doc-src/Ref/tactic.tex
author wenzelm
Thu, 27 Nov 1997 19:39:02 +0100
changeset 4317 7264fa2ff2ec
parent 4276 a770eae2cdb0
child 4597 a0bdee64194c
permissions -rw-r--r--
several minor updates;
lcp@104
     1
%% $Id$
lcp@104
     2
\chapter{Tactics} \label{tactics}
wenzelm@3108
     3
\index{tactics|(} Tactics have type \mltydx{tactic}.  This is just an
wenzelm@3108
     4
abbreviation for functions from theorems to theorem sequences, where
wenzelm@3108
     5
the theorems represent states of a backward proof.  Tactics seldom
wenzelm@3108
     6
need to be coded from scratch, as functions; instead they are
wenzelm@3108
     7
expressed using basic tactics and tacticals.
lcp@104
     8
wenzelm@4317
     9
This chapter only presents the primitive tactics.  Substantial proofs
wenzelm@4317
    10
require the power of automatic tools like simplification
wenzelm@4317
    11
(Chapter~\ref{chap:simplification}) and classical tableau reasoning
wenzelm@4317
    12
(Chapter~\ref{chap:classical}).
paulson@2039
    13
lcp@104
    14
\section{Resolution and assumption tactics}
lcp@104
    15
{\bf Resolution} is Isabelle's basic mechanism for refining a subgoal using
lcp@104
    16
a rule.  {\bf Elim-resolution} is particularly suited for elimination
lcp@104
    17
rules, while {\bf destruct-resolution} is particularly suited for
lcp@104
    18
destruction rules.  The {\tt r}, {\tt e}, {\tt d} naming convention is
lcp@104
    19
maintained for several different kinds of resolution tactics, as well as
lcp@104
    20
the shortcuts in the subgoal module.
lcp@104
    21
lcp@104
    22
All the tactics in this section act on a subgoal designated by a positive
lcp@104
    23
integer~$i$.  They fail (by returning the empty sequence) if~$i$ is out of
lcp@104
    24
range.
lcp@104
    25
lcp@104
    26
\subsection{Resolution tactics}
lcp@323
    27
\index{resolution!tactics}
lcp@104
    28
\index{tactics!resolution|bold}
lcp@104
    29
\begin{ttbox} 
lcp@104
    30
resolve_tac  : thm list -> int -> tactic
lcp@104
    31
eresolve_tac : thm list -> int -> tactic
lcp@104
    32
dresolve_tac : thm list -> int -> tactic
lcp@104
    33
forward_tac  : thm list -> int -> tactic 
lcp@104
    34
\end{ttbox}
lcp@104
    35
These perform resolution on a list of theorems, $thms$, representing a list
lcp@104
    36
of object-rules.  When generating next states, they take each of the rules
lcp@104
    37
in the order given.  Each rule may yield several next states, or none:
lcp@104
    38
higher-order resolution may yield multiple resolvents.
lcp@323
    39
\begin{ttdescription}
lcp@104
    40
\item[\ttindexbold{resolve_tac} {\it thms} {\it i}] 
lcp@323
    41
  refines the proof state using the rules, which should normally be
lcp@323
    42
  introduction rules.  It resolves a rule's conclusion with
lcp@323
    43
  subgoal~$i$ of the proof state.
lcp@104
    44
lcp@104
    45
\item[\ttindexbold{eresolve_tac} {\it thms} {\it i}] 
lcp@323
    46
  \index{elim-resolution}
lcp@323
    47
  performs elim-resolution with the rules, which should normally be
lcp@323
    48
  elimination rules.  It resolves with a rule, solves its first premise by
lcp@323
    49
  assumption, and finally {\em deletes\/} that assumption from any new
lcp@323
    50
  subgoals.
lcp@104
    51
lcp@104
    52
\item[\ttindexbold{dresolve_tac} {\it thms} {\it i}] 
lcp@323
    53
  \index{forward proof}\index{destruct-resolution}
lcp@323
    54
  performs destruct-resolution with the rules, which normally should
lcp@323
    55
  be destruction rules.  This replaces an assumption by the result of
lcp@323
    56
  applying one of the rules.
lcp@104
    57
lcp@323
    58
\item[\ttindexbold{forward_tac}]\index{forward proof}
lcp@323
    59
  is like {\tt dresolve_tac} except that the selected assumption is not
lcp@323
    60
  deleted.  It applies a rule to an assumption, adding the result as a new
lcp@323
    61
  assumption.
lcp@323
    62
\end{ttdescription}
lcp@104
    63
lcp@104
    64
\subsection{Assumption tactics}
lcp@323
    65
\index{tactics!assumption|bold}\index{assumptions!tactics for}
lcp@104
    66
\begin{ttbox} 
lcp@104
    67
assume_tac    : int -> tactic
lcp@104
    68
eq_assume_tac : int -> tactic
lcp@104
    69
\end{ttbox} 
lcp@323
    70
\begin{ttdescription}
lcp@104
    71
\item[\ttindexbold{assume_tac} {\it i}] 
lcp@104
    72
attempts to solve subgoal~$i$ by assumption.
lcp@104
    73
lcp@104
    74
\item[\ttindexbold{eq_assume_tac}] 
lcp@104
    75
is like {\tt assume_tac} but does not use unification.  It succeeds (with a
lcp@323
    76
{\em unique\/} next state) if one of the assumptions is identical to the
lcp@104
    77
subgoal's conclusion.  Since it does not instantiate variables, it cannot
lcp@104
    78
make other subgoals unprovable.  It is intended to be called from proof
lcp@104
    79
strategies, not interactively.
lcp@323
    80
\end{ttdescription}
lcp@104
    81
lcp@104
    82
\subsection{Matching tactics} \label{match_tac}
lcp@323
    83
\index{tactics!matching}
lcp@104
    84
\begin{ttbox} 
lcp@104
    85
match_tac  : thm list -> int -> tactic
lcp@104
    86
ematch_tac : thm list -> int -> tactic
lcp@104
    87
dmatch_tac : thm list -> int -> tactic
lcp@104
    88
\end{ttbox}
lcp@104
    89
These are just like the resolution tactics except that they never
lcp@104
    90
instantiate unknowns in the proof state.  Flexible subgoals are not updated
lcp@104
    91
willy-nilly, but are left alone.  Matching --- strictly speaking --- means
lcp@104
    92
treating the unknowns in the proof state as constants; these tactics merely
lcp@104
    93
discard unifiers that would update the proof state.
