src/HOL/NumberTheory/IntPrimes.thy
author paulson
Tue, 10 Feb 2004 12:02:11 +0100
changeset 14378 69c4d5997669
parent 14353 79f9fbef9106
child 14387 e96d5c42c4b0
permissions -rw-r--r--
generic of_nat and of_int functions, and generalization of iszero
and neg
wenzelm@11049
     1
(*  Title:      HOL/NumberTheory/IntPrimes.thy
paulson@9508
     2
    ID:         $Id$
wenzelm@11049
     3
    Author:     Thomas M. Rasmussen
wenzelm@11049
     4
    Copyright   2000  University of Cambridge
paulson@13833
     5
paulson@13833
     6
Changes by Jeremy Avigad, 2003/02/21:
paulson@13833
     7
   Repaired definition of zprime_def, added "0 <= m &"
paulson@13833
     8
   Added lemma zgcd_geq_zero
paulson@13833
     9
   Repaired proof of zprime_imp_zrelprime
paulson@9508
    10
*)
paulson@9508
    11
wenzelm@11049
    12
header {* Divisibility and prime numbers (on integers) *}
wenzelm@11049
    13
wenzelm@11049
    14
theory IntPrimes = Primes:
wenzelm@11049
    15
wenzelm@11049
    16
text {*
wenzelm@11049
    17
  The @{text dvd} relation, GCD, Euclid's extended algorithm, primes,
wenzelm@11049
    18
  congruences (all on the Integers).  Comparable to theory @{text
wenzelm@11049
    19
  Primes}, but @{text dvd} is included here as it is not present in
wenzelm@11049
    20
  main HOL.  Also includes extended GCD and congruences not present in
wenzelm@11049
    21
  @{text Primes}.
wenzelm@11049
    22
*}
wenzelm@11049
    23
wenzelm@11049
    24
wenzelm@11049
    25
subsection {* Definitions *}
paulson@9508
    26
paulson@9508
    27
consts
wenzelm@11049
    28
  xzgcda :: "int * int * int * int * int * int * int * int => int * int * int"
wenzelm@11049
    29
wenzelm@11049
    30
recdef xzgcda
wenzelm@11049
    31
  "measure ((\<lambda>(m, n, r', r, s', s, t', t). nat r)
wenzelm@11049
    32
    :: int * int * int * int *int * int * int * int => nat)"
wenzelm@11049
    33
  "xzgcda (m, n, r', r, s', s, t', t) =
paulson@13833
    34
	(if r \<le> 0 then (r', s', t')
paulson@13833
    35
	 else xzgcda (m, n, r, r' mod r, 
paulson@13833
    36
		      s, s' - (r' div r) * s, 
paulson@13833
    37
		      t, t' - (r' div r) * t))"
paulson@9508
    38
paulson@9943
    39
constdefs
wenzelm@11049
    40
  zgcd :: "int * int => int"
wenzelm@11049
    41
  "zgcd == \<lambda>(x,y). int (gcd (nat (abs x), nat (abs y)))"
paulson@9943
    42
paulson@13833
    43
  zprime :: "int set"
paulson@13833
    44
  "zprime == {p. 1 < p \<and> (\<forall>m. 0 <= m & m dvd p --> m = 1 \<or> m = p)}"
paulson@13833
    45
paulson@13833
    46
  xzgcd :: "int => int => int * int * int"
paulson@13833
    47
  "xzgcd m n == xzgcda (m, n, m, n, 1, 0, 0, 1)"
paulson@13833
    48
paulson@13833
    49
  zcong :: "int => int => int => bool"    ("(1[_ = _] '(mod _'))")
paulson@13833
    50
  "[a = b] (mod m) == m dvd (a - b)"
paulson@9508
    51
paulson@9508
    52
wenzelm@11049
    53
wenzelm@11049
    54
text {* \medskip @{term gcd} lemmas *}
wenzelm@11049
    55
wenzelm@11049
    56
lemma gcd_add1_eq: "gcd (m + k, k) = gcd (m + k, m)"
paulson@13833
    57
  by (simp add: gcd_commute)
wenzelm@11049
    58
wenzelm@11049
    59
lemma gcd_diff2: "m \<le> n ==> gcd (n, n - m) = gcd (n, m)"
wenzelm@11049
    60
  apply (subgoal_tac "n = m + (n - m)")
paulson@13833
    61
   apply (erule ssubst, rule gcd_add1_eq, simp)
wenzelm@11049
    62
  done
wenzelm@11049
    63
wenzelm@11049
    64
wenzelm@11049
    65
subsection {* Euclid's Algorithm and GCD *}
wenzelm@11049
    66
paulson@11868
    67
lemma zgcd_0 [simp]: "zgcd (m, 0) = abs m"
paulson@13833
    68
  by (simp add: zgcd_def zabs_def)
wenzelm@11049
    69
paulson@11868
    70
lemma zgcd_0_left [simp]: "zgcd (0, m) = abs m"
paulson@13833
    71
  by (simp add: zgcd_def zabs_def)
wenzelm@11049
    72
wenzelm@11049
    73
lemma zgcd_zminus [simp]: "zgcd (-m, n) = zgcd (m, n)"
paulson@13833
    74
  by (simp add: zgcd_def)
