src/HOL/Integ/IntArith.thy
author paulson
Tue, 10 Feb 2004 12:02:11 +0100
changeset 14378 69c4d5997669
parent 14365 3d4df8c166ae
child 14387 e96d5c42c4b0
permissions -rw-r--r--
generic of_nat and of_int functions, and generalization of iszero
and neg
paulson@14259
     1
(*  Title:      HOL/Integ/IntArith.thy
paulson@14259
     2
    ID:         $Id$
paulson@14259
     3
    Authors:    Larry Paulson and Tobias Nipkow
paulson@14259
     4
*)
wenzelm@12023
     5
wenzelm@12023
     6
header {* Integer arithmetic *}
wenzelm@12023
     7
wenzelm@9436
     8
theory IntArith = Bin
paulson@14259
     9
files ("int_arith1.ML"):
wenzelm@9436
    10
paulson@14353
    11
paulson@14272
    12
subsection{*Inequality Reasoning for the Arithmetic Simproc*}
paulson@14272
    13
paulson@14272
    14
lemma zless_imp_add1_zle: "w<z ==> w + (1::int) \<le> z"
paulson@14378
    15
apply (rule eq_Abs_Integ [of z])
paulson@14378
    16
apply (rule eq_Abs_Integ [of w])
paulson@14378
    17
apply (simp add: linorder_not_le [symmetric] zle int_def zadd One_int_def)
paulson@14378
    18
done
paulson@14378
    19
paulson@14272
    20
wenzelm@12023
    21
use "int_arith1.ML"
wenzelm@12023
    22
setup int_arith_setup
paulson@14259
    23
paulson@14353
    24
paulson@14272
    25
subsection{*More inequality reasoning*}
paulson@14272
    26
paulson@14272
    27
lemma zless_add1_eq: "(w < z + (1::int)) = (w<z | w=z)"
paulson@14259
    28
by arith
paulson@14259
    29
paulson@14272
    30
lemma add1_zle_eq: "(w + (1::int) \<le> z) = (w<z)"
paulson@14272
    31
by arith
paulson@14272
    32
paulson@14272
    33
lemma zle_diff1_eq [simp]: "(w \<le> z - (1::int)) = (w<(z::int))"
paulson@14272
    34
by arith
paulson@14272
    35
paulson@14272
    36
lemma zle_add1_eq_le [simp]: "(w < z + 1) = (w\<le>(z::int))"
paulson@14259
    37
by arith
paulson@14259
    38
paulson@14259
    39
lemma zadd_left_cancel0 [simp]: "(z = z + w) = (w = (0::int))"
paulson@14259
    40
by arith
paulson@14259
    41
paulson@14365
    42
lemma int_one_le_iff_zero_less: "((1::int) \<le> z) = (0 < z)"
paulson@14365
    43
by arith
paulson@14365
    44
paulson@14353
    45
paulson@14353
    46
subsection{*The Functions @{term nat} and @{term int}*}
paulson@14259
    47
paulson@14272
    48
lemma nonneg_eq_int: "[| 0 \<le> z;  !!m. z = int m ==> P |] ==> P"
paulson@14259
    49
by (blast dest: nat_0_le sym)
paulson@14259
    50
paulson@14272
    51
lemma nat_eq_iff: "(nat w = m) = (if 0 \<le> w then w = int m else m=0)"
paulson@14259
    52
by auto
paulson@14259
    53
paulson@14272
    54
lemma nat_eq_iff2: "(m = nat w) = (if 0 \<le> w then w = int m else m=0)"
paulson@14259
    55
by auto
paulson@14259
    56
paulson@14272
    57
lemma nat_less_iff: "0 \<le> w ==> (nat w < m) = (w < int m)"
paulson@14259
    58
apply (rule iffI)
paulson@14259
    59
apply (erule nat_0_le [THEN subst])
paulson@14259
    60
apply (simp_all del: zless_int add: zless_int [symmetric]) 
paulson@14259
    61
done
paulson@14259
    62
paulson@14272
    63
lemma int_eq_iff: "(int m = z) = (m = nat z & 0 \<le> z)"
paulson@14259
    64
by (auto simp add: nat_eq_iff2)
paulson@14259
    65
paulson@14259
    66
paulson@14353
    67
text{*Simplify the terms @{term "int 0"}, @{term "int(Suc 0)"} and