lcp@323
    94
\begin{ttdescription}
lcp@104
    95
\item[\ttindexbold{match_tac} {\it thms} {\it i}] 
lcp@323
    96
refines the proof state using the rules, matching a rule's
lcp@104
    97
conclusion with subgoal~$i$ of the proof state.
lcp@104
    98
lcp@104
    99
\item[\ttindexbold{ematch_tac}] 
lcp@104
   100
is like {\tt match_tac}, but performs elim-resolution.
lcp@104
   101
lcp@104
   102
\item[\ttindexbold{dmatch_tac}] 
lcp@104
   103
is like {\tt match_tac}, but performs destruct-resolution.
lcp@323
   104
\end{ttdescription}
lcp@104
   105
lcp@104
   106
lcp@104
   107
\subsection{Resolution with instantiation} \label{res_inst_tac}
lcp@323
   108
\index{tactics!instantiation}\index{instantiation}
lcp@104
   109
\begin{ttbox} 
lcp@104
   110
res_inst_tac  : (string*string)list -> thm -> int -> tactic
lcp@104
   111
eres_inst_tac : (string*string)list -> thm -> int -> tactic
lcp@104
   112
dres_inst_tac : (string*string)list -> thm -> int -> tactic
lcp@104
   113
forw_inst_tac : (string*string)list -> thm -> int -> tactic
lcp@104
   114
\end{ttbox}
lcp@104
   115
These tactics are designed for applying rules such as substitution and
lcp@104
   116
induction, which cause difficulties for higher-order unification.  The
lcp@332
   117
tactics accept explicit instantiations for unknowns in the rule ---
lcp@332
   118
typically, in the rule's conclusion.  Each instantiation is a pair
lcp@332
   119
{\tt($v$,$e$)}, where $v$ is an unknown {\em without\/} its leading
lcp@332
   120
question mark!
lcp@104
   121
\begin{itemize}
lcp@332
   122
\item If $v$ is the type unknown {\tt'a}, then
lcp@332
   123
the rule must contain a type unknown \verb$?'a$ of some
lcp@104
   124
sort~$s$, and $e$ should be a type of sort $s$.
lcp@104
   125
lcp@332
   126
\item If $v$ is the unknown {\tt P}, then
lcp@332
   127
the rule must contain an unknown \verb$?P$ of some type~$\tau$,
lcp@104
   128
and $e$ should be a term of some type~$\sigma$ such that $\tau$ and
lcp@104
   129
$\sigma$ are unifiable.  If the unification of $\tau$ and $\sigma$
lcp@332
   130
instantiates any type unknowns in $\tau$, these instantiations
lcp@104
   131
are recorded for application to the rule.
lcp@104
   132
\end{itemize}
lcp@104
   133
Types are instantiated before terms.  Because type instantiations are
lcp@104
   134
inferred from term instantiations, explicit type instantiations are seldom
lcp@104
   135
necessary --- if \verb$?t$ has type \verb$?'a$, then the instantiation list
lcp@104
   136
\verb$[("'a","bool"),("t","True")]$ may be simplified to
lcp@104
   137
\verb$[("t","True")]$.  Type unknowns in the proof state may cause
lcp@104
   138
failure because the tactics cannot instantiate them.
lcp@104
   139
lcp@104
   140
The instantiation tactics act on a given subgoal.  Terms in the
lcp@104
   141
instantiations are type-checked in the context of that subgoal --- in
lcp@104
   142
particular, they may refer to that subgoal's parameters.  Any unknowns in
lcp@104
   143
the terms receive subscripts and are lifted over the parameters; thus, you
lcp@104
   144
may not refer to unknowns in the subgoal.
lcp@104
   145
lcp@323
   146
\begin{ttdescription}
lcp@104
   147
\item[\ttindexbold{res_inst_tac} {\it insts} {\it thm} {\it i}]
lcp@104
   148
instantiates the rule {\it thm} with the instantiations {\it insts}, as
lcp@104
   149
described above, and then performs resolution on subgoal~$i$.  Resolution
lcp@104
   150
typically causes further instantiations; you need not give explicit
lcp@332
   151
instantiations for every unknown in the rule.
lcp@104
   152
lcp@104
   153
\item[\ttindexbold{eres_inst_tac}] 
lcp@104
   154
is like {\tt res_inst_tac}, but performs elim-resolution.
lcp@104
   155
lcp@104
   156
\item[\ttindexbold{dres_inst_tac}] 
lcp@104
   157
is like {\tt res_inst_tac}, but performs destruct-resolution.
lcp@104
   158
lcp@104
   159
\item[\ttindexbold{forw_inst_tac}] 
lcp@104
   160
is like {\tt dres_inst_tac} except that the selected assumption is not
lcp@104
   161
deleted.  It applies the instantiated rule to an assumption, adding the
lcp@104
   162
result as a new assumption.
lcp@323
   163
\end{ttdescription}
lcp@104
   164
lcp@104
   165
lcp@104
   166
\section{Other basic tactics}
paulson@2039
   167
\subsection{Tactic shortcuts}
paulson@2039
   168
\index{shortcuts!for tactics}
paulson@2039
   169
\index{tactics!resolution}\index{tactics!assumption}
paulson@2039
   170
\index{tactics!meta-rewriting}
paulson@2039
   171
\begin{ttbox} 
paulson@2039
   172
rtac     :      thm -> int -> tactic
paulson@2039
   173
etac     :      thm -> int -> tactic
paulson@2039
   174
dtac     :      thm -> int -> tactic
paulson@2039
   175
atac     :             int -> tactic
paulson@2039
   176
ares_tac : thm list -> int -> tactic
paulson@2039
   177
rewtac   :      thm ->        tactic
paulson@2039
   178
\end{ttbox}
paulson@2039
   179
These abbreviate common uses of tactics.
