src/HOL/Algebra/abstract/Ring2.thy
author haftmann
Mon, 27 Apr 2009 10:11:44 +0200
changeset 31001 7e6ffd8f51a9
parent 30968 10fef94f40fc
child 32011 cb1a1c94b4cd
permissions -rw-r--r--
cleaned up theory power further
wenzelm@29269
     1
(*  Title:     HOL/Algebra/abstract/Ring2.thy
wenzelm@29269
     2
    Author:    Clemens Ballarin
wenzelm@29269
     3
wenzelm@29269
     4
The algebraic hierarchy of rings as axiomatic classes.
ballarin@20318
     5
*)
ballarin@20318
     6
haftmann@27542
     7
header {* The algebraic hierarchy of rings as type classes *}
ballarin@20318
     8
haftmann@27542
     9
theory Ring2
haftmann@27542
    10
imports Main
wenzelm@21423
    11
begin
ballarin@20318
    12
ballarin@20318
    13
subsection {* Ring axioms *}
ballarin@20318
    14
haftmann@31001
    15
class ring = zero + one + plus + minus + uminus + times + inverse + power + dvd +
haftmann@27542
    16
  assumes a_assoc:      "(a + b) + c = a + (b + c)"
haftmann@27542
    17
  and l_zero:           "0 + a = a"
haftmann@27542
    18
  and l_neg:            "(-a) + a = 0"
haftmann@27542
    19
  and a_comm:           "a + b = b + a"
ballarin@20318
    20
haftmann@27542
    21
  assumes m_assoc:      "(a * b) * c = a * (b * c)"
haftmann@27542
    22
  and l_one:            "1 * a = a"
ballarin@20318
    23
haftmann@27542
    24
  assumes l_distr:      "(a + b) * c = a * c + b * c"
ballarin@20318
    25
haftmann@27542
    26
  assumes m_comm:       "a * b = b * a"
ballarin@20318
    27
haftmann@27542
    28
  assumes minus_def:    "a - b = a + (-b)"
haftmann@27542
    29
  and inverse_def:      "inverse a = (if a dvd 1 then THE x. a*x = 1 else 0)"
haftmann@27542
    30
  and divide_def:       "a / b = a * inverse b"
haftmann@27542
    31
begin
ballarin@20318
    32
haftmann@27542
    33
definition assoc :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "assoc" 50) where
haftmann@27542
    34
  assoc_def: "a assoc b \<longleftrightarrow> a dvd b & b dvd a"
ballarin@20318
    35
haftmann@27542
    36
definition irred :: "'a \<Rightarrow> bool" where
haftmann@27542
    37
  irred_def: "irred a \<longleftrightarrow> a ~= 0 & ~ a dvd 1
haftmann@27542
    38
                          & (ALL d. d dvd a --> d dvd 1 | a dvd d)"
ballarin@20318
    39
haftmann@27542
    40
definition prime :: "'a \<Rightarrow> bool" where
haftmann@27542
    41
  prime_def: "prime p \<longleftrightarrow> p ~= 0 & ~ p dvd 1
ballarin@20318
    42
                          & (ALL a b. p dvd (a*b) --> p dvd a | p dvd b)"
ballarin@20318
    43
haftmann@27542
    44
end
haftmann@27542
    45
haftmann@27542
    46
ballarin@20318
    47
subsection {* Integral domains *}
ballarin@20318
    48
haftmann@27542
    49
class "domain" = ring +
haftmann@27542
    50
  assumes one_not_zero: "1 ~= 0"
haftmann@27542
    51
  and integral: "a * b = 0 ==> a = 0 | b = 0"
ballarin@20318
    52
ballarin@20318
    53
subsection {* Factorial domains *}
ballarin@20318
    54
haftmann@27542
    55
class factorial = "domain" +
ballarin@20318
    56
(*
ballarin@20318
    57
  Proper definition using divisor chain condition currently not supported.
