src/HOL/Word/Word.thy
author huffman
Fri, 16 Mar 2012 15:51:53 +0100
changeset 47832 5bdcdb28be83
parent 47524 5ba230f8232f
child 47978 2a1953f0d20d
permissions -rw-r--r--
make more word theorems respect int/bin distinction
haftmann@29628
     1
(*  Title:      HOL/Word/Word.thy
wenzelm@46995
     2
    Author:     Jeremy Dawson and Gerwin Klein, NICTA
kleing@24333
     3
*)
kleing@24333
     4
haftmann@37660
     5
header {* A type of finite bit strings *}
huffman@24350
     6
haftmann@29628
     7
theory Word
wenzelm@41661
     8
imports
wenzelm@41661
     9
  Type_Length
wenzelm@41661
    10
  Misc_Typedef
wenzelm@41661
    11
  "~~/src/HOL/Library/Boolean_Algebra"
wenzelm@41661
    12
  Bool_List_Representation
boehmes@41308
    13
uses ("~~/src/HOL/Word/Tools/smt_word.ML")
kleing@24333
    14
begin
kleing@24333
    15
haftmann@37660
    16
text {* see @{text "Examples/WordExamples.thy"} for examples *}
haftmann@37660
    17
haftmann@37660
    18
subsection {* Type definition *}
haftmann@37660
    19
wenzelm@46567
    20
typedef (open) 'a word = "{(0::int) ..< 2^len_of TYPE('a::len0)}"
haftmann@37660
    21
  morphisms uint Abs_word by auto
haftmann@37660
    22
haftmann@37660
    23
definition word_of_int :: "int \<Rightarrow> 'a\<Colon>len0 word" where
haftmann@37660
    24
  -- {* representation of words using unsigned or signed bins, 
haftmann@37660
    25
        only difference in these is the type class *}
haftmann@37660
    26
  "word_of_int w = Abs_word (bintrunc (len_of TYPE ('a)) w)" 
haftmann@37660
    27
haftmann@37660
    28
lemma uint_word_of_int [code]: "uint (word_of_int w \<Colon> 'a\<Colon>len0 word) = w mod 2 ^ len_of TYPE('a)"
haftmann@37660
    29
  by (auto simp add: word_of_int_def bintrunc_mod2p intro: Abs_word_inverse)
haftmann@37660
    30
haftmann@37660
    31
code_datatype word_of_int
haftmann@37660
    32
huffman@46416
    33
subsection {* Random instance *}
huffman@46416
    34
haftmann@37750
    35
notation fcomp (infixl "\<circ>>" 60)
haftmann@37750
    36
notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@37660
    37
haftmann@37660
    38
instantiation word :: ("{len0, typerep}") random
haftmann@37660
    39
begin
haftmann@37660
    40
haftmann@37660
    41
definition
haftmann@37750
    42
  "random_word i = Random.range (max i (2 ^ len_of TYPE('a))) \<circ>\<rightarrow> (\<lambda>k. Pair (
haftmann@37660
    43
     let j = word_of_int (Code_Numeral.int_of k) :: 'a word
haftmann@37660
    44
     in (j, \<lambda>_::unit. Code_Evaluation.term_of j)))"
haftmann@37660
    45
haftmann@37660
    46
instance ..
haftmann@37660
    47
haftmann@37660
    48
end
haftmann@37660
    49
haftmann@37750
    50
no_notation fcomp (infixl "\<circ>>" 60)
haftmann@37750
    51
no_notation scomp (infixl "\<circ>\<rightarrow>" 60)
haftmann@37660
    52
haftmann@37660
    53
haftmann@37660
    54
subsection {* Type conversions and casting *}
haftmann@37660
    55
haftmann@37660
    56
definition sint :: "'a :: len word => int" where
haftmann@37660
    57
  -- {* treats the most-significant-bit as a sign bit *}
haftmann@37660
    58
  sint_uint: "sint w = sbintrunc (len_of TYPE ('a) - 1) (uint w)"
haftmann@37660
    59
haftmann@37660
    60
definition unat :: "'a :: len0 word => nat" where
haftmann@37660
    61
  "unat w = nat (uint w)"
haftmann@37660
    62
haftmann@37660
    63
definition uints :: "nat => int set" where
haftmann@37660
    64
  -- "the sets of integers representing the words"
haftmann@37660
    65
  "uints n = range (bintrunc n)"
haftmann@37660
    66
haftmann@37660
    67
definition sints :: "nat => int set" where
haftmann@37660
    68
  "sints n = range (sbintrunc (n - 1))"
haftmann@37660
    69
haftmann@37660
    70
definition unats :: "nat => nat set" where
haftmann@37660
    71
  "unats n = {i. i < 2 ^ n}"
haftmann@37660
    72
haftmann@37660
    73
definition norm_sint :: "nat => int => int" where
haftmann@37660
    74
  "norm_sint n w = (w + 2 ^ (n - 1)) mod 2 ^ n - 2 ^ (n - 1)"
haftmann@37660
    75
haftmann@37660
    76
definition scast :: "'a :: len word => 'b :: len word" where
haftmann@37660
    77
  -- "cast a word to a different length"
haftmann@37660
    78
  "scast w = word_of_int (sint w)"
haftmann@37660
    79
haftmann@37660
    80
definition ucast :: "'a :: len0 word => 'b :: len0 word" where
haftmann@37660
    81
  "ucast w = word_of_int (uint w)"
haftmann@37660
    82
haftmann@37660
    83
instantiation word :: (len0) size
haftmann@37660
    84
begin
haftmann@37660
    85
haftmann@37660
    86
definition
haftmann@37660
    87
  word_size: "size (w :: 'a word) = len_of TYPE('a)"
haftmann@37660
    88
haftmann@37660
    89
instance ..
haftmann@37660
    90
haftmann@37660
    91
end
haftmann@37660
    92
haftmann@37660
    93
definition source_size :: "('a :: len0 word => 'b) => nat" where
haftmann@37660
    94
  -- "whether a cast (or other) function is to a longer or shorter length"
haftmann@37660
    95
  "source_size c = (let arb = undefined ; x = c arb in size arb)"  
haftmann@37660
    96
haftmann@37660
    97
definition target_size :: "('a => 'b :: len0 word) => nat" where
haftmann@37660
    98
  "target_size c = size (c undefined)"
haftmann@37660
    99
haftmann@37660
   100
definition is_up :: "('a :: len0 word => 'b :: len0 word) => bool" where
haftmann@37660
   101
  "is_up c \<longleftrightarrow> source_size c <= target_size c"
haftmann@37660
   102
haftmann@37660
   103
definition is_down :: "('a :: len0 word => 'b :: len0 word) => bool" where
haftmann@37660
   104
  "is_down c \<longleftrightarrow> target_size c <= source_size c"
haftmann@37660
   105
haftmann@37660
   106
definition of_bl :: "bool list => 'a :: len0 word" where
haftmann@37660
   107
  "of_bl bl = word_of_int (bl_to_bin bl)"
haftmann@37660
   108
haftmann@37660
   109
definition to_bl :: "'a :: len0 word => bool list" where
haftmann@37660
   110
  "to_bl w = bin_to_bl (len_of TYPE ('a)) (uint w)"
haftmann@37660
   111
haftmann@37660
   112
definition word_reverse :: "'a :: len0 word => 'a word" where
haftmann@37660
   113
  "word_reverse w = of_bl (rev (to_bl w))"
haftmann@37660
   114
haftmann@37660
   115
definition word_int_case :: "(int => 'b) => ('a :: len0 word) => 'b" where
haftmann@37660
   116
  "word_int_case f w = f (uint w)"
haftmann@37660
   117
haftmann@37660
   118
translations
wenzelm@47007
   119
  "case x of XCONST of_int y => b" == "CONST word_int_case (%y. b) x"
wenzelm@47007
   120
  "case x of (XCONST of_int :: 'a) y => b" => "CONST word_int_case (%y. b) x"
haftmann@37660
   121
huffman@46416
   122
subsection {* Type-definition locale instantiations *}
haftmann@37660
   123
huffman@46676
   124
lemma word_size_gt_0 [iff]: "0 < size (w::'a::len word)"
huffman@46676
   125
  by (fact xtr1 [OF word_size len_gt_0])
huffman@46676
   126
haftmann@37660
   127
lemmas lens_gt_0 = word_size_gt_0 len_gt_0
wenzelm@46475
   128
lemmas lens_not_0 [iff] = lens_gt_0 [THEN gr_implies_not0]
haftmann@37660
   129
haftmann@37660
   130
lemma uints_num: "uints n = {i. 0 \<le> i \<and> i < 2 ^ n}"
haftmann@37660
   131
  by (simp add: uints_def range_bintrunc)
haftmann@37660
   132
haftmann@37660
   133
lemma sints_num: "sints n = {i. - (2 ^ (n - 1)) \<le> i \<and> i < 2 ^ (n - 1)}"
haftmann@37660
   134
  by (simp add: sints_def range_sbintrunc)
haftmann@37660
   135
haftmann@37660
   136
lemma 
haftmann@37660
   137
  uint_0:"0 <= uint x" and 
haftmann@37660
   138
  uint_lt: "uint (x::'a::len0 word) < 2 ^ len_of TYPE('a)"
huffman@46687
   139
  by (auto simp: uint [unfolded atLeastLessThan_iff])
haftmann@37660
   140
haftmann@37660
   141
lemma uint_mod_same:
haftmann@37660
   142
  "uint x mod 2 ^ len_of TYPE('a) = uint (x::'a::len0 word)"
haftmann@37660
   143
  by (simp add: int_mod_eq uint_lt uint_0)
haftmann@37660
   144
haftmann@37660
   145
lemma td_ext_uint: 
haftmann@37660
   146
  "td_ext (uint :: 'a word => int) word_of_int (uints (len_of TYPE('a::len0))) 
haftmann@37660
   147
    (%w::int. w mod 2 ^ len_of TYPE('a))"
haftmann@37660
   148
  apply (unfold td_ext_def')
haftmann@37660
   149
  apply (simp add: uints_num word_of_int_def bintrunc_mod2p)
haftmann@37660
   150
  apply (simp add: uint_mod_same uint_0 uint_lt
haftmann@37660
   151
                   word.uint_inverse word.Abs_word_inverse int_mod_lem)
haftmann@37660
   152
  done
haftmann@37660
   153
haftmann@37660
   154
interpretation word_uint:
haftmann@37660
   155
  td_ext "uint::'a::len0 word \<Rightarrow> int" 
haftmann@37660
   156
         word_of_int 
haftmann@37660
   157
         "uints (len_of TYPE('a::len0))"
haftmann@37660
   158
         "\<lambda>w. w mod 2 ^ len_of TYPE('a::len0)"
haftmann@37660
   159
  by (rule td_ext_uint)
huffman@46883
   160
haftmann@37660
   161
lemmas td_uint = word_uint.td_thm
haftmann@37660
   162
huffman@46883
   163
lemmas int_word_uint = word_uint.eq_norm
huffman@46883
   164
haftmann@37660
   165
lemmas td_ext_ubin = td_ext_uint 
huffman@46687
   166
  [unfolded len_gt_0 no_bintr_alt1 [symmetric]]
haftmann@37660
   167
haftmann@37660
   168
interpretation word_ubin:
haftmann@37660
   169
  td_ext "uint::'a::len0 word \<Rightarrow> int" 
haftmann@37660
   170
         word_of_int 
haftmann@37660
   171
         "uints (len_of TYPE('a::len0))"
haftmann@37660
   172
         "bintrunc (len_of TYPE('a::len0))"
haftmann@37660
   173
  by (rule td_ext_ubin)
haftmann@37660
   174
huffman@46416
   175
lemma split_word_all:
huffman@46416
   176
  "(\<And>x::'a::len0 word. PROP P x) \<equiv> (\<And>x. PROP P (word_of_int x))"
huffman@46416
   177
proof
huffman@46416
   178
  fix x :: "'a word"
huffman@46416
   179
  assume "\<And>x. PROP P (word_of_int x)"
huffman@46416
   180
  hence "PROP P (word_of_int (uint x))" .
huffman@46416
   181
  thus "PROP P x" by simp
huffman@46416
   182
qed
huffman@46416
   183
huffman@46416
   184
subsection  "Arithmetic operations"
huffman@46416
   185
huffman@46416
   186
definition
huffman@46416
   187
  word_succ :: "'a :: len0 word => 'a word"
huffman@46416
   188
where
huffman@46871
   189
  "word_succ a = word_of_int (uint a + 1)"
huffman@46416
   190
huffman@46416
   191
definition
huffman@46416
   192
  word_pred :: "'a :: len0 word => 'a word"
huffman@46416
   193
where
huffman@46871
   194
  "word_pred a = word_of_int (uint a - 1)"
huffman@46416
   195
huffman@46418
   196
instantiation word :: (len0) "{number, Divides.div, comm_monoid_mult, comm_ring}"
huffman@46416
   197
begin
huffman@46416
   198
huffman@46416
   199
definition
huffman@46416
   200
  word_0_wi: "0 = word_of_int 0"
huffman@46416
   201
huffman@46416
   202
definition
huffman@46416
   203
  word_1_wi: "1 = word_of_int 1"
huffman@46416
   204
huffman@46416
   205
definition
huffman@46416
   206
  word_add_def: "a + b = word_of_int (uint a + uint b)"
huffman@46416
   207
huffman@46416
   208
definition
huffman@46416
   209
  word_sub_wi: "a - b = word_of_int (uint a - uint b)"
huffman@46416
   210
huffman@46416
   211
definition
huffman@46416
   212
  word_minus_def: "- a = word_of_int (- uint a)"
huffman@46416
   213
huffman@46416
   214
definition
huffman@46416
   215
  word_mult_def: "a * b = word_of_int (uint a * uint b)"
huffman@46416
   216
huffman@46416
   217
definition
huffman@46416
   218
  word_div_def: "a div b = word_of_int (uint a div uint b)"
huffman@46416
   219
huffman@46416
   220
definition
huffman@46416
   221
  word_mod_def: "a mod b = word_of_int (uint a mod uint b)"
huffman@46416
   222
huffman@46416
   223
definition
huffman@46416
   224
  word_number_of_def: "number_of w = word_of_int w"
huffman@46416
   225
huffman@46883
   226
lemmas word_arith_wis =
huffman@46883
   227
  word_add_def word_sub_wi word_mult_def word_minus_def 
huffman@46416
   228
  word_succ_def word_pred_def word_0_wi word_1_wi
huffman@46416
   229
huffman@46416
   230
lemmas arths = 
wenzelm@46475
   231
  bintr_ariths [THEN word_ubin.norm_eq_iff [THEN iffD1], folded word_ubin.eq_norm]
huffman@46416
   232
huffman@46416
   233
lemma wi_homs: 
huffman@46416
   234
  shows
huffman@46416
   235
  wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" and
huffman@46883
   236
  wi_hom_sub: "word_of_int a - word_of_int b = word_of_int (a - b)" and
huffman@46416
   237
  wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" and
huffman@46416
   238
  wi_hom_neg: "- word_of_int a = word_of_int (- a)" and
huffman@46871
   239
  wi_hom_succ: "word_succ (word_of_int a) = word_of_int (a + 1)" and
huffman@46871
   240
  wi_hom_pred: "word_pred (word_of_int a) = word_of_int (a - 1)"
huffman@46416
   241
  by (auto simp: word_arith_wis arths)
huffman@46416
   242
huffman@46416
   243
lemmas wi_hom_syms = wi_homs [symmetric]
huffman@46416
   244
huffman@46883
   245
lemmas word_of_int_homs = wi_homs word_0_wi word_1_wi
huffman@46879
   246
huffman@46879
   247
lemmas word_of_int_hom_syms = word_of_int_homs [symmetric]
huffman@46416
   248
huffman@46416
   249
instance
huffman@46416
   250
  by default (auto simp: split_word_all word_of_int_homs algebra_simps)
huffman@46416
   251
huffman@46416
   252
end
huffman@46416
   253
huffman@46416
   254
instance word :: (len) comm_ring_1
huffman@46681
   255
proof
huffman@46681
   256
  have "0 < len_of TYPE('a)" by (rule len_gt_0)
huffman@46681
   257
  then show "(0::'a word) \<noteq> 1"
huffman@46681
   258
    unfolding word_0_wi word_1_wi
huffman@46681
   259
    by (auto simp add: word_ubin.norm_eq_iff [symmetric] gr0_conv_Suc)
huffman@46681
   260
qed
huffman@46416
   261
huffman@46416
   262
lemma word_of_nat: "of_nat n = word_of_int (int n)"
huffman@46416
   263
  by (induct n) (auto simp add : word_of_int_hom_syms)
huffman@46416
   264
huffman@46416
   265
lemma word_of_int: "of_int = word_of_int"
huffman@46416
   266
  apply (rule ext)
huffman@46416
   267
  apply (case_tac x rule: int_diff_cases)
huffman@46883
   268
  apply (simp add: word_of_nat wi_hom_sub)
huffman@46416
   269
  done
huffman@46416
   270
huffman@46416
   271
instance word :: (len) number_ring
huffman@46681
   272
  by (default, simp add: word_number_of_def word_of_int)
huffman@46416
   273
huffman@46416
   274
definition udvd :: "'a::len word => 'a::len word => bool" (infixl "udvd" 50) where
huffman@46416
   275
  "a udvd b = (EX n>=0. uint b = n * uint a)"
huffman@46416
   276
huffman@46418
   277
huffman@46418
   278
subsection "Ordering"
huffman@46418
   279
huffman@46418
   280
instantiation word :: (len0) linorder
huffman@46418
   281
begin
huffman@46418
   282
huffman@46418
   283
definition
huffman@46418
   284
  word_le_def: "a \<le> b \<longleftrightarrow> uint a \<le> uint b"
huffman@46418
   285
huffman@46418
   286
definition
huffman@46418
   287
  word_less_def: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> (y \<Colon> 'a word)"
huffman@46418
   288
huffman@46418
   289
instance
huffman@46418
   290
  by default (auto simp: word_less_def word_le_def)
huffman@46418
   291
huffman@46418
   292
end
huffman@46418
   293
huffman@46416
   294
definition word_sle :: "'a :: len word => 'a word => bool" ("(_/ <=s _)" [50, 51] 50) where
huffman@46416
   295
  "a <=s b = (sint a <= sint b)"
huffman@46416
   296
huffman@46416
   297
definition word_sless :: "'a :: len word => 'a word => bool" ("(_/ <s _)" [50, 51] 50) where
huffman@46416
   298
  "(x <s y) = (x <=s y & x ~= y)"
huffman@46416
   299
huffman@46416
   300
huffman@46416
   301
subsection "Bit-wise operations"
huffman@46416
   302
huffman@46416
   303
instantiation word :: (len0) bits
huffman@46416
   304
begin
huffman@46416
   305
huffman@46416
   306
definition
huffman@46416
   307
  word_and_def: 
huffman@46416
   308
  "(a::'a word) AND b = word_of_int (uint a AND uint b)"
huffman@46416
   309
huffman@46416
   310
definition
huffman@46416
   311
  word_or_def:  
huffman@46416
   312
  "(a::'a word) OR b = word_of_int (uint a OR uint b)"
huffman@46416
   313
huffman@46416
   314
definition
huffman@46416
   315
  word_xor_def: 
huffman@46416
   316
  "(a::'a word) XOR b = word_of_int (uint a XOR uint b)"
huffman@46416
   317
huffman@46416
   318
definition
huffman@46416
   319
  word_not_def: 
huffman@46416
   320
  "NOT (a::'a word) = word_of_int (NOT (uint a))"
huffman@46416
   321
huffman@46416
   322
definition
huffman@46416
   323
  word_test_bit_def: "test_bit a = bin_nth (uint a)"
huffman@46416
   324
huffman@46416
   325
definition
huffman@46416
   326
  word_set_bit_def: "set_bit a n x =
huffman@46416
   327
   word_of_int (bin_sc n (If x 1 0) (uint a))"
huffman@46416
   328
huffman@46416
   329
definition
huffman@46416
   330
  word_set_bits_def: "(BITS n. f n) = of_bl (bl_of_nth (len_of TYPE ('a)) f)"
huffman@46416
   331
huffman@46416
   332
definition
huffman@46416
   333
  word_lsb_def: "lsb a \<longleftrightarrow> bin_last (uint a) = 1"
huffman@46416
   334
huffman@46416
   335
definition shiftl1 :: "'a word \<Rightarrow> 'a word" where
huffman@46416
   336
  "shiftl1 w = word_of_int (uint w BIT 0)"
huffman@46416
   337
huffman@46416
   338
definition shiftr1 :: "'a word \<Rightarrow> 'a word" where
huffman@46416
   339
  -- "shift right as unsigned or as signed, ie logical or arithmetic"
huffman@46416
   340
  "shiftr1 w = word_of_int (bin_rest (uint w))"
huffman@46416
   341
huffman@46416
   342
definition
huffman@46416
   343
  shiftl_def: "w << n = (shiftl1 ^^ n) w"
huffman@46416
   344
huffman@46416
   345
definition
huffman@46416
   346
  shiftr_def: "w >> n = (shiftr1 ^^ n) w"
huffman@46416
   347
huffman@46416
   348
instance ..
huffman@46416
   349
huffman@46416
   350
end
huffman@46416
   351
huffman@46416
   352
instantiation word :: (len) bitss
huffman@46416
   353
begin
huffman@46416
   354
huffman@46416
   355
definition
huffman@46416
   356
  word_msb_def: 
huffman@46872
   357
  "msb a \<longleftrightarrow> bin_sign (sint a) = -1"
huffman@46416
   358
huffman@46416
   359
instance ..
huffman@46416
   360
huffman@46416
   361
end
huffman@46416
   362
huffman@46416
   363
definition setBit :: "'a :: len0 word => nat => 'a word" where 
huffman@46416
   364
  "setBit w n = set_bit w n True"
huffman@46416
   365
huffman@46416
   366
definition clearBit :: "'a :: len0 word => nat => 'a word" where
huffman@46416
   367
  "clearBit w n = set_bit w n False"
huffman@46416
   368
huffman@46416
   369
huffman@46416
   370
subsection "Shift operations"
huffman@46416
   371
huffman@46416
   372
definition sshiftr1 :: "'a :: len word => 'a word" where 
huffman@46416
   373
  "sshiftr1 w = word_of_int (bin_rest (sint w))"
huffman@46416
   374
huffman@46416
   375
definition bshiftr1 :: "bool => 'a :: len word => 'a word" where
huffman@46416
   376
  "bshiftr1 b w = of_bl (b # butlast (to_bl w))"
huffman@46416
   377
huffman@46416
   378
definition sshiftr :: "'a :: len word => nat => 'a word" (infixl ">>>" 55) where
huffman@46416
   379
  "w >>> n = (sshiftr1 ^^ n) w"
huffman@46416
   380
huffman@46416
   381
definition mask :: "nat => 'a::len word" where
huffman@46416
   382
  "mask n = (1 << n) - 1"
huffman@46416
   383
huffman@46416
   384
definition revcast :: "'a :: len0 word => 'b :: len0 word" where
huffman@46416
   385
  "revcast w =  of_bl (takefill False (len_of TYPE('b)) (to_bl w))"
huffman@46416
   386
huffman@46416
   387
definition slice1 :: "nat => 'a :: len0 word => 'b :: len0 word" where
huffman@46416
   388
  "slice1 n w = of_bl (takefill False n (to_bl w))"
huffman@46416
   389
huffman@46416
   390
definition slice :: "nat => 'a :: len0 word => 'b :: len0 word" where
huffman@46416
   391
  "slice n w = slice1 (size w - n) w"
huffman@46416
   392
huffman@46416
   393
huffman@46416
   394
subsection "Rotation"
huffman@46416
   395
huffman@46416
   396
definition rotater1 :: "'a list => 'a list" where
huffman@46416
   397
  "rotater1 ys = 
huffman@46416
   398
    (case ys of [] => [] | x # xs => last ys # butlast ys)"
huffman@46416
   399
huffman@46416
   400
definition rotater :: "nat => 'a list => 'a list" where
huffman@46416
   401
  "rotater n = rotater1 ^^ n"
huffman@46416
   402
huffman@46416
   403
definition word_rotr :: "nat => 'a :: len0 word => 'a :: len0 word" where
huffman@46416
   404
  "word_rotr n w = of_bl (rotater n (to_bl w))"
huffman@46416
   405
huffman@46416
   406
definition word_rotl :: "nat => 'a :: len0 word => 'a :: len0 word" where
huffman@46416
   407
  "word_rotl n w = of_bl (rotate n (to_bl w))"
huffman@46416
   408
huffman@46416
   409
definition word_roti :: "int => 'a :: len0 word => 'a :: len0 word" where
huffman@46416
   410
  "word_roti i w = (if i >= 0 then word_rotr (nat i) w
huffman@46416
   411
                    else word_rotl (nat (- i)) w)"
huffman@46416
   412
huffman@46416
   413
huffman@46416
   414
subsection "Split and cat operations"
huffman@46416
   415
huffman@46416
   416
definition word_cat :: "'a :: len0 word => 'b :: len0 word => 'c :: len0 word" where
huffman@46416
   417
  "word_cat a b = word_of_int (bin_cat (uint a) (len_of TYPE ('b)) (uint b))"
huffman@46416
   418
huffman@46416
   419
definition word_split :: "'a :: len0 word => ('b :: len0 word) * ('c :: len0 word)" where
huffman@46416
   420
  "word_split a = 
huffman@46416
   421
   (case bin_split (len_of TYPE ('c)) (uint a) of 
huffman@46416
   422
     (u, v) => (word_of_int u, word_of_int v))"
huffman@46416
   423
huffman@46416
   424
definition word_rcat :: "'a :: len0 word list => 'b :: len0 word" where
huffman@46416
   425
  "word_rcat ws = 
huffman@46416
   426
  word_of_int (bin_rcat (len_of TYPE ('a)) (map uint ws))"
huffman@46416
   427
huffman@46416
   428
definition word_rsplit :: "'a :: len0 word => 'b :: len word list" where
huffman@46416
   429
  "word_rsplit w = 
huffman@46416
   430
  map word_of_int (bin_rsplit (len_of TYPE ('b)) (len_of TYPE ('a), uint w))"
huffman@46416
   431
huffman@46416
   432
definition max_word :: "'a::len word" -- "Largest representable machine integer." where
huffman@46416
   433
  "max_word = word_of_int (2 ^ len_of TYPE('a) - 1)"
huffman@46416
   434
huffman@46416
   435
primrec of_bool :: "bool \<Rightarrow> 'a::len word" where
huffman@46416
   436
  "of_bool False = 0"
huffman@46416
   437
| "of_bool True = 1"
huffman@46416
   438
huffman@46676
   439
(* FIXME: only provide one theorem name *)
huffman@46416
   440
lemmas of_nth_def = word_set_bits_def
huffman@46416
   441
huffman@46880
   442
subsection {* Theorems about typedefs *}
huffman@46880
   443
haftmann@37660
   444
lemma sint_sbintrunc': 
haftmann@37660
   445
  "sint (word_of_int bin :: 'a word) = 
haftmann@37660
   446
    (sbintrunc (len_of TYPE ('a :: len) - 1) bin)"
haftmann@37660
   447
  unfolding sint_uint 
haftmann@37660
   448
  by (auto simp: word_ubin.eq_norm sbintrunc_bintrunc_lt)
haftmann@37660
   449
haftmann@37660
   450
lemma uint_sint: 
haftmann@37660
   451
  "uint w = bintrunc (len_of TYPE('a)) (sint (w :: 'a :: len word))"
haftmann@37660
   452
  unfolding sint_uint by (auto simp: bintrunc_sbintrunc_le)
haftmann@37660
   453
huffman@46920
   454
lemma bintr_uint:
huffman@46920
   455
  fixes w :: "'a::len0 word"
huffman@46920
   456
  shows "len_of TYPE('a) \<le> n \<Longrightarrow> bintrunc n (uint w) = uint w"
haftmann@37660
   457
  apply (subst word_ubin.norm_Rep [symmetric]) 
haftmann@37660
   458
  apply (simp only: bintrunc_bintrunc_min word_size)
haftmann@37660
   459
  apply (simp add: min_max.inf_absorb2)
haftmann@37660
   460
  done
haftmann@37660
   461
huffman@46920
   462
lemma wi_bintr:
huffman@46920
   463
  "len_of TYPE('a::len0) \<le> n \<Longrightarrow>
huffman@46920
   464
    word_of_int (bintrunc n w) = (word_of_int w :: 'a word)"
haftmann@37660
   465
  by (clarsimp simp add: word_ubin.norm_eq_iff [symmetric] min_max.inf_absorb1)
haftmann@37660
   466
haftmann@37660
   467
lemma td_ext_sbin: 
haftmann@37660
   468
  "td_ext (sint :: 'a word => int) word_of_int (sints (len_of TYPE('a::len))) 
haftmann@37660
   469
    (sbintrunc (len_of TYPE('a) - 1))"
haftmann@37660
   470
  apply (unfold td_ext_def' sint_uint)
haftmann@37660
   471
  apply (simp add : word_ubin.eq_norm)
haftmann@37660
   472
  apply (cases "len_of TYPE('a)")
haftmann@37660
   473
   apply (auto simp add : sints_def)
haftmann@37660
   474
  apply (rule sym [THEN trans])
haftmann@37660
   475
  apply (rule word_ubin.Abs_norm)
haftmann@37660
   476
  apply (simp only: bintrunc_sbintrunc)
haftmann@37660
   477
  apply (drule sym)
haftmann@37660
   478
  apply simp
haftmann@37660
   479
  done
haftmann@37660
   480
haftmann@37660
   481
lemmas td_ext_sint = td_ext_sbin 
haftmann@37660
   482
  [simplified len_gt_0 no_sbintr_alt2 Suc_pred' [symmetric]]
haftmann@37660
   483
haftmann@37660
   484
(* We do sint before sbin, before sint is the user version
haftmann@37660
   485
   and interpretations do not produce thm duplicates. I.e. 
haftmann@37660
   486
   we get the name word_sint.Rep_eqD, but not word_sbin.Req_eqD,
haftmann@37660
   487
   because the latter is the same thm as the former *)
haftmann@37660
   488
interpretation word_sint:
haftmann@37660
   489
  td_ext "sint ::'a::len word => int" 
haftmann@37660
   490
          word_of_int 
haftmann@37660
   491
          "sints (len_of TYPE('a::len))"
haftmann@37660
   492
          "%w. (w + 2^(len_of TYPE('a::len) - 1)) mod 2^len_of TYPE('a::len) -
haftmann@37660
   493
               2 ^ (len_of TYPE('a::len) - 1)"
haftmann@37660
   494
  by (rule td_ext_sint)
haftmann@37660
   495
haftmann@37660
   496
interpretation word_sbin:
haftmann@37660
   497
  td_ext "sint ::'a::len word => int" 
haftmann@37660
   498
          word_of_int 
haftmann@37660
   499
          "sints (len_of TYPE('a::len))"
haftmann@37660
   500
          "sbintrunc (len_of TYPE('a::len) - 1)"
haftmann@37660
   501
  by (rule td_ext_sbin)
haftmann@37660
   502
wenzelm@46475
   503
lemmas int_word_sint = td_ext_sint [THEN td_ext.eq_norm]
haftmann@37660
   504
haftmann@37660
   505
lemmas td_sint = word_sint.td
haftmann@37660
   506
haftmann@46897
   507
lemma word_number_of_alt:
haftmann@41075
   508
  "number_of b = word_of_int (number_of b)"
haftmann@41075
   509
  by (simp add: number_of_eq word_number_of_def)
haftmann@37660
   510
haftmann@46897
   511
declare word_number_of_alt [symmetric, code_abbrev]
haftmann@46897
   512
haftmann@37660
   513
lemma word_no_wi: "number_of = word_of_int"
wenzelm@45633
   514
  by (auto simp: word_number_of_def)
haftmann@37660
   515
haftmann@37660
   516
lemma to_bl_def': 
haftmann@37660
   517
  "(to_bl :: 'a :: len0 word => bool list) =
haftmann@37660
   518
    bin_to_bl (len_of TYPE('a)) o uint"
wenzelm@45633
   519
  by (auto simp: to_bl_def)
haftmann@37660
   520
wenzelm@46475
   521
lemmas word_reverse_no_def [simp] = word_reverse_def [of "number_of w"] for w
haftmann@37660
   522
huffman@46676
   523
lemma uints_mod: "uints n = range (\<lambda>w. w mod 2 ^ n)"
huffman@46676
   524
  by (fact uints_def [unfolded no_bintr_alt1])
huffman@46676
   525
huffman@46676
   526
lemma uint_bintrunc [simp]:
huffman@46676
   527
  "uint (number_of bin :: 'a word) =
huffman@46872
   528
    bintrunc (len_of TYPE ('a :: len0)) (number_of bin)"
huffman@46872
   529
  unfolding word_number_of_alt by (rule word_ubin.eq_norm)
haftmann@37660
   530
huffman@46676
   531
lemma sint_sbintrunc [simp]:
huffman@46676
   532
  "sint (number_of bin :: 'a word) =
huffman@46872
   533
    sbintrunc (len_of TYPE ('a :: len) - 1) (number_of bin)"
huffman@46872
   534
  unfolding word_number_of_alt by (rule word_sbin.eq_norm)
haftmann@37660
   535
huffman@46676
   536
lemma unat_bintrunc [simp]:
haftmann@37660
   537
  "unat (number_of bin :: 'a :: len0 word) =
huffman@46872
   538
    nat (bintrunc (len_of TYPE('a)) (number_of bin))"
haftmann@37660
   539
  unfolding unat_def nat_number_of_def 
haftmann@37660
   540
  by (simp only: uint_bintrunc)
haftmann@37660
   541
haftmann@41075
   542
lemma size_0_eq: "size (w :: 'a :: len0 word) = 0 \<Longrightarrow> v = w"
haftmann@37660
   543
  apply (unfold word_size)
haftmann@37660
   544
  apply (rule word_uint.Rep_eqD)
haftmann@37660
   545
  apply (rule box_equals)
haftmann@37660
   546
    defer
haftmann@37660
   547
    apply (rule word_ubin.norm_Rep)+
haftmann@37660
   548
  apply simp
haftmann@37660
   549
  done
haftmann@37660
   550
huffman@46676
   551
lemma uint_ge_0 [iff]: "0 \<le> uint (x::'a::len0 word)"
huffman@46676
   552
  using word_uint.Rep [of x] by (simp add: uints_num)
huffman@46676
   553
huffman@46676
   554
lemma uint_lt2p [iff]: "uint (x::'a::len0 word) < 2 ^ len_of TYPE('a)"
huffman@46676
   555
  using word_uint.Rep [of x] by (simp add: uints_num)
huffman@46676
   556
huffman@46676
   557
lemma sint_ge: "- (2 ^ (len_of TYPE('a) - 1)) \<le> sint (x::'a::len word)"
huffman@46676
   558
  using word_sint.Rep [of x] by (simp add: sints_num)
huffman@46676
   559
huffman@46676
   560
lemma sint_lt: "sint (x::'a::len word) < 2 ^ (len_of TYPE('a) - 1)"
huffman@46676
   561
  using word_sint.Rep [of x] by (simp add: sints_num)
haftmann@37660
   562
haftmann@37660
   563
lemma sign_uint_Pls [simp]: 
huffman@47475
   564
  "bin_sign (uint x) = 0"
haftmann@37660
   565
  by (simp add: sign_Pls_ge_0 number_of_eq)
haftmann@37660
   566
huffman@46676
   567
lemma uint_m2p_neg: "uint (x::'a::len0 word) - 2 ^ len_of TYPE('a) < 0"
huffman@46676
   568
  by (simp only: diff_less_0_iff_less uint_lt2p)
huffman@46676
   569
huffman@46676
   570
lemma uint_m2p_not_non_neg:
huffman@46676
   571
  "\<not> 0 \<le> uint (x::'a::len0 word) - 2 ^ len_of TYPE('a)"
huffman@46676
   572
  by (simp only: not_le uint_m2p_neg)
haftmann@37660
   573
haftmann@37660
   574
lemma lt2p_lem:
haftmann@41075
   575
  "len_of TYPE('a) <= n \<Longrightarrow> uint (w :: 'a :: len0 word) < 2 ^ n"
haftmann@37660
   576
  by (rule xtr8 [OF _ uint_lt2p]) simp
haftmann@37660
   577
huffman@46676
   578
lemma uint_le_0_iff [simp]: "uint x \<le> 0 \<longleftrightarrow> uint x = 0"
huffman@46676
   579
  by (fact uint_ge_0 [THEN leD, THEN linorder_antisym_conv1])
haftmann@37660
   580
haftmann@41075
   581
lemma uint_nat: "uint w = int (unat w)"
haftmann@37660
   582
  unfolding unat_def by auto
haftmann@37660
   583
haftmann@37660
   584
lemma uint_number_of:
haftmann@37660
   585
  "uint (number_of b :: 'a :: len0 word) = number_of b mod 2 ^ len_of TYPE('a)"
haftmann@37660
   586
  unfolding word_number_of_alt
haftmann@37660
   587
  by (simp only: int_word_uint)
haftmann@37660
   588
haftmann@37660
   589
lemma unat_number_of: 
huffman@47475
   590
  "bin_sign (number_of b) = 0 \<Longrightarrow> 
haftmann@37660
   591
  unat (number_of b::'a::len0 word) = number_of b mod 2 ^ len_of TYPE ('a)"
haftmann@37660
   592
  apply (unfold unat_def)
haftmann@37660
   593
  apply (clarsimp simp only: uint_number_of)
haftmann@37660
   594
  apply (rule nat_mod_distrib [THEN trans])
haftmann@37660
   595
    apply (erule sign_Pls_ge_0 [THEN iffD1])
haftmann@37660
   596
   apply (simp_all add: nat_power_eq)
haftmann@37660
   597
  done
haftmann@37660
   598
haftmann@37660
   599
lemma sint_number_of: "sint (number_of b :: 'a :: len word) = (number_of b + 
haftmann@37660
   600
    2 ^ (len_of TYPE('a) - 1)) mod 2 ^ len_of TYPE('a) -
haftmann@37660
   601
    2 ^ (len_of TYPE('a) - 1)"
haftmann@37660
   602
  unfolding word_number_of_alt by (rule int_word_sint)
haftmann@37660
   603
huffman@46866
   604
lemma word_of_int_0 [simp]: "word_of_int 0 = 0"
huffman@46829
   605
  unfolding word_0_wi ..
huffman@46829
   606
huffman@46866
   607
lemma word_of_int_1 [simp]: "word_of_int 1 = 1"
huffman@46829
   608
  unfolding word_1_wi ..
huffman@46829
   609
haftmann@37660
   610
lemma word_of_int_bin [simp] : 
haftmann@37660
   611
  "(word_of_int (number_of bin) :: 'a :: len0 word) = (number_of bin)"
huffman@46872
   612
  unfolding word_number_of_alt ..
haftmann@37660
   613
haftmann@37660
   614
lemma word_int_case_wi: 
haftmann@37660
   615
  "word_int_case f (word_of_int i :: 'b word) = 
haftmann@37660
   616
    f (i mod 2 ^ len_of TYPE('b::len0))"
haftmann@37660
   617
  unfolding word_int_case_def by (simp add: word_uint.eq_norm)
haftmann@37660
   618
haftmann@37660
   619
lemma word_int_split: 
haftmann@37660
   620
  "P (word_int_case f x) = 
haftmann@37660
   621
    (ALL i. x = (word_of_int i :: 'b :: len0 word) & 
haftmann@37660
   622
      0 <= i & i < 2 ^ len_of TYPE('b) --> P (f i))"
haftmann@37660
   623
  unfolding word_int_case_def
haftmann@37660
   624
  by (auto simp: word_uint.eq_norm int_mod_eq')
haftmann@37660
   625
haftmann@37660
   626
lemma word_int_split_asm: 
haftmann@37660
   627
  "P (word_int_case f x) = 
haftmann@37660
   628
    (~ (EX n. x = (word_of_int n :: 'b::len0 word) &
haftmann@37660
   629
      0 <= n & n < 2 ^ len_of TYPE('b::len0) & ~ P (f n)))"
haftmann@37660
   630
  unfolding word_int_case_def
haftmann@37660
   631
  by (auto simp: word_uint.eq_norm int_mod_eq')
huffman@46676
   632
wenzelm@46475
   633
lemmas uint_range' = word_uint.Rep [unfolded uints_num mem_Collect_eq]
wenzelm@46475
   634
lemmas sint_range' = word_sint.Rep [unfolded One_nat_def sints_num mem_Collect_eq]
haftmann@37660
   635
haftmann@37660
   636
lemma uint_range_size: "0 <= uint w & uint w < 2 ^ size w"
haftmann@37660
   637
  unfolding word_size by (rule uint_range')
haftmann@37660
   638
haftmann@37660
   639
lemma sint_range_size:
haftmann@37660
   640
  "- (2 ^ (size w - Suc 0)) <= sint w & sint w < 2 ^ (size w - Suc 0)"
haftmann@37660
   641
  unfolding word_size by (rule sint_range')
haftmann@37660
   642
huffman@46676
   643
lemma sint_above_size: "2 ^ (size (w::'a::len word) - 1) \<le> x \<Longrightarrow> sint w < x"
huffman@46676
   644
  unfolding word_size by (rule less_le_trans [OF sint_lt])
huffman@46676
   645
huffman@46676
   646
lemma sint_below_size:
huffman@46676
   647
  "x \<le> - (2 ^ (size (w::'a::len word) - 1)) \<Longrightarrow> x \<le> sint w"
huffman@46676
   648
  unfolding word_size by (rule order_trans [OF _ sint_ge])
haftmann@37660
   649
huffman@46880
   650
subsection {* Testing bits *}
huffman@46880
   651
haftmann@37660
   652
lemma test_bit_eq_iff: "(test_bit (u::'a::len0 word) = test_bit v) = (u = v)"
haftmann@37660
   653
  unfolding word_test_bit_def by (simp add: bin_nth_eq_iff)
haftmann@37660
   654
haftmann@37660
   655
lemma test_bit_size [rule_format] : "(w::'a::len0 word) !! n --> n < size w"
haftmann@37660
   656
  apply (unfold word_test_bit_def)
haftmann@37660
   657
  apply (subst word_ubin.norm_Rep [symmetric])
haftmann@37660
   658
  apply (simp only: nth_bintr word_size)
haftmann@37660
   659
  apply fast
haftmann@37660
   660
  done
haftmann@37660
   661
huffman@46891
   662
lemma word_eq_iff:
huffman@46891
   663
  fixes x y :: "'a::len0 word"
huffman@46891
   664
  shows "x = y \<longleftrightarrow> (\<forall>n<len_of TYPE('a). x !! n = y !! n)"
huffman@46891
   665
  unfolding uint_inject [symmetric] bin_eq_iff word_test_bit_def [symmetric]
huffman@46891
   666
  by (metis test_bit_size [unfolded word_size])
huffman@46891
   667
huffman@46893
   668
lemma word_eqI [rule_format]:
haftmann@37660
   669
  fixes u :: "'a::len0 word"
haftmann@41075
   670
  shows "(ALL n. n < size u --> u !! n = v !! n) \<Longrightarrow> u = v"
huffman@46891
   671
  by (simp add: word_size word_eq_iff)
haftmann@37660
   672
huffman@46676
   673
lemma word_eqD: "(u::'a::len0 word) = v \<Longrightarrow> u !! x = v !! x"
huffman@46676
   674
  by simp
haftmann@37660
   675
haftmann@37660
   676
lemma test_bit_bin': "w !! n = (n < size w & bin_nth (uint w) n)"
haftmann@37660
   677
  unfolding word_test_bit_def word_size
haftmann@37660
   678
  by (simp add: nth_bintr [symmetric])
haftmann@37660
   679
haftmann@37660
   680
lemmas test_bit_bin = test_bit_bin' [unfolded word_size]
haftmann@37660
   681
huffman@46920
   682
lemma bin_nth_uint_imp:
huffman@46920
   683
  "bin_nth (uint (w::'a::len0 word)) n \<Longrightarrow> n < len_of TYPE('a)"
haftmann@37660
   684
  apply (rule nth_bintr [THEN iffD1, THEN conjunct1])
haftmann@37660
   685
  apply (subst word_ubin.norm_Rep)
haftmann@37660
   686
  apply assumption
haftmann@37660
   687
  done
haftmann@37660
   688
huffman@46920
   689
lemma bin_nth_sint:
huffman@46920
   690
  fixes w :: "'a::len word"
huffman@46920
   691
  shows "len_of TYPE('a) \<le> n \<Longrightarrow>
huffman@46920
   692
    bin_nth (sint w) n = bin_nth (sint w) (len_of TYPE('a) - 1)"
haftmann@37660
   693
  apply (subst word_sbin.norm_Rep [symmetric])
huffman@46920
   694
  apply (auto simp add: nth_sbintr)
haftmann@37660
   695
  done
haftmann@37660
   696
haftmann@37660
   697
(* type definitions theorem for in terms of equivalent bool list *)
haftmann@37660
   698
lemma td_bl: 
haftmann@37660
   699
  "type_definition (to_bl :: 'a::len0 word => bool list) 
haftmann@37660
   700
                   of_bl  
haftmann@37660
   701
                   {bl. length bl = len_of TYPE('a)}"
haftmann@37660
   702
  apply (unfold type_definition_def of_bl_def to_bl_def)
haftmann@37660
   703
  apply (simp add: word_ubin.eq_norm)
haftmann@37660
   704
  apply safe
haftmann@37660
   705
  apply (drule sym)
haftmann@37660
   706
  apply simp
haftmann@37660
   707
  done
haftmann@37660
   708
haftmann@37660
   709
interpretation word_bl:
haftmann@37660
   710
  type_definition "to_bl :: 'a::len0 word => bool list"
haftmann@37660
   711
                  of_bl  
haftmann@37660
   712
                  "{bl. length bl = len_of TYPE('a::len0)}"
haftmann@37660
   713
  by (rule td_bl)
haftmann@37660
   714
huffman@46687
   715
lemmas word_bl_Rep' = word_bl.Rep [unfolded mem_Collect_eq, iff]
wenzelm@46409
   716
haftmann@41075
   717
lemma word_size_bl: "size w = size (to_bl w)"
haftmann@37660
   718
  unfolding word_size by auto
haftmann@37660
   719
haftmann@37660
   720
lemma to_bl_use_of_bl:
haftmann@37660
   721
  "(to_bl w = bl) = (w = of_bl bl \<and> length bl = length (to_bl w))"
huffman@46687
   722
  by (fastforce elim!: word_bl.Abs_inverse [unfolded mem_Collect_eq])
haftmann@37660
   723
haftmann@37660
   724
lemma to_bl_word_rev: "to_bl (word_reverse w) = rev (to_bl w)"
haftmann@37660
   725
  unfolding word_reverse_def by (simp add: word_bl.Abs_inverse)
haftmann@37660
   726
haftmann@37660
   727
lemma word_rev_rev [simp] : "word_reverse (word_reverse w) = w"
haftmann@37660
   728
  unfolding word_reverse_def by (simp add : word_bl.Abs_inverse)
haftmann@37660
   729
haftmann@41075
   730
lemma word_rev_gal: "word_reverse w = u \<Longrightarrow> word_reverse u = w"
haftmann@37660
   731
  by auto
haftmann@37660
   732
huffman@46676
   733
lemma word_rev_gal': "u = word_reverse w \<Longrightarrow> w = word_reverse u"
huffman@46676
   734
  by simp
huffman@46676
   735
huffman@46676
   736
lemma length_bl_gt_0 [iff]: "0 < length (to_bl (x::'a::len word))"
huffman@46676
   737
  unfolding word_bl_Rep' by (rule len_gt_0)
huffman@46676
   738
huffman@46676
   739
lemma bl_not_Nil [iff]: "to_bl (x::'a::len word) \<noteq> []"
huffman@46676
   740
  by (fact length_bl_gt_0 [unfolded length_greater_0_conv])
huffman@46676
   741
huffman@46676
   742
lemma length_bl_neq_0 [iff]: "length (to_bl (x::'a::len word)) \<noteq> 0"
huffman@46676
   743
  by (fact length_bl_gt_0 [THEN gr_implies_not0])
haftmann@37660
   744
huffman@46872
   745
lemma hd_bl_sign_sint: "hd (to_bl w) = (bin_sign (sint w) = -1)"
haftmann@37660
   746
  apply (unfold to_bl_def sint_uint)
haftmann@37660
   747
  apply (rule trans [OF _ bl_sbin_sign])
haftmann@37660
   748
  apply simp
haftmann@37660
   749
  done
haftmann@37660
   750
haftmann@37660
   751
lemma of_bl_drop': 
haftmann@41075
   752
  "lend = length bl - len_of TYPE ('a :: len0) \<Longrightarrow> 
haftmann@37660
   753
    of_bl (drop lend bl) = (of_bl bl :: 'a word)"
haftmann@37660
   754
  apply (unfold of_bl_def)
haftmann@37660
   755
  apply (clarsimp simp add : trunc_bl2bin [symmetric])
haftmann@37660
   756
  done
haftmann@37660
   757
haftmann@37660
   758
lemma test_bit_of_bl:  
haftmann@37660
   759
  "(of_bl bl::'a::len0 word) !! n = (rev bl ! n \<and> n < len_of TYPE('a) \<and> n < length bl)"
haftmann@37660
   760
  apply (unfold of_bl_def word_test_bit_def)
haftmann@37660
   761
  apply (auto simp add: word_size word_ubin.eq_norm nth_bintr bin_nth_of_bl)
haftmann@37660
   762
  done
haftmann@37660
   763
haftmann@37660
   764
lemma no_of_bl: 
haftmann@37660
   765
  "(number_of bin ::'a::len0 word) = of_bl (bin_to_bl (len_of TYPE ('a)) bin)"
huffman@47517
   766
  unfolding word_size of_bl_def by (simp add: word_number_of_def)
haftmann@37660
   767
haftmann@41075
   768
lemma uint_bl: "to_bl w = bin_to_bl (size w) (uint w)"
haftmann@37660
   769
  unfolding word_size to_bl_def by auto
haftmann@37660
   770
haftmann@37660
   771
lemma to_bl_bin: "bl_to_bin (to_bl w) = uint w"
haftmann@37660
   772
  unfolding uint_bl by (simp add : word_size)
haftmann@37660
   773
haftmann@37660
   774
lemma to_bl_of_bin: 
haftmann@37660
   775
  "to_bl (word_of_int bin::'a::len0 word) = bin_to_bl (len_of TYPE('a)) bin"
haftmann@37660
   776
  unfolding uint_bl by (clarsimp simp add: word_ubin.eq_norm word_size)
haftmann@37660
   777
huffman@46676
   778
lemma to_bl_no_bin [simp]:
huffman@47489
   779
  "to_bl (number_of bin::'a::len0 word) = bin_to_bl (len_of TYPE('a)) (number_of bin)"
huffman@47489
   780
  unfolding word_number_of_alt by (rule to_bl_of_bin)
haftmann@37660
   781
haftmann@37660
   782
lemma to_bl_to_bin [simp] : "bl_to_bin (to_bl w) = uint w"
haftmann@37660
   783
  unfolding uint_bl by (simp add : word_size)
huffman@46881
   784
huffman@46881
   785
lemma uint_bl_bin:
huffman@46881
   786
  fixes x :: "'a::len0 word"
huffman@46881
   787
  shows "bl_to_bin (bin_to_bl (len_of TYPE('a)) (uint x)) = uint x"
huffman@46881
   788
  by (rule trans [OF bin_bl_bin word_ubin.norm_Rep])
wenzelm@46475
   789
haftmann@37660
   790
(* naturals *)
haftmann@37660
   791
lemma uints_unats: "uints n = int ` unats n"
haftmann@37660
   792
  apply (unfold unats_def uints_num)
haftmann@37660
   793
  apply safe
haftmann@37660
   794
  apply (rule_tac image_eqI)
haftmann@37660
   795
  apply (erule_tac nat_0_le [symmetric])
haftmann@37660
   796
  apply auto
haftmann@37660
   797
  apply (erule_tac nat_less_iff [THEN iffD2])
haftmann@37660
   798
  apply (rule_tac [2] zless_nat_eq_int_zless [THEN iffD1])
haftmann@37660
   799
  apply (auto simp add : nat_power_eq int_power)
haftmann@37660
   800
  done
haftmann@37660
   801
haftmann@37660
   802
lemma unats_uints: "unats n = nat ` uints n"
haftmann@37660
   803
  by (auto simp add : uints_unats image_iff)
haftmann@37660
   804
huffman@47832
   805
lemmas bintr_num = word_ubin.norm_eq_iff
huffman@47832
   806
  [of "number_of a" "number_of b", symmetric, folded word_number_of_alt] for a b
huffman@47832
   807
lemmas sbintr_num = word_sbin.norm_eq_iff
huffman@47832
   808
  [of "number_of a" "number_of b", symmetric, folded word_number_of_alt] for a b
wenzelm@46475
   809
wenzelm@46475
   810
lemmas num_of_bintr = word_ubin.Abs_norm [folded word_number_of_def]
wenzelm@46475
   811
lemmas num_of_sbintr = word_sbin.Abs_norm [folded word_number_of_def]
haftmann@37660
   812
    