paulson@2039
   180
\begin{ttdescription}
paulson@2039
   181
\item[\ttindexbold{rtac} {\it thm} {\it i}] 
paulson@2039
   182
abbreviates \hbox{\tt resolve_tac [{\it thm}] {\it i}}, doing resolution.
paulson@2039
   183
paulson@2039
   184
\item[\ttindexbold{etac} {\it thm} {\it i}] 
paulson@2039
   185
abbreviates \hbox{\tt eresolve_tac [{\it thm}] {\it i}}, doing elim-resolution.
paulson@2039
   186
paulson@2039
   187
\item[\ttindexbold{dtac} {\it thm} {\it i}] 
paulson@2039
   188
abbreviates \hbox{\tt dresolve_tac [{\it thm}] {\it i}}, doing
paulson@2039
   189
destruct-resolution.
paulson@2039
   190
paulson@2039
   191
\item[\ttindexbold{atac} {\it i}] 
paulson@2039
   192
abbreviates \hbox{\tt assume_tac {\it i}}, doing proof by assumption.
paulson@2039
   193
paulson@2039
   194
\item[\ttindexbold{ares_tac} {\it thms} {\it i}] 
paulson@2039
   195
tries proof by assumption and resolution; it abbreviates
paulson@2039
   196
\begin{ttbox}
paulson@2039
   197
assume_tac {\it i} ORELSE resolve_tac {\it thms} {\it i}
paulson@2039
   198
\end{ttbox}
paulson@2039
   199
paulson@2039
   200
\item[\ttindexbold{rewtac} {\it def}] 
paulson@2039
   201
abbreviates \hbox{\tt rewrite_goals_tac [{\it def}]}, unfolding a definition.
paulson@2039
   202
\end{ttdescription}
paulson@2039
   203
paulson@2039
   204
paulson@2039
   205
\subsection{Inserting premises and facts}\label{cut_facts_tac}
paulson@2039
   206
\index{tactics!for inserting facts}\index{assumptions!inserting}
paulson@2039
   207
\begin{ttbox} 
paulson@2039
   208
cut_facts_tac : thm list -> int -> tactic
paulson@2039
   209
cut_inst_tac  : (string*string)list -> thm -> int -> tactic
paulson@2039
   210
subgoal_tac   : string -> int -> tactic
paulson@2039
   211
subgoal_tacs  : string list -> int -> tactic
paulson@2039
   212
\end{ttbox}
paulson@2039
   213
These tactics add assumptions to a subgoal.
paulson@2039
   214
\begin{ttdescription}
paulson@2039
   215
\item[\ttindexbold{cut_facts_tac} {\it thms} {\it i}] 
paulson@2039
   216
  adds the {\it thms} as new assumptions to subgoal~$i$.  Once they have
paulson@2039
   217
  been inserted as assumptions, they become subject to tactics such as {\tt
paulson@2039
   218
    eresolve_tac} and {\tt rewrite_goals_tac}.  Only rules with no premises
paulson@2039
   219
  are inserted: Isabelle cannot use assumptions that contain $\Imp$
paulson@2039
   220
  or~$\Forall$.  Sometimes the theorems are premises of a rule being
paulson@2039
   221
  derived, returned by~{\tt goal}; instead of calling this tactic, you
paulson@2039
   222
  could state the goal with an outermost meta-quantifier.
paulson@2039
   223
paulson@2039
   224
\item[\ttindexbold{cut_inst_tac} {\it insts} {\it thm} {\it i}]
paulson@2039
   225
  instantiates the {\it thm} with the instantiations {\it insts}, as
paulson@2039
   226
  described in \S\ref{res_inst_tac}.  It adds the resulting theorem as a
paulson@2039
   227
  new assumption to subgoal~$i$. 
paulson@2039
   228
paulson@2039
   229
\item[\ttindexbold{subgoal_tac} {\it formula} {\it i}] 
paulson@2039
   230
adds the {\it formula} as a assumption to subgoal~$i$, and inserts the same
paulson@2039
   231
{\it formula} as a new subgoal, $i+1$.
paulson@2039
   232
paulson@2039
   233
\item[\ttindexbold{subgoals_tac} {\it formulae} {\it i}] 
paulson@2039
   234
  uses {\tt subgoal_tac} to add the members of the list of {\it
paulson@2039
   235
    formulae} as assumptions to subgoal~$i$. 
paulson@2039
   236
\end{ttdescription}
paulson@2039
   237
paulson@2039
   238
paulson@2039
   239
\subsection{``Putting off'' a subgoal}
paulson@2039
   240
\begin{ttbox} 
paulson@2039
   241
defer_tac : int -> tactic
paulson@2039
   242
\end{ttbox}
paulson@2039
   243
\begin{ttdescription}
paulson@2039
   244
\item[\ttindexbold{defer_tac} {\it i}] 
paulson@2039
   245
  moves subgoal~$i$ to the last position in the proof state.  It can be
paulson@2039
   246
  useful when correcting a proof script: if the tactic given for subgoal~$i$
paulson@2039
   247
  fails, calling {\tt defer_tac} instead will let you continue with the rest
paulson@2039
   248
  of the script.
paulson@2039
   249
paulson@2039
   250
  The tactic fails if subgoal~$i$ does not exist or if the proof state
paulson@2039
   251
  contains type unknowns. 
paulson@2039
   252
\end{ttdescription}
paulson@2039
   253
paulson@2039
   254
wenzelm@4317
   255
\subsection{Definitions and meta-level rewriting} \label{sec:rewrite_goals}
lcp@323
   256
\index{tactics!meta-rewriting|bold}\index{meta-rewriting|bold}
lcp@323
   257
\index{definitions}
lcp@323
   258
lcp@332
   259
Definitions in Isabelle have the form $t\equiv u$, where $t$ is typically a
lcp@104
   260
constant or a constant applied to a list of variables, for example $\it
wenzelm@4317
   261
sqr(n)\equiv n\times n$.  Conditional definitions, $\phi\Imp t\equiv u$,
wenzelm@4317
   262
are also supported.  {\bf Unfolding} the definition ${t\equiv u}$ means using
lcp@104
   263
it as a rewrite rule, replacing~$t$ by~$u$ throughout a theorem.  {\bf
lcp@104
   264
Folding} $t\equiv u$ means replacing~$u$ by~$t$.  Rewriting continues until
lcp@104
   265
no rewrites are applicable to any subterm.