paulson@14353
    68
  @{term "w + - z"}*}
paulson@14259
    69
declare Zero_int_def [symmetric, simp]
paulson@14259
    70
declare One_int_def [symmetric, simp]
paulson@14259
    71
paulson@14259
    72
text{*cooper.ML refers to this theorem*}
paulson@14259
    73
lemmas zdiff_def_symmetric = zdiff_def [symmetric, simp]
paulson@14259
    74
paulson@14259
    75
lemma nat_0: "nat 0 = 0"
paulson@14259
    76
by (simp add: nat_eq_iff)
paulson@14259
    77
paulson@14259
    78
lemma nat_1: "nat 1 = Suc 0"
paulson@14259
    79
by (subst nat_eq_iff, simp)
paulson@14259
    80
paulson@14259
    81
lemma nat_2: "nat 2 = Suc (Suc 0)"
paulson@14259
    82
by (subst nat_eq_iff, simp)
paulson@14259
    83
paulson@14272
    84
lemma nat_less_eq_zless: "0 \<le> w ==> (nat w < nat z) = (w<z)"
paulson@14378
    85
apply (case_tac "z < 0")
paulson@14259
    86
apply (auto simp add: nat_less_iff)
paulson@14259
    87
done
paulson@14259
    88
paulson@14378
    89
paulson@14272
    90
lemma nat_le_eq_zle: "0 < w | 0 \<le> z ==> (nat w \<le> nat z) = (w\<le>z)"
paulson@14259
    91
by (auto simp add: linorder_not_less [symmetric] zless_nat_conj)
paulson@14259
    92
paulson@14259
    93
paulson@14259
    94
text{*This simplifies expressions of the form @{term "int n = z"} where
paulson@14259
    95
      z is an integer literal.*}
paulson@14259
    96
declare int_eq_iff [of _ "number_of v", standard, simp]
paulson@13837
    97
paulson@13849
    98
lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)"
paulson@13849
    99
  by simp
paulson@13849
   100
paulson@14295
   101
lemma split_nat [arith_split]:
paulson@14259
   102
  "P(nat(i::int)) = ((\<forall>n. i = int n \<longrightarrow> P n) & (i < 0 \<longrightarrow> P 0))"
nipkow@13575
   103
  (is "?P = (?L & ?R)")
nipkow@13575
   104
proof (cases "i < 0")
nipkow@13575
   105
  case True thus ?thesis by simp
nipkow@13575
   106
next
nipkow@13575
   107
  case False
nipkow@13575
   108
  have "?P = ?L"
nipkow@13575
   109
  proof
nipkow@13575
   110
    assume ?P thus ?L using False by clarsimp
nipkow@13575
   111
  next
nipkow@13575
   112
    assume ?L thus ?P using False by simp
nipkow@13575
   113
  qed
nipkow@13575
   114
  with False show ?thesis by simp
nipkow@13575
   115
qed
nipkow@13575
   116
nipkow@13685
   117
subsubsection "Induction principles for int"
nipkow@13685
   118
nipkow@13685
   119
                     (* `set:int': dummy construction *)
nipkow@13685
   120
theorem int_ge_induct[case_names base step,induct set:int]:
nipkow@13685
   121
  assumes ge: "k \<le> (i::int)" and
nipkow@13685
   122
        base: "P(k)" and
nipkow@13685
   123
        step: "\<And>i. \<lbrakk>k \<le> i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
nipkow@13685
   124
  shows "P i"
nipkow@13685
   125
proof -
paulson@14272
   126
  { fix n have "\<And>i::int. n = nat(i-k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i"
nipkow@13685
   127
    proof (induct n)
nipkow@13685
   128
      case 0
nipkow@13685
   129
      hence "i = k" by arith
nipkow@13685
   130
      thus "P i" using base by simp
nipkow@13685
   131
    next
nipkow@13685
   132
      case (Suc n)
nipkow@13685
   133
      hence "n = nat((i - 1) - k)" by arith
nipkow@13685