wenzelm@11049
    75
wenzelm@11049
    76
lemma zgcd_zminus2 [simp]: "zgcd (m, -n) = zgcd (m, n)"
paulson@13833
    77
  by (simp add: zgcd_def)
wenzelm@11049
    78
paulson@11868
    79
lemma zgcd_non_0: "0 < n ==> zgcd (m, n) = zgcd (n, m mod n)"
wenzelm@11049
    80
  apply (frule_tac b = n and a = m in pos_mod_sign)
paulson@13833
    81
  apply (simp del: pos_mod_sign add: zgcd_def zabs_def nat_mod_distrib)
wenzelm@11049
    82
  apply (auto simp add: gcd_non_0 nat_mod_distrib [symmetric] zmod_zminus1_eq_if)
wenzelm@11049
    83
  apply (frule_tac a = m in pos_mod_bound)
paulson@13833
    84
  apply (simp del: pos_mod_bound add: nat_diff_distrib gcd_diff2 nat_le_eq_zle)
wenzelm@11049
    85
  done
wenzelm@11049
    86
wenzelm@11049
    87
lemma zgcd_eq: "zgcd (m, n) = zgcd (n, m mod n)"
paulson@13183
    88
  apply (case_tac "n = 0", simp add: DIVISION_BY_ZERO)
wenzelm@11049
    89
  apply (auto simp add: linorder_neq_iff zgcd_non_0)
paulson@13833
    90
  apply (cut_tac m = "-m" and n = "-n" in zgcd_non_0, auto)
wenzelm@11049
    91
  done
wenzelm@11049
    92
paulson@11868
    93
lemma zgcd_1 [simp]: "zgcd (m, 1) = 1"
paulson@13833
    94
  by (simp add: zgcd_def zabs_def)
wenzelm@11049
    95
paulson@11868
    96
lemma zgcd_0_1_iff [simp]: "(zgcd (0, m) = 1) = (abs m = 1)"
paulson@13833
    97
  by (simp add: zgcd_def zabs_def)
wenzelm@11049
    98
wenzelm@11049
    99
lemma zgcd_zdvd1 [iff]: "zgcd (m, n) dvd m"
paulson@13833
   100
  by (simp add: zgcd_def zabs_def int_dvd_iff)
wenzelm@11049
   101
wenzelm@11049
   102
lemma zgcd_zdvd2 [iff]: "zgcd (m, n) dvd n"
paulson@13833
   103
  by (simp add: zgcd_def zabs_def int_dvd_iff)
wenzelm@11049
   104
wenzelm@11049
   105
lemma zgcd_greatest_iff: "k dvd zgcd (m, n) = (k dvd m \<and> k dvd n)"
paulson@13833
   106
  by (simp add: zgcd_def zabs_def int_dvd_iff dvd_int_iff nat_dvd_iff)
wenzelm@11049
   107
wenzelm@11049
   108
lemma zgcd_commute: "zgcd (m, n) = zgcd (n, m)"
paulson@13833
   109
  by (simp add: zgcd_def gcd_commute)
wenzelm@11049
   110
paulson@11868
   111
lemma zgcd_1_left [simp]: "zgcd (1, m) = 1"
paulson@13833
   112
  by (simp add: zgcd_def gcd_1_left)
wenzelm@11049
   113
wenzelm@11049
   114
lemma zgcd_assoc: "zgcd (zgcd (k, m), n) = zgcd (k, zgcd (m, n))"
paulson@13833
   115
  by (simp add: zgcd_def gcd_assoc)
wenzelm@11049
   116
wenzelm@11049
   117
lemma zgcd_left_commute: "zgcd (k, zgcd (m, n)) = zgcd (m, zgcd (k, n))"
wenzelm@11049
   118
  apply (rule zgcd_commute [THEN trans])
wenzelm@11049
   119
  apply (rule zgcd_assoc [THEN trans])
wenzelm@11049
   120
  apply (rule zgcd_commute [THEN arg_cong])
wenzelm@11049
   121
  done
wenzelm@11049
   122
wenzelm@11049
   123
lemmas zgcd_ac = zgcd_assoc zgcd_commute zgcd_left_commute
wenzelm@11049
   124
  -- {* addition is an AC-operator *}
wenzelm@11049
   125
paulson@11868
   126
lemma zgcd_zmult_distrib2: "0 \<le> k ==> k * zgcd (m, n) = zgcd (k * m, k * n)"
paulson@13833
   127
  by (simp del: zmult_zminus_right
paulson@13833
   128
      add: zmult_zminus_right [symmetric] nat_mult_distrib zgcd_def zabs_def
paulson@14353
   129
          mult_less_0_iff gcd_mult_distrib2 [symmetric] zmult_int [symmetric])
wenzelm@11049
   130
wenzelm@11049
   131
lemma zgcd_zmult_distrib2_abs: "zgcd (k * m, k * n) = abs k * zgcd (m, n)"
paulson@13833
   132
  by (simp add: zabs_def zgcd_zmult_distrib2)
wenzelm@11049
   133
paulson@11868
   134
lemma zgcd_self [simp]: "0 \<le> m ==> zgcd (m, m) = m"
paulson@13833
   135
  by (cut_tac k = m and m = 1 and n = 1 in zgcd_zmult_distrib2, simp_all)
wenzelm@11049
   136
paulson@11868
   137
lemma zgcd_zmult_eq_self [simp]: "0 \<le> k ==> zgcd (k, k * n) = k"
paulson@13833
   138
  by (cut_tac k = k and m = 1 and n = n in zgcd_zmult_distrib2, simp_all)
wenzelm@11049
   139
paulson@11868
   140
lemma zgcd_zmult_eq_self2 [simp]: "0 \<le> k ==> zgcd (k * n, k) = k"