haftmann@37660
   813
(* don't add these to simpset, since may want bintrunc n w to be simplified;
haftmann@37660
   814
  may want these in reverse, but loop as simp rules, so use following *)
haftmann@37660
   815
haftmann@37660
   816
lemma num_of_bintr':
huffman@47832
   817
  "bintrunc (len_of TYPE('a :: len0)) (number_of a) = (number_of b) \<Longrightarrow> 
haftmann@37660
   818
    number_of a = (number_of b :: 'a word)"
huffman@47832
   819
  unfolding bintr_num by (erule subst, simp)
haftmann@37660
   820
haftmann@37660
   821
lemma num_of_sbintr':
huffman@47832
   822
  "sbintrunc (len_of TYPE('a :: len) - 1) (number_of a) = (number_of b) \<Longrightarrow> 
haftmann@37660
   823
    number_of a = (number_of b :: 'a word)"
huffman@47832
   824
  unfolding sbintr_num by (erule subst, simp)
huffman@47832
   825
huffman@47832
   826
lemma num_abs_bintr:
huffman@47832
   827
  "(number_of x :: 'a word) =
huffman@47832
   828
    word_of_int (bintrunc (len_of TYPE('a::len0)) (number_of x))"
huffman@47832
   829
  by (simp only: word_ubin.Abs_norm word_number_of_alt)
huffman@47832
   830
huffman@47832
   831
lemma num_abs_sbintr:
huffman@47832
   832
  "(number_of x :: 'a word) =
huffman@47832
   833
    word_of_int (sbintrunc (len_of TYPE('a::len) - 1) (number_of x))"
huffman@47832
   834
  by (simp only: word_sbin.Abs_norm word_number_of_alt)
huffman@47832
   835
haftmann@37660
   836
(** cast - note, no arg for new length, as it's determined by type of result,
haftmann@37660
   837
  thus in "cast w = w, the type means cast to length of w! **)
haftmann@37660
   838
haftmann@37660
   839
lemma ucast_id: "ucast w = w"
haftmann@37660
   840
  unfolding ucast_def by auto
haftmann@37660
   841
haftmann@37660
   842
lemma scast_id: "scast w = w"
haftmann@37660
   843
  unfolding scast_def by auto
haftmann@37660
   844
haftmann@41075
   845
lemma ucast_bl: "ucast w = of_bl (to_bl w)"
haftmann@37660
   846
  unfolding ucast_def of_bl_def uint_bl
haftmann@37660
   847
  by (auto simp add : word_size)
haftmann@37660
   848
haftmann@37660
   849
lemma nth_ucast: 
haftmann@37660
   850
  "(ucast w::'a::len0 word) !! n = (w !! n & n < len_of TYPE('a))"
haftmann@37660
   851
  apply (unfold ucast_def test_bit_bin)
haftmann@37660
   852
  apply (simp add: word_ubin.eq_norm nth_bintr word_size) 
haftmann@37660
   853
  apply (fast elim!: bin_nth_uint_imp)
haftmann@37660
   854
  done
haftmann@37660
   855
haftmann@37660
   856
(* for literal u(s)cast *)
haftmann@37660
   857
huffman@46872
   858
lemma ucast_bintr [simp]:
haftmann@37660
   859
  "ucast (number_of w ::'a::len0 word) = 
huffman@46872
   860
   word_of_int (bintrunc (len_of TYPE('a)) (number_of w))"
haftmann@37660
   861
  unfolding ucast_def by simp
haftmann@37660
   862
huffman@46872
   863
lemma scast_sbintr [simp]:
haftmann@37660
   864
  "scast (number_of w ::'a::len word) = 
huffman@46872
   865
   word_of_int (sbintrunc (len_of TYPE('a) - Suc 0) (number_of w))"
haftmann@37660
   866
  unfolding scast_def by simp
haftmann@37660
   867
huffman@46881
   868
lemma source_size: "source_size (c::'a::len0 word \<Rightarrow> _) = len_of TYPE('a)"
huffman@46881
   869
  unfolding source_size_def word_size Let_def ..
huffman@46881
   870
huffman@46881
   871
lemma target_size: "target_size (c::_ \<Rightarrow> 'b::len0 word) = len_of TYPE('b)"
huffman@46881
   872
  unfolding target_size_def word_size Let_def ..
huffman@46881
   873
huffman@46881
   874
lemma is_down:
huffman@46881
   875
  fixes c :: "'a::len0 word \<Rightarrow> 'b::len0 word"
huffman@46881
   876
  shows "is_down c \<longleftrightarrow> len_of TYPE('b) \<le> len_of TYPE('a)"
huffman@46881
   877
  unfolding is_down_def source_size target_size ..
huffman@46881
   878
huffman@46881
   879
lemma is_up:
huffman@46881
   880
  fixes c :: "'a::len0 word \<Rightarrow> 'b::len0 word"
huffman@46881
   881
  shows "is_up c \<longleftrightarrow> len_of TYPE('a) \<le> len_of TYPE('b)"
huffman@46881
   882
  unfolding is_up_def source_size target_size ..
haftmann@37660
   883
wenzelm@46475
   884
lemmas is_up_down = trans [OF is_up is_down [symmetric]]
haftmann@37660
   885
huffman@46682
   886
lemma down_cast_same [OF refl]: "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc = scast"
haftmann@37660
   887
  apply (unfold is_down)
haftmann@37660
   888
  apply safe
haftmann@37660
   889
  apply (rule ext)
haftmann@37660
   890
  apply (unfold ucast_def scast_def uint_sint)
haftmann@37660
   891
  apply (rule word_ubin.norm_eq_iff [THEN iffD1])
haftmann@37660
   892
  apply simp
haftmann@37660
   893
  done
haftmann@37660
   894
huffman@46682
   895
lemma word_rev_tf:
huffman@46682
   896
  "to_bl (of_bl bl::'a::len0 word) =
huffman@46682
   897
    rev (takefill False (len_of TYPE('a)) (rev bl))"
haftmann@37660
   898
  unfolding of_bl_def uint_bl
haftmann@37660
   899
  by (clarsimp simp add: bl_bin_bl_rtf word_ubin.eq_norm word_size)
haftmann@37660
   900
huffman@46682
   901
lemma word_rep_drop:
huffman@46682
   902
  "to_bl (of_bl bl::'a::len0 word) =
huffman@46682
   903
    replicate (len_of TYPE('a) - length bl) False @
huffman@46682
   904
    drop (length bl - len_of TYPE('a)) bl"
huffman@46682
   905
  by (simp add: word_rev_tf takefill_alt rev_take)
haftmann@37660
   906
haftmann@37660
   907
lemma to_bl_ucast: 
haftmann@37660
   908
  "to_bl (ucast (w::'b::len0 word) ::'a::len0 word) = 
haftmann@37660
   909
   replicate (len_of TYPE('a) - len_of TYPE('b)) False @
haftmann@37660
   910
   drop (len_of TYPE('b) - len_of TYPE('a)) (to_bl w)"
haftmann@37660
   911
  apply (unfold ucast_bl)
haftmann@37660
   912
  apply (rule trans)
haftmann@37660
   913
   apply (rule word_rep_drop)
haftmann@37660
   914
  apply simp
haftmann@37660
   915
  done
haftmann@37660
   916
huffman@46682
   917
lemma ucast_up_app [OF refl]:
haftmann@41075
   918
  "uc = ucast \<Longrightarrow> source_size uc + n = target_size uc \<Longrightarrow> 
haftmann@37660
   919
    to_bl (uc w) = replicate n False @ (to_bl w)"
haftmann@37660
   920
  by (auto simp add : source_size target_size to_bl_ucast)
haftmann@37660
   921
huffman@46682
   922
lemma ucast_down_drop [OF refl]:
haftmann@41075
   923
  "uc = ucast \<Longrightarrow> source_size uc = target_size uc + n \<Longrightarrow> 
haftmann@37660
   924
    to_bl (uc w) = drop n (to_bl w)"
haftmann@37660
   925
  by (auto simp add : source_size target_size to_bl_ucast)
haftmann@37660
   926
huffman@46682
   927
lemma scast_down_drop [OF refl]:
haftmann@41075
   928
  "sc = scast \<Longrightarrow> source_size sc = target_size sc + n \<Longrightarrow> 
haftmann@37660
   929
    to_bl (sc w) = drop n (to_bl w)"
haftmann@37660
   930
  apply (subgoal_tac "sc = ucast")
haftmann@37660
   931
   apply safe
haftmann@37660
   932
   apply simp
huffman@46682
   933
   apply (erule ucast_down_drop)
huffman@46682
   934
  apply (rule down_cast_same [symmetric])
haftmann@37660
   935
  apply (simp add : source_size target_size is_down)
haftmann@37660
   936
  done
haftmann@37660
   937
huffman@46682
   938
lemma sint_up_scast [OF refl]:
haftmann@41075
   939
  "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> sint (sc w) = sint w"
haftmann@37660
   940
  apply (unfold is_up)
haftmann@37660
   941
  apply safe
haftmann@37660
   942
  apply (simp add: scast_def word_sbin.eq_norm)
haftmann@37660
   943
  apply (rule box_equals)
haftmann@37660
   944
    prefer 3
haftmann@37660
   945
    apply (rule word_sbin.norm_Rep)
haftmann@37660
   946
   apply (rule sbintrunc_sbintrunc_l)
haftmann@37660
   947
   defer
haftmann@37660
   948
   apply (subst word_sbin.norm_Rep)
haftmann@37660
   949
   apply (rule refl)
haftmann@37660
   950
  apply simp
haftmann@37660
   951
  done
haftmann@37660
   952
huffman@46682
   953
lemma uint_up_ucast [OF refl]:
haftmann@41075
   954
  "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> uint (uc w) = uint w"
haftmann@37660
   955
  apply (unfold is_up)
haftmann@37660
   956
  apply safe
haftmann@37660
   957
  apply (rule bin_eqI)
haftmann@37660
   958
  apply (fold word_test_bit_def)
haftmann@37660
   959
  apply (auto simp add: nth_ucast)
haftmann@37660
   960
  apply (auto simp add: test_bit_bin)
haftmann@37660
   961
  done
huffman@46682
   962
huffman@46682
   963
lemma ucast_up_ucast [OF refl]:
huffman@46682
   964
  "uc = ucast \<Longrightarrow> is_up uc \<Longrightarrow> ucast (uc w) = ucast w"
haftmann@37660
   965
  apply (simp (no_asm) add: ucast_def)
haftmann@37660
   966
  apply (clarsimp simp add: uint_up_ucast)
haftmann@37660
   967
  done
haftmann@37660
   968
    
