}.  The
wenzelm@27040
  1026
  optional mixfix annotations may attach concrete syntax to the
wenzelm@27040
  1027
  constants declared.
wenzelm@27040
  1028
  
wenzelm@27040
  1029
  \item [@{command "defs"}~@{text "name: eqn"}] introduces @{text eqn}
wenzelm@27040
  1030
  as a definitional axiom for some existing constant.
wenzelm@27040
  1031
  
wenzelm@27040
  1032
  The @{text "(unchecked)"} option disables global dependency checks
wenzelm@27040
  1033
  for this definition, which is occasionally useful for exotic
wenzelm@27040
  1034
  overloading.  It is at the discretion of the user to avoid malformed
wenzelm@27040
  1035
  theory specifications!
wenzelm@27040
  1036
  
wenzelm@27040
  1037
  The @{text "(overloaded)"} option declares definitions to be
wenzelm@27040
  1038
  potentially overloaded.  Unless this option is given, a warning
wenzelm@27040
  1039
  message would be issued for any definitional equation with a more
wenzelm@27040
  1040
  special type than that of the corresponding constant declaration.
wenzelm@27040
  1041
  
wenzelm@27040
  1042
  \item [@{command "constdefs"}] provides a streamlined combination of
wenzelm@27040
  1043
  constants declarations and definitions: type-inference takes care of
wenzelm@27040
  1044
  the most general typing of the given specification (the optional
wenzelm@27040
  1045
  type constraint may refer to type-inference dummies ``@{text
wenzelm@27040
  1046
  _}'' as usual).  The resulting type declaration needs to agree with
wenzelm@27040
  1047
  that of the specification; overloading is \emph{not} supported here!
wenzelm@27040
  1048
  
wenzelm@27040
  1049
  The constant name may be omitted altogether, if neither type nor
wenzelm@27040
  1050
  syntax declarations are given.  The canonical name of the
wenzelm@27040
  1051
  definitional axiom for constant @{text c} will be @{text c_def},
wenzelm@27040
  1052
  unless specified otherwise.  Also note that the given list of
wenzelm@27040
  1053
  specifications is processed in a strictly sequential manner, with
wenzelm@27040
  1054
  type-checking being performed independently.
wenzelm@27040
  1055
  
wenzelm@27040
  1056
  An optional initial context of @{text "(structure)"} declarations
wenzelm@27040
  1057
  admits use of indexed syntax, using the special symbol @{verbatim
wenzelm@27040
  1058
  "\<index>"} (printed as ``@{text "\<index>"}'').  The latter concept is
wenzelm@27040
  1059
  particularly useful with locales (see also \S\ref{sec:locale}).
wenzelm@27040
  1060
wenzelm@27040
  1061
  \end{descr}
wenzelm@27040
  1062
*}
wenzelm@27040
  1063
wenzelm@27040
  1064
wenzelm@27040
  1065
section {* Axioms and theorems \label{sec:axms-thms} *}
wenzelm@27040
  1066
wenzelm@27040
  1067
text {*
wenzelm@27040
  1068
  \begin{matharray}{rcll}
wenzelm@27040
  1069
    @{command_def "axioms"} & : & \isartrans{theory}{theory} & (axiomatic!) \\
wenzelm@27040
  1070
    @{command_def "lemmas"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27046
  1071
    @{command_def "theorems"} & : & \isarkeep{local{\dsh}theory} \\
wenzelm@27040
  1072
  \end{matharray}
wenzelm@27040
  1073
wenzelm@27040
  1074
  \begin{rail}
wenzelm@27040
  1075
    'axioms' (axmdecl prop +)
wenzelm@27040
  1076
    ;
wenzelm@27040
  1077
    ('lemmas' | 'theorems') target? (thmdef? thmrefs + 'and')
wenzelm@27040
  1078
    ;
wenzelm@27040
  1079
  \end{rail}
wenzelm@27040
  1080
wenzelm@27040
  1081
  \begin{descr}
wenzelm@27040
  1082
  
wenzelm@27040
  1083
  \item [@{command "axioms"}~@{text "a: \<phi>"}] introduces arbitrary
wenzelm@27040
  1084
  statements as axioms of the meta-logic.  In fact, axioms are
wenzelm@27040
  1085
  ``axiomatic theorems'', and may be referred later just as any other
wenzelm@27040
  1086
  theorem.
wenzelm@27040
  1087
  
wenzelm@27040
  1088
  Axioms are usually only introduced when declaring new logical
wenzelm@27040
  1089
  systems.  Everyday work is typically done the hard way, with proper
wenzelm@27040
  1090
  definitions and proven theorems.
wenzelm@27040
  1091
  