lcp@104
   266
lcp@104
   267
There are rules for unfolding and folding definitions; Isabelle does not do
lcp@104
   268
this automatically.  The corresponding tactics rewrite the proof state,
lcp@332
   269
yielding a single next state.  See also the {\tt goalw} command, which is the
lcp@104
   270
easiest way of handling definitions.
lcp@104
   271
\begin{ttbox} 
lcp@104
   272
rewrite_goals_tac : thm list -> tactic
lcp@104
   273
rewrite_tac       : thm list -> tactic
lcp@104
   274
fold_goals_tac    : thm list -> tactic
lcp@104
   275
fold_tac          : thm list -> tactic
lcp@104
   276
\end{ttbox}
lcp@323
   277
\begin{ttdescription}
lcp@104
   278
\item[\ttindexbold{rewrite_goals_tac} {\it defs}]  
lcp@104
   279
unfolds the {\it defs} throughout the subgoals of the proof state, while
lcp@104
   280
leaving the main goal unchanged.  Use \ttindex{SELECT_GOAL} to restrict it to a
lcp@104
   281
particular subgoal.
lcp@104
   282
lcp@104
   283
\item[\ttindexbold{rewrite_tac} {\it defs}]  
lcp@104
   284
unfolds the {\it defs} throughout the proof state, including the main goal
lcp@104
   285
--- not normally desirable!
lcp@104
   286
lcp@104
   287
\item[\ttindexbold{fold_goals_tac} {\it defs}]  
lcp@104
   288
folds the {\it defs} throughout the subgoals of the proof state, while
lcp@104
   289
leaving the main goal unchanged.
lcp@104
   290
lcp@104
   291
\item[\ttindexbold{fold_tac} {\it defs}]  
lcp@104
   292
folds the {\it defs} throughout the proof state.
lcp@323
   293
\end{ttdescription}
lcp@104
   294
wenzelm@4317
   295
\begin{warn}
wenzelm@4317
   296
  These tactics only cope with definitions expressed as meta-level
wenzelm@4317
   297
  equalities ($\equiv$).  More general equivalences are handled by the
wenzelm@4317
   298
  simplifier, provided that it is set up appropriately for your logic
wenzelm@4317
   299
  (see Chapter~\ref{chap:simplification}).
wenzelm@4317
   300
\end{warn}
lcp@104
   301
lcp@104
   302
\subsection{Theorems useful with tactics}
lcp@323
   303
\index{theorems!of pure theory}
lcp@104
   304
\begin{ttbox} 
lcp@104
   305
asm_rl: thm 
lcp@104
   306
cut_rl: thm 
lcp@104
   307
\end{ttbox}
lcp@323
   308
\begin{ttdescription}
lcp@323
   309
\item[\tdx{asm_rl}] 
lcp@104
   310
is $\psi\Imp\psi$.  Under elim-resolution it does proof by assumption, and
lcp@104
   311
\hbox{\tt eresolve_tac (asm_rl::{\it thms}) {\it i}} is equivalent to
lcp@104
   312
\begin{ttbox} 
lcp@104
   313
assume_tac {\it i}  ORELSE  eresolve_tac {\it thms} {\it i}
lcp@104
   314
\end{ttbox}
lcp@104
   315
lcp@323
   316
\item[\tdx{cut_rl}] 
lcp@104
   317
is $\List{\psi\Imp\theta,\psi}\Imp\theta$.  It is useful for inserting
lcp@323
   318
assumptions; it underlies {\tt forward_tac}, {\tt cut_facts_tac}
lcp@323
   319
and {\tt subgoal_tac}.
lcp@323
   320
\end{ttdescription}
lcp@104
   321
lcp@104
   322
lcp@104
   323
\section{Obscure tactics}
nipkow@1212
   324
lcp@323
   325
\subsection{Renaming parameters in a goal} \index{parameters!renaming}
lcp@104
   326
\begin{ttbox} 
lcp@104
   327
rename_tac        : string -> int -> tactic
lcp@104
   328
rename_last_tac   : string -> string list -> int -> tactic
lcp@104
   329
Logic.set_rename_prefix : string -> unit
lcp@104
   330
Logic.auto_rename       : bool ref      \hfill{\bf initially false}
lcp@104
   331
\end{ttbox}
lcp@104
   332
When creating a parameter, Isabelle chooses its name by matching variable
lcp@104
   333
names via the object-rule.  Given the rule $(\forall I)$ formalized as
lcp@104
   334
$\left(\Forall x. P(x)\right) \Imp \forall x.P(x)$, Isabelle will note that
lcp@104
   335
the $\Forall$-bound variable in the premise has the same name as the
lcp@104
   336
$\forall$-bound variable in the conclusion.  
lcp@104
   337
lcp@104
   338
Sometimes there is insufficient information and Isabelle chooses an
lcp@104
   339
arbitrary name.  The renaming tactics let you override Isabelle's choice.
lcp@104
   340
Because renaming parameters has no logical effect on the proof state, the
lcp@323
   341
{\tt by} command prints the message {\tt Warning:\ same as previous
lcp@104
   342
level}.
lcp@104
   343
lcp@104
   344
Alternatively, you can suppress the naming mechanism described above and
lcp@104
   345
have Isabelle generate uniform names for parameters.  These names have the
lcp@104
   346
form $p${\tt a}, $p${\tt b}, $p${\tt c},~\ldots, where $p$ is any desired
lcp@104
   347
prefix.  They are ugly but predictable.