huffman@46682
   969
lemma scast_up_scast [OF refl]:
huffman@46682
   970
  "sc = scast \<Longrightarrow> is_up sc \<Longrightarrow> scast (sc w) = scast w"
haftmann@37660
   971
  apply (simp (no_asm) add: scast_def)
haftmann@37660
   972
  apply (clarsimp simp add: sint_up_scast)
haftmann@37660
   973
  done
haftmann@37660
   974
    
huffman@46682
   975
lemma ucast_of_bl_up [OF refl]:
haftmann@41075
   976
  "w = of_bl bl \<Longrightarrow> size bl <= size w \<Longrightarrow> ucast w = of_bl bl"
haftmann@37660
   977
  by (auto simp add : nth_ucast word_size test_bit_of_bl intro!: word_eqI)
haftmann@37660
   978
haftmann@37660
   979
lemmas ucast_up_ucast_id = trans [OF ucast_up_ucast ucast_id]
haftmann@37660
   980
lemmas scast_up_scast_id = trans [OF scast_up_scast scast_id]
haftmann@37660
   981
haftmann@37660
   982
lemmas isduu = is_up_down [where c = "ucast", THEN iffD2]
haftmann@37660
   983
lemmas isdus = is_up_down [where c = "scast", THEN iffD2]
haftmann@37660
   984
lemmas ucast_down_ucast_id = isduu [THEN ucast_up_ucast_id]
haftmann@37660
   985
lemmas scast_down_scast_id = isdus [THEN ucast_up_ucast_id]
haftmann@37660
   986
haftmann@37660
   987
lemma up_ucast_surj:
haftmann@41075
   988
  "is_up (ucast :: 'b::len0 word => 'a::len0 word) \<Longrightarrow> 
haftmann@37660
   989
   surj (ucast :: 'a word => 'b word)"
haftmann@37660
   990
  by (rule surjI, erule ucast_up_ucast_id)
haftmann@37660
   991
haftmann@37660
   992
lemma up_scast_surj:
haftmann@41075
   993
  "is_up (scast :: 'b::len word => 'a::len word) \<Longrightarrow> 
haftmann@37660
   994
   surj (scast :: 'a word => 'b word)"
haftmann@37660
   995
  by (rule surjI, erule scast_up_scast_id)
haftmann@37660
   996
haftmann@37660
   997
lemma down_scast_inj:
haftmann@41075
   998
  "is_down (scast :: 'b::len word => 'a::len word) \<Longrightarrow> 
haftmann@37660
   999
   inj_on (ucast :: 'a word => 'b word) A"
haftmann@37660
  1000
  by (rule inj_on_inverseI, erule scast_down_scast_id)
haftmann@37660
  1001
haftmann@37660
  1002
lemma down_ucast_inj:
haftmann@41075
  1003
  "is_down (ucast :: 'b::len0 word => 'a::len0 word) \<Longrightarrow> 
haftmann@37660
  1004
   inj_on (ucast :: 'a word => 'b word) A"
haftmann@37660
  1005
  by (rule inj_on_inverseI, erule ucast_down_ucast_id)
haftmann@37660
  1006
haftmann@37660
  1007
lemma of_bl_append_same: "of_bl (X @ to_bl w) = w"
haftmann@37660
  1008
  by (rule word_bl.Rep_eqD) (simp add: word_rep_drop)
huffman@46682
  1009
huffman@47517
  1010
lemma ucast_down_wi [OF refl]:
huffman@47517
  1011
  "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (word_of_int x) = word_of_int x"
huffman@47517
  1012
  apply (unfold is_down)
haftmann@37660
  1013
  apply (clarsimp simp add: ucast_def word_ubin.eq_norm)
haftmann@37660
  1014
  apply (rule word_ubin.norm_eq_iff [THEN iffD1])
haftmann@37660
  1015
  apply (erule bintrunc_bintrunc_ge)
haftmann@37660
  1016
  done
huffman@46682
  1017
huffman@47517
  1018
lemma ucast_down_no [OF refl]:
huffman@47517
  1019
  "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (number_of bin) = number_of bin"
huffman@47517
  1020
  unfolding word_number_of_alt by clarify (rule ucast_down_wi)
huffman@47517
  1021
huffman@46682
  1022
lemma ucast_down_bl [OF refl]:
huffman@46682
  1023
  "uc = ucast \<Longrightarrow> is_down uc \<Longrightarrow> uc (of_bl bl) = of_bl bl"
huffman@47517
  1024
  unfolding of_bl_def by clarify (erule ucast_down_wi)
haftmann@37660
  1025
haftmann@37660
  1026
lemmas slice_def' = slice_def [unfolded word_size]
haftmann@37660
  1027
lemmas test_bit_def' = word_test_bit_def [THEN fun_cong]
haftmann@37660
  1028
haftmann@37660
  1029
lemmas word_log_defs = word_and_def word_or_def word_xor_def word_not_def
haftmann@37660
  1030
haftmann@37660
  1031
text {* Executable equality *}
haftmann@37660
  1032
haftmann@39086
  1033
instantiation word :: (len0) equal
haftmann@37660
  1034
begin
haftmann@37660
  1035
haftmann@39086
  1036
definition equal_word :: "'a word \<Rightarrow> 'a word \<Rightarrow> bool" where
haftmann@39086
  1037
  "equal_word k l \<longleftrightarrow> HOL.equal (uint k) (uint l)"
haftmann@37660
  1038
haftmann@37660
  1039
instance proof
haftmann@39086
  1040
qed (simp add: equal equal_word_def)
haftmann@37660
  1041
haftmann@37660
  1042
end
haftmann@37660
  1043
haftmann@37660
  1044
haftmann@37660
  1045
subsection {* Word Arithmetic *}
haftmann@37660
  1046
haftmann@37660
  1047
lemma word_less_alt: "(a < b) = (uint a < uint b)"
huffman@46882
  1048
  unfolding word_less_def word_le_def by (simp add: less_le)
haftmann@37660
  1049
haftmann@37660
  1050
lemma signed_linorder: "class.linorder word_sle word_sless"
wenzelm@46995
  1051
  by default (unfold word_sle_def word_sless_def, auto)
haftmann@37660
  1052
haftmann@37660
  1053
interpretation signed: linorder "word_sle" "word_sless"
haftmann@37660
  1054
  by (rule signed_linorder)
haftmann@37660
  1055
haftmann@37660
  1056
lemma udvdI: 
haftmann@41075
  1057
  "0 \<le> n \<Longrightarrow> uint b = n * uint a \<Longrightarrow> a udvd b"
haftmann@37660
  1058
  by (auto simp: udvd_def)
haftmann@37660
  1059
wenzelm@46475
  1060
lemmas word_div_no [simp] = word_div_def [of "number_of a" "number_of b"] for a b
wenzelm@46475
  1061
wenzelm@46475
  1062
lemmas word_mod_no [simp] = word_mod_def [of "number_of a" "number_of b"] for a b
wenzelm@46475
  1063
wenzelm@46475
  1064
lemmas word_less_no [simp] = word_less_def [of "number_of a" "number_of b"] for a b
wenzelm@46475
  1065
wenzelm@46475
  1066
lemmas word_le_no [simp] = word_le_def [of "number_of a" "number_of b"] for a b
wenzelm@46475
  1067
wenzelm@46475
  1068
lemmas word_sless_no [simp] = word_sless_def [of "number_of a" "number_of b"] for a b
wenzelm@46475
  1069
wenzelm@46475
  1070
lemmas word_sle_no [simp] = word_sle_def [of "number_of a" "number_of b"] for a b
haftmann@37660
  1071
haftmann@37660
  1072
(* following two are available in class number_ring, 
haftmann@37660
  1073
  but convenient to have them here here;
haftmann@37660
  1074
  note - the number_ring versions, numeral_0_eq_0 and numeral_1_eq_1
haftmann@37660
  1075
  are in the default simpset, so to use the automatic simplifications for
haftmann@37660
  1076
  (eg) sint (number_of bin) on sint 1, must do
haftmann@37660
  1077
  (simp add: word_1_no del: numeral_1_eq_1) 
haftmann@37660
  1078
  *)
huffman@46829
  1079
lemma word_0_no: "(0::'a::len0 word) = Numeral0"
huffman@46866
  1080
  by (simp add: word_number_of_alt)
haftmann@37660
  1081
huffman@46890
  1082
lemma word_1_no: "(1::'a::len0 word) = Numeral1"
huffman@46890
  1083
  by (simp add: word_number_of_alt)
haftmann@37660
  1084
haftmann@41075
  1085
lemma word_m1_wi: "-1 = word_of_int -1" 
haftmann@37660
  1086
  by (rule word_number_of_alt)
haftmann@37660
  1087
huffman@47519
  1088
lemma word_0_bl [simp]: "of_bl [] = 0"
huffman@47519
  1089
  unfolding of_bl_def by simp
haftmann@37660
  1090
haftmann@37660
  1091
lemma word_1_bl: "of_bl [True] = 1" 
huffman@47519
  1092
  unfolding of_bl_def by (simp add: bl_to_bin_def)
huffman@47519
  1093
huffman@47519
  1094
lemma uint_eq_0 [simp]: "uint 0 = 0"
huffman@47519
  1095
  unfolding word_0_wi word_ubin.eq_norm by simp
haftmann@37660
  1096
huffman@46866
  1097
lemma of_bl_0 [simp]: "of_bl (replicate n False) = 0"
huffman@47519
  1098
  by (simp add: of_bl_def bl_to_bin_rep_False)
haftmann@37660
  1099
huffman@46676
  1100
lemma to_bl_0 [simp]:
haftmann@37660
  1101
  "to_bl (0::'a::len0 word) = replicate (len_of TYPE('a)) False"
haftmann@37660
  1102
  unfolding uint_bl
huffman@47488
  1103
  by (simp add: word_size bin_to_bl_zero)
haftmann@37660
  1104
haftmann@37660
  1105
lemma uint_0_iff: "(uint x = 0) = (x = 0)"
haftmann@37660
  1106
  by (auto intro!: word_uint.Rep_eqD)
haftmann@37660
  1107
haftmann@37660
  1108
lemma unat_0_iff: "(unat x = 0) = (x = 0)"
haftmann@37660
  1109
  unfolding unat_def by (auto simp add : nat_eq_iff uint_0_iff)
haftmann@37660
  1110
haftmann@37660
  1111
lemma unat_0 [simp]: "unat 0 = 0"
haftmann@37660
  1112
  unfolding unat_def by auto
haftmann@37660
  1113
haftmann@41075
  1114
lemma size_0_same': "size w = 0 \<Longrightarrow> w = (v :: 'a :: len0 word)"
haftmann@37660
  1115
  apply (unfold word_size)
haftmann@37660
  1116
  apply (rule box_equals)
haftmann@37660
  1117
    defer
haftmann@37660
  1118
    apply (rule word_uint.Rep_inverse)+
haftmann@37660
  1119
  apply (rule word_ubin.norm_eq_iff [THEN iffD1])
haftmann@37660
  1120
  apply simp
haftmann@37660
  1121
  done
haftmann@37660
  1122
huffman@46687
  1123
lemmas size_0_same = size_0_same' [unfolded word_size]
haftmann@37660
  1124
haftmann@37660
  1125
lemmas unat_eq_0 = unat_0_iff
haftmann@37660
  1126
lemmas unat_eq_zero = unat_0_iff
haftmann@37660
  1127
haftmann@37660
  1128
lemma unat_gt_0: "(0 < unat x) = (x ~= 0)"
haftmann@37660
  1129
by (auto simp: unat_0_iff [symmetric])
haftmann@37660
  1130
huffman@46829
  1131
lemma ucast_0 [simp]: "ucast 0 = 0"
huffman@46866
  1132
  unfolding ucast_def by simp
huffman@46829
  1133
huffman@46829
  1134
lemma sint_0 [simp]: "sint 0 = 0"
huffman@46829
  1135
  unfolding sint_uint by simp
huffman@46829
  1136
huffman@46829
  1137
lemma scast_0 [simp]: "scast 0 = 0"
huffman@46866
  1138
  unfolding scast_def by simp
haftmann@37660
  1139
haftmann@37660
  1140
lemma sint_n1 [simp] : "sint -1 = -1"
huffman@46829
  1141
  unfolding word_m1_wi by (simp add: word_sbin.eq_norm)
huffman@46829
  1142
huffman@46829
  1143
lemma scast_n1 [simp]: "scast -1 = -1"
huffman@46829
  1144
  unfolding scast_def by simp
huffman@46829
  1145
huffman@46829
  1146
lemma uint_1 [simp]: "uint (1::'a::len word) = 1"
haftmann@37660
  1147
  unfolding word_1_wi
huffman@46866
  1148
  by (simp add: word_ubin.eq_norm bintrunc_minus_simps del: word_of_int_1)
huffman@46829
  1149
huffman@46829
  1150
lemma unat_1 [simp]: "unat (1::'a::len word) = 1"
huffman@46829
  1151
  unfolding unat_def by simp
huffman@46829
  1152
huffman@46829
  1153
lemma ucast_1 [simp]: "ucast (1::'a::len word) = 1"
huffman@46866
  1154
  unfolding ucast_def by simp
haftmann@37660
  1155
haftmann@37660
  1156
(* now, to get the weaker results analogous to word_div/mod_def *)
haftmann@37660
  1157
haftmann@37660
  1158
lemmas word_arith_alts = 
huffman@46871
  1159
  word_sub_wi
huffman@46871
  1160
  word_arith_wis (* FIXME: duplicate *)
huffman@46871
  1161
huffman@46871
  1162
lemmas word_succ_alt = word_succ_def (* FIXME: duplicate *)
huffman@46871
  1163
lemmas word_pred_alt = word_pred_def (* FIXME: duplicate *)
haftmann@37660
  1164
haftmann@37660
  1165
subsection  "Transferring goals from words to ints"
haftmann@37660
  1166
haftmann@37660
  1167
lemma word_ths:  
haftmann@37660
  1168
  shows
haftmann@37660
  1169
  word_succ_p1:   "word_succ a = a + 1" and
haftmann@37660
  1170
  word_pred_m1:   "word_pred a = a - 1" and
haftmann@37660
  1171
  word_pred_succ: "word_pred (word_succ a) = a" and
haftmann@37660
  1172
  word_succ_pred: "word_succ (word_pred a) = a" and
haftmann@37660
  1173
  word_mult_succ: "word_succ a * b = b + a * b"
haftmann@37660
  1174
  by (rule word_uint.Abs_cases [of b],
haftmann@37660
  1175
      rule word_uint.Abs_cases [of a],
huffman@46871
  1176
      simp add: add_commute mult_commute 
huffman@46879
  1177
                ring_distribs word_of_int_homs
huffman@46866
  1178
           del: word_of_int_0 word_of_int_1)+
haftmann@37660
  1179
huffman@46687
  1180
lemma uint_cong: "x = y \<Longrightarrow> uint x = uint y"
huffman@46687
  1181
  by simp
haftmann@37660
  1182
haftmann@37660
  1183
lemmas uint_word_ariths = 
wenzelm@46475
  1184
  word_arith_alts [THEN trans [OF uint_cong int_word_uint]]
haftmann@37660
  1185
haftmann@37660
  1186
lemmas uint_word_arith_bintrs = uint_word_ariths [folded bintrunc_mod2p]
haftmann@37660
  1187
haftmann@37660
  1188
(* similar expressions for sint (arith operations) *)
haftmann@37660
  1189
lemmas sint_word_ariths = uint_word_arith_bintrs
haftmann@37660
  1190
  [THEN uint_sint [symmetric, THEN trans],
haftmann@37660
  1191
  unfolded uint_sint bintr_arith1s bintr_ariths 
wenzelm@46475
  1192
    len_gt_0 [THEN bin_sbin_eq_iff'] word_sbin.norm_Rep]
wenzelm@46475
  1193
wenzelm@46475
  1194
lemmas uint_div_alt = word_div_def [THEN trans [OF uint_cong int_word_uint]]
wenzelm@46475
  1195
lemmas uint_mod_alt = word_mod_def [THEN trans [OF uint_cong int_word_uint]]
haftmann@37660
  1196
haftmann@37660
  1197
lemma word_pred_0_n1: "word_pred 0 = word_of_int -1"
huffman@46421
  1198
  unfolding word_pred_def uint_eq_0 pred_def by simp
haftmann@37660
  1199
haftmann@37660
  1200
lemma succ_pred_no [simp]:
haftmann@37660
  1201
  "word_succ (number_of bin) = number_of (Int.succ bin) & 
haftmann@37660
  1202
    word_pred (number_of bin) = number_of (Int.pred bin)"
huffman@46871
  1203
  unfolding word_number_of_def Int.succ_def Int.pred_def
huffman@46879
  1204
  by (simp add: word_of_int_homs)
haftmann@37660
  1205
haftmann@37660
  1206
lemma word_sp_01 [simp] : 
haftmann@37660
  1207
  "word_succ -1 = 0 & word_succ 0 = 1 & word_pred 0 = -1 & word_pred 1 = 0"
huffman@46890
  1208
  unfolding word_0_no word_1_no by simp
haftmann@37660
  1209
haftmann@37660
  1210
(* alternative approach to lifting arithmetic equalities *)
haftmann@37660
  1211
lemma word_of_int_Ex:
haftmann@37660
  1212
  "\<exists>y. x = word_of_int y"
haftmann@37660
  1213
  by (rule_tac x="uint x" in exI) simp
haftmann@37660
  1214
haftmann@37660
  1215
haftmann@37660
  1216
subsection "Order on fixed-length words"
haftmann@37660
  1217
haftmann@37660
  1218
lemma word_zero_le [simp] :
haftmann@37660
  1219
  "0 <= (y :: 'a :: len0 word)"
haftmann@37660
  1220
  unfolding word_le_def by auto
haftmann@37660
  1221
  
huffman@46687
  1222
lemma word_m1_ge [simp] : "word_pred 0 >= y" (* FIXME: delete *)
haftmann@37660
  1223
  unfolding word_le_def
haftmann@37660
  1224
  by (simp only : word_pred_0_n1 word_uint.eq_norm m1mod2k) auto
haftmann@37660
  1225
huffman@46687
  1226
lemma word_n1_ge [simp]: "y \<le> (-1::'a::len0 word)"
huffman@46687
  1227
  unfolding word_le_def
huffman@46687
  1228
  by (simp only: word_m1_wi word_uint.eq_norm m1mod2k) auto
haftmann@37660
  1229
haftmann@37660
  1230
lemmas word_not_simps [simp] = 
haftmann@37660
  1231
  word_zero_le [THEN leD] word_m1_ge [THEN leD] word_n1_ge [THEN leD]
haftmann@37660
  1232
haftmann@37660
  1233
lemma word_gt_0: "0 < y = (0 ~= (y :: 'a :: len0 word))"
haftmann@37660
  1234
  unfolding word_less_def by auto
haftmann@37660
  1235
wenzelm@46475
  1236
lemmas word_gt_0_no [simp] = word_gt_0 [of "number_of y"] for y
haftmann@37660
  1237
haftmann@41075
  1238
lemma word_sless_alt: "(a <s b) = (sint a < sint b)"
haftmann@37660
  1239
  unfolding word_sle_def word_sless_def
haftmann@37660
  1240
  by (auto simp add: less_le)
haftmann@37660
  1241
haftmann@37660
  1242
lemma word_le_nat_alt: "(a <= b) = (unat a <= unat b)"
haftmann@37660
  1243
  unfolding unat_def word_le_def
haftmann@37660
  1244
  by (rule nat_le_eq_zle [symmetric]) simp
haftmann@37660
  1245
haftmann@37660
  1246
lemma word_less_nat_alt: "(a < b) = (unat a < unat b)"
haftmann@37660
  1247
  unfolding unat_def word_less_alt
haftmann@37660
  1248
  by (rule nat_less_eq_zless [symmetric]) simp
haftmann@37660
  1249
  
haftmann@37660
  1250
lemma wi_less: 
haftmann@37660
  1251
  "(word_of_int n < (word_of_int m :: 'a :: len0 word)) = 
haftmann@37660
  1252
    (n mod 2 ^ len_of TYPE('a) < m mod 2 ^ len_of TYPE('a))"
haftmann@37660
  1253
  unfolding word_less_alt by (simp add: word_uint.eq_norm)
haftmann@37660
  1254
haftmann@37660
  1255
lemma wi_le: 
haftmann@37660
  1256
  "(word_of_int n <= (word_of_int m :: 'a :: len0 word)) = 
haftmann@37660
  1257
    (n mod 2 ^ len_of TYPE('a) <= m mod 2 ^ len_of TYPE('a))"
haftmann@37660
  1258
  unfolding word_le_def by (simp add: word_uint.eq_norm)
haftmann@37660
  1259
haftmann@37660
  1260
lemma udvd_nat_alt: "a udvd b = (EX n>=0. unat b = n * unat a)"
haftmann@37660
  1261
  apply (unfold udvd_def)
haftmann@37660
  1262
  apply safe
haftmann@37660
  1263
   apply (simp add: unat_def nat_mult_distrib)
haftmann@37660
  1264
  apply (simp add: uint_nat int_mult)
haftmann@37660
  1265
  apply (rule exI)
haftmann@37660
  1266
  apply safe
haftmann@37660
  1267
   prefer 2
haftmann@37660
  1268
   apply (erule notE)
haftmann@37660
  1269
   apply (rule refl)
haftmann@37660
  1270
  apply force
haftmann@37660
  1271
  done
haftmann@37660
  1272
haftmann@37660
  1273
lemma udvd_iff_dvd: "x udvd y <-> unat x dvd unat y"
haftmann@37660
  1274
  unfolding dvd_def udvd_nat_alt by force
haftmann@37660
  1275
wenzelm@46475
  1276
lemmas unat_mono = word_less_nat_alt [THEN iffD1]
haftmann@37660
  1277
haftmann@41075
  1278
lemma unat_minus_one: "x ~= 0 \<Longrightarrow> unat (x - 1) = unat x - 1"
haftmann@37660
  1279
  apply (unfold unat_def)
haftmann@37660
  1280
  apply (simp only: int_word_uint word_arith_alts rdmods)
haftmann@37660
  1281
  apply (subgoal_tac "uint x >= 1")
haftmann@37660
  1282
   prefer 2
haftmann@37660
  1283
   apply (drule contrapos_nn)
haftmann@37660
  1284
    apply (erule word_uint.Rep_inverse' [symmetric])
haftmann@37660
  1285
   apply (insert uint_ge_0 [of x])[1]
haftmann@37660
  1286
   apply arith
haftmann@37660
  1287
  apply (rule box_equals)
haftmann@37660
  1288
    apply (rule nat_diff_distrib)
haftmann@37660
  1289
     prefer 2
haftmann@37660
  1290
     apply assumption
haftmann@37660
  1291
    apply simp
haftmann@37660
  1292
   apply (subst mod_pos_pos_trivial)
haftmann@37660
  1293
     apply arith
haftmann@37660
  1294
    apply (insert uint_lt2p [of x])[1]
haftmann@37660
  1295
    apply arith
haftmann@37660
  1296
   apply (rule refl)
haftmann@37660
  1297
  apply simp
haftmann@37660
  1298
  done
haftmann@37660
  1299
    