ballarin@20318
    58
  factorial_divisor:    "wf {(a, b). a dvd b & ~ (b dvd a)}"
ballarin@20318
    59
*)
haftmann@29665
    60
  (*assumes factorial_divisor: "True"*)
haftmann@29665
    61
  assumes factorial_prime: "irred a ==> prime a"
haftmann@29665
    62
ballarin@20318
    63
ballarin@20318
    64
subsection {* Euclidean domains *}
ballarin@20318
    65
ballarin@20318
    66
(*
ballarin@20318
    67
axclass
ballarin@20318
    68
  euclidean < "domain"
ballarin@20318
    69
ballarin@20318
    70
  euclidean_ax:  "b ~= 0 ==> Ex (% (q, r, e_size::('a::ringS)=>nat).
ballarin@20318
    71
                   a = b * q + r & e_size r < e_size b)"
ballarin@20318
    72
ballarin@20318
    73
  Nothing has been proved about Euclidean domains, yet.
ballarin@20318
    74
  Design question:
ballarin@20318
    75
    Fix quo, rem and e_size as constants that are axiomatised with
ballarin@20318
    76
    euclidean_ax?
ballarin@20318
    77
    - advantage: more pragmatic and easier to use
ballarin@20318
    78
    - disadvantage: for every type, one definition of quo and rem will
ballarin@20318
    79
        be fixed, users may want to use differing ones;
ballarin@20318
    80
        also, it seems not possible to prove that fields are euclidean
ballarin@20318
    81
        domains, because that would require generic (type-independent)
ballarin@20318
    82
        definitions of quo and rem.
ballarin@20318
    83
*)
ballarin@20318
    84
ballarin@20318
    85
subsection {* Fields *}
ballarin@20318
    86
haftmann@27542
    87
class field = ring +
haftmann@27542
    88
  assumes field_one_not_zero: "1 ~= 0"
ballarin@20318
    89
                (* Avoid a common superclass as the first thing we will
ballarin@20318
    90
                   prove about fields is that they are domains. *)
haftmann@27542
    91
  and field_ax: "a ~= 0 ==> a dvd 1"
ballarin@20318
    92
wenzelm@21423
    93
ballarin@20318
    94
section {* Basic facts *}
ballarin@20318
    95
ballarin@20318
    96
subsection {* Normaliser for rings *}
ballarin@20318
    97
wenzelm@21423
    98
(* derived rewrite rules *)
wenzelm@21423
    99
wenzelm@21423
   100
lemma a_lcomm: "(a::'a::ring)+(b+c) = b+(a+c)"
wenzelm@21423
   101
  apply (rule a_comm [THEN trans])
wenzelm@21423
   102
  apply (rule a_assoc [THEN trans])
wenzelm@21423
   103
  apply (rule a_comm [THEN arg_cong])
wenzelm@21423
   104
  done
wenzelm@21423
   105
wenzelm@21423
   106
lemma r_zero: "(a::'a::ring) + 0 = a"
wenzelm@21423
   107
  apply (rule a_comm [THEN trans])
wenzelm@21423
   108
  apply (rule l_zero)
wenzelm@21423
   109
  done
wenzelm@21423
   110
wenzelm@21423
   111
lemma r_neg: "(a::'a::ring) + (-a) = 0"
wenzelm@21423
   112
  apply (rule a_comm [THEN trans])
wenzelm@21423
   113
  apply (rule l_neg)
wenzelm@21423
   114
  done
wenzelm@21423
   115
wenzelm@21423
   116
lemma r_neg2: "(a::'a::ring) + (-a + b) = b"
wenzelm@21423
   117
  apply (rule a_assoc [symmetric, THEN trans])
wenzelm@21423
   118
  apply (simp add: r_neg l_zero)
wenzelm@21423
   119
  done
wenzelm@21423
   120
wenzelm@21423
   121
lemma r_neg1: "-(a::'a::ring) + (a + b) = b"
wenzelm@21423
   122
  apply (rule a_assoc [symmetric, THEN trans])
wenzelm@21423
   123
  apply (simp add: l_neg l_zero)
wenzelm@21423
   124
  done