paulson@13833
   141
  by (cut_tac k = k and m = n and n = 1 in zgcd_zmult_distrib2, simp_all)
wenzelm@11049
   142
paulson@13833
   143
lemma zrelprime_zdvd_zmult_aux:
paulson@13833
   144
     "zgcd (n, k) = 1 ==> k dvd m * n ==> 0 \<le> m ==> k dvd m"
wenzelm@11049
   145
  apply (subgoal_tac "m = zgcd (m * n, m * k)")
wenzelm@11049
   146
   apply (erule ssubst, rule zgcd_greatest_iff [THEN iffD2])
paulson@14353
   147
   apply (simp_all add: zgcd_zmult_distrib2 [symmetric] zero_le_mult_iff)
wenzelm@11049
   148
  done
wenzelm@11049
   149
paulson@11868
   150
lemma zrelprime_zdvd_zmult: "zgcd (n, k) = 1 ==> k dvd m * n ==> k dvd m"
paulson@11868
   151
  apply (case_tac "0 \<le> m")
wenzelm@13524
   152
   apply (blast intro: zrelprime_zdvd_zmult_aux)
wenzelm@11049
   153
  apply (subgoal_tac "k dvd -m")
paulson@13833
   154
   apply (rule_tac [2] zrelprime_zdvd_zmult_aux, auto)
wenzelm@11049
   155
  done
wenzelm@11049
   156
paulson@13833
   157
lemma zgcd_geq_zero: "0 <= zgcd(x,y)"
paulson@13833
   158
  by (auto simp add: zgcd_def)
paulson@13833
   159
paulson@13837
   160
text{*This is merely a sanity check on zprime, since the previous version
paulson@13837
   161
      denoted the empty set.*}
paulson@13837
   162
lemma "2 \<in> zprime"
paulson@13837
   163
  apply (auto simp add: zprime_def) 
paulson@13837
   164
  apply (frule zdvd_imp_le, simp) 
paulson@13837
   165
  apply (auto simp add: order_le_less dvd_def) 
paulson@13837
   166
  done
paulson@13837
   167
wenzelm@11049
   168
lemma zprime_imp_zrelprime:
paulson@11868
   169
    "p \<in> zprime ==> \<not> p dvd n ==> zgcd (n, p) = 1"
paulson@13833
   170
  apply (auto simp add: zprime_def)
paulson@13833
   171
  apply (drule_tac x = "zgcd(n, p)" in allE)
paulson@13833
   172
  apply (auto simp add: zgcd_zdvd2 [of n p] zgcd_geq_zero)
paulson@13833
   173
  apply (insert zgcd_zdvd1 [of n p], auto)
wenzelm@11049
   174
  done
wenzelm@11049
   175
wenzelm@11049
   176
lemma zless_zprime_imp_zrelprime:
paulson@11868
   177
    "p \<in> zprime ==> 0 < n ==> n < p ==> zgcd (n, p) = 1"
wenzelm@11049
   178
  apply (erule zprime_imp_zrelprime)
paulson@13833
   179
  apply (erule zdvd_not_zless, assumption)
wenzelm@11049
   180
  done
wenzelm@11049
   181
wenzelm@11049
   182
lemma zprime_zdvd_zmult:
paulson@11868
   183
    "0 \<le> (m::int) ==> p \<in> zprime ==> p dvd m * n ==> p dvd m \<or> p dvd n"
wenzelm@11049
   184
  apply safe
wenzelm@11049
   185
  apply (rule zrelprime_zdvd_zmult)
paulson@13833
   186
   apply (rule zprime_imp_zrelprime, auto)
wenzelm@11049
   187
  done
wenzelm@11049
   188
wenzelm@11049
   189
lemma zgcd_zadd_zmult [simp]: "zgcd (m + n * k, n) = zgcd (m, n)"
wenzelm@11049
   190
  apply (rule zgcd_eq [THEN trans])
wenzelm@11049
   191
  apply (simp add: zmod_zadd1_eq)
wenzelm@11049
   192
  apply (rule zgcd_eq [symmetric])
wenzelm@11049
   193
  done
wenzelm@11049
   194
wenzelm@11049
   195
lemma zgcd_zdvd_zgcd_zmult: "zgcd (m, n) dvd zgcd (k * m, n)"
wenzelm@11049
   196
  apply (simp add: zgcd_greatest_iff)
wenzelm@11049
   197
  apply (blast intro: zdvd_trans)
wenzelm@11049
   198
  done
wenzelm@11049
   199
wenzelm@11049
   200
lemma zgcd_zmult_zdvd_zgcd:
paulson@11868
   201
    "zgcd (k, n) = 1 ==> zgcd (k * m, n) dvd zgcd (m, n)"
wenzelm@11049
   202
  apply (simp add: zgcd_greatest_iff)
wenzelm@11049
   203
  apply (rule_tac n = k in zrelprime_zdvd_zmult)
wenzelm@11049
   204
   prefer 2
wenzelm@11049
   205
   apply (simp add: zmult_commute)
wenzelm@11049
   206
  apply (subgoal_tac "zgcd (k, zgcd (k * m, n)) = zgcd (k * m, zgcd (k, n))")
wenzelm@11049
   207
   apply simp
wenzelm@11049
   208
  apply (simp (no_asm) add: zgcd_ac)
wenzelm@11049
   209
  done
wenzelm@11049
   210
paulson@11868
   211
lemma zgcd_zmult_cancel: "zgcd (k, n) = 1 ==> zgcd (k * m, n) = zgcd (m, n)"
paulson@13833
   212
  by (simp add: zgcd_def nat_abs_mult_distrib gcd_mult_cancel)