haftmann@41075
  1300
lemma measure_unat: "p ~= 0 \<Longrightarrow> unat (p - 1) < unat p"
haftmann@37660
  1301
  by (simp add: unat_minus_one) (simp add: unat_0_iff [symmetric])
haftmann@37660
  1302
  
wenzelm@46475
  1303
lemmas uint_add_ge0 [simp] = add_nonneg_nonneg [OF uint_ge_0 uint_ge_0]
wenzelm@46475
  1304
lemmas uint_mult_ge0 [simp] = mult_nonneg_nonneg [OF uint_ge_0 uint_ge_0]
haftmann@37660
  1305
haftmann@37660
  1306
lemma uint_sub_lt2p [simp]: 
haftmann@37660
  1307
  "uint (x :: 'a :: len0 word) - uint (y :: 'b :: len0 word) < 
haftmann@37660
  1308
    2 ^ len_of TYPE('a)"
haftmann@37660
  1309
  using uint_ge_0 [of y] uint_lt2p [of x] by arith
haftmann@37660
  1310
haftmann@37660
  1311
haftmann@37660
  1312
subsection "Conditions for the addition (etc) of two words to overflow"
haftmann@37660
  1313
haftmann@37660
  1314
lemma uint_add_lem: 
haftmann@37660
  1315
  "(uint x + uint y < 2 ^ len_of TYPE('a)) = 
haftmann@37660
  1316
    (uint (x + y :: 'a :: len0 word) = uint x + uint y)"
haftmann@37660
  1317
  by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem])
haftmann@37660
  1318
haftmann@37660
  1319
lemma uint_mult_lem: 
haftmann@37660
  1320
  "(uint x * uint y < 2 ^ len_of TYPE('a)) = 
haftmann@37660
  1321
    (uint (x * y :: 'a :: len0 word) = uint x * uint y)"
haftmann@37660
  1322
  by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem])
haftmann@37660
  1323
haftmann@37660
  1324
lemma uint_sub_lem: 
haftmann@37660
  1325
  "(uint x >= uint y) = (uint (x - y) = uint x - uint y)"
haftmann@37660
  1326
  by (unfold uint_word_ariths) (auto intro!: trans [OF _ int_mod_lem])
haftmann@37660
  1327
haftmann@37660
  1328
lemma uint_add_le: "uint (x + y) <= uint x + uint y"
haftmann@37660
  1329
  unfolding uint_word_ariths by (auto simp: mod_add_if_z)
haftmann@37660
  1330
haftmann@37660
  1331
lemma uint_sub_ge: "uint (x - y) >= uint x - uint y"
haftmann@37660
  1332
  unfolding uint_word_ariths by (auto simp: mod_sub_if_z)
haftmann@37660
  1333
wenzelm@46475
  1334
lemmas uint_sub_if' = trans [OF uint_word_ariths(1) mod_sub_if_z, simplified]
wenzelm@46475
  1335
lemmas uint_plus_if' = trans [OF uint_word_ariths(2) mod_add_if_z, simplified]
haftmann@37660
  1336
haftmann@37660
  1337
haftmann@37660
  1338
subsection {* Definition of uint\_arith *}
haftmann@37660
  1339
haftmann@37660
  1340
lemma word_of_int_inverse:
haftmann@41075
  1341
  "word_of_int r = a \<Longrightarrow> 0 <= r \<Longrightarrow> r < 2 ^ len_of TYPE('a) \<Longrightarrow> 
haftmann@37660
  1342
   uint (a::'a::len0 word) = r"
haftmann@37660
  1343
  apply (erule word_uint.Abs_inverse' [rotated])
haftmann@37660
  1344
  apply (simp add: uints_num)
haftmann@37660
  1345
  done
haftmann@37660
  1346
haftmann@37660
  1347
lemma uint_split:
haftmann@37660
  1348
  fixes x::"'a::len0 word"
haftmann@37660
  1349
  shows "P (uint x) = 
haftmann@37660
  1350
         (ALL i. word_of_int i = x & 0 <= i & i < 2^len_of TYPE('a) --> P i)"
haftmann@37660
  1351
  apply (fold word_int_case_def)
haftmann@37660
  1352
  apply (auto dest!: word_of_int_inverse simp: int_word_uint int_mod_eq'
haftmann@37660
  1353
              split: word_int_split)
haftmann@37660
  1354
  done
haftmann@37660
  1355
haftmann@37660
  1356
lemma uint_split_asm:
haftmann@37660
  1357
  fixes x::"'a::len0 word"
haftmann@37660
  1358
  shows "P (uint x) = 
haftmann@37660
  1359
         (~(EX i. word_of_int i = x & 0 <= i & i < 2^len_of TYPE('a) & ~ P i))"
haftmann@37660
  1360
  by (auto dest!: word_of_int_inverse 
haftmann@37660
  1361
           simp: int_word_uint int_mod_eq'
haftmann@37660
  1362
           split: uint_split)
haftmann@37660
  1363
haftmann@37660
  1364
lemmas uint_splits = uint_split uint_split_asm
haftmann@37660
  1365
haftmann@37660
  1366
lemmas uint_arith_simps = 
haftmann@37660
  1367
  word_le_def word_less_alt
haftmann@37660
  1368
  word_uint.Rep_inject [symmetric] 
haftmann@37660
  1369
  uint_sub_if' uint_plus_if'
haftmann@37660
  1370
haftmann@37660
  1371
(* use this to stop, eg, 2 ^ len_of TYPE (32) being simplified *)
haftmann@41075
  1372
lemma power_False_cong: "False \<Longrightarrow> a ^ b = c ^ d" 
haftmann@37660
  1373
  by auto
haftmann@37660
  1374
haftmann@37660
  1375
(* uint_arith_tac: reduce to arithmetic on int, try to solve by arith *)
haftmann@37660
  1376
ML {*
haftmann@37660
  1377
fun uint_arith_ss_of ss = 
haftmann@37660
  1378
  ss addsimps @{thms uint_arith_simps}
haftmann@37660
  1379
     delsimps @{thms word_uint.Rep_inject}
wenzelm@46491
  1380
     |> fold Splitter.add_split @{thms split_if_asm}
wenzelm@46491
  1381
     |> fold Simplifier.add_cong @{thms power_False_cong}
haftmann@37660
  1382
haftmann@37660
  1383
fun uint_arith_tacs ctxt = 
haftmann@37660
  1384
  let
haftmann@37660
  1385
    fun arith_tac' n t =
haftmann@37660
  1386
      Arith_Data.verbose_arith_tac ctxt n t
haftmann@37660
  1387
        handle Cooper.COOPER _ => Seq.empty;
haftmann@37660
  1388
  in 
wenzelm@43665
  1389
    [ clarify_tac ctxt 1,
wenzelm@43665
  1390
      full_simp_tac (uint_arith_ss_of (simpset_of ctxt)) 1,
wenzelm@46491
  1391
      ALLGOALS (full_simp_tac (HOL_ss |> fold Splitter.add_split @{thms uint_splits}
wenzelm@46491
  1392
                                      |> fold Simplifier.add_cong @{thms power_False_cong})),
haftmann@37660
  1393
      rewrite_goals_tac @{thms word_size}, 
haftmann@37660
  1394
      ALLGOALS  (fn n => REPEAT (resolve_tac [allI, impI] n) THEN      
haftmann@37660
  1395
                         REPEAT (etac conjE n) THEN
haftmann@37660
  1396
                         REPEAT (dtac @{thm word_of_int_inverse} n 
haftmann@37660
  1397
                                 THEN atac n 
haftmann@37660
  1398
                                 THEN atac n)),
haftmann@37660
  1399
      TRYALL arith_tac' ]
haftmann@37660
  1400
  end
haftmann@37660
  1401
haftmann@37660
  1402
fun uint_arith_tac ctxt = SELECT_GOAL (EVERY (uint_arith_tacs ctxt))
haftmann@37660
  1403
*}
haftmann@37660
  1404
haftmann@37660
  1405
method_setup uint_arith = 
haftmann@37660
  1406
  {* Scan.succeed (SIMPLE_METHOD' o uint_arith_tac) *}
haftmann@37660
  1407
  "solving word arithmetic via integers and arith"
haftmann@37660
  1408
haftmann@37660
  1409
haftmann@37660
  1410
subsection "More on overflows and monotonicity"
haftmann@37660
  1411
haftmann@37660
  1412
lemma no_plus_overflow_uint_size: 
haftmann@37660
  1413
  "((x :: 'a :: len0 word) <= x + y) = (uint x + uint y < 2 ^ size x)"
haftmann@37660
  1414
  unfolding word_size by uint_arith
haftmann@37660
  1415
haftmann@37660
  1416
lemmas no_olen_add = no_plus_overflow_uint_size [unfolded word_size]
haftmann@37660
  1417
haftmann@37660
  1418
lemma no_ulen_sub: "((x :: 'a :: len0 word) >= x - y) = (uint y <= uint x)"
haftmann@37660
  1419
  by uint_arith
haftmann@37660
  1420
haftmann@37660
  1421
lemma no_olen_add':
haftmann@37660
  1422
  fixes x :: "'a::len0 word"
haftmann@37660
  1423
  shows "(x \<le> y + x) = (uint y + uint x < 2 ^ len_of TYPE('a))"
huffman@46417
  1424
  by (simp add: add_ac no_olen_add)
haftmann@37660
  1425
wenzelm@46475
  1426
lemmas olen_add_eqv = trans [OF no_olen_add no_olen_add' [symmetric]]
wenzelm@46475
  1427
wenzelm@46475
  1428
lemmas uint_plus_simple_iff = trans [OF no_olen_add uint_add_lem]
wenzelm@46475
  1429
lemmas uint_plus_simple = uint_plus_simple_iff [THEN iffD1]
wenzelm@46475
  1430
lemmas uint_minus_simple_iff = trans [OF no_ulen_sub uint_sub_lem]
haftmann@37660
  1431
lemmas uint_minus_simple_alt = uint_sub_lem [folded word_le_def]
haftmann@37660
  1432
lemmas word_sub_le_iff = no_ulen_sub [folded word_le_def]
wenzelm@46475
  1433
lemmas word_sub_le = word_sub_le_iff [THEN iffD2]
haftmann@37660
  1434
haftmann@37660
  1435
lemma word_less_sub1: 
haftmann@41075
  1436
  "(x :: 'a :: len word) ~= 0 \<Longrightarrow> (1 < x) = (0 < x - 1)"
haftmann@37660
  1437
  by uint_arith
haftmann@37660
  1438
haftmann@37660
  1439
lemma word_le_sub1: 
haftmann@41075
  1440
  "(x :: 'a :: len word) ~= 0 \<Longrightarrow> (1 <= x) = (0 <= x - 1)"
haftmann@37660
  1441
  by uint_arith
haftmann@37660
  1442
haftmann@37660
  1443
lemma sub_wrap_lt: 
haftmann@37660
  1444
  "((x :: 'a :: len0 word) < x - z) = (x < z)"
haftmann@37660
  1445
  by uint_arith
haftmann@37660
  1446
haftmann@37660
  1447
lemma sub_wrap: 
haftmann@37660
  1448
  "((x :: 'a :: len0 word) <= x - z) = (z = 0 | x < z)"
haftmann@37660
  1449
  by uint_arith
haftmann@37660
  1450
haftmann@37660
  1451
lemma plus_minus_not_NULL_ab: 
haftmann@41075
  1452
  "(x :: 'a :: len0 word) <= ab - c \<Longrightarrow> c <= ab \<Longrightarrow> c ~= 0 \<Longrightarrow> x + c ~= 0"
haftmann@37660
  1453
  by uint_arith
haftmann@37660
  1454
haftmann@37660
  1455
lemma plus_minus_no_overflow_ab: 
haftmann@41075
  1456
  "(x :: 'a :: len0 word) <= ab - c \<Longrightarrow> c <= ab \<Longrightarrow> x <= x + c" 
haftmann@37660
  1457
  by uint_arith
haftmann@37660
  1458
haftmann@37660
  1459
lemma le_minus': 
haftmann@41075
  1460
  "(a :: 'a :: len0 word) + c <= b \<Longrightarrow> a <= a + c \<Longrightarrow> c <= b - a"
haftmann@37660
  1461
  by uint_arith
haftmann@37660
  1462
haftmann@37660
  1463
lemma le_plus': 
haftmann@41075
  1464
  "(a :: 'a :: len0 word) <= b \<Longrightarrow> c <= b - a \<Longrightarrow> a + c <= b"
haftmann@37660
  1465
  by uint_arith
haftmann@37660
  1466
haftmann@37660
  1467
lemmas le_plus = le_plus' [rotated]
haftmann@37660
  1468
huffman@46881
  1469
lemmas le_minus = leD [THEN thin_rl, THEN le_minus'] (* FIXME *)
haftmann@37660
  1470
haftmann@37660
  1471
lemma word_plus_mono_right: 
haftmann@41075
  1472
  "(y :: 'a :: len0 word) <= z \<Longrightarrow> x <= x + z \<Longrightarrow> x + y <= x + z"
haftmann@37660
  1473
  by uint_arith
haftmann@37660
  1474
haftmann@37660
  1475
lemma word_less_minus_cancel: 
haftmann@41075
  1476
  "y - x < z - x \<Longrightarrow> x <= z \<Longrightarrow> (y :: 'a :: len0 word) < z"
haftmann@37660
  1477
  by uint_arith
haftmann@37660
  1478
haftmann@37660
  1479
lemma word_less_minus_mono_left: 
haftmann@41075
  1480
  "(y :: 'a :: len0 word) < z \<Longrightarrow> x <= y \<Longrightarrow> y - x < z - x"
haftmann@37660
  1481
  by uint_arith
haftmann@37660
  1482
haftmann@37660
  1483
lemma word_less_minus_mono:  
haftmann@41075
  1484
  "a < c \<Longrightarrow> d < b \<Longrightarrow> a - b < a \<Longrightarrow> c - d < c 
haftmann@41075
  1485
  \<Longrightarrow> a - b < c - (d::'a::len word)"
haftmann@37660
  1486
  by uint_arith
haftmann@37660
  1487
haftmann@37660
  1488
lemma word_le_minus_cancel: 
haftmann@41075
  1489
  "y - x <= z - x \<Longrightarrow> x <= z \<Longrightarrow> (y :: 'a :: len0 word) <= z"
haftmann@37660
  1490
  by uint_arith
haftmann@37660
  1491
haftmann@37660
  1492
lemma word_le_minus_mono_left: 
haftmann@41075
  1493
  "(y :: 'a :: len0 word) <= z \<Longrightarrow> x <= y \<Longrightarrow> y - x <= z - x"
haftmann@37660
  1494
  by uint_arith
haftmann@37660
  1495
haftmann@37660
  1496
lemma word_le_minus_mono:  
haftmann@41075
  1497
  "a <= c \<Longrightarrow> d <= b \<Longrightarrow> a - b <= a \<Longrightarrow> c - d <= c 
haftmann@41075
  1498
  \<Longrightarrow> a - b <= c - (d::'a::len word)"
haftmann@37660
  1499
  by uint_arith
haftmann@37660
  1500
haftmann@37660
  1501
lemma plus_le_left_cancel_wrap: 
haftmann@41075
  1502
  "(x :: 'a :: len0 word) + y' < x \<Longrightarrow> x + y < x \<Longrightarrow> (x + y' < x + y) = (y' < y)"
haftmann@37660
  1503
  by uint_arith
haftmann@37660
  1504
haftmann@37660
  1505
lemma plus_le_left_cancel_nowrap: 
haftmann@41075
  1506
  "(x :: 'a :: len0 word) <= x + y' \<Longrightarrow> x <= x + y \<Longrightarrow> 
haftmann@37660
  1507
    (x + y' < x + y) = (y' < y)" 
haftmann@37660
  1508
  by uint_arith
haftmann@37660
  1509
haftmann@37660
  1510
lemma word_plus_mono_right2: 
haftmann@41075
  1511
  "(a :: 'a :: len0 word) <= a + b \<Longrightarrow> c <= b \<Longrightarrow> a <= a + c"
haftmann@37660
  1512
  by uint_arith
haftmann@37660
  1513
haftmann@37660
  1514
lemma word_less_add_right: 
haftmann@41075
  1515
  "(x :: 'a :: len0 word) < y - z \<Longrightarrow> z <= y \<Longrightarrow> x + z < y"
haftmann@37660
  1516
  by uint_arith
haftmann@37660
  1517
haftmann@37660
  1518
lemma word_less_sub_right: 
haftmann@41075
  1519
  "(x :: 'a :: len0 word) < y + z \<Longrightarrow> y <= x \<Longrightarrow> x - y < z"
haftmann@37660
  1520
  by uint_arith
haftmann@37660
  1521
haftmann@37660
  1522
lemma word_le_plus_either: 
haftmann@41075
  1523
  "(x :: 'a :: len0 word) <= y | x <= z \<Longrightarrow> y <= y + z \<Longrightarrow> x <= y + z"
haftmann@37660
  1524
  by uint_arith
haftmann@37660
  1525
haftmann@37660
  1526
lemma word_less_nowrapI: 
haftmann@41075
  1527
  "(x :: 'a :: len0 word) < z - k \<Longrightarrow> k <= z \<Longrightarrow> 0 < k \<Longrightarrow> x < x + k"
haftmann@37660
  1528
  by uint_arith
haftmann@37660
  1529
haftmann@41075
  1530
lemma inc_le: "(i :: 'a :: len word) < m \<Longrightarrow> i + 1 <= m"
haftmann@37660
  1531
  by uint_arith
haftmann@37660
  1532
haftmann@37660
  1533
lemma inc_i: 
haftmann@41075
  1534
  "(1 :: 'a :: len word) <= i \<Longrightarrow> i < m \<Longrightarrow> 1 <= (i + 1) & i + 1 <= m"
haftmann@37660
  1535
  by uint_arith
haftmann@37660
  1536
haftmann@37660
  1537
lemma udvd_incr_lem:
haftmann@41075
  1538
  "up < uq \<Longrightarrow> up = ua + n * uint K \<Longrightarrow> 
haftmann@41075
  1539
    uq = ua + n' * uint K \<Longrightarrow> up + uint K <= uq"
haftmann@37660
  1540
  apply clarsimp
haftmann@37660
  1541
  apply (drule less_le_mult)
haftmann@37660
  1542
  apply safe
haftmann@37660
  1543
  done
haftmann@37660
  1544
haftmann@37660
  1545
lemma udvd_incr': 
haftmann@41075
  1546
  "p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow> 
haftmann@41075
  1547
    uint q = ua + n' * uint K \<Longrightarrow> p + K <= q" 
haftmann@37660
  1548
  apply (unfold word_less_alt word_le_def)
haftmann@37660
  1549
  apply (drule (2) udvd_incr_lem)
haftmann@37660
  1550
  apply (erule uint_add_le [THEN order_trans])
haftmann@37660
  1551
  done
haftmann@37660
  1552
haftmann@37660
  1553
lemma udvd_decr': 
haftmann@41075
  1554
  "p < q \<Longrightarrow> uint p = ua + n * uint K \<Longrightarrow> 
haftmann@41075
  1555
    uint q = ua + n' * uint K \<Longrightarrow> p <= q - K"
haftmann@37660
  1556
  apply (unfold word_less_alt word_le_def)
haftmann@37660
  1557
  apply (drule (2) udvd_incr_lem)
haftmann@37660
  1558
  apply (drule le_diff_eq [THEN iffD2])
haftmann@37660
  1559
  apply (erule order_trans)
haftmann@37660
  1560
  apply (rule uint_sub_ge)
haftmann@37660
  1561
  done
haftmann@37660
  1562
huffman@46687
  1563
lemmas udvd_incr_lem0 = udvd_incr_lem [where ua=0, unfolded add_0_left]
huffman@46687
  1564
lemmas udvd_incr0 = udvd_incr' [where ua=0, unfolded add_0_left]
huffman@46687
  1565
lemmas udvd_decr0 = udvd_decr' [where ua=0, unfolded add_0_left]
haftmann@37660
  1566
haftmann@37660
  1567
lemma udvd_minus_le': 
haftmann@41075
  1568
  "xy < k \<Longrightarrow> z udvd xy \<Longrightarrow> z udvd k \<Longrightarrow> xy <= k - z"
haftmann@37660
  1569
  apply (unfold udvd_def)
haftmann@37660
  1570
  apply clarify
haftmann@37660
  1571
  apply (erule (2) udvd_decr0)
haftmann@37660
  1572
  done
haftmann@37660
  1573
huffman@46155
  1574
ML {* Delsimprocs [@{simproc linordered_ring_less_cancel_factor}] *}
haftmann@37660
  1575
haftmann@37660
  1576
lemma udvd_incr2_K: 
haftmann@41075
  1577
  "p < a + s \<Longrightarrow> a <= a + s \<Longrightarrow> K udvd s \<Longrightarrow> K udvd p - a \<Longrightarrow> a <= p \<Longrightarrow> 
haftmann@41075
  1578
    0 < K \<Longrightarrow> p <= p + K & p + K <= a + s"
haftmann@37660
  1579
  apply (unfold udvd_def)
haftmann@37660
  1580
  apply clarify
haftmann@37660
  1581
  apply (simp add: uint_arith_simps split: split_if_asm)
haftmann@37660
  1582
   prefer 2 
haftmann@37660
  1583
   apply (insert uint_range' [of s])[1]
haftmann@37660
  1584
   apply arith
haftmann@37660
  1585
  apply (drule add_commute [THEN xtr1])
haftmann@37660
  1586
  apply (simp add: diff_less_eq [symmetric])
haftmann@37660
  1587
  apply (drule less_le_mult)
haftmann@37660
  1588
   apply arith
haftmann@37660
  1589
  apply simp
haftmann@37660
  1590
  done
haftmann@37660
  1591
huffman@46155
  1592
ML {* Addsimprocs [@{simproc linordered_ring_less_cancel_factor}] *}
haftmann@37660
  1593
haftmann@37660
  1594
(* links with rbl operations *)
haftmann@37660
  1595
lemma word_succ_rbl:
haftmann@41075
  1596
  "to_bl w = bl \<Longrightarrow> to_bl (word_succ w) = (rev (rbl_succ (rev bl)))"
haftmann@37660
  1597
  apply (unfold word_succ_def)
haftmann@37660
  1598
  apply clarify
haftmann@37660
  1599
  apply (simp add: to_bl_of_bin)
huffman@47522
  1600
  apply (simp add: to_bl_def rbl_succ)
haftmann@37660
  1601
  done
haftmann@37660
  1602
haftmann@37660
  1603
lemma word_pred_rbl:
haftmann@41075
  1604
  "to_bl w = bl \<Longrightarrow> to_bl (word_pred w) = (rev (rbl_pred (rev bl)))"
haftmann@37660
  1605
  apply (unfold word_pred_def)
haftmann@37660
  1606
  apply clarify
haftmann@37660
  1607
  apply (simp add: to_bl_of_bin)
huffman@47522
  1608
  apply (simp add: to_bl_def rbl_pred)
haftmann@37660
  1609
  done
haftmann@37660
  1610
haftmann@37660
  1611
lemma word_add_rbl:
haftmann@41075
  1612
  "to_bl v = vbl \<Longrightarrow> to_bl w = wbl \<Longrightarrow> 
haftmann@37660
  1613
    to_bl (v + w) = (rev (rbl_add (rev vbl) (rev wbl)))"
haftmann@37660
  1614
  apply (unfold word_add_def)
haftmann@37660
  1615
  apply clarify
haftmann@37660
  1616
  apply (simp add: to_bl_of_bin)
haftmann@37660
  1617
  apply (simp add: to_bl_def rbl_add)
haftmann@37660
  1618
  done
haftmann@37660
  1619
haftmann@37660
  1620
lemma word_mult_rbl:
haftmann@41075
  1621
  "to_bl v = vbl \<Longrightarrow> to_bl w = wbl \<Longrightarrow> 
haftmann@37660
  1622
    to_bl (v * w) = (rev (rbl_mult (rev vbl) (rev wbl)))"
haftmann@37660
  1623
  apply (unfold word_mult_def)
haftmann@37660
  1624
  apply clarify
haftmann@37660
  1625
  apply (simp add: to_bl_of_bin)
haftmann@37660
  1626
  apply (simp add: to_bl_def rbl_mult)
haftmann@37660
  1627
  done
haftmann@37660
  1628
haftmann@37660
  1629
lemma rtb_rbl_ariths:
haftmann@37660
  1630
  "rev (to_bl w) = ys \<Longrightarrow> rev (to_bl (word_succ w)) = rbl_succ ys"
haftmann@37660
  1631
  "rev (to_bl w) = ys \<Longrightarrow> rev (to_bl (word_pred w)) = rbl_pred ys"
haftmann@41075
  1632
  "rev (to_bl v) = ys \<Longrightarrow> rev (to_bl w) = xs \<Longrightarrow> rev (to_bl (v * w)) = rbl_mult ys xs"
haftmann@41075
  1633
  "rev (to_bl v) = ys \<Longrightarrow> rev (to_bl w) = xs \<Longrightarrow> rev (to_bl (v + w)) = rbl_add ys xs"
haftmann@37660
  1634
  by (auto simp: rev_swap [symmetric] word_succ_rbl 
haftmann@37660
  1635
                 word_pred_rbl word_mult_rbl word_add_rbl)
haftmann@37660
  1636
haftmann@37660
  1637
haftmann@37660
  1638
subsection "Arithmetic type class instantiations"
haftmann@37660
  1639
haftmann@37660
  1640
lemmas word_le_0_iff [simp] =
haftmann@37660
  1641
  word_zero_le [THEN leD, THEN linorder_antisym_conv1]
haftmann@37660
  1642
haftmann@37660
  1643
lemma word_of_int_nat: 
haftmann@41075
  1644
  "0 <= x \<Longrightarrow> word_of_int x = of_nat (nat x)"
haftmann@37660
  1645
  by (simp add: of_nat_nat word_of_int)
haftmann@37660
  1646
huffman@47474
  1647
(* note that iszero_def is only for class comm_semiring_1_cancel,
huffman@47474
  1648
   which requires word length >= 1, ie 'a :: len word *) 
huffman@47474
  1649
lemma iszero_word_no [simp]:
haftmann@37660
  1650
  "iszero (number_of bin :: 'a :: len word) = 
huffman@46872
  1651
    iszero (bintrunc (len_of TYPE('a)) (number_of bin))"
huffman@47474
  1652
  using word_ubin.norm_eq_iff [where 'a='a, of "number_of bin" 0]
huffman@47474
  1653
  by (simp add: iszero_def [symmetric])
huffman@47474
  1654
haftmann@37660
  1655
haftmann@37660
  1656
subsection "Word and nat"
haftmann@37660
  1657
huffman@46682
  1658
lemma td_ext_unat [OF refl]:
haftmann@41075
  1659
  "n = len_of TYPE ('a :: len) \<Longrightarrow> 
haftmann@37660
  1660
    td_ext (unat :: 'a word => nat) of_nat 
haftmann@37660
  1661
    (unats n) (%i. i mod 2 ^ n)"
haftmann@37660
  1662
  apply (unfold td_ext_def' unat_def word_of_nat unats_uints)
haftmann@37660
  1663
  apply (auto intro!: imageI simp add : word_of_int_hom_syms)
haftmann@37660
  1664
  apply (erule word_uint.Abs_inverse [THEN arg_cong])
haftmann@37660
  1665
  apply (simp add: int_word_uint nat_mod_distrib nat_power_eq)
haftmann@37660
  1666
  done
haftmann@37660
  1667
wenzelm@46475
  1668
lemmas unat_of_nat = td_ext_unat [THEN td_ext.eq_norm]
haftmann@37660
  1669
haftmann@37660
  1670
interpretation word_unat:
haftmann@37660
  1671
  td_ext "unat::'a::len word => nat" 
haftmann@37660
  1672
         of_nat 
haftmann@37660
  1673
         "unats (len_of TYPE('a::len))"
haftmann@37660
  1674
         "%i. i mod 2 ^ len_of TYPE('a::len)"
haftmann@37660
  1675
  by (rule td_ext_unat)
haftmann@37660
  1676
haftmann@37660
  1677
lemmas td_unat = word_unat.td_thm
haftmann@37660
  1678
haftmann@37660
  1679
lemmas unat_lt2p [iff] = word_unat.Rep [unfolded unats_def mem_Collect_eq]
haftmann@37660
  1680
haftmann@41075
  1681
lemma unat_le: "y <= unat (z :: 'a :: len word) \<Longrightarrow> y : unats (len_of TYPE ('a))"
haftmann@37660
  1682
  apply (unfold unats_def)
haftmann@37660
  1683
  apply clarsimp
haftmann@37660
  1684
  apply (rule xtrans, rule unat_lt2p, assumption) 
haftmann@37660
  1685
  done
haftmann@37660
  1686
haftmann@37660
  1687
lemma word_nchotomy:
haftmann@37660
  1688
  "ALL w. EX n. (w :: 'a :: len word) = of_nat n & n < 2 ^ len_of TYPE ('a)"
haftmann@37660
  1689
  apply (rule allI)
haftmann@37660
  1690
  apply (rule word_unat.Abs_cases)
haftmann@37660
  1691
  apply (unfold unats_def)
haftmann@37660
  1692
  apply auto
haftmann@37660
  1693
  done
haftmann@37660
  1694
haftmann@37660
  1695
lemma of_nat_eq:
haftmann@37660
  1696
  fixes w :: "'a::len word"
haftmann@37660
  1697
  shows "(of_nat n = w) = (\<exists>q. n = unat w + q * 2 ^ len_of TYPE('a))"
haftmann@37660
  1698
  apply (rule trans)
haftmann@37660
  1699
   apply (rule word_unat.inverse_norm)
haftmann@37660
  1700
  apply (rule iffI)
haftmann@37660
  1701
   apply (rule mod_eqD)
haftmann@37660
  1702
   apply simp
haftmann@37660
  1703
  apply clarsimp
haftmann@37660
  1704
  done
haftmann@37660
  1705
haftmann@37660
  1706
lemma of_nat_eq_size: 
haftmann@37660
  1707
  "(of_nat n = w) = (EX q. n = unat w + q * 2 ^ size w)"
haftmann@37660
  1708
  unfolding word_size by (rule of_nat_eq)
haftmann@37660
  1709
haftmann@37660
  1710
lemma of_nat_0:
haftmann@37660
  1711
  "(of_nat m = (0::'a::len word)) = (\<exists>q. m = q * 2 ^ len_of TYPE('a))"
haftmann@37660
  1712
  by (simp add: of_nat_eq)
haftmann@37660
  1713
huffman@46676
  1714
lemma of_nat_2p [simp]:
huffman@46676
  1715
  "of_nat (2 ^ len_of TYPE('a)) = (0::'a::len word)"
huffman@46676
  1716
  by (fact mult_1 [symmetric, THEN iffD2 [OF of_nat_0 exI]])
haftmann@37660
  1717
haftmann@41075
  1718
lemma of_nat_gt_0: "of_nat k ~= 0 \<Longrightarrow> 0 < k"
haftmann@37660
  1719
  by (cases k) auto
haftmann@37660
  1720
haftmann@37660
  1721
lemma of_nat_neq_0: 
haftmann@41075
  1722
  "0 < k \<Longrightarrow> k < 2 ^ len_of TYPE ('a :: len) \<Longrightarrow> of_nat k ~= (0 :: 'a word)"
haftmann@37660
  1723
  by (clarsimp simp add : of_nat_0)
haftmann@37660
  1724
haftmann@37660
  1725
lemma Abs_fnat_hom_add:
haftmann@37660
  1726
  "of_nat a + of_nat b = of_nat (a + b)"
haftmann@37660
  1727
  by simp
haftmann@37660
  1728
haftmann@37660
  1729
lemma Abs_fnat_hom_mult:
haftmann@37660
  1730
  "of_nat a * of_nat b = (of_nat (a * b) :: 'a :: len word)"
huffman@46883
  1731
  by (simp add: word_of_nat wi_hom_mult zmult_int)
haftmann@37660
  1732
haftmann@37660
  1733
lemma Abs_fnat_hom_Suc:
haftmann@37660
  1734
  "word_succ (of_nat a) = of_nat (Suc a)"
huffman@46883
  1735
  by (simp add: word_of_nat wi_hom_succ add_ac)
haftmann@37660
  1736
haftmann@37660
  1737
lemma Abs_fnat_hom_0: "(0::'a::len word) = of_nat 0"
huffman@46866
  1738
  by simp
haftmann@37660
  1739
haftmann@37660
  1740
lemma Abs_fnat_hom_1: "(1::'a::len word) = of_nat (Suc 0)"
huffman@46866
  1741
  by simp
haftmann@37660
  1742
haftmann@37660
  1743
lemmas Abs_fnat_homs = 
haftmann@37660
  1744
  Abs_fnat_hom_add Abs_fnat_hom_mult Abs_fnat_hom_Suc 
haftmann@37660
  1745
  Abs_fnat_hom_0 Abs_fnat_hom_1
haftmann@37660
  1746
haftmann@37660
  1747
lemma word_arith_nat_add:
haftmann@37660
  1748
  "a + b = of_nat (unat a + unat b)" 
haftmann@37660
  1749
  by simp
haftmann@37660
  1750
haftmann@37660
  1751
lemma word_arith_nat_mult:
haftmann@37660
  1752
  "a * b = of_nat (unat a * unat b)"
huffman@46866
  1753
  by (simp add: of_nat_mult)
haftmann@37660
  1754
    