wenzelm@21423
   125
wenzelm@21423
   126
wenzelm@21423
   127
(* auxiliary *)
wenzelm@21423
   128
wenzelm@21423
   129
lemma a_lcancel: "!! a::'a::ring. a + b = a + c ==> b = c"
wenzelm@21423
   130
  apply (rule box_equals)
wenzelm@21423
   131
  prefer 2
wenzelm@21423
   132
  apply (rule l_zero)
wenzelm@21423
   133
  prefer 2
wenzelm@21423
   134
  apply (rule l_zero)
wenzelm@21423
   135
  apply (rule_tac a1 = a in l_neg [THEN subst])
wenzelm@21423
   136
  apply (simp add: a_assoc)
wenzelm@21423
   137
  done
wenzelm@21423
   138
wenzelm@21423
   139
lemma minus_add: "-((a::'a::ring) + b) = (-a) + (-b)"
wenzelm@21423
   140
  apply (rule_tac a = "a + b" in a_lcancel)
wenzelm@21423
   141
  apply (simp add: r_neg l_neg l_zero a_assoc a_comm a_lcomm)
wenzelm@21423
   142
  done
wenzelm@21423
   143
wenzelm@21423
   144
lemma minus_minus: "-(-(a::'a::ring)) = a"
wenzelm@21423
   145
  apply (rule a_lcancel)
wenzelm@21423
   146
  apply (rule r_neg [THEN trans])
wenzelm@21423
   147
  apply (rule l_neg [symmetric])
wenzelm@21423
   148
  done
wenzelm@21423
   149
wenzelm@21423
   150
lemma minus0: "- 0 = (0::'a::ring)"
wenzelm@21423
   151
  apply (rule a_lcancel)
wenzelm@21423
   152
  apply (rule r_neg [THEN trans])
wenzelm@21423
   153
  apply (rule l_zero [symmetric])
wenzelm@21423
   154
  done
wenzelm@21423
   155
wenzelm@21423
   156
wenzelm@21423
   157
(* derived rules for multiplication *)
wenzelm@21423
   158
wenzelm@21423
   159
lemma m_lcomm: "(a::'a::ring)*(b*c) = b*(a*c)"
wenzelm@21423
   160
  apply (rule m_comm [THEN trans])
wenzelm@21423
   161
  apply (rule m_assoc [THEN trans])
wenzelm@21423
   162
  apply (rule m_comm [THEN arg_cong])
wenzelm@21423
   163
  done
wenzelm@21423
   164
wenzelm@21423
   165
lemma r_one: "(a::'a::ring) * 1 = a"
wenzelm@21423
   166
  apply (rule m_comm [THEN trans])
wenzelm@21423
   167
  apply (rule l_one)
wenzelm@21423
   168
  done
wenzelm@21423
   169
wenzelm@21423
   170
lemma r_distr: "(a::'a::ring) * (b + c) = a * b + a * c"
wenzelm@21423
   171
  apply (rule m_comm [THEN trans])
wenzelm@21423
   172
  apply (rule l_distr [THEN trans])
wenzelm@21423
   173
  apply (simp add: m_comm)
wenzelm@21423
   174
  done
wenzelm@21423
   175
wenzelm@21423
   176
wenzelm@21423
   177
(* the following proof is from Jacobson, Basic Algebra I, pp. 88-89 *)
wenzelm@21423
   178
lemma l_null: "0 * (a::'a::ring) = 0"
wenzelm@21423
   179
  apply (rule a_lcancel)
wenzelm@21423
   180
  apply (rule l_distr [symmetric, THEN trans])
wenzelm@21423
   181
  apply (simp add: r_zero)
wenzelm@21423
   182
  done
wenzelm@21423
   183
wenzelm@21423
   184
lemma r_null: "(a::'a::ring) * 0 = 0"
wenzelm@21423
   185
  apply (rule m_comm [THEN trans])
wenzelm@21423
   186
  apply (rule l_null)
wenzelm@21423
   187
  done
wenzelm@21423
   188
wenzelm@21423
   189
lemma l_minus: "(-(a::'a::ring)) * b = - (a * b)"
wenzelm@21423
   190
  apply (rule a_lcancel)
wenzelm@21423
   191
  apply (rule r_neg [symmetric, THEN [2] trans])
wenzelm@21423
   192
  apply (rule l_distr [symmetric, THEN trans])
wenzelm@21423
   193
  apply (simp add: l_null r_neg)
wenzelm@21423
   194
  done
wenzelm@21423
   195
wenzelm@21423
   196
lemma r_minus: "(a::'a::ring) * (-b) = - (a * b)"
wenzelm@21423
   197
  apply (rule a_lcancel)