wenzelm@11049
   213
wenzelm@11049
   214
lemma zgcd_zgcd_zmult:
paulson@11868
   215
    "zgcd (k, m) = 1 ==> zgcd (n, m) = 1 ==> zgcd (k * n, m) = 1"
paulson@13833
   216
  by (simp add: zgcd_zmult_cancel)
wenzelm@11049
   217
paulson@11868
   218
lemma zdvd_iff_zgcd: "0 < m ==> (m dvd n) = (zgcd (n, m) = m)"
wenzelm@11049
   219
  apply safe
wenzelm@11049
   220
   apply (rule_tac [2] n = "zgcd (n, m)" in zdvd_trans)
paulson@13833
   221
    apply (rule_tac [3] zgcd_zdvd1, simp_all)
paulson@13833
   222
  apply (unfold dvd_def, auto)
wenzelm@11049
   223
  done
wenzelm@11049
   224
wenzelm@11049
   225
wenzelm@11049
   226
subsection {* Congruences *}
wenzelm@11049
   227
paulson@11868
   228
lemma zcong_1 [simp]: "[a = b] (mod 1)"
paulson@13833
   229
  by (unfold zcong_def, auto)
wenzelm@11049
   230
wenzelm@11049
   231
lemma zcong_refl [simp]: "[k = k] (mod m)"
paulson@13833
   232
  by (unfold zcong_def, auto)
wenzelm@11049
   233
wenzelm@11049
   234
lemma zcong_sym: "[a = b] (mod m) = [b = a] (mod m)"
paulson@13833
   235
  apply (unfold zcong_def dvd_def, auto)
paulson@13833
   236
   apply (rule_tac [!] x = "-k" in exI, auto)
wenzelm@11049
   237
  done
wenzelm@11049
   238
wenzelm@11049
   239
lemma zcong_zadd:
wenzelm@11049
   240
    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a + c = b + d] (mod m)"
wenzelm@11049
   241
  apply (unfold zcong_def)
wenzelm@11049
   242
  apply (rule_tac s = "(a - b) + (c - d)" in subst)
paulson@13833
   243
   apply (rule_tac [2] zdvd_zadd, auto)
wenzelm@11049
   244
  done
wenzelm@11049
   245
wenzelm@11049
   246
lemma zcong_zdiff:
wenzelm@11049
   247
    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a - c = b - d] (mod m)"
wenzelm@11049
   248
  apply (unfold zcong_def)
wenzelm@11049
   249
  apply (rule_tac s = "(a - b) - (c - d)" in subst)
paulson@13833
   250
   apply (rule_tac [2] zdvd_zdiff, auto)
wenzelm@11049
   251
  done
wenzelm@11049
   252
wenzelm@11049
   253
lemma zcong_trans:
wenzelm@11049
   254
    "[a = b] (mod m) ==> [b = c] (mod m) ==> [a = c] (mod m)"
paulson@13833
   255
  apply (unfold zcong_def dvd_def, auto)
wenzelm@11049
   256
  apply (rule_tac x = "k + ka" in exI)
wenzelm@11049
   257
  apply (simp add: zadd_ac zadd_zmult_distrib2)
wenzelm@11049
   258
  done
wenzelm@11049
   259
wenzelm@11049
   260
lemma zcong_zmult:
wenzelm@11049
   261
    "[a = b] (mod m) ==> [c = d] (mod m) ==> [a * c = b * d] (mod m)"
wenzelm@11049
   262
  apply (rule_tac b = "b * c" in zcong_trans)
wenzelm@11049
   263
   apply (unfold zcong_def)
wenzelm@11049
   264
   apply (rule_tac s = "c * (a - b)" in subst)
wenzelm@11049
   265
    apply (rule_tac [3] s = "b * (c - d)" in subst)
wenzelm@11049
   266
     prefer 4
wenzelm@11049
   267
     apply (blast intro: zdvd_zmult)
wenzelm@11049
   268
    prefer 2
wenzelm@11049
   269
    apply (blast intro: zdvd_zmult)
wenzelm@11049
   270
   apply (simp_all add: zdiff_zmult_distrib2 zmult_commute)
wenzelm@11049
   271
  done
wenzelm@11049
   272
wenzelm@11049
   273
lemma zcong_scalar: "[a = b] (mod m) ==> [a * k = b * k] (mod m)"
paulson@13833
   274
  by (rule zcong_zmult, simp_all)
wenzelm@11049
   275
wenzelm@11049
   276
lemma zcong_scalar2: "[a = b] (mod m) ==> [k * a = k * b] (mod m)"
paulson@13833
   277
  by (rule zcong_zmult, simp_all)
wenzelm@11049
   278
wenzelm@11049
   279
lemma zcong_zmult_self: "[a * m = b * m] (mod m)"
wenzelm@11049
   280
  apply (unfold zcong_def)
paulson@13833
   281
  apply (rule zdvd_zdiff, simp_all)
wenzelm@11049
   282
  done
wenzelm@11049
   283
wenzelm@11049
   284
lemma zcong_square:
paulson@13833
   285
   "[|p \<in> zprime;  0 < a;  [a * a = 1] (mod p)|]
paulson@11868
   286
    ==> [a = 1] (mod p) \<or> [a = p - 1] (mod p)"
wenzelm@11049
   287
  apply (unfold zcong_def)
wenzelm@11049
   288
  apply (rule zprime_zdvd_zmult)
paulson@11868
   289