haftmann@37660
  1755
lemma word_arith_nat_Suc:
haftmann@37660
  1756
  "word_succ a = of_nat (Suc (unat a))"
haftmann@37660
  1757
  by (subst Abs_fnat_hom_Suc [symmetric]) simp
haftmann@37660
  1758
haftmann@37660
  1759
lemma word_arith_nat_div:
haftmann@37660
  1760
  "a div b = of_nat (unat a div unat b)"
haftmann@37660
  1761
  by (simp add: word_div_def word_of_nat zdiv_int uint_nat)
haftmann@37660
  1762
haftmann@37660
  1763
lemma word_arith_nat_mod:
haftmann@37660
  1764
  "a mod b = of_nat (unat a mod unat b)"
haftmann@37660
  1765
  by (simp add: word_mod_def word_of_nat zmod_int uint_nat)
haftmann@37660
  1766
haftmann@37660
  1767
lemmas word_arith_nat_defs =
haftmann@37660
  1768
  word_arith_nat_add word_arith_nat_mult
haftmann@37660
  1769
  word_arith_nat_Suc Abs_fnat_hom_0
haftmann@37660
  1770
  Abs_fnat_hom_1 word_arith_nat_div
haftmann@37660
  1771
  word_arith_nat_mod 
haftmann@37660
  1772
huffman@46687
  1773
lemma unat_cong: "x = y \<Longrightarrow> unat x = unat y"
huffman@46687
  1774
  by simp
haftmann@37660
  1775
  
haftmann@37660
  1776
lemmas unat_word_ariths = word_arith_nat_defs
wenzelm@46475
  1777
  [THEN trans [OF unat_cong unat_of_nat]]
haftmann@37660
  1778
haftmann@37660
  1779
lemmas word_sub_less_iff = word_sub_le_iff
huffman@46687
  1780
  [unfolded linorder_not_less [symmetric] Not_eq_iff]
haftmann@37660
  1781
haftmann@37660
  1782
lemma unat_add_lem: 
haftmann@37660
  1783
  "(unat x + unat y < 2 ^ len_of TYPE('a)) = 
haftmann@37660
  1784
    (unat (x + y :: 'a :: len word) = unat x + unat y)"
haftmann@37660
  1785
  unfolding unat_word_ariths
haftmann@37660
  1786
  by (auto intro!: trans [OF _ nat_mod_lem])
haftmann@37660
  1787
haftmann@37660
  1788
lemma unat_mult_lem: 
haftmann@37660
  1789
  "(unat x * unat y < 2 ^ len_of TYPE('a)) = 
haftmann@37660
  1790
    (unat (x * y :: 'a :: len word) = unat x * unat y)"
haftmann@37660
  1791
  unfolding unat_word_ariths
haftmann@37660
  1792
  by (auto intro!: trans [OF _ nat_mod_lem])
haftmann@37660
  1793
wenzelm@46475
  1794
lemmas unat_plus_if' = trans [OF unat_word_ariths(1) mod_nat_add, simplified]
haftmann@37660
  1795
haftmann@37660
  1796
lemma le_no_overflow: 
haftmann@41075
  1797
  "x <= b \<Longrightarrow> a <= a + b \<Longrightarrow> x <= a + (b :: 'a :: len0 word)"
haftmann@37660
  1798
  apply (erule order_trans)
haftmann@37660
  1799
  apply (erule olen_add_eqv [THEN iffD1])
haftmann@37660
  1800
  done
haftmann@37660
  1801
wenzelm@46475
  1802
lemmas un_ui_le = trans [OF word_le_nat_alt [symmetric] word_le_def]
haftmann@37660
  1803
haftmann@37660
  1804
lemma unat_sub_if_size:
haftmann@37660
  1805
  "unat (x - y) = (if unat y <= unat x 
haftmann@37660
  1806
   then unat x - unat y 
haftmann@37660
  1807
   else unat x + 2 ^ size x - unat y)"
haftmann@37660
  1808
  apply (unfold word_size)
haftmann@37660
  1809
  apply (simp add: un_ui_le)
haftmann@37660
  1810
  apply (auto simp add: unat_def uint_sub_if')
haftmann@37660
  1811
   apply (rule nat_diff_distrib)
haftmann@37660
  1812
    prefer 3
haftmann@37660
  1813
    apply (simp add: algebra_simps)
haftmann@37660
  1814
    apply (rule nat_diff_distrib [THEN trans])
haftmann@37660
  1815
      prefer 3
haftmann@37660
  1816
      apply (subst nat_add_distrib)
haftmann@37660
  1817
        prefer 3
haftmann@37660
  1818
        apply (simp add: nat_power_eq)
haftmann@37660
  1819
       apply auto
haftmann@37660
  1820
  apply uint_arith
haftmann@37660
  1821
  done
haftmann@37660
  1822
haftmann@37660
  1823
lemmas unat_sub_if' = unat_sub_if_size [unfolded word_size]
haftmann@37660
  1824
haftmann@37660
  1825
lemma unat_div: "unat ((x :: 'a :: len word) div y) = unat x div unat y"
haftmann@37660
  1826
  apply (simp add : unat_word_ariths)
haftmann@37660
  1827
  apply (rule unat_lt2p [THEN xtr7, THEN nat_mod_eq'])
haftmann@37660
  1828
  apply (rule div_le_dividend)
haftmann@37660
  1829
  done
haftmann@37660
  1830
haftmann@37660
  1831
lemma unat_mod: "unat ((x :: 'a :: len word) mod y) = unat x mod unat y"
haftmann@37660
  1832
  apply (clarsimp simp add : unat_word_ariths)
haftmann@37660
  1833
  apply (cases "unat y")
haftmann@37660
  1834
   prefer 2
haftmann@37660
  1835
   apply (rule unat_lt2p [THEN xtr7, THEN nat_mod_eq'])
haftmann@37660
  1836
   apply (rule mod_le_divisor)
haftmann@37660
  1837
   apply auto
haftmann@37660
  1838
  done
haftmann@37660
  1839
haftmann@37660
  1840
lemma uint_div: "uint ((x :: 'a :: len word) div y) = uint x div uint y"
haftmann@37660
  1841
  unfolding uint_nat by (simp add : unat_div zdiv_int)
haftmann@37660
  1842
haftmann@37660
  1843
lemma uint_mod: "uint ((x :: 'a :: len word) mod y) = uint x mod uint y"
haftmann@37660
  1844
  unfolding uint_nat by (simp add : unat_mod zmod_int)
haftmann@37660
  1845
haftmann@37660
  1846
haftmann@37660
  1847
subsection {* Definition of unat\_arith tactic *}
haftmann@37660
  1848
haftmann@37660
  1849
lemma unat_split:
haftmann@37660
  1850
  fixes x::"'a::len word"
haftmann@37660
  1851
  shows "P (unat x) = 
haftmann@37660
  1852
         (ALL n. of_nat n = x & n < 2^len_of TYPE('a) --> P n)"
haftmann@37660
  1853
  by (auto simp: unat_of_nat)
haftmann@37660
  1854
haftmann@37660
  1855
lemma unat_split_asm:
haftmann@37660
  1856
  fixes x::"'a::len word"
haftmann@37660
  1857
  shows "P (unat x) = 
haftmann@37660
  1858
         (~(EX n. of_nat n = x & n < 2^len_of TYPE('a) & ~ P n))"
haftmann@37660
  1859
  by (auto simp: unat_of_nat)
haftmann@37660
  1860
haftmann@37660
  1861
lemmas of_nat_inverse = 
haftmann@37660
  1862
  word_unat.Abs_inverse' [rotated, unfolded unats_def, simplified]
haftmann@37660
  1863
haftmann@37660
  1864
lemmas unat_splits = unat_split unat_split_asm
haftmann@37660
  1865
haftmann@37660
  1866
lemmas unat_arith_simps =
haftmann@37660
  1867
  word_le_nat_alt word_less_nat_alt
haftmann@37660
  1868
  word_unat.Rep_inject [symmetric]
haftmann@37660
  1869
  unat_sub_if' unat_plus_if' unat_div unat_mod
haftmann@37660
  1870
haftmann@37660
  1871
(* unat_arith_tac: tactic to reduce word arithmetic to nat, 
haftmann@37660
  1872
   try to solve via arith *)
haftmann@37660
  1873
ML {*
haftmann@37660
  1874
fun unat_arith_ss_of ss = 
haftmann@37660
  1875
  ss addsimps @{thms unat_arith_simps}
haftmann@37660
  1876
     delsimps @{thms word_unat.Rep_inject}
wenzelm@46491
  1877
     |> fold Splitter.add_split @{thms split_if_asm}
wenzelm@46491
  1878
     |> fold Simplifier.add_cong @{thms power_False_cong}
haftmann@37660
  1879
haftmann@37660
  1880
fun unat_arith_tacs ctxt =   
haftmann@37660
  1881
  let
haftmann@37660
  1882
    fun arith_tac' n t =
haftmann@37660
  1883
      Arith_Data.verbose_arith_tac ctxt n t
haftmann@37660
  1884
        handle Cooper.COOPER _ => Seq.empty;
haftmann@37660
  1885
  in 
wenzelm@43665
  1886
    [ clarify_tac ctxt 1,
wenzelm@43665
  1887
      full_simp_tac (unat_arith_ss_of (simpset_of ctxt)) 1,
wenzelm@46491
  1888
      ALLGOALS (full_simp_tac (HOL_ss |> fold Splitter.add_split @{thms unat_splits}
wenzelm@46491
  1889
                                      |> fold Simplifier.add_cong @{thms power_False_cong})),
haftmann@37660
  1890
      rewrite_goals_tac @{thms word_size}, 
haftmann@37660
  1891
      ALLGOALS  (fn n => REPEAT (resolve_tac [allI, impI] n) THEN      
haftmann@37660
  1892
                         REPEAT (etac conjE n) THEN
haftmann@37660
  1893
                         REPEAT (dtac @{thm of_nat_inverse} n THEN atac n)),
haftmann@37660
  1894
      TRYALL arith_tac' ] 
haftmann@37660
  1895
  end
haftmann@37660
  1896
haftmann@37660
  1897
fun unat_arith_tac ctxt = SELECT_GOAL (EVERY (unat_arith_tacs ctxt))
haftmann@37660
  1898
*}
haftmann@37660
  1899
haftmann@37660
  1900
method_setup unat_arith = 
haftmann@37660
  1901
  {* Scan.succeed (SIMPLE_METHOD' o unat_arith_tac) *}
haftmann@37660
  1902
  "solving word arithmetic via natural numbers and arith"
haftmann@37660
  1903
haftmann@37660
  1904
lemma no_plus_overflow_unat_size: 
haftmann@37660
  1905
  "((x :: 'a :: len word) <= x + y) = (unat x + unat y < 2 ^ size x)" 
haftmann@37660
  1906
  unfolding word_size by unat_arith
haftmann@37660
  1907
haftmann@37660
  1908
lemmas no_olen_add_nat = no_plus_overflow_unat_size [unfolded word_size]
haftmann@37660
  1909
wenzelm@46475
  1910
lemmas unat_plus_simple = trans [OF no_olen_add_nat unat_add_lem]
haftmann@37660
  1911
haftmann@37660
  1912
lemma word_div_mult: 
haftmann@41075
  1913
  "(0 :: 'a :: len word) < y \<Longrightarrow> unat x * unat y < 2 ^ len_of TYPE('a) \<Longrightarrow> 
haftmann@37660
  1914
    x * y div y = x"
haftmann@37660
  1915
  apply unat_arith
haftmann@37660
  1916
  apply clarsimp
haftmann@37660
  1917
  apply (subst unat_mult_lem [THEN iffD1])
haftmann@37660
  1918
  apply auto
haftmann@37660
  1919
  done
haftmann@37660
  1920
haftmann@41075
  1921
lemma div_lt': "(i :: 'a :: len word) <= k div x \<Longrightarrow> 
haftmann@37660
  1922
    unat i * unat x < 2 ^ len_of TYPE('a)"
haftmann@37660
  1923
  apply unat_arith
haftmann@37660
  1924
  apply clarsimp
haftmann@37660
  1925
  apply (drule mult_le_mono1)
haftmann@37660
  1926
  apply (erule order_le_less_trans)
haftmann@37660
  1927
  apply (rule xtr7 [OF unat_lt2p div_mult_le])
haftmann@37660
  1928
  done
haftmann@37660
  1929
haftmann@37660
  1930
lemmas div_lt'' = order_less_imp_le [THEN div_lt']
haftmann@37660
  1931
haftmann@41075
  1932
lemma div_lt_mult: "(i :: 'a :: len word) < k div x \<Longrightarrow> 0 < x \<Longrightarrow> i * x < k"
haftmann@37660
  1933
  apply (frule div_lt'' [THEN unat_mult_lem [THEN iffD1]])
haftmann@37660
  1934
  apply (simp add: unat_arith_simps)
haftmann@37660
  1935
  apply (drule (1) mult_less_mono1)
haftmann@37660
  1936
  apply (erule order_less_le_trans)
haftmann@37660
  1937
  apply (rule div_mult_le)
haftmann@37660
  1938
  done
haftmann@37660
  1939
haftmann@37660
  1940
lemma div_le_mult: 
haftmann@41075
  1941
  "(i :: 'a :: len word) <= k div x \<Longrightarrow> 0 < x \<Longrightarrow> i * x <= k"
haftmann@37660
  1942
  apply (frule div_lt' [THEN unat_mult_lem [THEN iffD1]])
haftmann@37660
  1943
  apply (simp add: unat_arith_simps)
haftmann@37660
  1944
  apply (drule mult_le_mono1)
haftmann@37660
  1945
  apply (erule order_trans)
haftmann@37660
  1946
  apply (rule div_mult_le)
haftmann@37660
  1947
  done
haftmann@37660
  1948
haftmann@37660
  1949
lemma div_lt_uint': 
haftmann@41075
  1950
  "(i :: 'a :: len word) <= k div x \<Longrightarrow> uint i * uint x < 2 ^ len_of TYPE('a)"
haftmann@37660
  1951
  apply (unfold uint_nat)
haftmann@37660
  1952
  apply (drule div_lt')
haftmann@37660
  1953
  apply (simp add: zmult_int zless_nat_eq_int_zless [symmetric] 
haftmann@37660
  1954
                   nat_power_eq)
haftmann@37660
  1955
  done
haftmann@37660
  1956
haftmann@37660
  1957
lemmas div_lt_uint'' = order_less_imp_le [THEN div_lt_uint']
haftmann@37660
  1958
haftmann@37660
  1959
lemma word_le_exists': 
haftmann@41075
  1960
  "(x :: 'a :: len0 word) <= y \<Longrightarrow> 
haftmann@37660
  1961
    (EX z. y = x + z & uint x + uint z < 2 ^ len_of TYPE('a))"
haftmann@37660
  1962
  apply (rule exI)
haftmann@37660
  1963
  apply (rule conjI)
haftmann@37660
  1964
  apply (rule zadd_diff_inverse)
haftmann@37660
  1965
  apply uint_arith
haftmann@37660
  1966
  done
haftmann@37660
  1967
haftmann@37660
  1968
lemmas plus_minus_not_NULL = order_less_imp_le [THEN plus_minus_not_NULL_ab]
haftmann@37660
  1969
haftmann@37660
  1970
lemmas plus_minus_no_overflow =
haftmann@37660
  1971
  order_less_imp_le [THEN plus_minus_no_overflow_ab]
haftmann@37660
  1972
  
haftmann@37660
  1973
lemmas mcs = word_less_minus_cancel word_less_minus_mono_left
haftmann@37660
  1974
  word_le_minus_cancel word_le_minus_mono_left
haftmann@37660
  1975
wenzelm@46475
  1976
lemmas word_l_diffs = mcs [where y = "w + x", unfolded add_diff_cancel] for w x
wenzelm@46475
  1977
lemmas word_diff_ls = mcs [where z = "w + x", unfolded add_diff_cancel] for w x
wenzelm@46475
  1978
lemmas word_plus_mcs = word_diff_ls [where y = "v + x", unfolded add_diff_cancel] for v x
haftmann@37660
  1979
haftmann@37660
  1980
lemmas le_unat_uoi = unat_le [THEN word_unat.Abs_inverse]
haftmann@37660
  1981
haftmann@37660
  1982
lemmas thd = refl [THEN [2] split_div_lemma [THEN iffD2], THEN conjunct1]
haftmann@37660
  1983
haftmann@37660
  1984
lemma thd1:
haftmann@37660
  1985
  "a div b * b \<le> (a::nat)"
haftmann@37660
  1986
  using gt_or_eq_0 [of b]
haftmann@37660
  1987
  apply (rule disjE)
haftmann@37660
  1988
   apply (erule xtr4 [OF thd mult_commute])
haftmann@37660
  1989
  apply clarsimp
haftmann@37660
  1990
  done
haftmann@37660
  1991
wenzelm@46475
  1992
lemmas uno_simps [THEN le_unat_uoi] = mod_le_divisor div_le_dividend thd1 
haftmann@37660
  1993
haftmann@37660
  1994
lemma word_mod_div_equality:
haftmann@37660
  1995
  "(n div b) * b + (n mod b) = (n :: 'a :: len word)"
haftmann@37660
  1996
  apply (unfold word_less_nat_alt word_arith_nat_defs)
haftmann@37660
  1997
  apply (cut_tac y="unat b" in gt_or_eq_0)
haftmann@37660
  1998
  apply (erule disjE)
haftmann@37660
  1999
   apply (simp add: mod_div_equality uno_simps)
haftmann@37660
  2000
  apply simp
haftmann@37660
  2001
  done
haftmann@37660
  2002
haftmann@37660
  2003
lemma word_div_mult_le: "a div b * b <= (a::'a::len word)"
haftmann@37660
  2004
  apply (unfold word_le_nat_alt word_arith_nat_defs)
haftmann@37660
  2005
  apply (cut_tac y="unat b" in gt_or_eq_0)
haftmann@37660
  2006
  apply (erule disjE)
haftmann@37660
  2007
   apply (simp add: div_mult_le uno_simps)
haftmann@37660
  2008
  apply simp
haftmann@37660
  2009
  done
haftmann@37660
  2010
haftmann@41075
  2011
lemma word_mod_less_divisor: "0 < n \<Longrightarrow> m mod n < (n :: 'a :: len word)"
haftmann@37660
  2012
  apply (simp only: word_less_nat_alt word_arith_nat_defs)
haftmann@37660
  2013
  apply (clarsimp simp add : uno_simps)
haftmann@37660
  2014
  done
haftmann@37660
  2015
haftmann@37660
  2016
lemma word_of_int_power_hom: 
haftmann@37660
  2017
  "word_of_int a ^ n = (word_of_int (a ^ n) :: 'a :: len word)"
huffman@46866
  2018
  by (induct n) (simp_all add: wi_hom_mult [symmetric])
haftmann@37660
  2019
haftmann@37660
  2020
lemma word_arith_power_alt: 
haftmann@37660
  2021
  "a ^ n = (word_of_int (uint a ^ n) :: 'a :: len word)"
haftmann@37660
  2022
  by (simp add : word_of_int_power_hom [symmetric])
haftmann@37660
  2023
haftmann@37660
  2024
lemma of_bl_length_less: 
haftmann@41075
  2025
  "length x = k \<Longrightarrow> k < len_of TYPE('a) \<Longrightarrow> (of_bl x :: 'a :: len word) < 2 ^ k"
huffman@47517
  2026
  apply (unfold of_bl_def word_less_alt word_number_of_alt)
haftmann@37660
  2027
  apply safe
haftmann@37660
  2028
  apply (simp (no_asm) add: word_of_int_power_hom word_uint.eq_norm 
haftmann@37660
  2029
                       del: word_of_int_bin)
haftmann@37660
  2030
  apply (simp add: mod_pos_pos_trivial)
haftmann@37660
  2031
  apply (subst mod_pos_pos_trivial)
haftmann@37660
  2032
    apply (rule bl_to_bin_ge0)
haftmann@37660
  2033
   apply (rule order_less_trans)
haftmann@37660
  2034
    apply (rule bl_to_bin_lt2p)
haftmann@37660
  2035
   apply simp
huffman@47517
  2036
  apply (rule bl_to_bin_lt2p)
haftmann@37660
  2037
  done
haftmann@37660
  2038
haftmann@37660
  2039
haftmann@37660
  2040
subsection "Cardinality, finiteness of set of words"
haftmann@37660
  2041
huffman@46680
  2042
instance word :: (len0) finite
huffman@46680
  2043
  by (default, simp add: type_definition.univ [OF type_definition_word])
huffman@46680
  2044
huffman@46680
  2045
lemma card_word: "CARD('a::len0 word) = 2 ^ len_of TYPE('a)"
huffman@46680
  2046
  by (simp add: type_definition.card [OF type_definition_word] nat_power_eq)
haftmann@37660
  2047
haftmann@37660
  2048
lemma card_word_size: 
huffman@46680
  2049
  "card (UNIV :: 'a :: len0 word set) = (2 ^ size (x :: 'a word))"
haftmann@37660
  2050
unfolding word_size by (rule card_word)
haftmann@37660
  2051
haftmann@37660
  2052
haftmann@37660
  2053
subsection {* Bitwise Operations on Words *}
haftmann@37660
  2054
haftmann@37660
  2055
lemmas bin_log_bintrs = bin_trunc_not bin_trunc_xor bin_trunc_and bin_trunc_or
haftmann@37660
  2056
  