wenzelm@21423
   198
  apply (rule r_neg [symmetric, THEN [2] trans])
wenzelm@21423
   199
  apply (rule r_distr [symmetric, THEN trans])
wenzelm@21423
   200
  apply (simp add: r_null r_neg)
wenzelm@21423
   201
  done
wenzelm@21423
   202
wenzelm@21423
   203
(*** Term order for commutative rings ***)
wenzelm@21423
   204
wenzelm@21423
   205
ML {*
wenzelm@21423
   206
fun ring_ord (Const (a, _)) =
wenzelm@21423
   207
    find_index (fn a' => a = a')
haftmann@22997
   208
      [@{const_name HOL.zero}, @{const_name HOL.plus}, @{const_name HOL.uminus},
haftmann@22997
   209
        @{const_name HOL.minus}, @{const_name HOL.one}, @{const_name HOL.times}]
wenzelm@21423
   210
  | ring_ord _ = ~1;
wenzelm@21423
   211
wenzelm@29269
   212
fun termless_ring (a, b) = (TermOrd.term_lpo ring_ord (a, b) = LESS);
wenzelm@21423
   213
wenzelm@21423
   214
val ring_ss = HOL_basic_ss settermless termless_ring addsimps
wenzelm@21423
   215
  [thm "a_assoc", thm "l_zero", thm "l_neg", thm "a_comm", thm "m_assoc",
wenzelm@21423
   216
   thm "l_one", thm "l_distr", thm "m_comm", thm "minus_def",
wenzelm@21423
   217
   thm "r_zero", thm "r_neg", thm "r_neg2", thm "r_neg1", thm "minus_add",
wenzelm@21423
   218
   thm "minus_minus", thm "minus0", thm "a_lcomm", thm "m_lcomm", (*thm "r_one",*)
wenzelm@21423
   219
   thm "r_distr", thm "l_null", thm "r_null", thm "l_minus", thm "r_minus"];
wenzelm@21423
   220
*}   (* Note: r_one is not necessary in ring_ss *)
ballarin@20318
   221
ballarin@20318
   222
method_setup ring =
wenzelm@30549
   223
  {* Scan.succeed (K (SIMPLE_METHOD' (full_simp_tac ring_ss))) *}
ballarin@20318
   224
  {* computes distributive normal form in rings *}
ballarin@20318
   225
ballarin@20318
   226
ballarin@20318
   227
subsection {* Rings and the summation operator *}
ballarin@20318
   228
ballarin@20318
   229
(* Basic facts --- move to HOL!!! *)
ballarin@20318
   230
ballarin@20318
   231
(* needed because natsum_cong (below) disables atMost_0 *)
ballarin@20318
   232
lemma natsum_0 [simp]: "setsum f {..(0::nat)} = (f 0::'a::comm_monoid_add)"
ballarin@20318
   233
by simp
ballarin@20318
   234
(*
ballarin@20318
   235
lemma natsum_Suc [simp]:
ballarin@20318
   236
  "setsum f {..Suc n} = (f (Suc n) + setsum f {..n}::'a::comm_monoid_add)"
ballarin@20318
   237
by (simp add: atMost_Suc)
ballarin@20318
   238
*)
ballarin@20318
   239
lemma natsum_Suc2:
ballarin@20318
   240
  "setsum f {..Suc n} = (f 0::'a::comm_monoid_add) + (setsum (%i. f (Suc i)) {..n})"
ballarin@20318
   241
proof (induct n)
ballarin@20318
   242
  case 0 show ?case by simp
ballarin@20318
   243
next
haftmann@22384
   244
  case Suc thus ?case by (simp add: add_assoc) 
ballarin@20318
   245
qed
ballarin@20318
   246
ballarin@20318
   247
lemma natsum_cong [cong]:
ballarin@20318
   248
  "!!k. [| j = k; !!i::nat. i <= k ==> f i = (g i::'a::comm_monoid_add) |] ==>
ballarin@20318
   249
        setsum f {..j} = setsum g {..k}"
ballarin@20318
   250
by (induct j) auto
ballarin@20318
   251
ballarin@20318
   252
lemma natsum_zero [simp]: "setsum (%i. 0) {..n::nat} = (0::'a::comm_monoid_add)"
ballarin@20318
   253
by (induct n) simp_all
ballarin@20318
   254
ballarin@20318
   255
lemma natsum_add [simp]:
ballarin@20318
   256
  "!!f::nat=>'a::comm_monoid_add.