wenzelm@27040
  1092
  \item [@{command "lemmas"}~@{text "a = b\<^sub>1 \<dots> b\<^sub>n"}]
wenzelm@27040
  1093
  retrieves and stores existing facts in the theory context, or the
wenzelm@27040
  1094
  specified target context (see also \secref{sec:target}).  Typical
wenzelm@27040
  1095
  applications would also involve attributes, to declare Simplifier
wenzelm@27040
  1096
  rules, for example.
wenzelm@27040
  1097
  
wenzelm@27040
  1098
  \item [@{command "theorems"}] is essentially the same as @{command
wenzelm@27040
  1099
  "lemmas"}, but marks the result as a different kind of facts.
wenzelm@27040
  1100
wenzelm@27040
  1101
  \end{descr}
wenzelm@27040
  1102
*}
wenzelm@27040
  1103
wenzelm@27040
  1104
wenzelm@27040
  1105
section {* Oracles *}
wenzelm@27040
  1106
wenzelm@28756
  1107
text {* Oracles allow Isabelle to take advantage of external reasoners
wenzelm@28756
  1108
  such as arithmetic decision procedures, model checkers, fast
wenzelm@28756
  1109
  tautology checkers or computer algebra systems.  Invoked as an
wenzelm@28756
  1110
  oracle, an external reasoner can create arbitrary Isabelle theorems.
wenzelm@28756
  1111
wenzelm@28756
  1112
  It is the responsibility of the user to ensure that the external
wenzelm@28756
  1113
  reasoner is as trustworthy as the application requires.  Another
wenzelm@28756
  1114
  typical source of errors is the linkup between Isabelle and the
wenzelm@28756
  1115
  external tool, not just its concrete implementation, but also the
wenzelm@28756
  1116
  required translation between two different logical environments.
wenzelm@28756
  1117
wenzelm@28756
  1118
  Isabelle merely guarantees well-formedness of the propositions being
wenzelm@28756
  1119
  asserted, and records within the internal derivation object how
wenzelm@28756
  1120
  presumed theorems depend on unproven suppositions.
wenzelm@28756
  1121
wenzelm@27040
  1122
  \begin{matharray}{rcl}
wenzelm@27040
  1123
    @{command_def "oracle"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1124
  \end{matharray}
wenzelm@27040
  1125
wenzelm@27040
  1126
  \begin{rail}
wenzelm@28290
  1127
    'oracle' name '=' text
wenzelm@27040
  1128
    ;
wenzelm@27040
  1129
  \end{rail}
wenzelm@27040
  1130
wenzelm@27040
  1131
  \begin{descr}
wenzelm@27040
  1132
wenzelm@28290
  1133
  \item [@{command "oracle"}~@{text "name = text"}] turns the given ML
wenzelm@28290
  1134
  expression @{text "text"} of type @{ML_text "'a -> cterm"} into an
wenzelm@28290
  1135
  ML function of type @{ML_text "'a -> thm"}, which is bound to the
wenzelm@28756
  1136
  global identifier @{ML_text name}.  This acts like an infinitary
wenzelm@28756
  1137
  specification of axioms!  Invoking the oracle only works within the
wenzelm@28756
  1138
  scope of the resulting theory.
wenzelm@27040
  1139
wenzelm@27040
  1140
  \end{descr}
wenzelm@28756
  1141
wenzelm@28756
  1142
  See @{"file" "~~/src/FOL/ex/IffOracle.thy"} for a worked example of
wenzelm@28756
  1143
  defining a new primitive rule as oracle, and turning it into a proof
wenzelm@28756
  1144
  method.
wenzelm@27040
  1145
*}
wenzelm@27040
  1146
wenzelm@27040
  1147
wenzelm@27040
  1148
section {* Name spaces *}
wenzelm@27040
  1149
wenzelm@27040
  1150
text {*
wenzelm@27040
  1151
  \begin{matharray}{rcl}
wenzelm@27040
  1152
    @{command_def "global"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1153
    @{command_def "local"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1154
    @{command_def "hide"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1155
  \end{matharray}
wenzelm@27040
  1156
wenzelm@27040
  1157
  \begin{rail}
wenzelm@27040
  1158
    'hide' ('(open)')? name (nameref + )
wenzelm@27040
  1159
    ;
wenzelm@27040
  1160
  \end{rail}
wenzelm@27040
  1161
wenzelm@27040
  1162
  Isabelle organizes any kind of name declarations (of types,
wenzelm@27040
  1163
  constants, theorems etc.) by separate hierarchically structured name
wenzelm@27040
  1164
  spaces.  Normally the user does not have to control the behavior of
wenzelm@27040
  1165
  name spaces by hand, yet the following commands provide some way to
wenzelm@27040
  1166
  do so.
wenzelm@27040
  1167
wenzelm@27040
  1168
  \begin{descr}
wenzelm@27040
  1169
wenzelm@27040
  1170
  \item [@{command "global"} and @{command "local"}] change the
wenzelm@27040
  1171
  current name declaration mode.  Initially, theories start in
wenzelm@27040
  1172
  @{command "local"} mode, causing all names to be automatically
wenzelm@27040
  1173
  qualified by the theory name.  Changing this to @{command "global"}
wenzelm@27040
  1174
  causes all names to be declared without the theory prefix, until
wenzelm@27040
  1175
  @{command "local"} is declared again.
wenzelm@27040
  1176
  