haftmann@37660
  2057
(* following definitions require both arithmetic and bit-wise word operations *)
haftmann@37660
  2058
haftmann@37660
  2059
(* to get word_no_log_defs from word_log_defs, using bin_log_bintrs *)
haftmann@37660
  2060
lemmas wils1 = bin_log_bintrs [THEN word_ubin.norm_eq_iff [THEN iffD1],
wenzelm@46475
  2061
  folded word_ubin.eq_norm, THEN eq_reflection]
haftmann@37660
  2062
haftmann@37660
  2063
(* the binary operations only *)
huffman@46883
  2064
(* BH: why is this needed? *)
haftmann@37660
  2065
lemmas word_log_binary_defs = 
haftmann@37660
  2066
  word_and_def word_or_def word_xor_def
haftmann@37660
  2067
huffman@46881
  2068
lemma word_wi_log_defs:
huffman@46881
  2069
  "NOT word_of_int a = word_of_int (NOT a)"
huffman@46881
  2070
  "word_of_int a AND word_of_int b = word_of_int (a AND b)"
huffman@46881
  2071
  "word_of_int a OR word_of_int b = word_of_int (a OR b)"
huffman@46881
  2072
  "word_of_int a XOR word_of_int b = word_of_int (a XOR b)"
huffman@46883
  2073
  unfolding word_log_defs wils1 by simp_all
huffman@46881
  2074
huffman@46881
  2075
lemma word_no_log_defs [simp]:
huffman@46881
  2076
  "NOT number_of a = (number_of (NOT a) :: 'a::len0 word)"
huffman@46881
  2077
  "number_of a AND number_of b = (number_of (a AND b) :: 'a word)"
huffman@46881
  2078
  "number_of a OR number_of b = (number_of (a OR b) :: 'a word)"
huffman@46881
  2079
  "number_of a XOR number_of b = (number_of (a XOR b) :: 'a word)"
huffman@46881
  2080
  unfolding word_no_wi word_wi_log_defs by simp_all
haftmann@37660
  2081
huffman@46935
  2082
text {* Special cases for when one of the arguments equals 1. *}
huffman@46935
  2083
huffman@46935
  2084
lemma word_bitwise_1_simps [simp]:
huffman@46935
  2085
  "NOT (1::'a::len0 word) = -2"
huffman@46935
  2086
  "(1::'a word) AND number_of b = number_of (Int.Bit1 Int.Pls AND b)"
huffman@46935
  2087
  "number_of a AND (1::'a word) = number_of (a AND Int.Bit1 Int.Pls)"
huffman@46935
  2088
  "(1::'a word) OR number_of b = number_of (Int.Bit1 Int.Pls OR b)"
huffman@46935
  2089
  "number_of a OR (1::'a word) = number_of (a OR Int.Bit1 Int.Pls)"
huffman@46935
  2090
  "(1::'a word) XOR number_of b = number_of (Int.Bit1 Int.Pls XOR b)"
huffman@46935
  2091
  "number_of a XOR (1::'a word) = number_of (a XOR Int.Bit1 Int.Pls)"
huffman@46935
  2092
  unfolding word_1_no word_no_log_defs by simp_all
huffman@46935
  2093
haftmann@37660
  2094
lemma uint_or: "uint (x OR y) = (uint x) OR (uint y)"
huffman@46421
  2095
  by (simp add: word_or_def word_wi_log_defs word_ubin.eq_norm
haftmann@37660
  2096
                bin_trunc_ao(2) [symmetric])
haftmann@37660
  2097
haftmann@37660
  2098
lemma uint_and: "uint (x AND y) = (uint x) AND (uint y)"
huffman@46421
  2099
  by (simp add: word_and_def word_wi_log_defs word_ubin.eq_norm
haftmann@37660
  2100
                bin_trunc_ao(1) [symmetric]) 
haftmann@37660
  2101
haftmann@37660
  2102
lemma word_ops_nth_size:
haftmann@41075
  2103
  "n < size (x::'a::len0 word) \<Longrightarrow> 
haftmann@37660
  2104
    (x OR y) !! n = (x !! n | y !! n) & 
haftmann@37660
  2105
    (x AND y) !! n = (x !! n & y !! n) & 
haftmann@37660
  2106
    (x XOR y) !! n = (x !! n ~= y !! n) & 
haftmann@37660
  2107
    (NOT x) !! n = (~ x !! n)"
huffman@46421
  2108
  unfolding word_size word_test_bit_def word_log_defs
haftmann@37660
  2109
  by (clarsimp simp add : word_ubin.eq_norm nth_bintr bin_nth_ops)
haftmann@37660
  2110
haftmann@37660
  2111
lemma word_ao_nth:
haftmann@37660
  2112
  fixes x :: "'a::len0 word"
haftmann@37660
  2113
  shows "(x OR y) !! n = (x !! n | y !! n) & 
haftmann@37660
  2114
         (x AND y) !! n = (x !! n & y !! n)"
haftmann@37660
  2115
  apply (cases "n < size x")
haftmann@37660
  2116
   apply (drule_tac y = "y" in word_ops_nth_size)
haftmann@37660
  2117
   apply simp
haftmann@37660
  2118
  apply (simp add : test_bit_bin word_size)
haftmann@37660
  2119
  done
haftmann@37660
  2120
huffman@46893
  2121
lemma test_bit_wi [simp]:
huffman@46893
  2122
  "(word_of_int x::'a::len0 word) !! n \<longleftrightarrow> n < len_of TYPE('a) \<and> bin_nth x n"
huffman@46893
  2123
  unfolding word_test_bit_def
huffman@46893
  2124
  by (simp add: nth_bintr [symmetric] word_ubin.eq_norm)
huffman@46893
  2125
huffman@46893
  2126
lemma test_bit_no [simp]:
huffman@46893
  2127
  "(number_of w :: 'a::len0 word) !! n \<longleftrightarrow>
huffman@46893
  2128
    n < len_of TYPE('a) \<and> bin_nth (number_of w) n"
huffman@46893
  2129
  unfolding word_number_of_alt test_bit_wi ..
huffman@46893
  2130
huffman@47043
  2131
lemma test_bit_1 [simp]: "(1::'a::len word) !! n \<longleftrightarrow> n = 0"
huffman@47043
  2132
  unfolding word_1_wi test_bit_wi by auto
huffman@47043
  2133
  
huffman@46893
  2134
lemma nth_0 [simp]: "~ (0::'a::len0 word) !! n"
huffman@46893
  2135
  unfolding word_test_bit_def by simp
huffman@46893
  2136
haftmann@37660
  2137
(* get from commutativity, associativity etc of int_and etc
haftmann@37660
  2138
  to same for word_and etc *)
haftmann@37660
  2139
haftmann@37660
  2140
lemmas bwsimps = 
huffman@46883
  2141
  wi_hom_add
haftmann@37660
  2142
  word_wi_log_defs
haftmann@37660
  2143
haftmann@37660
  2144
lemma word_bw_assocs:
haftmann@37660
  2145
  fixes x :: "'a::len0 word"
haftmann@37660
  2146
  shows
haftmann@37660
  2147
  "(x AND y) AND z = x AND y AND z"
haftmann@37660
  2148
  "(x OR y) OR z = x OR y OR z"
haftmann@37660
  2149
  "(x XOR y) XOR z = x XOR y XOR z"
huffman@46892
  2150
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2151
  
haftmann@37660
  2152
lemma word_bw_comms:
haftmann@37660
  2153
  fixes x :: "'a::len0 word"
haftmann@37660
  2154
  shows
haftmann@37660
  2155
  "x AND y = y AND x"
haftmann@37660
  2156
  "x OR y = y OR x"
haftmann@37660
  2157
  "x XOR y = y XOR x"
huffman@46892
  2158
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2159
  
haftmann@37660
  2160
lemma word_bw_lcs:
haftmann@37660
  2161
  fixes x :: "'a::len0 word"
haftmann@37660
  2162
  shows
haftmann@37660
  2163
  "y AND x AND z = x AND y AND z"
haftmann@37660
  2164
  "y OR x OR z = x OR y OR z"
haftmann@37660
  2165
  "y XOR x XOR z = x XOR y XOR z"
huffman@46892
  2166
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2167
haftmann@37660
  2168
lemma word_log_esimps [simp]:
haftmann@37660
  2169
  fixes x :: "'a::len0 word"
haftmann@37660
  2170
  shows
haftmann@37660
  2171
  "x AND 0 = 0"
haftmann@37660
  2172
  "x AND -1 = x"
haftmann@37660
  2173
  "x OR 0 = x"
haftmann@37660
  2174
  "x OR -1 = -1"
haftmann@37660
  2175
  "x XOR 0 = x"
haftmann@37660
  2176
  "x XOR -1 = NOT x"
haftmann@37660
  2177
  "0 AND x = 0"
haftmann@37660
  2178
  "-1 AND x = x"
haftmann@37660
  2179
  "0 OR x = x"
haftmann@37660
  2180
  "-1 OR x = -1"
haftmann@37660
  2181
  "0 XOR x = x"
haftmann@37660
  2182
  "-1 XOR x = NOT x"
huffman@46893
  2183
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2184
haftmann@37660
  2185
lemma word_not_dist:
haftmann@37660
  2186
  fixes x :: "'a::len0 word"
haftmann@37660
  2187
  shows
haftmann@37660
  2188
  "NOT (x OR y) = NOT x AND NOT y"
haftmann@37660
  2189
  "NOT (x AND y) = NOT x OR NOT y"
huffman@46892
  2190
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2191
haftmann@37660
  2192
lemma word_bw_same:
haftmann@37660
  2193
  fixes x :: "'a::len0 word"
haftmann@37660
  2194
  shows
haftmann@37660
  2195
  "x AND x = x"
haftmann@37660
  2196
  "x OR x = x"
haftmann@37660
  2197
  "x XOR x = 0"
huffman@46893
  2198
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2199
haftmann@37660
  2200
lemma word_ao_absorbs [simp]:
haftmann@37660
  2201
  fixes x :: "'a::len0 word"
haftmann@37660
  2202
  shows
haftmann@37660
  2203
  "x AND (y OR x) = x"
haftmann@37660
  2204
  "x OR y AND x = x"
haftmann@37660
  2205
  "x AND (x OR y) = x"
haftmann@37660
  2206
  "y AND x OR x = x"
haftmann@37660
  2207
  "(y OR x) AND x = x"
haftmann@37660
  2208
  "x OR x AND y = x"
haftmann@37660
  2209
  "(x OR y) AND x = x"
haftmann@37660
  2210
  "x AND y OR x = x"
huffman@46892
  2211
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2212
haftmann@37660
  2213
lemma word_not_not [simp]:
haftmann@37660
  2214
  "NOT NOT (x::'a::len0 word) = x"
huffman@46892
  2215
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2216
haftmann@37660
  2217
lemma word_ao_dist:
haftmann@37660
  2218
  fixes x :: "'a::len0 word"
haftmann@37660
  2219
  shows "(x OR y) AND z = x AND z OR y AND z"
huffman@46892
  2220
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2221
haftmann@37660
  2222
lemma word_oa_dist:
haftmann@37660
  2223
  fixes x :: "'a::len0 word"
haftmann@37660
  2224
  shows "x AND y OR z = (x OR z) AND (y OR z)"
huffman@46892
  2225
  by (auto simp: word_eq_iff word_ops_nth_size [unfolded word_size])
haftmann@37660
  2226
haftmann@37660
  2227
lemma word_add_not [simp]: 
haftmann@37660
  2228
  fixes x :: "'a::len0 word"
haftmann@37660
  2229
  shows "x + NOT x = -1"
haftmann@37660
  2230
  using word_of_int_Ex [where x=x] 
huffman@47524
  2231
  by (auto simp: bwsimps bin_add_not [unfolded Min_def])
haftmann@37660
  2232
haftmann@37660
  2233
lemma word_plus_and_or [simp]:
haftmann@37660
  2234
  fixes x :: "'a::len0 word"
haftmann@37660
  2235
  shows "(x AND y) + (x OR y) = x + y"
haftmann@37660
  2236
  using word_of_int_Ex [where x=x] 
haftmann@37660
  2237
        word_of_int_Ex [where x=y] 
haftmann@37660
  2238
  by (auto simp: bwsimps plus_and_or)
haftmann@37660
  2239
haftmann@37660
  2240
lemma leoa:   
haftmann@37660
  2241
  fixes x :: "'a::len0 word"
haftmann@41075
  2242
  shows "(w = (x OR y)) \<Longrightarrow> (y = (w AND y))" by auto
haftmann@37660
  2243
lemma leao: 
haftmann@37660
  2244
  fixes x' :: "'a::len0 word"
haftmann@41075
  2245
  shows "(w' = (x' AND y')) \<Longrightarrow> (x' = (x' OR w'))" by auto 
haftmann@37660
  2246
haftmann@37660
  2247
lemmas word_ao_equiv = leao [COMP leoa [COMP iffI]]
haftmann@37660
  2248
haftmann@37660
  2249
lemma le_word_or2: "x <= x OR (y::'a::len0 word)"
haftmann@37660
  2250
  unfolding word_le_def uint_or
haftmann@37660
  2251
  by (auto intro: le_int_or) 
haftmann@37660
  2252
wenzelm@46475
  2253
lemmas le_word_or1 = xtr3 [OF word_bw_comms (2) le_word_or2]
wenzelm@46475
  2254
lemmas word_and_le1 = xtr3 [OF word_ao_absorbs (4) [symmetric] le_word_or2]
wenzelm@46475
  2255
lemmas word_and_le2 = xtr3 [OF word_ao_absorbs (8) [symmetric] le_word_or2]
haftmann@37660
  2256
haftmann@37660
  2257
lemma bl_word_not: "to_bl (NOT w) = map Not (to_bl w)" 
huffman@46421
  2258
  unfolding to_bl_def word_log_defs bl_not_bin
huffman@46421
  2259
  by (simp add: word_ubin.eq_norm)
haftmann@37660
  2260
haftmann@37660
  2261
lemma bl_word_xor: "to_bl (v XOR w) = map2 op ~= (to_bl v) (to_bl w)" 
haftmann@37660
  2262
  unfolding to_bl_def word_log_defs bl_xor_bin
huffman@46421
  2263
  by (simp add: word_ubin.eq_norm)
haftmann@37660
  2264
haftmann@37660
  2265
lemma bl_word_or: "to_bl (v OR w) = map2 op | (to_bl v) (to_bl w)" 
huffman@46421
  2266
  unfolding to_bl_def word_log_defs bl_or_bin
huffman@46421
  2267
  by (simp add: word_ubin.eq_norm)
haftmann@37660
  2268
haftmann@37660
  2269
lemma bl_word_and: "to_bl (v AND w) = map2 op & (to_bl v) (to_bl w)" 
huffman@46421
  2270
  unfolding to_bl_def word_log_defs bl_and_bin
huffman@46421
  2271
  by (simp add: word_ubin.eq_norm)
haftmann@37660
  2272
haftmann@37660
  2273
lemma word_lsb_alt: "lsb (w::'a::len0 word) = test_bit w 0"
haftmann@37660
  2274
  by (auto simp: word_test_bit_def word_lsb_def)
haftmann@37660
  2275
huffman@46676
  2276
lemma word_lsb_1_0 [simp]: "lsb (1::'a::len word) & ~ lsb (0::'b::len0 word)"
huffman@46421
  2277
  unfolding word_lsb_def uint_eq_0 uint_1 by simp
haftmann@37660
  2278
haftmann@37660
  2279
lemma word_lsb_last: "lsb (w::'a::len word) = last (to_bl w)"
haftmann@37660
  2280
  apply (unfold word_lsb_def uint_bl bin_to_bl_def) 
haftmann@37660
  2281
  apply (rule_tac bin="uint w" in bin_exhaust)
haftmann@37660
  2282
  apply (cases "size w")
haftmann@37660
  2283
   apply auto
haftmann@37660
  2284
   apply (auto simp add: bin_to_bl_aux_alt)
haftmann@37660
  2285
  done
haftmann@37660
  2286
haftmann@37660
  2287
lemma word_lsb_int: "lsb w = (uint w mod 2 = 1)"
huffman@46400
  2288
  unfolding word_lsb_def bin_last_def by auto
haftmann@37660
  2289
haftmann@37660
  2290
lemma word_msb_sint: "msb w = (sint w < 0)" 
huffman@47475
  2291
  unfolding word_msb_def sign_Min_lt_0 ..
haftmann@37660
  2292
huffman@47044
  2293
lemma msb_word_of_int:
huffman@47044
  2294
  "msb (word_of_int x::'a::len word) = bin_nth x (len_of TYPE('a) - 1)"
huffman@47044
  2295
  unfolding word_msb_def by (simp add: word_sbin.eq_norm bin_sign_lem)
huffman@47044
  2296
huffman@46676
  2297
lemma word_msb_no [simp]:
huffman@46893
  2298
  "msb (number_of w::'a::len word) = bin_nth (number_of w) (len_of TYPE('a) - 1)"
huffman@47044
  2299
  unfolding word_number_of_alt by (rule msb_word_of_int)
huffman@47044
  2300
huffman@47044
  2301
lemma word_msb_0 [simp]: "\<not> msb (0::'a::len word)"
huffman@47044
  2302
  unfolding word_msb_def by simp
huffman@47044
  2303
huffman@47044
  2304
lemma word_msb_1 [simp]: "msb (1::'a::len word) \<longleftrightarrow> len_of TYPE('a) = 1"
huffman@47044
  2305
  unfolding word_1_wi msb_word_of_int eq_iff [where 'a=nat]
huffman@47044
  2306
  by (simp add: Suc_le_eq)
huffman@46682
  2307
huffman@46682
  2308
lemma word_msb_nth:
huffman@46682
  2309
  "msb (w::'a::len word) = bin_nth (uint w) (len_of TYPE('a) - 1)"
huffman@46893
  2310
  unfolding word_msb_def sint_uint by (simp add: bin_sign_lem)
haftmann@37660
  2311
haftmann@37660
  2312
lemma word_msb_alt: "msb (w::'a::len word) = hd (to_bl w)"
haftmann@37660
  2313
  apply (unfold word_msb_nth uint_bl)
haftmann@37660
  2314
  apply (subst hd_conv_nth)
haftmann@37660
  2315
  apply (rule length_greater_0_conv [THEN iffD1])
haftmann@37660
  2316
   apply simp
haftmann@37660
  2317
  apply (simp add : nth_bin_to_bl word_size)
haftmann@37660
  2318
  done
haftmann@37660
  2319
huffman@46676
  2320
lemma word_set_nth [simp]:
haftmann@37660
  2321
  "set_bit w n (test_bit w n) = (w::'a::len0 word)"
haftmann@37660
  2322
  unfolding word_test_bit_def word_set_bit_def by auto
haftmann@37660
  2323
haftmann@37660
  2324
lemma bin_nth_uint':
haftmann@37660
  2325
  "bin_nth (uint w) n = (rev (bin_to_bl (size w) (uint w)) ! n & n < size w)"
haftmann@37660
  2326
  apply (unfold word_size)
haftmann@37660
  2327
  apply (safe elim!: bin_nth_uint_imp)
haftmann@37660
  2328
   apply (frule bin_nth_uint_imp)
haftmann@37660
  2329
   apply (fast dest!: bin_nth_bl)+
haftmann@37660
  2330
  done
haftmann@37660
  2331
haftmann@37660
  2332
lemmas bin_nth_uint = bin_nth_uint' [unfolded word_size]
haftmann@37660
  2333
haftmann@37660
  2334
lemma test_bit_bl: "w !! n = (rev (to_bl w) ! n & n < size w)"
haftmann@37660
  2335
  unfolding to_bl_def word_test_bit_def word_size
haftmann@37660
  2336
  by (rule bin_nth_uint)
haftmann@37660
  2337
haftmann@41075
  2338
lemma to_bl_nth: "n < size w \<Longrightarrow> to_bl w ! n = w !! (size w - Suc n)"
haftmann@37660
  2339
  apply (unfold test_bit_bl)
haftmann@37660
  2340
  apply clarsimp
haftmann@37660
  2341
  apply (rule trans)
haftmann@37660
  2342
   apply (rule nth_rev_alt)
haftmann@37660
  2343
   apply (auto simp add: word_size)
haftmann@37660
  2344
  done
haftmann@37660
  2345
haftmann@37660
  2346
lemma test_bit_set: 
haftmann@37660
  2347
  fixes w :: "'a::len0 word"
haftmann@37660
  2348
  shows "(set_bit w n x) !! n = (n < size w & x)"
haftmann@37660
  2349
  unfolding word_size word_test_bit_def word_set_bit_def
haftmann@37660
  2350
  by (clarsimp simp add : word_ubin.eq_norm nth_bintr)
haftmann@37660
  2351
haftmann@37660
  2352
lemma test_bit_set_gen: 
haftmann@37660
  2353
  fixes w :: "'a::len0 word"
haftmann@37660
  2354
  shows "test_bit (set_bit w n x) m = 
haftmann@37660
  2355
         (if m = n then n < size w & x else test_bit w m)"
haftmann@37660
  2356
  apply (unfold word_size word_test_bit_def word_set_bit_def)
haftmann@37660
  2357
  apply (clarsimp simp add: word_ubin.eq_norm nth_bintr bin_nth_sc_gen)
haftmann@37660
  2358
  apply (auto elim!: test_bit_size [unfolded word_size]
haftmann@37660
  2359
              simp add: word_test_bit_def [symmetric])
haftmann@37660
  2360
  done
haftmann@37660
  2361
haftmann@37660
  2362
lemma of_bl_rep_False: "of_bl (replicate n False @ bs) = of_bl bs"
haftmann@37660
  2363
  unfolding of_bl_def bl_to_bin_rep_F by auto
haftmann@37660
  2364
  
huffman@46682
  2365
lemma msb_nth:
haftmann@37660
  2366
  fixes w :: "'a::len word"
huffman@46682
  2367
  shows "msb w = w !! (len_of TYPE('a) - 1)"
huffman@46682
  2368
  unfolding word_msb_nth word_test_bit_def by simp
haftmann@37660
  2369
wenzelm@46475
  2370
lemmas msb0 = len_gt_0 [THEN diff_Suc_less, THEN word_ops_nth_size [unfolded word_size]]
haftmann@37660
  2371
lemmas msb1 = msb0 [where i = 0]
haftmann@37660
  2372
lemmas word_ops_msb = msb1 [unfolded msb_nth [symmetric, unfolded One_nat_def]]
haftmann@37660
  2373
wenzelm@46475
  2374
lemmas lsb0 = len_gt_0 [THEN word_ops_nth_size [unfolded word_size]]
haftmann@37660
  2375
lemmas word_ops_lsb = lsb0 [unfolded word_lsb_alt]
haftmann@37660
  2376
huffman@46682
  2377
lemma td_ext_nth [OF refl refl refl, unfolded word_size]:
haftmann@41075
  2378
  "n = size (w::'a::len0 word) \<Longrightarrow> ofn = set_bits \<Longrightarrow> [w, ofn g] = l \<Longrightarrow> 
haftmann@37660
  2379
    td_ext test_bit ofn {f. ALL i. f i --> i < n} (%h i. h i & i < n)"
haftmann@37660
  2380
  apply (unfold word_size td_ext_def')
wenzelm@46895
  2381
  apply safe
haftmann@37660
  2382
     apply (rule_tac [3] ext)
haftmann@37660
  2383
     apply (rule_tac [4] ext)
haftmann@37660
  2384
     apply (unfold word_size of_nth_def test_bit_bl)
haftmann@37660
  2385
     apply safe
haftmann@37660
  2386
       defer
haftmann@37660
  2387
       apply (clarsimp simp: word_bl.Abs_inverse)+
haftmann@37660
  2388
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  2389
  apply (rule sym [THEN trans])
haftmann@37660
  2390
  apply (rule bl_of_nth_nth)
haftmann@37660
  2391
  apply simp
haftmann@37660
  2392
  apply (rule bl_of_nth_inj)
haftmann@37660
  2393
  apply (clarsimp simp add : test_bit_bl word_size)
haftmann@37660
  2394
  done
haftmann@37660
  2395
haftmann@37660
  2396
interpretation test_bit:
haftmann@37660
  2397
  td_ext "op !! :: 'a::len0 word => nat => bool"
haftmann@37660
  2398
         set_bits
haftmann@37660
  2399
         "{f. \<forall>i. f i \<longrightarrow> i < len_of TYPE('a::len0)}"
haftmann@37660
  2400
         "(\<lambda>h i. h i \<and> i < len_of TYPE('a::len0))"
haftmann@37660
  2401
  by (rule td_ext_nth)
haftmann@37660
  2402
haftmann@37660
  2403
lemmas td_nth = test_bit.td_thm
haftmann@37660
  2404
huffman@46676
  2405
lemma word_set_set_same [simp]:
haftmann@37660
  2406
  fixes w :: "'a::len0 word"
haftmann@37660
  2407
  shows "set_bit (set_bit w n x) n y = set_bit w n y" 
haftmann@37660
  2408
  by (rule word_eqI) (simp add : test_bit_set_gen word_size)
haftmann@37660
  2409
    