ballarin@20318
   257
   setsum (%i. f i + g i) {..n::nat} = setsum f {..n} + setsum g {..n}"
ballarin@20318
   258
by (induct n) (simp_all add: add_ac)
ballarin@20318
   259
ballarin@20318
   260
(* Facts specific to rings *)
ballarin@20318
   261
haftmann@27542
   262
subclass (in ring) comm_monoid_add
ballarin@20318
   263
proof
ballarin@20318
   264
  fix x y z
haftmann@27542
   265
  show "x + y = y + x" by (rule a_comm)
haftmann@27542
   266
  show "(x + y) + z = x + (y + z)" by (rule a_assoc)
haftmann@27542
   267
  show "0 + x = x" by (rule l_zero)
ballarin@20318
   268
qed
ballarin@20318
   269
ballarin@20318
   270
ML {*
ballarin@20318
   271
  local
ballarin@20318
   272
    val lhss = 
ballarin@20318
   273
        ["t + u::'a::ring",
ballarin@20318
   274
	 "t - u::'a::ring",
ballarin@20318
   275
	 "t * u::'a::ring",
ballarin@20318
   276
	 "- t::'a::ring"];
ballarin@20318
   277
    fun proc ss t = 
ballarin@20318
   278
      let val rew = Goal.prove (Simplifier.the_context ss) [] []
ballarin@20318
   279
            (HOLogic.mk_Trueprop
ballarin@20318
   280
              (HOLogic.mk_eq (t, Var (("x", Term.maxidx_of_term t + 1), fastype_of t))))
ballarin@20318
   281
                (fn _ => simp_tac (Simplifier.inherit_context ss ring_ss) 1)
ballarin@20318
   282
            |> mk_meta_eq;
ballarin@20318
   283
          val (t', u) = Logic.dest_equals (Thm.prop_of rew);
ballarin@20318
   284
      in if t' aconv u 
ballarin@20318
   285
        then NONE
ballarin@20318
   286
        else SOME rew 
ballarin@20318
   287
    end;
ballarin@20318
   288
  in
ballarin@20318
   289
    val ring_simproc = Simplifier.simproc (the_context ()) "ring" lhss (K proc);
ballarin@20318
   290
  end;
ballarin@20318
   291
*}
ballarin@20318
   292
wenzelm@26480
   293
ML {* Addsimprocs [ring_simproc] *}
ballarin@20318
   294
ballarin@20318
   295
lemma natsum_ldistr:
ballarin@20318
   296
  "!!a::'a::ring. setsum f {..n::nat} * a = setsum (%i. f i * a) {..n}"
ballarin@20318
   297
by (induct n) simp_all
ballarin@20318
   298
ballarin@20318
   299
lemma natsum_rdistr:
ballarin@20318
   300
  "!!a::'a::ring. a * setsum f {..n::nat} = setsum (%i. a * f i) {..n}"
ballarin@20318
   301
by (induct n) simp_all
ballarin@20318
   302
ballarin@20318
   303
subsection {* Integral Domains *}
ballarin@20318
   304
ballarin@20318
   305
declare one_not_zero [simp]
ballarin@20318
   306
ballarin@20318
   307
lemma zero_not_one [simp]:
ballarin@20318
   308
  "0 ~= (1::'a::domain)" 
ballarin@20318
   309
by (rule not_sym) simp
ballarin@20318
   310
ballarin@20318
   311
lemma integral_iff: (* not by default a simp rule! *)
ballarin@20318
   312
  "(a * b = (0::'a::domain)) = (a = 0 | b = 0)"
ballarin@20318
   313
proof