lcp@104
   348
lcp@323
   349
\begin{ttdescription}
lcp@104
   350
\item[\ttindexbold{rename_tac} {\it str} {\it i}] 
lcp@104
   351
interprets the string {\it str} as a series of blank-separated variable
lcp@104
   352
names, and uses them to rename the parameters of subgoal~$i$.  The names
lcp@104
   353
must be distinct.  If there are fewer names than parameters, then the
lcp@104
   354
tactic renames the innermost parameters and may modify the remaining ones
lcp@104
   355
to ensure that all the parameters are distinct.
lcp@104
   356
lcp@104
   357
\item[\ttindexbold{rename_last_tac} {\it prefix} {\it suffixes} {\it i}] 
lcp@104
   358
generates a list of names by attaching each of the {\it suffixes\/} to the 
lcp@104
   359
{\it prefix}.  It is intended for coding structural induction tactics,
lcp@104
   360
where several of the new parameters should have related names.
lcp@104
   361
lcp@104
   362
\item[\ttindexbold{Logic.set_rename_prefix} {\it prefix};] 
lcp@104
   363
sets the prefix for uniform renaming to~{\it prefix}.  The default prefix
lcp@104
   364
is {\tt"k"}.
lcp@104
   365
wenzelm@4317
   366
\item[set \ttindexbold{Logic.auto_rename};] 
lcp@104
   367
makes Isabelle generate uniform names for parameters. 
lcp@323
   368
\end{ttdescription}
lcp@104
   369
lcp@104
   370
paulson@2612
   371
\subsection{Manipulating assumptions}
paulson@2612
   372
\index{assumptions!rotating}
paulson@2612
   373
\begin{ttbox} 
paulson@2612
   374
thin_tac   : string -> int -> tactic
paulson@2612
   375
rotate_tac : int -> int -> tactic
paulson@2612
   376
\end{ttbox}
paulson@2612
   377
\begin{ttdescription}
paulson@2612
   378
\item[\ttindexbold{thin_tac} {\it formula} $i$]  
paulson@2612
   379
\index{assumptions!deleting}
paulson@2612
   380
deletes the specified assumption from subgoal $i$.  Often the assumption
paulson@2612
   381
can be abbreviated, replacing subformul{\ae} by unknowns; the first matching
paulson@2612
   382
assumption will be deleted.  Removing useless assumptions from a subgoal
paulson@2612
   383
increases its readability and can make search tactics run faster.
paulson@2612
   384
paulson@2612
   385
\item[\ttindexbold{rotate_tac} $n$ $i$]  
paulson@2612
   386
\index{assumptions!rotating}
paulson@2612
   387
rotates the assumptions of subgoal $i$ by $n$ positions: from right to left
paulson@2612
   388
if $n$ is positive, and from left to right if $n$ is negative.  This is 
paulson@2612
   389
sometimes necessary in connection with \ttindex{asm_full_simp_tac}, which 
paulson@2612
   390
processes assumptions from left to right.
paulson@2612
   391
\end{ttdescription}
paulson@2612
   392
paulson@2612
   393
paulson@2612
   394
\subsection{Tidying the proof state}
paulson@3400
   395
\index{duplicate subgoals!removing}
paulson@2612
   396
\index{parameters!removing unused}
paulson@2612
   397
\index{flex-flex constraints}
paulson@2612
   398
\begin{ttbox} 
paulson@3400
   399
distinct_subgoals_tac : tactic
paulson@3400
   400
prune_params_tac      : tactic
paulson@3400
   401
flexflex_tac          : tactic
paulson@2612
   402
\end{ttbox}
paulson@2612
   403
\begin{ttdescription}
paulson@3400
   404
\item[\ttindexbold{distinct_subgoals_tac}]  
paulson@3400
   405
  removes duplicate subgoals from a proof state.  (These arise especially
paulson@3400
   406
  in \ZF{}, where the subgoals are essentially type constraints.)
paulson@3400
   407
paulson@2612
   408
\item[\ttindexbold{prune_params_tac}]  
paulson@2612
   409
  removes unused parameters from all subgoals of the proof state.  It works
paulson@2612
   410
  by rewriting with the theorem $(\Forall x. V)\equiv V$.  This tactic can
paulson@2612
   411
  make the proof state more readable.  It is used with
paulson@2612
   412
  \ttindex{rule_by_tactic} to simplify the resulting theorem.
paulson@2612
   413
paulson@2612
   414
\item[\ttindexbold{flexflex_tac}]  
paulson@2612
   415
  removes all flex-flex pairs from the proof state by applying the trivial
paulson@2612
   416
  unifier.  This drastic step loses information, and should only be done as
paulson@2612
   417
  the last step of a proof.
paulson@2612
   418
paulson@2612
   419
  Flex-flex constraints arise from difficult cases of higher-order
paulson@2612
   420
  unification.  To prevent this, use \ttindex{res_inst_tac} to instantiate
paulson@2612
   421
  some variables in a rule~(\S\ref{res_inst_tac}).  Normally flex-flex
paulson@2612
   422
  constraints can be ignored; they often disappear as unknowns get
paulson@2612
   423
  instantiated.
paulson@2612
   424
\end{ttdescription}
paulson@2612
   425
paulson@2612
   426
lcp@104
   427
\subsection{Composition: resolution without lifting}
lcp@323
   428
\index{tactics!for composition}
lcp@104
   429
\begin{ttbox}
lcp@104
   430
compose_tac: (bool * thm * int) -> int -> tactic
lcp@104
   431
\end{ttbox}
lcp@332
   432
{\bf Composing} two rules means resolving them without prior lifting or
lcp@104
   433
renaming of unknowns.  This low-level operation, which underlies the
lcp@104
   434
resolution tactics, may occasionally be useful for special effects.
lcp@104
   435
A typical application is \ttindex{res_inst_tac}, which lifts and instantiates a
lcp@104
   436
rule, then passes the result to {\tt compose_tac}.