haftmann@37660
  2410
lemma word_set_set_diff: 
haftmann@37660
  2411
  fixes w :: "'a::len0 word"
haftmann@37660
  2412
  assumes "m ~= n"
haftmann@37660
  2413
  shows "set_bit (set_bit w m x) n y = set_bit (set_bit w n y) m x" 
wenzelm@41798
  2414
  by (rule word_eqI) (clarsimp simp add: test_bit_set_gen word_size assms)
huffman@46872
  2415
haftmann@37660
  2416
lemma nth_sint: 
haftmann@37660
  2417
  fixes w :: "'a::len word"
haftmann@37660
  2418
  defines "l \<equiv> len_of TYPE ('a)"
haftmann@37660
  2419
  shows "bin_nth (sint w) n = (if n < l - 1 then w !! n else w !! (l - 1))"
haftmann@37660
  2420
  unfolding sint_uint l_def
haftmann@37660
  2421
  by (clarsimp simp add: nth_sbintr word_test_bit_def [symmetric])
haftmann@37660
  2422
huffman@46676
  2423
lemma word_lsb_no [simp]:
huffman@46893
  2424
  "lsb (number_of bin :: 'a :: len word) = (bin_last (number_of bin) = 1)"
haftmann@37660
  2425
  unfolding word_lsb_alt test_bit_no by auto
haftmann@37660
  2426
huffman@47044
  2427
lemma set_bit_word_of_int:
huffman@47044
  2428
  "set_bit (word_of_int x) n b = word_of_int (bin_sc n (if b then 1 else 0) x)"
huffman@47044
  2429
  unfolding word_set_bit_def
huffman@47044
  2430
  apply (rule word_eqI)
huffman@47044
  2431
  apply (simp add: word_size bin_nth_sc_gen word_ubin.eq_norm nth_bintr)
huffman@47044
  2432
  done
huffman@47044
  2433
huffman@46676
  2434
lemma word_set_no [simp]:
haftmann@37660
  2435
  "set_bit (number_of bin::'a::len0 word) n b = 
huffman@46872
  2436
    word_of_int (bin_sc n (if b then 1 else 0) (number_of bin))"
huffman@47044
  2437
  unfolding word_number_of_alt by (rule set_bit_word_of_int)
huffman@47044
  2438
huffman@47044
  2439
lemma word_set_bit_0 [simp]:
huffman@47044
  2440
  "set_bit 0 n b = word_of_int (bin_sc n (if b then 1 else 0) 0)"
huffman@47044
  2441
  unfolding word_0_wi by (rule set_bit_word_of_int)
huffman@47044
  2442
huffman@47044
  2443
lemma word_set_bit_1 [simp]:
huffman@47044
  2444
  "set_bit 1 n b = word_of_int (bin_sc n (if b then 1 else 0) 1)"
huffman@47044
  2445
  unfolding word_1_wi by (rule set_bit_word_of_int)
haftmann@37660
  2446
huffman@46676
  2447
lemma setBit_no [simp]:
huffman@46872
  2448
  "setBit (number_of bin) n = word_of_int (bin_sc n 1 (number_of bin))"
huffman@46676
  2449
  by (simp add: setBit_def)
huffman@46676
  2450
huffman@46676
  2451
lemma clearBit_no [simp]:
huffman@46872
  2452
  "clearBit (number_of bin) n = word_of_int (bin_sc n 0 (number_of bin))"
huffman@46676
  2453
  by (simp add: clearBit_def)
haftmann@37660
  2454
haftmann@37660
  2455
lemma to_bl_n1: 
haftmann@37660
  2456
  "to_bl (-1::'a::len0 word) = replicate (len_of TYPE ('a)) True"
haftmann@37660
  2457
  apply (rule word_bl.Abs_inverse')
haftmann@37660
  2458
   apply simp
haftmann@37660
  2459
  apply (rule word_eqI)
huffman@46676
  2460
  apply (clarsimp simp add: word_size)
haftmann@37660
  2461
  apply (auto simp add: word_bl.Abs_inverse test_bit_bl word_size)
haftmann@37660
  2462
  done
haftmann@37660
  2463
huffman@46676
  2464
lemma word_msb_n1 [simp]: "msb (-1::'a::len word)"
wenzelm@41798
  2465
  unfolding word_msb_alt to_bl_n1 by simp
haftmann@37660
  2466
haftmann@37660
  2467
lemma word_set_nth_iff: 
haftmann@37660
  2468
  "(set_bit w n b = w) = (w !! n = b | n >= size (w::'a::len0 word))"
haftmann@37660
  2469
  apply (rule iffI)
haftmann@37660
  2470
   apply (rule disjCI)
haftmann@37660
  2471
   apply (drule word_eqD)
haftmann@37660
  2472
   apply (erule sym [THEN trans])
haftmann@37660
  2473
   apply (simp add: test_bit_set)
haftmann@37660
  2474
  apply (erule disjE)
haftmann@37660
  2475
   apply clarsimp
haftmann@37660
  2476
  apply (rule word_eqI)
haftmann@37660
  2477
  apply (clarsimp simp add : test_bit_set_gen)
haftmann@37660
  2478
  apply (drule test_bit_size)
haftmann@37660
  2479
  apply force
haftmann@37660
  2480
  done
haftmann@37660
  2481
huffman@46682
  2482
lemma test_bit_2p:
huffman@46682
  2483
  "(word_of_int (2 ^ n)::'a::len word) !! m \<longleftrightarrow> m = n \<and> m < len_of TYPE('a)"
huffman@46682
  2484
  unfolding word_test_bit_def
haftmann@37660
  2485
  by (auto simp add: word_ubin.eq_norm nth_bintr nth_2p_bin)
haftmann@37660
  2486
haftmann@37660
  2487
lemma nth_w2p:
haftmann@37660
  2488
  "((2\<Colon>'a\<Colon>len word) ^ n) !! m \<longleftrightarrow> m = n \<and> m < len_of TYPE('a\<Colon>len)"
haftmann@37660
  2489
  unfolding test_bit_2p [symmetric] word_of_int [symmetric]
haftmann@37660
  2490
  by (simp add:  of_int_power)
haftmann@37660
  2491
haftmann@37660
  2492
lemma uint_2p: 
haftmann@41075
  2493
  "(0::'a::len word) < 2 ^ n \<Longrightarrow> uint (2 ^ n::'a::len word) = 2 ^ n"
haftmann@37660
  2494
  apply (unfold word_arith_power_alt)
haftmann@37660
  2495
  apply (case_tac "len_of TYPE ('a)")
haftmann@37660
  2496
   apply clarsimp
haftmann@37660
  2497
  apply (case_tac "nat")
haftmann@37660
  2498
   apply clarsimp
haftmann@37660
  2499
   apply (case_tac "n")
huffman@46872
  2500
    apply clarsimp
huffman@46872
  2501
   apply clarsimp
haftmann@37660
  2502
  apply (drule word_gt_0 [THEN iffD1])
wenzelm@46995
  2503
  apply (safe intro!: word_eqI bin_nth_lem)
huffman@46872
  2504
     apply (auto simp add: test_bit_2p nth_2p_bin word_test_bit_def [symmetric])
haftmann@37660
  2505
  done
haftmann@37660
  2506
haftmann@37660
  2507
lemma word_of_int_2p: "(word_of_int (2 ^ n) :: 'a :: len word) = 2 ^ n" 
haftmann@37660
  2508
  apply (unfold word_arith_power_alt)
haftmann@37660
  2509
  apply (case_tac "len_of TYPE ('a)")
haftmann@37660
  2510
   apply clarsimp
haftmann@37660
  2511
  apply (case_tac "nat")
haftmann@37660
  2512
   apply (rule word_ubin.norm_eq_iff [THEN iffD1]) 
haftmann@37660
  2513
   apply (rule box_equals) 
haftmann@37660
  2514
     apply (rule_tac [2] bintr_ariths (1))+ 
haftmann@37660
  2515
   apply (clarsimp simp add : number_of_is_id)
huffman@46872
  2516
  apply simp
haftmann@37660
  2517
  done
haftmann@37660
  2518
haftmann@41075
  2519
lemma bang_is_le: "x !! m \<Longrightarrow> 2 ^ m <= (x :: 'a :: len word)" 
haftmann@37660
  2520
  apply (rule xtr3) 
haftmann@37660
  2521
  apply (rule_tac [2] y = "x" in le_word_or2)
haftmann@37660
  2522
  apply (rule word_eqI)
haftmann@37660
  2523
  apply (auto simp add: word_ao_nth nth_w2p word_size)
haftmann@37660
  2524
  done
haftmann@37660
  2525
haftmann@37660
  2526
lemma word_clr_le: 
haftmann@37660
  2527
  fixes w :: "'a::len0 word"
haftmann@37660
  2528
  shows "w >= set_bit w n False"
haftmann@37660
  2529
  apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm)
haftmann@37660
  2530
  apply simp
haftmann@37660
  2531
  apply (rule order_trans)
haftmann@37660
  2532
   apply (rule bintr_bin_clr_le)
haftmann@37660
  2533
  apply simp
haftmann@37660
  2534
  done
haftmann@37660
  2535
haftmann@37660
  2536
lemma word_set_ge: 
haftmann@37660
  2537
  fixes w :: "'a::len word"
haftmann@37660
  2538
  shows "w <= set_bit w n True"
haftmann@37660
  2539
  apply (unfold word_set_bit_def word_le_def word_ubin.eq_norm)
haftmann@37660
  2540
  apply simp
haftmann@37660
  2541
  apply (rule order_trans [OF _ bintr_bin_set_ge])
haftmann@37660
  2542
  apply simp
haftmann@37660
  2543
  done
haftmann@37660
  2544
haftmann@37660
  2545
haftmann@37660
  2546
subsection {* Shifting, Rotating, and Splitting Words *}
haftmann@37660
  2547
huffman@46872
  2548
lemma shiftl1_wi [simp]: "shiftl1 (word_of_int w) = word_of_int (w BIT 0)"
huffman@46872
  2549
  unfolding shiftl1_def
huffman@46872
  2550
  apply (simp only: word_ubin.norm_eq_iff [symmetric] word_ubin.eq_norm)
haftmann@37660
  2551
  apply (subst refl [THEN bintrunc_BIT_I, symmetric])
haftmann@37660
  2552
  apply (subst bintrunc_bintrunc_min)
haftmann@37660
  2553
  apply simp
haftmann@37660
  2554
  done
haftmann@37660
  2555
huffman@46872
  2556
lemma shiftl1_number [simp] :
huffman@46872
  2557
  "shiftl1 (number_of w) = number_of (Int.Bit0 w)"
huffman@46872
  2558
  unfolding word_number_of_alt shiftl1_wi by simp
huffman@46872
  2559
haftmann@37660
  2560
lemma shiftl1_0 [simp] : "shiftl1 0 = 0"
huffman@46872
  2561
  unfolding shiftl1_def by simp
huffman@46872
  2562
huffman@46872
  2563
lemma shiftl1_def_u: "shiftl1 w = word_of_int (uint w BIT 0)"
huffman@46872
  2564
  by (simp only: shiftl1_def) (* FIXME: duplicate *)
huffman@46872
  2565
huffman@46872
  2566
lemma shiftl1_def_s: "shiftl1 w = word_of_int (sint w BIT 0)"
huffman@46872
  2567
  unfolding shiftl1_def Bit_B0 wi_hom_syms by simp
haftmann@37660
  2568
huffman@46866
  2569
lemma shiftr1_0 [simp]: "shiftr1 0 = 0"
huffman@46866
  2570
  unfolding shiftr1_def by simp
huffman@46866
  2571
huffman@46866
  2572
lemma sshiftr1_0 [simp]: "sshiftr1 0 = 0"
huffman@46866
  2573
  unfolding sshiftr1_def by simp
haftmann@37660
  2574
haftmann@37660
  2575
lemma sshiftr1_n1 [simp] : "sshiftr1 -1 = -1"
huffman@46872
  2576
  unfolding sshiftr1_def by simp
haftmann@37660
  2577
haftmann@37660
  2578
lemma shiftl_0 [simp] : "(0::'a::len0 word) << n = 0"
haftmann@37660
  2579
  unfolding shiftl_def by (induct n) auto
haftmann@37660
  2580
haftmann@37660
  2581
lemma shiftr_0 [simp] : "(0::'a::len0 word) >> n = 0"
haftmann@37660
  2582
  unfolding shiftr_def by (induct n) auto
haftmann@37660
  2583
haftmann@37660
  2584
lemma sshiftr_0 [simp] : "0 >>> n = 0"
haftmann@37660
  2585
  unfolding sshiftr_def by (induct n) auto
haftmann@37660
  2586
haftmann@37660
  2587
lemma sshiftr_n1 [simp] : "-1 >>> n = -1"
haftmann@37660
  2588
  unfolding sshiftr_def by (induct n) auto
haftmann@37660
  2589
haftmann@37660
  2590
lemma nth_shiftl1: "shiftl1 w !! n = (n < size w & n > 0 & w !! (n - 1))"
haftmann@37660
  2591
  apply (unfold shiftl1_def word_test_bit_def)
haftmann@37660
  2592
  apply (simp add: nth_bintr word_ubin.eq_norm word_size)
haftmann@37660
  2593
  apply (cases n)
haftmann@37660
  2594
   apply auto
haftmann@37660
  2595
  done
haftmann@37660
  2596
haftmann@37660
  2597
lemma nth_shiftl' [rule_format]:
haftmann@37660
  2598
  "ALL n. ((w::'a::len0 word) << m) !! n = (n < size w & n >= m & w !! (n - m))"
haftmann@37660
  2599
  apply (unfold shiftl_def)
haftmann@37660
  2600
  apply (induct "m")
haftmann@37660
  2601
   apply (force elim!: test_bit_size)
haftmann@37660
  2602
  apply (clarsimp simp add : nth_shiftl1 word_size)
haftmann@37660
  2603
  apply arith
haftmann@37660
  2604
  done
haftmann@37660
  2605
haftmann@37660
  2606
lemmas nth_shiftl = nth_shiftl' [unfolded word_size] 
haftmann@37660
  2607
haftmann@37660
  2608
lemma nth_shiftr1: "shiftr1 w !! n = w !! Suc n"
haftmann@37660
  2609
  apply (unfold shiftr1_def word_test_bit_def)
haftmann@37660
  2610
  apply (simp add: nth_bintr word_ubin.eq_norm)
haftmann@37660
  2611
  apply safe
haftmann@37660
  2612
  apply (drule bin_nth.Suc [THEN iffD2, THEN bin_nth_uint_imp])
haftmann@37660
  2613
  apply simp
haftmann@37660
  2614
  done
haftmann@37660
  2615
haftmann@37660
  2616
lemma nth_shiftr: 
haftmann@37660
  2617
  "\<And>n. ((w::'a::len0 word) >> m) !! n = w !! (n + m)"
haftmann@37660
  2618
  apply (unfold shiftr_def)
haftmann@37660
  2619
  apply (induct "m")
haftmann@37660
  2620
   apply (auto simp add : nth_shiftr1)
haftmann@37660
  2621
  done
haftmann@37660
  2622
   
haftmann@37660
  2623
(* see paper page 10, (1), (2), shiftr1_def is of the form of (1),
haftmann@37660
  2624
  where f (ie bin_rest) takes normal arguments to normal results,
haftmann@37660
  2625
  thus we get (2) from (1) *)
haftmann@37660
  2626
haftmann@37660
  2627
lemma uint_shiftr1: "uint (shiftr1 w) = bin_rest (uint w)" 
haftmann@37660
  2628
  apply (unfold shiftr1_def word_ubin.eq_norm bin_rest_trunc_i)
haftmann@37660
  2629
  apply (subst bintr_uint [symmetric, OF order_refl])
haftmann@37660
  2630
  apply (simp only : bintrunc_bintrunc_l)
haftmann@37660
  2631
  apply simp 
haftmann@37660
  2632
  done
haftmann@37660
  2633
haftmann@37660
  2634
lemma nth_sshiftr1: 
haftmann@37660
  2635
  "sshiftr1 w !! n = (if n = size w - 1 then w !! n else w !! Suc n)"
haftmann@37660
  2636
  apply (unfold sshiftr1_def word_test_bit_def)
haftmann@37660
  2637
  apply (simp add: nth_bintr word_ubin.eq_norm
haftmann@37660
  2638
                   bin_nth.Suc [symmetric] word_size 
haftmann@37660
  2639
             del: bin_nth.simps)
haftmann@37660
  2640
  apply (simp add: nth_bintr uint_sint del : bin_nth.simps)
haftmann@37660
  2641
  apply (auto simp add: bin_nth_sint)
haftmann@37660
  2642
  done
haftmann@37660
  2643
haftmann@37660
  2644
lemma nth_sshiftr [rule_format] : 
haftmann@37660
  2645
  "ALL n. sshiftr w m !! n = (n < size w & 
haftmann@37660
  2646
    (if n + m >= size w then w !! (size w - 1) else w !! (n + m)))"
haftmann@37660
  2647
  apply (unfold sshiftr_def)
haftmann@37660
  2648
  apply (induct_tac "m")
haftmann@37660
  2649
   apply (simp add: test_bit_bl)
haftmann@37660
  2650
  apply (clarsimp simp add: nth_sshiftr1 word_size)
haftmann@37660
  2651
  apply safe
haftmann@37660
  2652
       apply arith
haftmann@37660
  2653
      apply arith
haftmann@37660
  2654
     apply (erule thin_rl)
haftmann@37660
  2655
     apply (case_tac n)
haftmann@37660
  2656
      apply safe
haftmann@37660
  2657
      apply simp
haftmann@37660
  2658
     apply simp
haftmann@37660
  2659
    apply (erule thin_rl)
haftmann@37660
  2660
    apply (case_tac n)
haftmann@37660
  2661
     apply safe
haftmann@37660
  2662
     apply simp
haftmann@37660
  2663
    apply simp
haftmann@37660
  2664
   apply arith+
haftmann@37660
  2665
  done
haftmann@37660
  2666
    