ballarin@20318
   314
  assume "a * b = 0" then show "a = 0 | b = 0" by (simp add: integral)
ballarin@20318
   315
next
ballarin@20318
   316
  assume "a = 0 | b = 0" then show "a * b = 0" by auto
ballarin@20318
   317
qed
ballarin@20318
   318
ballarin@20318
   319
(*
ballarin@20318
   320
lemma "(a::'a::ring) - (a - b) = b" apply simp
ballarin@20318
   321
 simproc seems to fail on this example (fixed with new term order)
ballarin@20318
   322
*)
ballarin@20318
   323
(*
ballarin@20318
   324
lemma bug: "(b::'a::ring) - (b - a) = a" by simp
ballarin@20318
   325
   simproc for rings cannot prove "(a::'a::ring) - (a - b) = b" 
ballarin@20318
   326
*)
ballarin@20318
   327
lemma m_lcancel:
ballarin@20318
   328
  assumes prem: "(a::'a::domain) ~= 0" shows conc: "(a * b = a * c) = (b = c)"
ballarin@20318
   329
proof
ballarin@20318
   330
  assume eq: "a * b = a * c"
ballarin@20318
   331
  then have "a * (b - c) = 0" by simp
ballarin@20318
   332
  then have "a = 0 | (b - c) = 0" by (simp only: integral_iff)
ballarin@20318
   333
  with prem have "b - c = 0" by auto 
ballarin@20318
   334
  then have "b = b - (b - c)" by simp 
ballarin@20318
   335
  also have "b - (b - c) = c" by simp
ballarin@20318
   336
  finally show "b = c" .
ballarin@20318
   337
next
ballarin@20318
   338
  assume "b = c" then show "a * b = a * c" by simp
ballarin@20318
   339
qed
ballarin@20318
   340
ballarin@20318
   341
lemma m_rcancel:
ballarin@20318
   342
  "(a::'a::domain) ~= 0 ==> (b * a = c * a) = (b = c)"
ballarin@20318
   343
by (simp add: m_lcancel)
ballarin@20318
   344
haftmann@27542
   345
declare power_Suc [simp]
haftmann@21416
   346
haftmann@21416
   347
lemma power_one [simp]:
haftmann@21416
   348
  "1 ^ n = (1::'a::ring)" by (induct n) simp_all
haftmann@21416
   349
haftmann@21416
   350
lemma power_zero [simp]:
haftmann@21416
   351
  "n \<noteq> 0 \<Longrightarrow> 0 ^ n = (0::'a::ring)" by (induct n) simp_all
haftmann@21416
   352
haftmann@21416
   353
lemma power_mult [simp]:
haftmann@21416
   354
  "(a::'a::ring) ^ m * a ^ n = a ^ (m + n)"
haftmann@21416
   355
  by (induct m) simp_all
haftmann@21416
   356
haftmann@21416
   357
haftmann@21416
   358
section "Divisibility"
haftmann@21416
   359
haftmann@21416
   360
lemma dvd_zero_right [simp]:
haftmann@21416
   361
  "(a::'a::ring) dvd 0"
haftmann@21416
   362
proof
haftmann@21416
   363
  show "0 = a * 0" by simp
haftmann@21416
   364
qed
haftmann@21416
   365
haftmann@21416
   366
lemma dvd_zero_left:
haftmann@21416
   367
  "0 dvd (a::'a::ring) \<Longrightarrow> a = 0" unfolding dvd_def by simp
haftmann@21416
   368
haftmann@21416
   369
lemma dvd_refl_ring [simp]:
haftmann@21416
   370
  "(a::'a::ring) dvd a"
haftmann@21416
   371
proof