lcp@323
   437
\begin{ttdescription}
lcp@104
   438
\item[\ttindexbold{compose_tac} ($flag$, $rule$, $m$) $i$] 
lcp@104
   439
refines subgoal~$i$ using $rule$, without lifting.  The $rule$ is taken to
lcp@104
   440
have the form $\List{\psi@1; \ldots; \psi@m} \Imp \psi$, where $\psi$ need
lcp@323
   441
not be atomic; thus $m$ determines the number of new subgoals.  If
lcp@104
   442
$flag$ is {\tt true} then it performs elim-resolution --- it solves the
lcp@104
   443
first premise of~$rule$ by assumption and deletes that assumption.
lcp@323
   444
\end{ttdescription}
lcp@104
   445
lcp@104
   446
wenzelm@4276
   447
\section{*Managing lots of rules}
lcp@104
   448
These operations are not intended for interactive use.  They are concerned
lcp@104
   449
with the processing of large numbers of rules in automatic proof
lcp@104
   450
strategies.  Higher-order resolution involving a long list of rules is
lcp@104
   451
slow.  Filtering techniques can shorten the list of rules given to
paulson@2039
   452
resolution, and can also detect whether a subgoal is too flexible,
lcp@104
   453
with too many rules applicable.
lcp@104
   454
lcp@104
   455
\subsection{Combined resolution and elim-resolution} \label{biresolve_tac}
lcp@104
   456
\index{tactics!resolution}
lcp@104
   457
\begin{ttbox} 
lcp@104
   458
biresolve_tac   : (bool*thm)list -> int -> tactic
lcp@104
   459
bimatch_tac     : (bool*thm)list -> int -> tactic
lcp@104
   460
subgoals_of_brl : bool*thm -> int
lcp@104
   461
lessb           : (bool*thm) * (bool*thm) -> bool
lcp@104
   462
\end{ttbox}
lcp@104
   463
{\bf Bi-resolution} takes a list of $\it (flag,rule)$ pairs.  For each
lcp@104
   464
pair, it applies resolution if the flag is~{\tt false} and
lcp@104
   465
elim-resolution if the flag is~{\tt true}.  A single tactic call handles a
lcp@104
   466
mixture of introduction and elimination rules.
lcp@104
   467
lcp@323
   468
\begin{ttdescription}
lcp@104
   469
\item[\ttindexbold{biresolve_tac} {\it brls} {\it i}] 
lcp@104
   470
refines the proof state by resolution or elim-resolution on each rule, as
lcp@104
   471
indicated by its flag.  It affects subgoal~$i$ of the proof state.
lcp@104
   472
lcp@104
   473
\item[\ttindexbold{bimatch_tac}] 
lcp@104
   474
is like {\tt biresolve_tac}, but performs matching: unknowns in the
lcp@104
   475
proof state are never updated (see~\S\ref{match_tac}).
lcp@104
   476
lcp@104
   477
\item[\ttindexbold{subgoals_of_brl}({\it flag},{\it rule})] 
lcp@104
   478
returns the number of new subgoals that bi-resolution would yield for the
lcp@104
   479
pair (if applied to a suitable subgoal).  This is $n$ if the flag is
lcp@104
   480
{\tt false} and $n-1$ if the flag is {\tt true}, where $n$ is the number
lcp@104
   481
of premises of the rule.  Elim-resolution yields one fewer subgoal than
lcp@104
   482
ordinary resolution because it solves the major premise by assumption.
lcp@104
   483
lcp@104
   484
\item[\ttindexbold{lessb} ({\it brl1},{\it brl2})] 
lcp@104
   485
returns the result of 
lcp@104
   486
\begin{ttbox}
lcp@332
   487
subgoals_of_brl{\it brl1} < subgoals_of_brl{\it brl2}
lcp@104
   488
\end{ttbox}
lcp@323
   489
\end{ttdescription}
lcp@104
   490
Note that \hbox{\tt sort lessb {\it brls}} sorts a list of $\it
lcp@104
   491
(flag,rule)$ pairs by the number of new subgoals they will yield.  Thus,
lcp@104
   492
those that yield the fewest subgoals should be tried first.
lcp@104
   493
lcp@104
   494
lcp@323
   495
\subsection{Discrimination nets for fast resolution}\label{filt_resolve_tac}
lcp@104
   496
\index{discrimination nets|bold}
lcp@104
   497
\index{tactics!resolution}
lcp@104
   498
\begin{ttbox} 
lcp@104
   499
net_resolve_tac  : thm list -> int -> tactic
lcp@104
   500
net_match_tac    : thm list -> int -> tactic
lcp@104
   501
net_biresolve_tac: (bool*thm) list -> int -> tactic
lcp@104
   502
net_bimatch_tac  : (bool*thm) list -> int -> tactic
lcp@104
   503
filt_resolve_tac : thm list -> int -> int -> tactic
lcp@104
   504
could_unify      : term*term->bool
lcp@104
   505
filter_thms      : (term*term->bool) -> int*term*thm list -> thm list
lcp@104
   506
\end{ttbox}
lcp@323
   507
The module {\tt Net} implements a discrimination net data structure for
lcp@104
   508
fast selection of rules \cite[Chapter 14]{charniak80}.  A term is
lcp@104
   509
classified by the symbol list obtained by flattening it in preorder.
lcp@104
   510
The flattening takes account of function applications, constants, and free
lcp@104
   511
and bound variables; it identifies all unknowns and also regards
lcp@323
   512
\index{lambda abs@$\lambda$-abstractions}
lcp@104
   513
$\lambda$-abstractions as unknowns, since they could $\eta$-contract to
lcp@104
   514
anything.  
lcp@104
   515
lcp@104
   516
A discrimination net serves as a polymorphic dictionary indexed by terms.
lcp@104
   517
The module provides various functions for inserting and removing items from
lcp@104
   518
nets.  It provides functions for returning all items whose term could match
lcp@104
   519
or unify with a target term.  The matching and unification tests are
lcp@104
   520
overly lax (due to the identifications mentioned above) but they serve as
lcp@104
   521
useful filters.