    apply (rule_tac [3] s = "a * a - 1 + p * (1 - a)" in subst)
wenzelm@11049
   290
     prefer 4
wenzelm@11049
   291
     apply (simp add: zdvd_reduce)
wenzelm@11049
   292
    apply (simp_all add: zdiff_zmult_distrib zmult_commute zdiff_zmult_distrib2)
wenzelm@11049
   293
  done
wenzelm@11049
   294
wenzelm@11049
   295
lemma zcong_cancel:
paulson@11868
   296
  "0 \<le> m ==>
paulson@11868
   297
    zgcd (k, m) = 1 ==> [a * k = b * k] (mod m) = [a = b] (mod m)"
wenzelm@11049
   298
  apply safe
wenzelm@11049
   299
   prefer 2
wenzelm@11049
   300
   apply (blast intro: zcong_scalar)
wenzelm@11049
   301
  apply (case_tac "b < a")
wenzelm@11049
   302
   prefer 2
wenzelm@11049
   303
   apply (subst zcong_sym)
wenzelm@11049
   304
   apply (unfold zcong_def)
wenzelm@11049
   305
   apply (rule_tac [!] zrelprime_zdvd_zmult)
wenzelm@11049
   306
     apply (simp_all add: zdiff_zmult_distrib)
wenzelm@11049
   307
  apply (subgoal_tac "m dvd (-(a * k - b * k))")
paulson@14271
   308
   apply simp
paulson@13833
   309
  apply (subst zdvd_zminus_iff, assumption)
wenzelm@11049
   310
  done
wenzelm@11049
   311
wenzelm@11049
   312
lemma zcong_cancel2:
paulson@11868
   313
  "0 \<le> m ==>
paulson@11868
   314
    zgcd (k, m) = 1 ==> [k * a = k * b] (mod m) = [a = b] (mod m)"
paulson@13833
   315
  by (simp add: zmult_commute zcong_cancel)
wenzelm@11049
   316
wenzelm@11049
   317
lemma zcong_zgcd_zmult_zmod:
paulson@11868
   318
  "[a = b] (mod m) ==> [a = b] (mod n) ==> zgcd (m, n) = 1
wenzelm@11049
   319
    ==> [a = b] (mod m * n)"
paulson@13833
   320
  apply (unfold zcong_def dvd_def, auto)
wenzelm@11049
   321
  apply (subgoal_tac "m dvd n * ka")
wenzelm@11049
   322
   apply (subgoal_tac "m dvd ka")
paulson@11868
   323
    apply (case_tac [2] "0 \<le> ka")
wenzelm@11049
   324
     prefer 3
wenzelm@11049
   325
     apply (subst zdvd_zminus_iff [symmetric])
wenzelm@11049
   326
     apply (rule_tac n = n in zrelprime_zdvd_zmult)
wenzelm@11049
   327
      apply (simp add: zgcd_commute)
wenzelm@11049
   328
     apply (simp add: zmult_commute zdvd_zminus_iff)
wenzelm@11049
   329
    prefer 2
wenzelm@11049
   330
    apply (rule_tac n = n in zrelprime_zdvd_zmult)
wenzelm@11049
   331
     apply (simp add: zgcd_commute)
wenzelm@11049
   332
    apply (simp add: zmult_commute)
wenzelm@11049
   333
   apply (auto simp add: dvd_def)
wenzelm@11049
   334
  done
wenzelm@11049
   335
wenzelm@11049
   336
lemma zcong_zless_imp_eq:
paulson@11868
   337
  "0 \<le> a ==>
paulson@11868
   338
    a < m ==> 0 \<le> b ==> b < m ==> [a = b] (mod m) ==> a = b"
paulson@13833
   339
  apply (unfold zcong_def dvd_def, auto)
wenzelm@11049
   340
  apply (drule_tac f = "\<lambda>z. z mod m" in arg_cong)
paulson@14378
   341
  apply (cut_tac x = a and y = b in linorder_less_linear, auto)
wenzelm@11049
   342
   apply (subgoal_tac [2] "(a - b) mod m = a - b")
paulson@13833
   343
    apply (rule_tac [3] mod_pos_pos_trivial, auto)
wenzelm@11049
   344
  apply (subgoal_tac "(m + (a - b)) mod m = m + (a - b)")
paulson@13833
   345
   apply (rule_tac [2] mod_pos_pos_trivial, auto)
wenzelm@11049
   346
  done
wenzelm@11049
   347
wenzelm@11049
   348
lemma zcong_square_zless:
paulson@11868
   349
  "p \<in> zprime ==> 0 < a ==> a < p ==>
paulson@11868
   350
    [a * a = 1] (mod p) ==> a = 1 \<or> a = p - 1"
wenzelm@11049
   351
  apply (cut_tac p = p and a = a in zcong_square)
wenzelm@11049
   352
     apply (simp add: zprime_def)
wenzelm@11049
   353
    apply (auto intro: zcong_zless_imp_eq)
wenzelm@11049
   354
  done
wenzelm@11049
   355
wenzelm@11049
   356
lemma zcong_not:
paulson@11868
   357
    "0 < a ==> a < m ==> 0 < b ==> b < a ==> \<not> [a = b] (mod m)"
wenzelm@11049
   358
  apply (unfold zcong_def)
paulson@13833
   359
  apply (rule zdvd_not_zless, auto)
wenzelm@11049
   360
  done
wenzelm@11049
   361
wenzelm@11049
   362