wenzelm@27040
  1177
  Note that global names are prone to get hidden accidently later,
wenzelm@27040
  1178
  when qualified names of the same base name are introduced.
wenzelm@27040
  1179
  
wenzelm@27040
  1180
  \item [@{command "hide"}~@{text "space names"}] fully removes
wenzelm@27040
  1181
  declarations from a given name space (which may be @{text "class"},
wenzelm@27040
  1182
  @{text "type"}, @{text "const"}, or @{text "fact"}); with the @{text
wenzelm@27040
  1183
  "(open)"} option, only the base name is hidden.  Global
wenzelm@27040
  1184
  (unqualified) names may never be hidden.
wenzelm@27040
  1185
  
wenzelm@27040
  1186
  Note that hiding name space accesses has no impact on logical
wenzelm@28756
  1187
  declarations --- they remain valid internally.  Entities that are no
wenzelm@27040
  1188
  longer accessible to the user are printed with the special qualifier
wenzelm@27040
  1189
  ``@{text "??"}'' prefixed to the full internal name.
wenzelm@27040
  1190
wenzelm@27040
  1191
  \end{descr}
wenzelm@27040
  1192
*}
wenzelm@27040
  1193
wenzelm@27040
  1194
wenzelm@27040
  1195
section {* Syntax and translations \label{sec:syn-trans} *}
wenzelm@27040
  1196
wenzelm@27040
  1197
text {*
wenzelm@27040
  1198
  \begin{matharray}{rcl}
wenzelm@27040
  1199
    @{command_def "syntax"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1200
    @{command_def "no_syntax"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1201
    @{command_def "translations"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1202
    @{command_def "no_translations"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1203
  \end{matharray}
wenzelm@27040
  1204
wenzelm@27040
  1205
  \begin{rail}
wenzelm@27040
  1206
    ('syntax' | 'no\_syntax') mode? (constdecl +)
wenzelm@27040
  1207
    ;
wenzelm@27040
  1208
    ('translations' | 'no\_translations') (transpat ('==' | '=>' | '<=' | rightleftharpoons | rightharpoonup | leftharpoondown) transpat +)
wenzelm@27040
  1209
    ;
wenzelm@27040
  1210
wenzelm@27040
  1211
    mode: ('(' ( name | 'output' | name 'output' ) ')')
wenzelm@27040
  1212
    ;
wenzelm@27040
  1213
    transpat: ('(' nameref ')')? string
wenzelm@27040
  1214
    ;
wenzelm@27040
  1215
  \end{rail}
wenzelm@27040
  1216
wenzelm@27040
  1217
  \begin{descr}
wenzelm@27040
  1218
  
wenzelm@27040
  1219
  \item [@{command "syntax"}~@{text "(mode) decls"}] is similar to
wenzelm@27040
  1220
  @{command "consts"}~@{text decls}, except that the actual logical
wenzelm@27040
  1221
  signature extension is omitted.  Thus the context free grammar of
wenzelm@27040
  1222
  Isabelle's inner syntax may be augmented in arbitrary ways,
wenzelm@27040
  1223
  independently of the logic.  The @{text mode} argument refers to the
wenzelm@27040
  1224
  print mode that the grammar rules belong; unless the @{keyword_ref
wenzelm@27040
  1225
  "output"} indicator is given, all productions are added both to the
wenzelm@27040
  1226
  input and output grammar.
wenzelm@27040
  1227
  
wenzelm@27040
  1228
  \item [@{command "no_syntax"}~@{text "(mode) decls"}] removes
wenzelm@27040
  1229
  grammar declarations (and translations) resulting from @{text
wenzelm@27040
  1230
  decls}, which are interpreted in the same manner as for @{command
wenzelm@27040
  1231
  "syntax"} above.
wenzelm@27040
  1232
  