haftmann@21416
   372
  show "a = a * 1" by simp
haftmann@21416
   373
qed
haftmann@21416
   374
haftmann@21416
   375
lemma dvd_trans_ring:
haftmann@21416
   376
  fixes a b c :: "'a::ring"
haftmann@21416
   377
  assumes a_dvd_b: "a dvd b"
haftmann@21416
   378
  and b_dvd_c: "b dvd c"
haftmann@21416
   379
  shows "a dvd c"
haftmann@21416
   380
proof -
haftmann@21416
   381
  from a_dvd_b obtain l where "b = a * l" using dvd_def by blast
haftmann@21416
   382
  moreover from b_dvd_c obtain j where "c = b * j" using dvd_def by blast
haftmann@21416
   383
  ultimately have "c = a * (l * j)" by simp
haftmann@21416
   384
  then have "\<exists>k. c = a * k" ..
haftmann@21416
   385
  then show ?thesis using dvd_def by blast
haftmann@21416
   386
qed
haftmann@21416
   387
wenzelm@21423
   388
wenzelm@21423
   389
lemma unit_mult: 
wenzelm@21423
   390
  "!!a::'a::ring. [| a dvd 1; b dvd 1 |] ==> a * b dvd 1"
wenzelm@21423
   391
  apply (unfold dvd_def)
wenzelm@21423
   392
  apply clarify
wenzelm@21423
   393
  apply (rule_tac x = "k * ka" in exI)
wenzelm@21423
   394
  apply simp
wenzelm@21423
   395
  done
wenzelm@21423
   396
wenzelm@21423
   397
lemma unit_power: "!!a::'a::ring. a dvd 1 ==> a^n dvd 1"
wenzelm@21423
   398
  apply (induct_tac n)
wenzelm@21423
   399
   apply simp
wenzelm@21423
   400
  apply (simp add: unit_mult)
wenzelm@21423
   401
  done
wenzelm@21423
   402
wenzelm@21423
   403
lemma dvd_add_right [simp]:
wenzelm@21423
   404
  "!! a::'a::ring. [| a dvd b; a dvd c |] ==> a dvd b + c"
wenzelm@21423
   405
  apply (unfold dvd_def)
wenzelm@21423
   406
  apply clarify
wenzelm@21423
   407
  apply (rule_tac x = "k + ka" in exI)
wenzelm@21423
   408
  apply (simp add: r_distr)
wenzelm@21423
   409
  done
wenzelm@21423
   410
wenzelm@21423
   411
lemma dvd_uminus_right [simp]:
wenzelm@21423
   412
  "!! a::'a::ring. a dvd b ==> a dvd -b"
wenzelm@21423
   413
  apply (unfold dvd_def)
wenzelm@21423
   414
  apply clarify
wenzelm@21423
   415
  apply (rule_tac x = "-k" in exI)
wenzelm@21423
   416
  apply (simp add: r_minus)
wenzelm@21423
   417
  done
wenzelm@21423
   418
wenzelm@21423
   419
lemma dvd_l_mult_right [simp]:
wenzelm@21423
   420
  "!! a::'a::ring. a dvd b ==> a dvd c*b"
wenzelm@21423
   421
  apply (unfold dvd_def)
wenzelm@21423
   422
  apply clarify
wenzelm@21423
   423
  apply (rule_tac x = "c * k" in exI)
wenzelm@21423
   424
  apply simp
wenzelm@21423
   425
  done
wenzelm@21423
   426
wenzelm@21423
   427
lemma dvd_r_mult_right [simp]:
wenzelm@21423
   428
  "!! a::'a::ring. a dvd b ==> a dvd b*c"
wenzelm@21423
   429
  apply (unfold dvd_def)
wenzelm@21423
   430
  apply clarify
wenzelm@21423
   431
  apply (rule_tac x = "k * c" in exI)
wenzelm@21423
   432
  apply simp