lemma zcong_zless_0:
paulson@11868
   363
    "0 \<le> a ==> a < m ==> [a = 0] (mod m) ==> a = 0"
paulson@13833
   364
  apply (unfold zcong_def dvd_def, auto)
paulson@11868
   365
  apply (subgoal_tac "0 < m")
paulson@14353
   366
   apply (simp add: zero_le_mult_iff)
paulson@11868
   367
   apply (subgoal_tac "m * k < m * 1")
wenzelm@11049
   368
    apply (drule zmult_zless_cancel1 [THEN iffD1])
wenzelm@11049
   369
    apply (auto simp add: linorder_neq_iff)
wenzelm@11049
   370
  done
wenzelm@11049
   371
wenzelm@11049
   372
lemma zcong_zless_unique:
paulson@11868
   373
    "0 < m ==> (\<exists>!b. 0 \<le> b \<and> b < m \<and> [a = b] (mod m))"
wenzelm@11049
   374
  apply auto
wenzelm@11049
   375
   apply (subgoal_tac [2] "[b = y] (mod m)")
paulson@11868
   376
    apply (case_tac [2] "b = 0")
paulson@11868
   377
     apply (case_tac [3] "y = 0")
wenzelm@11049
   378
      apply (auto intro: zcong_trans zcong_zless_0 zcong_zless_imp_eq order_less_le
wenzelm@11049
   379
        simp add: zcong_sym)
wenzelm@11049
   380
  apply (unfold zcong_def dvd_def)
paulson@13833
   381
  apply (rule_tac x = "a mod m" in exI, auto)
wenzelm@11049
   382
  apply (rule_tac x = "-(a div m)" in exI)
paulson@14271
   383
  apply (simp add: diff_eq_eq eq_diff_eq add_commute)
wenzelm@11049
   384
  done
wenzelm@11049
   385
wenzelm@11049
   386
lemma zcong_iff_lin: "([a = b] (mod m)) = (\<exists>k. b = a + m * k)"
paulson@13833
   387
  apply (unfold zcong_def dvd_def, auto)
paulson@13833
   388
   apply (rule_tac [!] x = "-k" in exI, auto)
wenzelm@11049
   389
  done
wenzelm@11049
   390
wenzelm@11049
   391
lemma zgcd_zcong_zgcd:
paulson@11868
   392
  "0 < m ==>
paulson@11868
   393
    zgcd (a, m) = 1 ==> [a = b] (mod m) ==> zgcd (b, m) = 1"
paulson@13833
   394
  by (auto simp add: zcong_iff_lin)
wenzelm@11049
   395
paulson@13833
   396
lemma zcong_zmod_aux:
paulson@13833
   397
     "a - b = (m::int) * (a div m - b div m) + (a mod m - b mod m)"
paulson@14271
   398
  by(simp add: zdiff_zmult_distrib2 add_diff_eq eq_diff_eq add_ac)
nipkow@13517
   399
wenzelm@11049
   400
lemma zcong_zmod: "[a = b] (mod m) = [a mod m = b mod m] (mod m)"
wenzelm@11049
   401
  apply (unfold zcong_def)
wenzelm@11049
   402
  apply (rule_tac t = "a - b" in ssubst)
ballarin@14174
   403
  apply (rule_tac m = m in zcong_zmod_aux)
wenzelm@11049
   404
  apply (rule trans)
wenzelm@11049
   405
   apply (rule_tac [2] k = m and m = "a div m - b div m" in zdvd_reduce)
wenzelm@11049
   406
  apply (simp add: zadd_commute)
wenzelm@11049
   407
  done
wenzelm@11049
   408
paulson@11868
   409
lemma zcong_zmod_eq: "0 < m ==> [a = b] (mod m) = (a mod m = b mod m)"
wenzelm@11049
   410
  apply auto
wenzelm@11049
   411
   apply (rule_tac m = m in zcong_zless_imp_eq)
wenzelm@11049
   412
       prefer 5
paulson@13833
   413
       apply (subst zcong_zmod [symmetric], simp_all)
wenzelm@11049
   414
  apply (unfold zcong_def dvd_def)
wenzelm@11049
   415
  apply (rule_tac x = "a div m - b div m" in exI)
paulson@13833
   416
  apply (rule_tac m1 = m in zcong_zmod_aux [THEN trans], auto)
wenzelm@11049
   417
  done
wenzelm@11049
   418
wenzelm@11049
   419
lemma zcong_zminus [iff]: "[a = b] (mod -m) = [a = b] (mod m)"
paulson@13833
   420
  by (auto simp add: zcong_def)
wenzelm@11049
   421
paulson@11868
   422
lemma zcong_zero [iff]: "[a = b] (mod 0) = (a = b)"
paulson@13833
   423
  by (auto simp add: zcong_def)
wenzelm@11049
   424
wenzelm@11049
   425
lemma "[a = b] (mod m) = (a mod m = b mod m)"
paulson@13183
   426
  apply (case_tac "m = 0", simp add: DIVISION_BY_ZERO)
paulson@13193
   427
  apply (simp add: linorder_neq_iff)
paulson@13193
   428
  apply (erule disjE)  
paulson@13193
   429
   prefer 2 apply (simp add: zcong_zmod_eq)
paulson@13193
   430
  txt{*Remainding case: @{term "m<0"}*}
wenzelm@11049
   431
  apply (rule_tac t = m in zminus_zminus [THEN subst])