lcp@104
   522
lcp@104
   523
A net can store introduction rules indexed by their conclusion, and
lcp@104
   524
elimination rules indexed by their major premise.  Isabelle provides
lcp@323
   525
several functions for `compiling' long lists of rules into fast
lcp@104
   526
resolution tactics.  When supplied with a list of theorems, these functions
lcp@104
   527
build a discrimination net; the net is used when the tactic is applied to a
lcp@332
   528
goal.  To avoid repeatedly constructing the nets, use currying: bind the
lcp@104
   529
resulting tactics to \ML{} identifiers.
lcp@104
   530
lcp@323
   531
\begin{ttdescription}
lcp@104
   532
\item[\ttindexbold{net_resolve_tac} {\it thms}] 
lcp@104
   533
builds a discrimination net to obtain the effect of a similar call to {\tt
lcp@104
   534
resolve_tac}.
lcp@104
   535
lcp@104
   536
\item[\ttindexbold{net_match_tac} {\it thms}] 
lcp@104
   537
builds a discrimination net to obtain the effect of a similar call to {\tt
lcp@104
   538
match_tac}.
lcp@104
   539
lcp@104
   540
\item[\ttindexbold{net_biresolve_tac} {\it brls}] 
lcp@104
   541
builds a discrimination net to obtain the effect of a similar call to {\tt
lcp@104
   542
biresolve_tac}.
lcp@104
   543
lcp@104
   544
\item[\ttindexbold{net_bimatch_tac} {\it brls}] 
lcp@104
   545
builds a discrimination net to obtain the effect of a similar call to {\tt
lcp@104
   546
bimatch_tac}.
lcp@104
   547
lcp@104
   548
\item[\ttindexbold{filt_resolve_tac} {\it thms} {\it maxr} {\it i}] 
lcp@104
   549
uses discrimination nets to extract the {\it thms} that are applicable to
lcp@104
   550
subgoal~$i$.  If more than {\it maxr\/} theorems are applicable then the
lcp@104
   551
tactic fails.  Otherwise it calls {\tt resolve_tac}.  
lcp@104
   552
lcp@104
   553
This tactic helps avoid runaway instantiation of unknowns, for example in
lcp@104
   554
type inference.
lcp@104
   555
lcp@104
   556
\item[\ttindexbold{could_unify} ({\it t},{\it u})] 
lcp@323
   557
returns {\tt false} if~$t$ and~$u$ are `obviously' non-unifiable, and
lcp@104
   558
otherwise returns~{\tt true}.  It assumes all variables are distinct,
lcp@104
   559
reporting that {\tt ?a=?a} may unify with {\tt 0=1}.
lcp@104
   560
lcp@104
   561
\item[\ttindexbold{filter_thms} $could\; (limit,prem,thms)$] 
lcp@104
   562
returns the list of potentially resolvable rules (in {\it thms\/}) for the
lcp@104
   563
subgoal {\it prem}, using the predicate {\it could\/} to compare the
lcp@104
   564
conclusion of the subgoal with the conclusion of each rule.  The resulting list
lcp@104
   565
is no longer than {\it limit}.
lcp@323
   566
\end{ttdescription}
lcp@104
   567
lcp@104
   568
wenzelm@4317
   569
\section{Programming tools for proof strategies}
lcp@104
   570
Do not consider using the primitives discussed in this section unless you
lcp@323
   571
really need to code tactics from scratch.
lcp@104
   572
lcp@104
   573
\subsection{Operations on type {\tt tactic}}
paulson@3561
   574
\index{tactics!primitives for coding} A tactic maps theorems to sequences of
paulson@3561
   575
theorems.  The type constructor for sequences (lazy lists) is called
wenzelm@4276
   576
\mltydx{Seq.seq}.  To simplify the types of tactics and tacticals,
paulson@3561
   577
Isabelle defines a type abbreviation:
lcp@104
   578
\begin{ttbox} 
wenzelm@4276
   579
type tactic = thm -> thm Seq.seq
lcp@104
   580
\end{ttbox} 
wenzelm@3108
   581
The following operations provide means for coding tactics in a clean style.
lcp@104
   582
\begin{ttbox} 
lcp@104
   583
PRIMITIVE :                  (thm -> thm) -> tactic  
lcp@104
   584
SUBGOAL   : ((term*int) -> tactic) -> int -> tactic
lcp@104
   585
\end{ttbox} 
lcp@323
   586
\begin{ttdescription}
paulson@3561
   587
\item[\ttindexbold{PRIMITIVE} $f$] packages the meta-rule~$f$ as a tactic that
paulson@3561
   588
  applies $f$ to the proof state and returns the result as a one-element
paulson@3561
   589
  sequence.  If $f$ raises an exception, then the tactic's result is the empty
paulson@3561
   590
  sequence.
lcp@104
   591
lcp@104
   592
\item[\ttindexbold{SUBGOAL} $f$ $i$] 
lcp@104
   593
extracts subgoal~$i$ from the proof state as a term~$t$, and computes a
lcp@104
   594
tactic by calling~$f(t,i)$.  It applies the resulting tactic to the same
lcp@323
   595
state.  The tactic body is expressed using tactics and tacticals, but may
lcp@323
   596
peek at a particular subgoal:
lcp@104
   597
\begin{ttbox} 
lcp@323
   598
SUBGOAL (fn (t,i) => {\it tactic-valued expression})
lcp@104
   599
\end{ttbox} 
lcp@323
   600
\end{ttdescription}
lcp@104
   601
lcp@104
   602
lcp@104
   603
\subsection{Tracing}
lcp@323
   604
\index{tactics!tracing}
lcp@104
   605
\index{tracing!of tactics}
lcp@104
   606
\begin{ttbox} 
lcp@104
   607
pause_tac: tactic
lcp@104
   608
print_tac: tactic
lcp@104
   609
\end{ttbox}
lcp@332
   610
These tactics print tracing information when they are applied to a proof
lcp@332
   611
state.  Their output may be difficult to interpret.  Note that certain of
lcp@332
   612
the searching tacticals, such as {\tt REPEAT}, have built-in tracing
lcp@332
   613
options.