wenzelm@21423
   433
  done
wenzelm@21423
   434
wenzelm@21423
   435
wenzelm@21423
   436
(* Inverse of multiplication *)
wenzelm@21423
   437
wenzelm@21423
   438
section "inverse"
wenzelm@21423
   439
wenzelm@21423
   440
lemma inverse_unique: "!! a::'a::ring. [| a * x = 1; a * y = 1 |] ==> x = y"
wenzelm@21423
   441
  apply (rule_tac a = "(a*y) * x" and b = "y * (a*x)" in box_equals)
wenzelm@21423
   442
    apply (simp (no_asm))
wenzelm@21423
   443
  apply auto
wenzelm@21423
   444
  done
wenzelm@21423
   445
wenzelm@21423
   446
lemma r_inverse_ring: "!! a::'a::ring. a dvd 1 ==> a * inverse a = 1"
wenzelm@21423
   447
  apply (unfold inverse_def dvd_def)
wenzelm@26342
   448
  apply (tactic {* asm_full_simp_tac (@{simpset} delsimprocs [ring_simproc]) 1 *})
wenzelm@21423
   449
  apply clarify
wenzelm@21423
   450
  apply (rule theI)
wenzelm@21423
   451
   apply assumption
wenzelm@21423
   452
  apply (rule inverse_unique)
wenzelm@21423
   453
   apply assumption
wenzelm@21423
   454
  apply assumption
wenzelm@21423
   455
  done
wenzelm@21423
   456
wenzelm@21423
   457
lemma l_inverse_ring: "!! a::'a::ring. a dvd 1 ==> inverse a * a = 1"
wenzelm@21423
   458
  by (simp add: r_inverse_ring)
wenzelm@21423
   459
wenzelm@21423
   460
wenzelm@21423
   461
(* Fields *)
wenzelm@21423
   462
wenzelm@21423
   463
section "Fields"
wenzelm@21423
   464
wenzelm@21423
   465
lemma field_unit [simp]: "!! a::'a::field. (a dvd 1) = (a ~= 0)"
wenzelm@21423
   466
  by (auto dest: field_ax dvd_zero_left simp add: field_one_not_zero)
wenzelm@21423
   467
wenzelm@21423
   468
lemma r_inverse [simp]: "!! a::'a::field. a ~= 0 ==> a * inverse a = 1"
wenzelm@21423
   469
  by (simp add: r_inverse_ring)
wenzelm@21423
   470
wenzelm@21423
   471
lemma l_inverse [simp]: "!! a::'a::field. a ~= 0 ==> inverse a * a= 1"
wenzelm@21423
   472
  by (simp add: l_inverse_ring)
wenzelm@21423
   473
wenzelm@21423
   474
wenzelm@21423
   475
(* fields are integral domains *)
wenzelm@21423
   476
wenzelm@21423
   477
lemma field_integral: "!! a::'a::field. a * b = 0 ==> a = 0 | b = 0"
wenzelm@23894
   478
  apply (tactic "step_tac @{claset} 1")
wenzelm@21423
   479
  apply (rule_tac a = " (a*b) * inverse b" in box_equals)
wenzelm@21423
   480
    apply (rule_tac [3] refl)
wenzelm@21423
   481
   prefer 2
wenzelm@21423
   482
   apply (simp (no_asm))
wenzelm@21423
   483
   apply auto
wenzelm@21423
   484
  done
wenzelm@21423
   485
wenzelm@21423
   486
wenzelm@21423
   487
(* fields are factorial domains *)
wenzelm@21423
   488
wenzelm@21423
   489
lemma field_fact_prime: "!! a::'a::field. irred a ==> prime a"
wenzelm@21423
   490
  unfolding prime_def irred_def by (blast intro: field_ax)
haftmann@21416
   491
ballarin@20318
   492
end