wenzelm@11049
   432
  apply (subst zcong_zminus)
paulson@13833
   433
  apply (subst zcong_zmod_eq, arith)
paulson@13193
   434
  apply (frule neg_mod_bound [of _ a], frule neg_mod_bound [of _ b]) 
nipkow@13788
   435
  apply (simp add: zmod_zminus2_eq_if del: neg_mod_bound)
paulson@13193
   436
  done
wenzelm@11049
   437
wenzelm@11049
   438
subsection {* Modulo *}
wenzelm@11049
   439
wenzelm@11049
   440
lemma zmod_zdvd_zmod:
paulson@11868
   441
    "0 < (m::int) ==> m dvd b ==> (a mod b mod m) = (a mod m)"
paulson@13833
   442
  apply (unfold dvd_def, auto)
wenzelm@11049
   443
  apply (subst zcong_zmod_eq [symmetric])
wenzelm@11049
   444
   prefer 2
wenzelm@11049
   445
   apply (subst zcong_iff_lin)
wenzelm@11049
   446
   apply (rule_tac x = "k * (a div (m * k))" in exI)
paulson@13833
   447
   apply (simp add:zmult_assoc [symmetric], assumption)
wenzelm@11049
   448
  done
wenzelm@11049
   449
wenzelm@11049
   450
wenzelm@11049
   451
subsection {* Extended GCD *}
wenzelm@11049
   452
wenzelm@11049
   453
declare xzgcda.simps [simp del]
wenzelm@11049
   454
wenzelm@13524
   455
lemma xzgcd_correct_aux1:
paulson@11868
   456
  "zgcd (r', r) = k --> 0 < r -->
wenzelm@11049
   457
    (\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn))"
wenzelm@11049
   458
  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
wenzelm@11049
   459
    z = s and aa = t' and ab = t in xzgcda.induct)
wenzelm@11049
   460
  apply (subst zgcd_eq)
paulson@13833
   461
  apply (subst xzgcda.simps, auto)
paulson@11868
   462
  apply (case_tac "r' mod r = 0")
wenzelm@11049
   463
   prefer 2
paulson@13833
   464
   apply (frule_tac a = "r'" in pos_mod_sign, auto)
wenzelm@11049
   465
  apply (rule exI)
wenzelm@11049
   466
  apply (rule exI)
paulson@13833
   467
  apply (subst xzgcda.simps, auto)
wenzelm@11049
   468
  apply (simp add: zabs_def)
wenzelm@11049
   469
  done
wenzelm@11049
   470
wenzelm@13524
   471
lemma xzgcd_correct_aux2:
paulson@11868
   472
  "(\<exists>sn tn. xzgcda (m, n, r', r, s', s, t', t) = (k, sn, tn)) --> 0 < r -->
wenzelm@11049
   473
    zgcd (r', r) = k"
wenzelm@11049
   474
  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
wenzelm@11049
   475
    z = s and aa = t' and ab = t in xzgcda.induct)
wenzelm@11049
   476
  apply (subst zgcd_eq)
wenzelm@11049
   477
  apply (subst xzgcda.simps)
wenzelm@11049
   478
  apply (auto simp add: linorder_not_le)
paulson@11868
   479
  apply (case_tac "r' mod r = 0")
wenzelm@11049
   480
   prefer 2
paulson@13833
   481
   apply (frule_tac a = "r'" in pos_mod_sign, auto)
wenzelm@11049
   482
  apply (erule_tac P = "xzgcda ?u = ?v" in rev_mp)
paulson@13833
   483
  apply (subst xzgcda.simps, auto)
wenzelm@11049
   484
  apply (simp add: zabs_def)
wenzelm@11049
   485
  done
wenzelm@11049
   486
wenzelm@11049
   487
lemma xzgcd_correct:
paulson@11868
   488
    "0 < n ==> (zgcd (m, n) = k) = (\<exists>s t. xzgcd m n = (k, s, t))"
wenzelm@11049
   489
  apply (unfold xzgcd_def)
wenzelm@11049
   490
  apply (rule iffI)
wenzelm@13524
   491
   apply (rule_tac [2] xzgcd_correct_aux2 [THEN mp, THEN mp])
paulson@13833
   492
    apply (rule xzgcd_correct_aux1 [THEN mp, THEN mp], auto)
wenzelm@11049
   493
  done
wenzelm@11049
   494
wenzelm@11049
   495
wenzelm@11049
   496
text {* \medskip @{term xzgcd} linear *}
wenzelm@11049
   497
wenzelm@13524
   498
lemma xzgcda_linear_aux1:
wenzelm@11049
   499
  "(a - r * b) * m + (c - r * d) * (n::int) =
paulson@13833
   500
   (a * m + c * n) - r * (b * m + d * n)"
paulson@13833
   501
  by (simp add: zdiff_zmult_distrib zadd_zmult_distrib2 zmult_assoc)
wenzelm@11049
   502
wenzelm@13524
   503
lemma xzgcda_linear_aux2:
wenzelm@11049
   504
  "r' = s' * m + t' * n ==> r = s * m + t * n
wenzelm@11049
   505
    ==> (r' mod r) = (s' - (r' div r) * s) * m + (t' - (r' div r) * t) * (n::int)"
wenzelm@11049
   506
  apply (rule trans)