   134
      moreover
nipkow@13685
   135
      have ki1: "k \<le> i - 1" using Suc.prems by arith
nipkow@13685
   136
      ultimately
nipkow@13685
   137
      have "P(i - 1)" by(rule Suc.hyps)
nipkow@13685
   138
      from step[OF ki1 this] show ?case by simp
nipkow@13685
   139
    qed
nipkow@13685
   140
  }
nipkow@13685
   141
  from this ge show ?thesis by fast
nipkow@13685
   142
qed
nipkow@13685
   143
nipkow@13685
   144
                     (* `set:int': dummy construction *)
nipkow@13685
   145
theorem int_gr_induct[case_names base step,induct set:int]:
nipkow@13685
   146
  assumes gr: "k < (i::int)" and
nipkow@13685
   147
        base: "P(k+1)" and
nipkow@13685
   148
        step: "\<And>i. \<lbrakk>k < i; P i\<rbrakk> \<Longrightarrow> P(i+1)"
nipkow@13685
   149
  shows "P i"
nipkow@13685
   150
apply(rule int_ge_induct[of "k + 1"])
nipkow@13685
   151
  using gr apply arith
nipkow@13685
   152
 apply(rule base)
paulson@14259
   153
apply (rule step, simp+)
nipkow@13685
   154
done
nipkow@13685
   155
nipkow@13685
   156
theorem int_le_induct[consumes 1,case_names base step]:
nipkow@13685
   157
  assumes le: "i \<le> (k::int)" and
nipkow@13685
   158
        base: "P(k)" and
nipkow@13685
   159
        step: "\<And>i. \<lbrakk>i \<le> k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
nipkow@13685
   160
  shows "P i"
nipkow@13685
   161
proof -
paulson@14272
   162
  { fix n have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i"
nipkow@13685
   163
    proof (induct n)
nipkow@13685
   164
      case 0
nipkow@13685
   165
      hence "i = k" by arith
nipkow@13685
   166
      thus "P i" using base by simp
nipkow@13685
   167
    next
nipkow@13685
   168
      case (Suc n)
nipkow@13685
   169
      hence "n = nat(k - (i+1))" by arith
nipkow@13685
   170
      moreover
nipkow@13685
   171
      have ki1: "i + 1 \<le> k" using Suc.prems by arith
nipkow@13685
   172
      ultimately
nipkow@13685
   173
      have "P(i+1)" by(rule Suc.hyps)
nipkow@13685
   174
      from step[OF ki1 this] show ?case by simp
nipkow@13685
   175
    qed
nipkow@13685
   176
  }
nipkow@13685
   177
  from this le show ?thesis by fast
nipkow@13685
   178
qed
nipkow@13685
   179
nipkow@13685
   180
theorem int_less_induct[consumes 1,case_names base step]:
nipkow@13685
   181
  assumes less: "(i::int) < k" and
nipkow@13685
   182
        base: "P(k - 1)" and
nipkow@13685
   183
        step: "\<And>i. \<lbrakk>i < k; P i\<rbrakk> \<Longrightarrow> P(i - 1)"
nipkow@13685
   184
  shows "P i"
nipkow@13685
   185
apply(rule int_le_induct[of _ "k - 1"])
nipkow@13685
   186
  using less apply arith
nipkow@13685
   187
 apply(rule base)
paulson@14259
   188
apply (rule step, simp+)
nipkow@13685
   189
done
nipkow@13685
   190
paulson@14259
   191
subsection{*Intermediate value theorems*}
paulson@14259
   192
paulson@14259
   193
lemma int_val_lemma:
paulson@14259
   194
     "(\<forall>i<n::nat. abs(f(i+1) - f i) \<le> 1) -->  
paulson@14259
   195
      f 0 \<le> k --> k \<le> f n --> (\<exists>i \<le> n. f i = (k::int))"
paulson@14271
   196
apply (induct_tac "n", simp)
paulson@14259
   197
apply (intro strip)
paulson@14259
   198
apply (erule impE, simp)
paulson@14259
   199
apply (erule_tac x = n in allE, simp)