lcp@323
   614
\begin{ttdescription}
lcp@104
   615
\item[\ttindexbold{pause_tac}] 
lcp@332
   616
prints {\footnotesize\tt** Press RETURN to continue:} and then reads a line
lcp@332
   617
from the terminal.  If this line is blank then it returns the proof state
lcp@332
   618
unchanged; otherwise it fails (which may terminate a repetition).
lcp@104
   619
lcp@104
   620
\item[\ttindexbold{print_tac}] 
lcp@104
   621
returns the proof state unchanged, with the side effect of printing it at
lcp@104
   622
the terminal.
lcp@323
   623
\end{ttdescription}
lcp@104
   624
lcp@104
   625
wenzelm@4276
   626
\section{*Sequences}
lcp@104
   627
\index{sequences (lazy lists)|bold}
wenzelm@4276
   628
The module {\tt Seq} declares a type of lazy lists.  It uses
lcp@323
   629
Isabelle's type \mltydx{option} to represent the possible presence
lcp@104
   630
(\ttindexbold{Some}) or absence (\ttindexbold{None}) of
lcp@104
   631
a value:
lcp@104
   632
\begin{ttbox}
lcp@104
   633
datatype 'a option = None  |  Some of 'a;
lcp@104
   634
\end{ttbox}
wenzelm@4276
   635
The {\tt Seq} structure is supposed to be accessed via fully qualified
wenzelm@4317
   636
names and should not be \texttt{open}.
lcp@104
   637
lcp@323
   638
\subsection{Basic operations on sequences}
lcp@104
   639
\begin{ttbox} 
wenzelm@4276
   640
Seq.empty   : 'a seq
wenzelm@4276
   641
Seq.make    : (unit -> ('a * 'a seq) option) -> 'a seq
wenzelm@4276
   642
Seq.single  : 'a -> 'a seq
wenzelm@4276
   643
Seq.pull    : 'a seq -> ('a * 'a seq) option
lcp@104
   644
\end{ttbox}
lcp@323
   645
\begin{ttdescription}
wenzelm@4276
   646
\item[Seq.empty] is the empty sequence.
lcp@104
   647
wenzelm@4276
   648
\item[\tt Seq.make (fn () => Some ($x$, $xq$))] constructs the
wenzelm@4276
   649
  sequence with head~$x$ and tail~$xq$, neither of which is evaluated.
lcp@104
   650
wenzelm@4276
   651
\item[Seq.single $x$] 
lcp@104
   652
constructs the sequence containing the single element~$x$.
lcp@104
   653
wenzelm@4276
   654
\item[Seq.pull $xq$] returns {\tt None} if the sequence is empty and
wenzelm@4276
   655
  {\tt Some ($x$, $xq'$)} if the sequence has head~$x$ and tail~$xq'$.
wenzelm@4276
   656
  Warning: calling \hbox{Seq.pull $xq$} again will {\it recompute\/}
wenzelm@4276
   657
  the value of~$x$; it is not stored!
lcp@323
   658
\end{ttdescription}
lcp@104
   659
lcp@104
   660
lcp@323
   661
\subsection{Converting between sequences and lists}
lcp@104
   662
\begin{ttbox} 
wenzelm@4276
   663
Seq.chop    : int * 'a seq -> 'a list * 'a seq
wenzelm@4276
   664
Seq.list_of : 'a seq -> 'a list
wenzelm@4276
   665
Seq.of_list : 'a list -> 'a seq
lcp@104
   666
\end{ttbox}
lcp@323
   667
\begin{ttdescription}
wenzelm@4276
   668
\item[Seq.chop ($n$, $xq$)] returns the first~$n$ elements of~$xq$ as a
wenzelm@4276
   669
  list, paired with the remaining elements of~$xq$.  If $xq$ has fewer
wenzelm@4276
   670
  than~$n$ elements, then so will the list.
wenzelm@4276
   671
  
wenzelm@4276
   672
\item[Seq.list_of $xq$] returns the elements of~$xq$, which must be
wenzelm@4276
   673
  finite, as a list.
wenzelm@4276
   674
  
wenzelm@4276
   675
\item[Seq.of_list $xs$] creates a sequence containing the elements
wenzelm@4276
   676
  of~$xs$.
lcp@323
   677
\end{ttdescription}
lcp@104
   678
lcp@104
   679
lcp@323
   680
\subsection{Combining sequences}
lcp@104
   681
\begin{ttbox} 
wenzelm@4276
   682
Seq.append      : 'a seq * 'a seq -> 'a seq
wenzelm@4276
   683
Seq.interleave  : 'a seq * 'a seq -> 'a seq
wenzelm@4276
   684
Seq.flat        : 'a seq seq -> 'a seq
wenzelm@4276
   685
Seq.map         : ('a -> 'b) -> 'a seq -> 'b seq
wenzelm@4276
   686
Seq.filter      : ('a -> bool) -> 'a seq -> 'a seq
lcp@104
   687
\end{ttbox} 
lcp@323
   688
\begin{ttdescription}
wenzelm@4276
   689
\item[Seq.append ($xq$, $yq$)] concatenates $xq$ to $yq$.
wenzelm@4276
   690
  
wenzelm@4276
   691
\item[Seq.interleave ($xq$, $yq$)] joins $xq$ with $yq$ by
wenzelm@4276
   692
  interleaving their elements.  The result contains all the elements
wenzelm@4276
   693
  of the sequences, even if both are infinite.
wenzelm@4276
   694
  
wenzelm@4276
   695
\item[Seq.flat $xqq$] concatenates a sequence of sequences.
wenzelm@4276
   696
  
wenzelm@4276
   697
\item[Seq.map $f$ $xq$] applies $f$ to every element
wenzelm@4276
   698
  of~$xq=x@1,x@2,\ldots$, yielding the sequence $f(x@1),f(x@2),\ldots$.
wenzelm@4276
   699
  
wenzelm@4276
   700
\item[Seq.filter $p$ $xq$] returns the sequence consisting of all
wenzelm@4276
   701
  elements~$x$ of~$xq$ such that $p(x)$ is {\tt true}.
lcp@323
   702
\end{ttdescription}
lcp@104
   703
lcp@104
   704
\index{tactics|)}