wenzelm@13524
   507
   apply (rule_tac [2] xzgcda_linear_aux1 [symmetric])
paulson@14271
   508
  apply (simp add: eq_diff_eq mult_commute)
wenzelm@11049
   509
  done
wenzelm@11049
   510
wenzelm@11049
   511
lemma order_le_neq_implies_less: "(x::'a::order) \<le> y ==> x \<noteq> y ==> x < y"
wenzelm@11049
   512
  by (rule iffD2 [OF order_less_le conjI])
wenzelm@11049
   513
wenzelm@11049
   514
lemma xzgcda_linear [rule_format]:
paulson@11868
   515
  "0 < r --> xzgcda (m, n, r', r, s', s, t', t) = (rn, sn, tn) -->
wenzelm@11049
   516
    r' = s' * m + t' * n -->  r = s * m + t * n --> rn = sn * m + tn * n"
wenzelm@11049
   517
  apply (rule_tac u = m and v = n and w = r' and x = r and y = s' and
wenzelm@11049
   518
    z = s and aa = t' and ab = t in xzgcda.induct)
wenzelm@11049
   519
  apply (subst xzgcda.simps)
wenzelm@11049
   520
  apply (simp (no_asm))
wenzelm@11049
   521
  apply (rule impI)+
paulson@11868
   522
  apply (case_tac "r' mod r = 0")
paulson@13833
   523
   apply (simp add: xzgcda.simps, clarify)
paulson@11868
   524
  apply (subgoal_tac "0 < r' mod r")
wenzelm@11049
   525
   apply (rule_tac [2] order_le_neq_implies_less)
wenzelm@11049
   526
   apply (rule_tac [2] pos_mod_sign)
wenzelm@11049
   527
    apply (cut_tac m = m and n = n and r' = r' and r = r and s' = s' and
paulson@13833
   528
      s = s and t' = t' and t = t in xzgcda_linear_aux2, auto)
wenzelm@11049
   529
  done
wenzelm@11049
   530
wenzelm@11049
   531
lemma xzgcd_linear:
paulson@11868
   532
    "0 < n ==> xzgcd m n = (r, s, t) ==> r = s * m + t * n"
wenzelm@11049
   533
  apply (unfold xzgcd_def)
paulson@13837
   534
  apply (erule xzgcda_linear, assumption, auto)
wenzelm@11049
   535
  done
wenzelm@11049
   536
wenzelm@11049
   537
lemma zgcd_ex_linear:
paulson@11868
   538
    "0 < n ==> zgcd (m, n) = k ==> (\<exists>s t. k = s * m + t * n)"
paulson@13833
   539
  apply (simp add: xzgcd_correct, safe)
wenzelm@11049
   540
  apply (rule exI)+
paulson@13833
   541
  apply (erule xzgcd_linear, auto)
wenzelm@11049
   542
  done
wenzelm@11049
   543
wenzelm@11049
   544
lemma zcong_lineq_ex:
paulson@11868
   545
    "0 < n ==> zgcd (a, n) = 1 ==> \<exists>x. [a * x = 1] (mod n)"
paulson@13833
   546
  apply (cut_tac m = a and n = n and k = 1 in zgcd_ex_linear, safe)
wenzelm@11049
   547
  apply (rule_tac x = s in exI)
wenzelm@11049
   548
  apply (rule_tac b = "s * a + t * n" in zcong_trans)
wenzelm@11049
   549
   prefer 2
wenzelm@11049
   550
   apply simp
wenzelm@11049
   551
  apply (unfold zcong_def)
wenzelm@11049
   552
  apply (simp (no_asm) add: zmult_commute zdvd_zminus_iff)
wenzelm@11049
   553
  done
wenzelm@11049
   554
wenzelm@11049
   555
lemma zcong_lineq_unique:
paulson@11868
   556
  "0 < n ==>
paulson@11868
   557
    zgcd (a, n) = 1 ==> \<exists>!x. 0 \<le> x \<and> x < n \<and> [a * x = b] (mod n)"
wenzelm@11049
   558
  apply auto
wenzelm@11049
   559
   apply (rule_tac [2] zcong_zless_imp_eq)
wenzelm@11049
   560
       apply (tactic {* stac (thm "zcong_cancel2" RS sym) 6 *})
wenzelm@11049
   561
         apply (rule_tac [8] zcong_trans)
wenzelm@11049
   562
          apply (simp_all (no_asm_simp))
wenzelm@11049
   563
   prefer 2
wenzelm@11049
   564
   apply (simp add: zcong_sym)
paulson@13833
   565
  apply (cut_tac a = a and n = n in zcong_lineq_ex, auto)
paulson@13833
   566
  apply (rule_tac x = "x * b mod n" in exI, safe)
nipkow@13788
   567
    apply (simp_all (no_asm_simp))
wenzelm@11049
   568
  apply (subst zcong_zmod)
wenzelm@11049
   569
  apply (subst zmod_zmult1_eq [symmetric])
wenzelm@11049
   570
  apply (subst zcong_zmod [symmetric])
paulson@11868
   571
  apply (subgoal_tac "[a * x * b = 1 * b] (mod n)")
wenzelm@11049
   572
   apply (rule_tac [2] zcong_zmult)
wenzelm@11049
   573
    apply (simp_all add: zmult_assoc)
wenzelm@11049
   574
  done
paulson@9508
   575
paulson@9508
   576
end