paulson@14259
   200
apply (case_tac "k = f (n+1) ")
paulson@14259
   201
 apply force
paulson@14259
   202
apply (erule impE)
paulson@14259
   203
 apply (simp add: zabs_def split add: split_if_asm)
paulson@14259
   204
apply (blast intro: le_SucI)
paulson@14259
   205
done
paulson@14259
   206
paulson@14259
   207
lemmas nat0_intermed_int_val = int_val_lemma [rule_format (no_asm)]
paulson@14259
   208
paulson@14259
   209
lemma nat_intermed_int_val:
paulson@14259
   210
     "[| \<forall>i. m \<le> i & i < n --> abs(f(i + 1::nat) - f i) \<le> 1; m < n;  
paulson@14259
   211
         f m \<le> k; k \<le> f n |] ==> ? i. m \<le> i & i \<le> n & f i = (k::int)"
paulson@14259
   212
apply (cut_tac n = "n-m" and f = "%i. f (i+m) " and k = k 
paulson@14259
   213
       in int_val_lemma)
paulson@14259
   214
apply simp
paulson@14259
   215
apply (erule impE)
paulson@14259
   216
 apply (intro strip)
paulson@14259
   217
 apply (erule_tac x = "i+m" in allE, arith)
paulson@14259
   218
apply (erule exE)
paulson@14259
   219
apply (rule_tac x = "i+m" in exI, arith)
paulson@14259
   220
done
paulson@14259
   221
paulson@14259
   222
paulson@14259
   223
subsection{*Products and 1, by T. M. Rasmussen*}
paulson@14259
   224
paulson@14259
   225
lemma zmult_eq_self_iff: "(m = m*(n::int)) = (n = 1 | m = 0)"
paulson@14259
   226
apply auto
paulson@14259
   227
apply (subgoal_tac "m*1 = m*n")
paulson@14378
   228
apply (drule mult_cancel_left [THEN iffD1], auto)
paulson@14259
   229
done
paulson@14259
   230
paulson@14259
   231
lemma zless_1_zmult: "[| 1 < m; 1 < n |] ==> 1 < m*(n::int)"
paulson@14259
   232
apply (rule_tac y = "1*n" in order_less_trans)
paulson@14378
   233
apply (rule_tac [2] mult_strict_right_mono)
paulson@14259
   234
apply (simp_all (no_asm_simp))
paulson@14259
   235
done
paulson@14259
   236
paulson@14259
   237
lemma pos_zmult_eq_1_iff: "0 < (m::int) ==> (m * n = 1) = (m = 1 & n = 1)"
paulson@14259
   238
apply auto
paulson@14259
   239
apply (case_tac "m=1")
paulson@14259
   240
apply (case_tac [2] "n=1")
paulson@14259
   241
apply (case_tac [4] "m=1")
paulson@14259
   242
apply (case_tac [5] "n=1", auto)
paulson@14259
   243
apply (tactic"distinct_subgoals_tac")
paulson@14259
   244
apply (subgoal_tac "1<m*n", simp)
paulson@14259
   245
apply (rule zless_1_zmult, arith)
paulson@14259
   246
apply (subgoal_tac "0<n", arith)
paulson@14259
   247
apply (subgoal_tac "0<m*n")
paulson@14353
   248
apply (drule zero_less_mult_iff [THEN iffD1], auto)
paulson@14259
   249
done
paulson@14259
   250
paulson@14259
   251
lemma zmult_eq_1_iff: "(m*n = (1::int)) = ((m = 1 & n = 1) | (m = -1 & n = -1))"
paulson@14259
   252
apply (case_tac "0<m")
paulson@14271
   253
apply (simp add: pos_zmult_eq_1_iff)
paulson@14259
   254
apply (case_tac "m=0")
paulson@14271
   255
apply (simp del: number_of_reorient)
paulson@14259
   256
apply (subgoal_tac "0 < -m")
paulson@14259
   257
apply (drule_tac n = "-n" in pos_zmult_eq_1_iff, auto)
paulson@14259
   258
done
paulson@14259
   259
paulson@14259
   260
paulson@14259
   261
subsection{*More about nat*}
paulson@14259
   262
paulson@14271
   263
(*Analogous to zadd_int*)
paulson@14271
   264
lemma zdiff_int: "n \<le> m ==> int m - int n = int (m-n)"