wenzelm@27040
  1233
  \item [@{command "translations"}~@{text rules}] specifies syntactic
wenzelm@27040
  1234
  translation rules (i.e.\ macros): parse~/ print rules (@{text "\<rightleftharpoons>"}),
wenzelm@27040
  1235
  parse rules (@{text "\<rightharpoonup>"}), or print rules (@{text "\<leftharpoondown>"}).
wenzelm@27040
  1236
  Translation patterns may be prefixed by the syntactic category to be
wenzelm@27040
  1237
  used for parsing; the default is @{text logic}.
wenzelm@27040
  1238
  
wenzelm@27040
  1239
  \item [@{command "no_translations"}~@{text rules}] removes syntactic
wenzelm@27040
  1240
  translation rules, which are interpreted in the same manner as for
wenzelm@27040
  1241
  @{command "translations"} above.
wenzelm@27040
  1242
wenzelm@27040
  1243
  \end{descr}
wenzelm@27040
  1244
*}
wenzelm@27040
  1245
wenzelm@27040
  1246
wenzelm@27040
  1247
section {* Syntax translation functions *}
wenzelm@27040
  1248
wenzelm@27040
  1249
text {*
wenzelm@27040
  1250
  \begin{matharray}{rcl}
wenzelm@27040
  1251
    @{command_def "parse_ast_translation"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1252
    @{command_def "parse_translation"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1253
    @{command_def "print_translation"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1254
    @{command_def "typed_print_translation"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1255
    @{command_def "print_ast_translation"} & : & \isartrans{theory}{theory} \\
wenzelm@27040
  1256
  \end{matharray}
wenzelm@27040
  1257
wenzelm@27040
  1258
  \begin{rail}
wenzelm@27040
  1259
  ( 'parse\_ast\_translation' | 'parse\_translation' | 'print\_translation' |
wenzelm@27040
  1260
    'typed\_print\_translation' | 'print\_ast\_translation' ) ('(advanced)')? text
wenzelm@27040
  1261
  ;
wenzelm@27040
  1262
  \end{rail}
wenzelm@27040
  1263
wenzelm@27040
  1264
  Syntax translation functions written in ML admit almost arbitrary
wenzelm@27040
  1265
  manipulations of Isabelle's inner syntax.  Any of the above commands
wenzelm@27040
  1266
  have a single \railqtok{text} argument that refers to an ML
wenzelm@27040
  1267
  expression of appropriate type, which are as follows by default:
wenzelm@27040
  1268
wenzelm@27040
  1269
%FIXME proper antiquotations
wenzelm@27040
  1270
\begin{ttbox}
wenzelm@27040
  1271
val parse_ast_translation   : (string * (ast list -> ast)) list
wenzelm@27040
  1272
val parse_translation       : (string * (term list -> term)) list
wenzelm@27040
  1273
val print_translation       : (string * (term list -> term)) list
wenzelm@27040
  1274
val typed_print_translation :
wenzelm@27040
  1275
  (string * (bool -> typ -> term list -> term)) list
wenzelm@27040
  1276
val print_ast_translation   : (string * (ast list -> ast)) list
wenzelm@27040
  1277
\end{ttbox}
wenzelm@27040
  1278
wenzelm@27040
  1279
  If the @{text "(advanced)"} option is given, the corresponding
wenzelm@27040
  1280
  translation functions may depend on the current theory or proof
wenzelm@27040
  1281
  context.  This allows to implement advanced syntax mechanisms, as
wenzelm@27040
  1282
  translations functions may refer to specific theory declarations or
wenzelm@27040
  1283
  auxiliary proof data.
wenzelm@27040
  1284
wenzelm@27040
  1285
  See also \cite[\S8]{isabelle-ref} for more information on the
wenzelm@27040
  1286
  general concept of syntax transformations in Isabelle.
wenzelm@27040
  1287
wenzelm@27040
  1288
%FIXME proper antiquotations
wenzelm@27040
  1289
\begin{ttbox}
wenzelm@27040
  1290
val parse_ast_translation:
wenzelm@27046
  1291
  (string * (Proof.context -> ast list -> ast)) list
wenzelm@27040
  1292
val parse_translation:
wenzelm@27046
  1293
  (string * (Proof.context -> term list -> term)) list
wenzelm@27040
  1294
val print_translation:
wenzelm@27046
  1295
  (string * (Proof.context -> term list -> term)) list
wenzelm@27040
  1296
val typed_print_translation:
wenzelm@27046
  1297
  (string * (Proof.context -> bool -> typ -> term list -> term)) list
wenzelm@27040
  1298
val print_ast_translation:
wenzelm@27046
  1299
  (string * (Proof.context -> ast list -> ast)) list
wenzelm@27040
  1300
\end{ttbox}
wenzelm@27040
  1301
*}
wenzelm@27040
  1302
wenzelm@26869
  1303
end