paulson@14271
   265
by (induct m n rule: diff_induct, simp_all)
paulson@14271
   266
paulson@14259
   267
lemma nat_add_distrib:
paulson@14259
   268
     "[| (0::int) \<le> z;  0 \<le> z' |] ==> nat (z+z') = nat z + nat z'"
paulson@14259
   269
apply (rule inj_int [THEN injD])
paulson@14271
   270
apply (simp add: zadd_int [symmetric])
paulson@14259
   271
done
paulson@14259
   272
paulson@14259
   273
lemma nat_diff_distrib:
paulson@14259
   274
     "[| (0::int) \<le> z';  z' \<le> z |] ==> nat (z-z') = nat z - nat z'"
paulson@14259
   275
apply (rule inj_int [THEN injD])
paulson@14271
   276
apply (simp add: zdiff_int [symmetric] nat_le_eq_zle)
paulson@14259
   277
done
paulson@14259
   278
paulson@14259
   279
lemma nat_mult_distrib: "(0::int) \<le> z ==> nat (z*z') = nat z * nat z'"
paulson@14259
   280
apply (case_tac "0 \<le> z'")
paulson@14259
   281
apply (rule inj_int [THEN injD])
paulson@14353
   282
apply (simp add: zmult_int [symmetric] zero_le_mult_iff)
paulson@14353
   283
apply (simp add: mult_le_0_iff)
paulson@14259
   284
done
paulson@14259
   285
paulson@14259
   286
lemma nat_mult_distrib_neg: "z \<le> (0::int) ==> nat(z*z') = nat(-z) * nat(-z')"
paulson@14259
   287
apply (rule trans)
paulson@14259
   288
apply (rule_tac [2] nat_mult_distrib, auto)
paulson@14259
   289
done
paulson@14259
   290
paulson@14259
   291
lemma nat_abs_mult_distrib: "nat (abs (w * z)) = nat (abs w) * nat (abs z)"
paulson@14259
   292
apply (case_tac "z=0 | w=0")
paulson@14259
   293
apply (auto simp add: zabs_def nat_mult_distrib [symmetric] 
paulson@14353
   294
                      nat_mult_distrib_neg [symmetric] mult_less_0_iff)
paulson@14259
   295
done
paulson@14259
   296
paulson@14353
   297
paulson@14259
   298
ML
paulson@14259
   299
{*
paulson@14259
   300
val zle_diff1_eq = thm "zle_diff1_eq";
paulson@14259
   301
val zle_add1_eq_le = thm "zle_add1_eq_le";
paulson@14259
   302
val nonneg_eq_int = thm "nonneg_eq_int";
paulson@14259
   303
val nat_eq_iff = thm "nat_eq_iff";
paulson@14259
   304
val nat_eq_iff2 = thm "nat_eq_iff2";
paulson@14259
   305
val nat_less_iff = thm "nat_less_iff";
paulson@14259
   306
val int_eq_iff = thm "int_eq_iff";
paulson@14259
   307
val nat_0 = thm "nat_0";
paulson@14259
   308
val nat_1 = thm "nat_1";
paulson@14259
   309
val nat_2 = thm "nat_2";
paulson@14259
   310
val nat_less_eq_zless = thm "nat_less_eq_zless";
paulson@14259
   311
val nat_le_eq_zle = thm "nat_le_eq_zle";
paulson@14259
   312
paulson@14259
   313
val nat_intermed_int_val = thm "nat_intermed_int_val";
paulson@14259
   314
val zmult_eq_self_iff = thm "zmult_eq_self_iff";
paulson@14259
   315
val zless_1_zmult = thm "zless_1_zmult";
paulson@14259
   316
val pos_zmult_eq_1_iff = thm "pos_zmult_eq_1_iff";
paulson@14259
   317
val zmult_eq_1_iff = thm "zmult_eq_1_iff";
paulson@14259
   318
val nat_add_distrib = thm "nat_add_distrib";
paulson@14259
   319
val nat_diff_distrib = thm "nat_diff_distrib";
paulson@14259
   320
val nat_mult_distrib = thm "nat_mult_distrib";
paulson@14259
   321
val nat_mult_distrib_neg = thm "nat_mult_distrib_neg";
paulson@14259
   322
val nat_abs_mult_distrib = thm "nat_abs_mult_distrib";
paulson@14259
   323
*}
paulson@14259
   324
wenzelm@7707
   325
end