haftmann@37660
  2667
lemma shiftr1_div_2: "uint (shiftr1 w) = uint w div 2"
huffman@46400
  2668
  apply (unfold shiftr1_def bin_rest_def)
haftmann@37660
  2669
  apply (rule word_uint.Abs_inverse)
haftmann@37660
  2670
  apply (simp add: uints_num pos_imp_zdiv_nonneg_iff)
haftmann@37660
  2671
  apply (rule xtr7)
haftmann@37660
  2672
   prefer 2
haftmann@37660
  2673
   apply (rule zdiv_le_dividend)
haftmann@37660
  2674
    apply auto
haftmann@37660
  2675
  done
haftmann@37660
  2676
haftmann@37660
  2677
lemma sshiftr1_div_2: "sint (sshiftr1 w) = sint w div 2"
huffman@46400
  2678
  apply (unfold sshiftr1_def bin_rest_def [symmetric])
haftmann@37660
  2679
  apply (simp add: word_sbin.eq_norm)
haftmann@37660
  2680
  apply (rule trans)
haftmann@37660
  2681
   defer
haftmann@37660
  2682
   apply (subst word_sbin.norm_Rep [symmetric])
haftmann@37660
  2683
   apply (rule refl)
haftmann@37660
  2684
  apply (subst word_sbin.norm_Rep [symmetric])
haftmann@37660
  2685
  apply (unfold One_nat_def)
haftmann@37660
  2686
  apply (rule sbintrunc_rest)
haftmann@37660
  2687
  done
haftmann@37660
  2688
haftmann@37660
  2689
lemma shiftr_div_2n: "uint (shiftr w n) = uint w div 2 ^ n"
haftmann@37660
  2690
  apply (unfold shiftr_def)
haftmann@37660
  2691
  apply (induct "n")
haftmann@37660
  2692
   apply simp
haftmann@37660
  2693
  apply (simp add: shiftr1_div_2 mult_commute
haftmann@37660
  2694
                   zdiv_zmult2_eq [symmetric])
haftmann@37660
  2695
  done
haftmann@37660
  2696
haftmann@37660
  2697
lemma sshiftr_div_2n: "sint (sshiftr w n) = sint w div 2 ^ n"
haftmann@37660
  2698
  apply (unfold sshiftr_def)
haftmann@37660
  2699
  apply (induct "n")
haftmann@37660
  2700
   apply simp
haftmann@37660
  2701
  apply (simp add: sshiftr1_div_2 mult_commute
haftmann@37660
  2702
                   zdiv_zmult2_eq [symmetric])
haftmann@37660
  2703
  done
haftmann@37660
  2704
haftmann@37660
  2705
subsubsection "shift functions in terms of lists of bools"
haftmann@37660
  2706
haftmann@37660
  2707
lemmas bshiftr1_no_bin [simp] = 
wenzelm@46475
  2708
  bshiftr1_def [where w="number_of w", unfolded to_bl_no_bin] for w
haftmann@37660
  2709
haftmann@37660
  2710
lemma bshiftr1_bl: "to_bl (bshiftr1 b w) = b # butlast (to_bl w)"
haftmann@37660
  2711
  unfolding bshiftr1_def by (rule word_bl.Abs_inverse) simp
haftmann@37660
  2712
haftmann@37660
  2713
lemma shiftl1_of_bl: "shiftl1 (of_bl bl) = of_bl (bl @ [False])"
huffman@46872
  2714
  by (simp add: of_bl_def bl_to_bin_append)
haftmann@37660
  2715
haftmann@37660
  2716
lemma shiftl1_bl: "shiftl1 (w::'a::len0 word) = of_bl (to_bl w @ [False])"
haftmann@37660
  2717
proof -
haftmann@37660
  2718
  have "shiftl1 w = shiftl1 (of_bl (to_bl w))" by simp
haftmann@37660
  2719
  also have "\<dots> = of_bl (to_bl w @ [False])" by (rule shiftl1_of_bl)
haftmann@37660
  2720
  finally show ?thesis .
haftmann@37660
  2721
qed
haftmann@37660
  2722
haftmann@37660
  2723
lemma bl_shiftl1:
haftmann@37660
  2724
  "to_bl (shiftl1 (w :: 'a :: len word)) = tl (to_bl w) @ [False]"
haftmann@37660
  2725
  apply (simp add: shiftl1_bl word_rep_drop drop_Suc drop_Cons')
haftmann@37660
  2726
  apply (fast intro!: Suc_leI)
haftmann@37660
  2727
  done
haftmann@37660
  2728
huffman@46678
  2729
(* Generalized version of bl_shiftl1. Maybe this one should replace it? *)
huffman@46678
  2730
lemma bl_shiftl1':
huffman@46678
  2731
  "to_bl (shiftl1 w) = tl (to_bl w @ [False])"
huffman@46678
  2732
  unfolding shiftl1_bl
huffman@46678
  2733
  by (simp add: word_rep_drop drop_Suc del: drop_append)
huffman@46678
  2734
haftmann@37660
  2735
lemma shiftr1_bl: "shiftr1 w = of_bl (butlast (to_bl w))"
haftmann@37660
  2736
  apply (unfold shiftr1_def uint_bl of_bl_def)
haftmann@37660
  2737
  apply (simp add: butlast_rest_bin word_size)
haftmann@37660
  2738
  apply (simp add: bin_rest_trunc [symmetric, unfolded One_nat_def])
haftmann@37660
  2739
  done
haftmann@37660
  2740
haftmann@37660
  2741
lemma bl_shiftr1: 
haftmann@37660
  2742
  "to_bl (shiftr1 (w :: 'a :: len word)) = False # butlast (to_bl w)"
haftmann@37660
  2743
  unfolding shiftr1_bl
haftmann@37660
  2744
  by (simp add : word_rep_drop len_gt_0 [THEN Suc_leI])
haftmann@37660
  2745
huffman@46678
  2746
(* Generalized version of bl_shiftr1. Maybe this one should replace it? *)
huffman@46678
  2747
lemma bl_shiftr1':
huffman@46678
  2748
  "to_bl (shiftr1 w) = butlast (False # to_bl w)"
huffman@46678
  2749
  apply (rule word_bl.Abs_inverse')
huffman@46678
  2750
  apply (simp del: butlast.simps)
huffman@46678
  2751
  apply (simp add: shiftr1_bl of_bl_def)
huffman@46678
  2752
  done
huffman@46678
  2753
haftmann@37660
  2754
lemma shiftl1_rev: 
huffman@46678
  2755
  "shiftl1 w = word_reverse (shiftr1 (word_reverse w))"
haftmann@37660
  2756
  apply (unfold word_reverse_def)
haftmann@37660
  2757
  apply (rule word_bl.Rep_inverse' [symmetric])
huffman@46678
  2758
  apply (simp add: bl_shiftl1' bl_shiftr1' word_bl.Abs_inverse)
haftmann@37660
  2759
  apply (cases "to_bl w")
haftmann@37660
  2760
   apply auto
haftmann@37660
  2761
  done
haftmann@37660
  2762
haftmann@37660
  2763
lemma shiftl_rev: 
huffman@46678
  2764
  "shiftl w n = word_reverse (shiftr (word_reverse w) n)"
haftmann@37660
  2765
  apply (unfold shiftl_def shiftr_def)
haftmann@37660
  2766
  apply (induct "n")
haftmann@37660
  2767
   apply (auto simp add : shiftl1_rev)
haftmann@37660
  2768
  done
haftmann@37660
  2769
huffman@46687
  2770
lemma rev_shiftl: "word_reverse w << n = word_reverse (w >> n)"
huffman@46687
  2771
  by (simp add: shiftl_rev)
huffman@46687
  2772
huffman@46687
  2773
lemma shiftr_rev: "w >> n = word_reverse (word_reverse w << n)"
huffman@46687
  2774
  by (simp add: rev_shiftl)
huffman@46687
  2775
huffman@46687
  2776
lemma rev_shiftr: "word_reverse w >> n = word_reverse (w << n)"
huffman@46687
  2777
  by (simp add: shiftr_rev)
haftmann@37660
  2778
haftmann@37660
  2779
lemma bl_sshiftr1:
haftmann@37660
  2780
  "to_bl (sshiftr1 (w :: 'a :: len word)) = hd (to_bl w) # butlast (to_bl w)"
haftmann@37660
  2781
  apply (unfold sshiftr1_def uint_bl word_size)
haftmann@37660
  2782
  apply (simp add: butlast_rest_bin word_ubin.eq_norm)
haftmann@37660
  2783
  apply (simp add: sint_uint)
haftmann@37660
  2784
  apply (rule nth_equalityI)
haftmann@37660
  2785
   apply clarsimp
haftmann@37660
  2786
  apply clarsimp
haftmann@37660
  2787
  apply (case_tac i)
haftmann@37660
  2788
   apply (simp_all add: hd_conv_nth length_0_conv [symmetric]
haftmann@37660
  2789
                        nth_bin_to_bl bin_nth.Suc [symmetric] 
haftmann@37660
  2790
                        nth_sbintr 
haftmann@37660
  2791
                   del: bin_nth.Suc)
haftmann@37660
  2792
   apply force
haftmann@37660
  2793
  apply (rule impI)
haftmann@37660
  2794
  apply (rule_tac f = "bin_nth (uint w)" in arg_cong)
haftmann@37660
  2795
  apply simp
haftmann@37660
  2796
  done
haftmann@37660
  2797
haftmann@37660
  2798
lemma drop_shiftr: 
haftmann@37660
  2799
  "drop n (to_bl ((w :: 'a :: len word) >> n)) = take (size w - n) (to_bl w)" 
haftmann@37660
  2800
  apply (unfold shiftr_def)
haftmann@37660
  2801
  apply (induct n)
haftmann@37660
  2802
   prefer 2
haftmann@37660
  2803
   apply (simp add: drop_Suc bl_shiftr1 butlast_drop [symmetric])
haftmann@37660
  2804
   apply (rule butlast_take [THEN trans])
haftmann@37660
  2805
  apply (auto simp: word_size)
haftmann@37660
  2806
  done
haftmann@37660
  2807
haftmann@37660
  2808
lemma drop_sshiftr: 
haftmann@37660
  2809
  "drop n (to_bl ((w :: 'a :: len word) >>> n)) = take (size w - n) (to_bl w)"
haftmann@37660
  2810
  apply (unfold sshiftr_def)
haftmann@37660
  2811
  apply (induct n)
haftmann@37660
  2812
   prefer 2
haftmann@37660
  2813
   apply (simp add: drop_Suc bl_sshiftr1 butlast_drop [symmetric])
haftmann@37660
  2814
   apply (rule butlast_take [THEN trans])
haftmann@37660
  2815
  apply (auto simp: word_size)
haftmann@37660
  2816
  done
haftmann@37660
  2817
huffman@46678
  2818
lemma take_shiftr:
huffman@46678
  2819
  "n \<le> size w \<Longrightarrow> take n (to_bl (w >> n)) = replicate n False"
haftmann@37660
  2820
  apply (unfold shiftr_def)
haftmann@37660
  2821
  apply (induct n)
haftmann@37660
  2822
   prefer 2
huffman@46678
  2823
   apply (simp add: bl_shiftr1' length_0_conv [symmetric] word_size)
haftmann@37660
  2824
   apply (rule take_butlast [THEN trans])
haftmann@37660
  2825
  apply (auto simp: word_size)
haftmann@37660
  2826
  done
haftmann@37660
  2827
haftmann@37660
  2828
lemma take_sshiftr' [rule_format] :
haftmann@37660
  2829
  "n <= size (w :: 'a :: len word) --> hd (to_bl (w >>> n)) = hd (to_bl w) & 
haftmann@37660
  2830
    take n (to_bl (w >>> n)) = replicate n (hd (to_bl w))" 
haftmann@37660
  2831
  apply (unfold sshiftr_def)
haftmann@37660
  2832
  apply (induct n)
haftmann@37660
  2833
   prefer 2
haftmann@37660
  2834
   apply (simp add: bl_sshiftr1)
haftmann@37660
  2835
   apply (rule impI)
haftmann@37660
  2836
   apply (rule take_butlast [THEN trans])
haftmann@37660
  2837
  apply (auto simp: word_size)
haftmann@37660
  2838
  done
haftmann@37660
  2839
wenzelm@46475
  2840
lemmas hd_sshiftr = take_sshiftr' [THEN conjunct1]
wenzelm@46475
  2841
lemmas take_sshiftr = take_sshiftr' [THEN conjunct2]
haftmann@37660
  2842
haftmann@41075
  2843
lemma atd_lem: "take n xs = t \<Longrightarrow> drop n xs = d \<Longrightarrow> xs = t @ d"
haftmann@37660
  2844
  by (auto intro: append_take_drop_id [symmetric])
haftmann@37660
  2845
haftmann@37660
  2846
lemmas bl_shiftr = atd_lem [OF take_shiftr drop_shiftr]
haftmann@37660
  2847
lemmas bl_sshiftr = atd_lem [OF take_sshiftr drop_sshiftr]
haftmann@37660
  2848
haftmann@37660
  2849
lemma shiftl_of_bl: "of_bl bl << n = of_bl (bl @ replicate n False)"
haftmann@37660
  2850
  unfolding shiftl_def
haftmann@37660
  2851
  by (induct n) (auto simp: shiftl1_of_bl replicate_app_Cons_same)
haftmann@37660
  2852
haftmann@37660
  2853
lemma shiftl_bl:
haftmann@37660
  2854
  "(w::'a::len0 word) << (n::nat) = of_bl (to_bl w @ replicate n False)"
haftmann@37660
  2855
proof -
haftmann@37660
  2856
  have "w << n = of_bl (to_bl w) << n" by simp
haftmann@37660
  2857
  also have "\<dots> = of_bl (to_bl w @ replicate n False)" by (rule shiftl_of_bl)
haftmann@37660
  2858
  finally show ?thesis .
haftmann@37660
  2859
qed
haftmann@37660
  2860
wenzelm@46475
  2861
lemmas shiftl_number [simp] = shiftl_def [where w="number_of w"] for w
haftmann@37660
  2862
haftmann@37660
  2863
lemma bl_shiftl:
haftmann@37660
  2864
  "to_bl (w << n) = drop n (to_bl w) @ replicate (min (size w) n) False"
haftmann@37660
  2865
  by (simp add: shiftl_bl word_rep_drop word_size)
haftmann@37660
  2866
haftmann@37660
  2867
lemma shiftl_zero_size: 
haftmann@37660
  2868
  fixes x :: "'a::len0 word"
haftmann@41075
  2869
  shows "size x <= n \<Longrightarrow> x << n = 0"
haftmann@37660
  2870
  apply (unfold word_size)
haftmann@37660
  2871
  apply (rule word_eqI)
haftmann@37660
  2872
  apply (clarsimp simp add: shiftl_bl word_size test_bit_of_bl nth_append)
haftmann@37660
  2873
  done
haftmann@37660
  2874
haftmann@37660
  2875
(* note - the following results use 'a :: len word < number_ring *)
haftmann@37660
  2876
haftmann@37660
  2877
lemma shiftl1_2t: "shiftl1 (w :: 'a :: len word) = 2 * w"
huffman@46872
  2878
  by (simp add: shiftl1_def Bit_def wi_hom_mult [symmetric])
haftmann@37660
  2879
haftmann@37660
  2880
lemma shiftl1_p: "shiftl1 (w :: 'a :: len word) = w + w"
huffman@46872
  2881
  by (simp add: shiftl1_2t)
haftmann@37660
  2882
haftmann@37660
  2883
lemma shiftl_t2n: "shiftl (w :: 'a :: len word) n = 2 ^ n * w"
haftmann@37660
  2884
  unfolding shiftl_def 
wenzelm@41798
  2885
  by (induct n) (auto simp: shiftl1_2t)
haftmann@37660
  2886
haftmann@37660
  2887
lemma shiftr1_bintr [simp]:
huffman@47832
  2888
  "(shiftr1 (number_of w) :: 'a :: len0 word) =
huffman@47832
  2889
    word_of_int (bin_rest (bintrunc (len_of TYPE ('a)) (number_of w)))"
huffman@47832
  2890
  unfolding shiftr1_def word_number_of_alt
huffman@47832
  2891
  by (simp add: word_ubin.eq_norm)
huffman@47832
  2892
huffman@47832
  2893
lemma sshiftr1_sbintr [simp]:
huffman@47832
  2894
  "(sshiftr1 (number_of w) :: 'a :: len word) =
huffman@47832
  2895
    word_of_int (bin_rest (sbintrunc (len_of TYPE ('a) - 1) (number_of w)))"
huffman@47832
  2896
  unfolding sshiftr1_def word_number_of_alt
huffman@47832
  2897
  by (simp add: word_sbin.eq_norm)
haftmann@37660
  2898
huffman@46920
  2899
lemma shiftr_no [simp]:
huffman@46920
  2900
  "(number_of w::'a::len0 word) >> n = word_of_int
huffman@46920
  2901
    ((bin_rest ^^ n) (bintrunc (len_of TYPE('a)) (number_of w)))"
haftmann@37660
  2902
  apply (rule word_eqI)
haftmann@37660
  2903
  apply (auto simp: nth_shiftr nth_rest_power_bin nth_bintr word_size)
haftmann@37660
  2904
  done
haftmann@37660
  2905
huffman@46920
  2906
lemma sshiftr_no [simp]:
huffman@46920
  2907
  "(number_of w::'a::len word) >>> n = word_of_int
huffman@46920
  2908
    ((bin_rest ^^ n) (sbintrunc (len_of TYPE('a) - 1) (number_of w)))"
haftmann@37660
  2909
  apply (rule word_eqI)
haftmann@37660
  2910
  apply (auto simp: nth_sshiftr nth_rest_power_bin nth_sbintr word_size)
haftmann@37660
  2911
   apply (subgoal_tac "na + n = len_of TYPE('a) - Suc 0", simp, simp)+
haftmann@37660
  2912
  done
haftmann@37660
  2913
huffman@46682
  2914
lemma shiftr1_bl_of:
huffman@46682
  2915
  "length bl \<le> len_of TYPE('a) \<Longrightarrow>
huffman@46682
  2916
    shiftr1 (of_bl bl::'a::len0 word) = of_bl (butlast bl)"
huffman@46682
  2917
  by (clarsimp simp: shiftr1_def of_bl_def butlast_rest_bl2bin 
haftmann@37660
  2918
                     word_ubin.eq_norm trunc_bl2bin)
haftmann@37660
  2919
huffman@46682
  2920
lemma shiftr_bl_of:
huffman@46682
  2921
  "length bl \<le> len_of TYPE('a) \<Longrightarrow>
huffman@46682
  2922
    (of_bl bl::'a::len0 word) >> n = of_bl (take (length bl - n) bl)"
haftmann@37660
  2923
  apply (unfold shiftr_def)
haftmann@37660
  2924
  apply (induct n)
haftmann@37660
  2925
   apply clarsimp
haftmann@37660
  2926
  apply clarsimp
haftmann@37660
  2927
  apply (subst shiftr1_bl_of)
haftmann@37660
  2928
   apply simp
haftmann@37660
  2929
  apply (simp add: butlast_take)
haftmann@37660
  2930
  done
haftmann@37660
  2931
huffman@46682
  2932
lemma shiftr_bl:
huffman@46682
  2933
  "(x::'a::len0 word) >> n \<equiv> of_bl (take (len_of TYPE('a) - n) (to_bl x))"
huffman@46682
  2934
  using shiftr_bl_of [where 'a='a, of "to_bl x"] by simp
huffman@46682
  2935
huffman@46682
  2936
lemma msb_shift:
huffman@46682
  2937
  "msb (w::'a::len word) \<longleftrightarrow> (w >> (len_of TYPE('a) - 1)) \<noteq> 0"
haftmann@37660
  2938
  apply (unfold shiftr_bl word_msb_alt)
haftmann@37660
  2939
  apply (simp add: word_size Suc_le_eq take_Suc)
haftmann@37660
  2940
  apply (cases "hd (to_bl w)")
huffman@46676
  2941
   apply (auto simp: word_1_bl
haftmann@37660
  2942
                     of_bl_rep_False [where n=1 and bs="[]", simplified])
haftmann@37660
  2943
  done
haftmann@37660
  2944
haftmann@37660
  2945
lemma align_lem_or [rule_format] :
haftmann@37660
  2946
  "ALL x m. length x = n + m --> length y = n + m --> 
haftmann@37660
  2947
    drop m x = replicate n False --> take m y = replicate m False --> 
haftmann@37660
  2948
    map2 op | x y = take m x @ drop m y"
haftmann@37660
  2949
  apply (induct_tac y)
haftmann@37660
  2950
   apply force
haftmann@37660
  2951
  apply clarsimp
haftmann@37660
  2952
  apply (case_tac x, force)
haftmann@37660
  2953
  apply (case_tac m, auto)
haftmann@37660
  2954
  apply (drule sym)
haftmann@37660
  2955
  apply auto
haftmann@37660
  2956
  apply (induct_tac list, auto)
haftmann@37660
  2957
  done
haftmann@37660
  2958
haftmann@37660
  2959
lemma align_lem_and [rule_format] :
haftmann@37660
  2960
  "ALL x m. length x = n + m --> length y = n + m --> 
haftmann@37660
  2961
    drop m x = replicate n False --> take m y = replicate m False --> 
haftmann@37660
  2962
    map2 op & x y = replicate (n + m) False"
haftmann@37660
  2963
  apply (induct_tac y)
haftmann@37660
  2964
   apply force
haftmann@37660
  2965
  apply clarsimp
haftmann@37660
  2966
  apply (case_tac x, force)
haftmann@37660
  2967
  apply (case_tac m, auto)
haftmann@37660
  2968
  apply (drule sym)
haftmann@37660
  2969
  apply auto
haftmann@37660
  2970
  apply (induct_tac list, auto)
haftmann@37660
  2971
  done
haftmann@37660
  2972
huffman@46682
  2973
lemma aligned_bl_add_size [OF refl]:
haftmann@41075
  2974
  "size x - n = m \<Longrightarrow> n <= size x \<Longrightarrow> drop m (to_bl x) = replicate n False \<Longrightarrow>
haftmann@41075
  2975
    take m (to_bl y) = replicate m False \<Longrightarrow> 
haftmann@37660
  2976
    to_bl (x + y) = take m (to_bl x) @ drop m (to_bl y)"
haftmann@37660
  2977
  apply (subgoal_tac "x AND y = 0")
haftmann@37660
  2978
   prefer 2
haftmann@37660
  2979
   apply (rule word_bl.Rep_eqD)
huffman@46676
  2980
   apply (simp add: bl_word_and)
haftmann@37660
  2981
   apply (rule align_lem_and [THEN trans])
haftmann@37660
  2982
       apply (simp_all add: word_size)[5]
haftmann@37660
  2983
   apply simp
haftmann@37660
  2984
  apply (subst word_plus_and_or [symmetric])
haftmann@37660
  2985
  apply (simp add : bl_word_or)
haftmann@37660
  2986
  apply (rule align_lem_or)
haftmann@37660
  2987
     apply (simp_all add: word_size)
haftmann@37660
  2988
  done
haftmann@37660
  2989
haftmann@37660
  2990
subsubsection "Mask"
haftmann@37660
  2991
huffman@46682
  2992
lemma nth_mask [OF refl, simp]:
huffman@46682
  2993
  "m = mask n \<Longrightarrow> test_bit m i = (i < n & i < size m)"
haftmann@37660
  2994
  apply (unfold mask_def test_bit_bl)
haftmann@37660
  2995
  apply (simp only: word_1_bl [symmetric] shiftl_of_bl)
haftmann@37660
  2996
  apply (clarsimp simp add: word_size)
huffman@47516
  2997
  apply (simp only: of_bl_def mask_lem word_of_int_hom_syms add_diff_cancel2)
huffman@47516
  2998
  apply (fold of_bl_def)
haftmann@37660
  2999
  apply (simp add: word_1_bl)
haftmann@37660
  3000
  apply (rule test_bit_of_bl [THEN trans, unfolded test_bit_bl word_size])
haftmann@37660
  3001
  apply auto
haftmann@37660
  3002
  done
haftmann@37660
  3003
haftmann@37660
  3004
lemma mask_bl: "mask n = of_bl (replicate n True)"
haftmann@37660
  3005
  by (auto simp add : test_bit_of_bl word_size intro: word_eqI)
haftmann@37660
  3006
huffman@46893
  3007
lemma mask_bin: "mask n = word_of_int (bintrunc n -1)"
haftmann@37660
  3008
  by (auto simp add: nth_bintr word_size intro: word_eqI)
haftmann@37660
  3009
huffman@46872
  3010
lemma and_mask_bintr: "w AND mask n = word_of_int (bintrunc n (uint w))"
haftmann@37660
  3011
  apply (rule word_eqI)
haftmann@37660
  3012
  apply (simp add: nth_bintr word_size word_ops_nth_size)
haftmann@37660
  3013
  apply (auto simp add: test_bit_bin)
haftmann@37660
  3014
  done
haftmann@37660
  3015
huffman@46682
  3016
lemma and_mask_wi: "word_of_int i AND mask n = word_of_int (bintrunc n i)"
huffman@46893
  3017
  by (auto simp add: nth_bintr word_size word_ops_nth_size word_eq_iff)
huffman@46893
  3018
huffman@46893
  3019
lemma and_mask_no: "number_of i AND mask n = word_of_int (bintrunc n (number_of i))"
huffman@46893
  3020
  unfolding word_number_of_alt by (rule and_mask_wi)
haftmann@37660
  3021
haftmann@37660
  3022
lemma bl_and_mask':
haftmann@37660
  3023
  "to_bl (w AND mask n :: 'a :: len word) = 
haftmann@37660
  3024
    replicate (len_of TYPE('a) - n) False @ 
haftmann@37660
  3025
    drop (len_of TYPE('a) - n) (to_bl w)"
haftmann@37660
  3026
  apply (rule nth_equalityI)
haftmann@37660
  3027
   apply simp
haftmann@37660
  3028
  apply (clarsimp simp add: to_bl_nth word_size)
haftmann@37660
  3029
  apply (simp add: word_size word_ops_nth_size)
haftmann@37660
  3030
  apply (auto simp add: word_size test_bit_bl nth_append nth_rev)
haftmann@37660
  3031
  done
haftmann@37660
  3032
huffman@46682
  3033
lemma and_mask_mod_2p: "w AND mask n = word_of_int (uint w mod 2 ^ n)"
huffman@46872
  3034
  by (simp only: and_mask_bintr bintrunc_mod2p)
haftmann@37660
  3035
haftmann@37660
  3036
lemma and_mask_lt_2p: "uint (w AND mask n) < 2 ^ n"
huffman@46872
  3037
  apply (simp add: and_mask_bintr word_ubin.eq_norm)
huffman@46872
  3038
  apply (simp add: bintrunc_mod2p)
haftmann@37660
  3039
  apply (rule xtr8)
haftmann@37660
  3040
   prefer 2
haftmann@37660
  3041
   apply (rule pos_mod_bound)
haftmann@37660
  3042
  apply auto
haftmann@37660
  3043
  done
haftmann@37660
  3044
huffman@46682
  3045
lemma eq_mod_iff: "0 < (n::int) \<Longrightarrow> b = b mod n \<longleftrightarrow> 0 \<le> b \<and> b < n"
huffman@46682
  3046
  by (simp add: int_mod_lem eq_sym_conv)
haftmann@37660
  3047
haftmann@37660
  3048
lemma mask_eq_iff: "(w AND mask n) = w <-> uint w < 2 ^ n"
haftmann@37660
  3049
  apply (simp add: and_mask_bintr word_number_of_def)
haftmann@37660
  3050
  apply (simp add: word_ubin.inverse_norm)
haftmann@37660
  3051
  apply (simp add: eq_mod_iff bintrunc_mod2p min_def)
haftmann@37660
  3052
  apply (fast intro!: lt2p_lem)
haftmann@37660
  3053
  done
haftmann@37660
  3054
haftmann@37660
  3055
lemma and_mask_dvd: "2 ^ n dvd uint w = (w AND mask n = 0)"
haftmann@37660
  3056
  apply (simp add: dvd_eq_mod_eq_0 and_mask_mod_2p)
huffman@46866
  3057
  apply (simp add: word_uint.norm_eq_iff [symmetric] word_of_int_homs
huffman@46866
  3058
    del: word_of_int_0)
haftmann@37660
  3059
  apply (subst word_uint.norm_Rep [symmetric])
haftmann@37660
  3060
  apply (simp only: bintrunc_bintrunc_min bintrunc_mod2p [symmetric] min_def)
haftmann@37660
  3061
  apply auto
haftmann@37660
  3062
  done
haftmann@37660
  3063
haftmann@37660
  3064
lemma and_mask_dvd_nat: "2 ^ n dvd unat w = (w AND mask n = 0)"
haftmann@37660
  3065
  apply (unfold unat_def)
haftmann@37660
  3066
  apply (rule trans [OF _ and_mask_dvd])
haftmann@37660
  3067
  apply (unfold dvd_def) 
haftmann@37660
  3068
  apply auto 
haftmann@37660
  3069
  apply (drule uint_ge_0 [THEN nat_int.Abs_inverse' [simplified], symmetric])
haftmann@37660
  3070
  apply (simp add : int_mult int_power)
haftmann@37660
  3071
  apply (simp add : nat_mult_distrib nat_power_eq)
haftmann@37660
  3072
  done
haftmann@37660
  3073
haftmann@37660
  3074
lemma word_2p_lem: 
haftmann@41075
  3075
  "n < size w \<Longrightarrow> w < 2 ^ n = (uint (w :: 'a :: len word) < 2 ^ n)"
haftmann@37660
  3076
  apply (unfold word_size word_less_alt word_number_of_alt)
haftmann@37660
  3077
  apply (clarsimp simp add: word_of_int_power_hom word_uint.eq_norm 
haftmann@37660
  3078
                            int_mod_eq'
haftmann@37660
  3079
                  simp del: word_of_int_bin)
haftmann@37660
  3080
  done
haftmann@37660
  3081
haftmann@41075
  3082
lemma less_mask_eq: "x < 2 ^ n \<Longrightarrow> x AND mask n = (x :: 'a :: len word)"
haftmann@37660
  3083
  apply (unfold word_less_alt word_number_of_alt)
haftmann@37660
  3084
  apply (clarsimp simp add: and_mask_mod_2p word_of_int_power_hom 
haftmann@37660
  3085
                            word_uint.eq_norm
haftmann@37660
  3086
                  simp del: word_of_int_bin)
haftmann@37660
  3087
  apply (drule xtr8 [rotated])
haftmann@37660
  3088
  apply (rule int_mod_le)
haftmann@37660
  3089
  apply (auto simp add : mod_pos_pos_trivial)
haftmann@37660
  3090
  done
haftmann@37660
  3091
wenzelm@46475
  3092
lemmas mask_eq_iff_w2p = trans [OF mask_eq_iff word_2p_lem [symmetric]]
wenzelm@46475
  3093
wenzelm@46475
  3094
lemmas and_mask_less' = iffD2 [OF word_2p_lem and_mask_lt_2p, simplified word_size]
haftmann@37660
  3095
haftmann@41075
  3096
lemma and_mask_less_size: "n < size x \<Longrightarrow> x AND mask n < 2^n"
haftmann@37660
  3097
  unfolding word_size by (erule and_mask_less')
haftmann@37660
  3098
huffman@46682
  3099
lemma word_mod_2p_is_mask [OF refl]:
haftmann@41075
  3100
  "c = 2 ^ n \<Longrightarrow> c > 0 \<Longrightarrow> x mod c = (x :: 'a :: len word) AND mask n" 
haftmann@37660
  3101
  by (clarsimp simp add: word_mod_def uint_2p and_mask_mod_2p) 
haftmann@37660
  3102
haftmann@37660
  3103
lemma mask_eqs:
haftmann@37660
  3104
  "(a AND mask n) + b AND mask n = a + b AND mask n"
haftmann@37660
  3105
  "a + (b AND mask n) AND mask n = a + b AND mask n"
haftmann@37660
  3106
  "(a AND mask n) - b AND mask n = a - b AND mask n"
haftmann@37660
  3107
  "a - (b AND mask n) AND mask n = a - b AND mask n"
haftmann@37660
  3108
  "a * (b AND mask n) AND mask n = a * b AND mask n"
haftmann@37660
  3109
  "(b AND mask n) * a AND mask n = b * a AND mask n"
haftmann@37660
  3110
  "(a AND mask n) + (b AND mask n) AND mask n = a + b AND mask n"
haftmann@37660
  3111
  "(a AND mask n) - (b AND mask n) AND mask n = a - b AND mask n"
haftmann@37660
  3112
  "(a AND mask n) * (b AND mask n) AND mask n = a * b AND mask n"
haftmann@37660
  3113
  "- (a AND mask n) AND mask n = - a AND mask n"
haftmann@37660
  3114
  "word_succ (a AND mask n) AND mask n = word_succ a AND mask n"
haftmann@37660
  3115
  "word_pred (a AND mask n) AND mask n = word_pred a AND mask n"
haftmann@37660
  3116
  using word_of_int_Ex [where x=a] word_of_int_Ex [where x=b]
huffman@46879
  3117
  by (auto simp: and_mask_wi bintr_ariths bintr_arith1s word_of_int_homs)
haftmann@37660
  3118
haftmann@37660
  3119
lemma mask_power_eq:
haftmann@37660
  3120
  "(x AND mask n) ^ k AND mask n = x ^ k AND mask n"
haftmann@37660
  3121
  using word_of_int_Ex [where x=x]
haftmann@37660
  3122
  by (clarsimp simp: and_mask_wi word_of_int_power_hom bintr_ariths)
haftmann@37660
  3123
haftmann@37660
  3124
haftmann@37660
  3125
subsubsection "Revcast"
haftmann@37660
  3126
haftmann@37660
  3127
lemmas revcast_def' = revcast_def [simplified]
haftmann@37660
  3128
lemmas revcast_def'' = revcast_def' [simplified word_size]
wenzelm@46475
  3129
lemmas revcast_no_def [simp] = revcast_def' [where w="number_of w", unfolded word_size] for w
haftmann@37660
  3130
haftmann@37660
  3131
lemma to_bl_revcast: 
haftmann@37660
  3132
  "to_bl (revcast w :: 'a :: len0 word) = 
haftmann@37660
  3133
   takefill False (len_of TYPE ('a)) (to_bl w)"
haftmann@37660
  3134
  apply (unfold revcast_def' word_size)
haftmann@37660
  3135
  apply (rule word_bl.Abs_inverse)
haftmann@37660
  3136
  apply simp
haftmann@37660
  3137
  done
haftmann@37660
  3138
huffman@46682
  3139
lemma revcast_rev_ucast [OF refl refl refl]: 
haftmann@41075
  3140
  "cs = [rc, uc] \<Longrightarrow> rc = revcast (word_reverse w) \<Longrightarrow> uc = ucast w \<Longrightarrow> 
haftmann@37660
  3141
    rc = word_reverse uc"
haftmann@37660
  3142
  apply (unfold ucast_def revcast_def' Let_def word_reverse_def)
haftmann@37660
  3143
  apply (clarsimp simp add : to_bl_of_bin takefill_bintrunc)
haftmann@37660
  3144
  apply (simp add : word_bl.Abs_inverse word_size)
haftmann@37660
  3145
  done
haftmann@37660
  3146
huffman@46682
  3147
lemma revcast_ucast: "revcast w = word_reverse (ucast (word_reverse w))"
huffman@46682
  3148
  using revcast_rev_ucast [of "word_reverse w"] by simp
huffman@46682
  3149
huffman@46682
  3150
lemma ucast_revcast: "ucast w = word_reverse (revcast (word_reverse w))"
huffman@46682
  3151
  by (fact revcast_rev_ucast [THEN word_rev_gal'])
huffman@46682
  3152
huffman@46682
  3153
lemma ucast_rev_revcast: "ucast (word_reverse w) = word_reverse (revcast w)"
huffman@46682
  3154
  by (fact revcast_ucast [THEN word_rev_gal'])
haftmann@37660
  3155
haftmann@37660
  3156
haftmann@37660
  3157
-- "linking revcast and cast via shift"
haftmann@37660
  3158
haftmann@37660
  3159
lemmas wsst_TYs = source_size target_size word_size
haftmann@37660
  3160
huffman@46682
  3161
lemma revcast_down_uu [OF refl]:
haftmann@41075
  3162
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
haftmann@37660
  3163
    rc (w :: 'a :: len word) = ucast (w >> n)"
haftmann@37660
  3164
  apply (simp add: revcast_def')
haftmann@37660
  3165
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  3166
  apply (rule trans, rule ucast_down_drop)
haftmann@37660
  3167
   prefer 2
haftmann@37660
  3168
   apply (rule trans, rule drop_shiftr)
haftmann@37660
  3169
   apply (auto simp: takefill_alt wsst_TYs)
haftmann@37660
  3170
  done
haftmann@37660
  3171
huffman@46682
  3172
lemma revcast_down_us [OF refl]:
haftmann@41075
  3173
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
haftmann@37660
  3174
    rc (w :: 'a :: len word) = ucast (w >>> n)"
haftmann@37660
  3175
  apply (simp add: revcast_def')
haftmann@37660
  3176
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  3177
  apply (rule trans, rule ucast_down_drop)
haftmann@37660
  3178
   prefer 2
haftmann@37660
  3179
   apply (rule trans, rule drop_sshiftr)
haftmann@37660
  3180
   apply (auto simp: takefill_alt wsst_TYs)
haftmann@37660
  3181
  done
haftmann@37660
  3182
huffman@46682
  3183
lemma revcast_down_su [OF refl]:
haftmann@41075
  3184
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
haftmann@37660
  3185
    rc (w :: 'a :: len word) = scast (w >> n)"
haftmann@37660
  3186
  apply (simp add: revcast_def')
haftmann@37660
  3187
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  3188
  apply (rule trans, rule scast_down_drop)
haftmann@37660
  3189
   prefer 2
haftmann@37660
  3190
   apply (rule trans, rule drop_shiftr)
haftmann@37660
  3191
   apply (auto simp: takefill_alt wsst_TYs)
haftmann@37660
  3192
  done
haftmann@37660
  3193
huffman@46682
  3194
lemma revcast_down_ss [OF refl]:
haftmann@41075
  3195
  "rc = revcast \<Longrightarrow> source_size rc = target_size rc + n \<Longrightarrow> 
haftmann@37660
  3196
    rc (w :: 'a :: len word) = scast (w >>> n)"
haftmann@37660
  3197
  apply (simp add: revcast_def')
haftmann@37660
  3198
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  3199
  apply (rule trans, rule scast_down_drop)
haftmann@37660
  3200
   prefer 2
haftmann@37660
  3201
   apply (rule trans, rule drop_sshiftr)
haftmann@37660
  3202
   apply (auto simp: takefill_alt wsst_TYs)
haftmann@37660
  3203
  done
haftmann@37660
  3204
huffman@46682
  3205
(* FIXME: should this also be [OF refl] ? *)
haftmann@37660
  3206
lemma cast_down_rev: 
haftmann@41075
  3207
  "uc = ucast \<Longrightarrow> source_size uc = target_size uc + n \<Longrightarrow> 
haftmann@37660
  3208
    uc w = revcast ((w :: 'a :: len word) << n)"
haftmann@37660
  3209
  apply (unfold shiftl_rev)
haftmann@37660
  3210
  apply clarify
haftmann@37660
  3211
  apply (simp add: revcast_rev_ucast)
haftmann@37660
  3212
  apply (rule word_rev_gal')
haftmann@37660
  3213
  apply (rule trans [OF _ revcast_rev_ucast])
haftmann@37660
  3214
  apply (rule revcast_down_uu [symmetric])
haftmann@37660
  3215
  apply (auto simp add: wsst_TYs)
haftmann@37660
  3216
  done
haftmann@37660
  3217
huffman@46682
  3218
lemma revcast_up [OF refl]:
haftmann@41075
  3219
  "rc = revcast \<Longrightarrow> source_size rc + n = target_size rc \<Longrightarrow> 
haftmann@37660
  3220
    rc w = (ucast w :: 'a :: len word) << n" 
haftmann@37660
  3221
  apply (simp add: revcast_def')
haftmann@37660
  3222
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  3223
  apply (simp add: takefill_alt)
haftmann@37660
  3224
  apply (rule bl_shiftl [THEN trans])
haftmann@37660
  3225
  apply (subst ucast_up_app)
haftmann@37660
  3226
  apply (auto simp add: wsst_TYs)
haftmann@37660
  3227
  done
haftmann@37660
  3228
haftmann@37660
  3229
lemmas rc1 = revcast_up [THEN 
haftmann@37660
  3230
  revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]]
haftmann@37660
  3231
lemmas rc2 = revcast_down_uu [THEN 
haftmann@37660
  3232
  revcast_rev_ucast [symmetric, THEN trans, THEN word_rev_gal, symmetric]]
haftmann@37660
  3233
haftmann@37660
  3234
lemmas ucast_up =
haftmann@37660
  3235
 rc1 [simplified rev_shiftr [symmetric] revcast_ucast [symmetric]]
haftmann@37660
  3236
lemmas ucast_down = 
haftmann@37660
  3237
  rc2 [simplified rev_shiftr revcast_ucast [symmetric]]
haftmann@37660
  3238
haftmann@37660
  3239
haftmann@37660
  3240
subsubsection "Slices"
haftmann@37660
  3241
haftmann@41075
  3242
lemma slice1_no_bin [simp]:
huffman@47489
  3243
  "slice1 n (number_of w :: 'b word) = of_bl (takefill False n (bin_to_bl (len_of TYPE('b :: len0)) (number_of w)))"
haftmann@41075
  3244
  by (simp add: slice1_def)
haftmann@41075
  3245
haftmann@41075
  3246
lemma slice_no_bin [simp]:
haftmann@41075
  3247
  "slice n (number_of w :: 'b word) = of_bl (takefill False (len_of TYPE('b :: len0) - n)
huffman@47489
  3248
    (bin_to_bl (len_of TYPE('b :: len0)) (number_of w)))"
haftmann@41075
  3249
  by (simp add: slice_def word_size)
haftmann@37660
  3250
haftmann@37660
  3251
lemma slice1_0 [simp] : "slice1 n 0 = 0"
huffman@46676
  3252
  unfolding slice1_def by simp
haftmann@37660
  3253
haftmann@37660
  3254
lemma slice_0 [simp] : "slice n 0 = 0"
haftmann@37660
  3255
  unfolding slice_def by auto
haftmann@37660
  3256
haftmann@37660
  3257
lemma slice_take': "slice n w = of_bl (take (size w - n) (to_bl w))"
haftmann@37660
  3258
  unfolding slice_def' slice1_def
haftmann@37660
  3259
  by (simp add : takefill_alt word_size)
haftmann@37660
  3260
haftmann@37660
  3261
lemmas slice_take = slice_take' [unfolded word_size]
haftmann@37660
  3262
haftmann@37660
  3263
-- "shiftr to a word of the same size is just slice, 
haftmann@37660
  3264
    slice is just shiftr then ucast"
wenzelm@46475
  3265
lemmas shiftr_slice = trans [OF shiftr_bl [THEN meta_eq_to_obj_eq] slice_take [symmetric]]
haftmann@37660
  3266
haftmann@37660
  3267
lemma slice_shiftr: "slice n w = ucast (w >> n)"
haftmann@37660
  3268
  apply (unfold slice_take shiftr_bl)
haftmann@37660
  3269
  apply (rule ucast_of_bl_up [symmetric])
haftmann@37660
  3270
  apply (simp add: word_size)
haftmann@37660
  3271
  done
haftmann@37660
  3272
haftmann@37660
  3273
lemma nth_slice: 
haftmann@37660
  3274
  "(slice n w :: 'a :: len0 word) !! m = 
haftmann@37660
  3275
   (w !! (m + n) & m < len_of TYPE ('a))"
haftmann@37660
  3276
  unfolding slice_shiftr 
haftmann@37660
  3277
  by (simp add : nth_ucast nth_shiftr)
haftmann@37660
  3278
haftmann@37660
  3279
lemma slice1_down_alt': 
haftmann@41075
  3280
  "sl = slice1 n w \<Longrightarrow> fs = size sl \<Longrightarrow> fs + k = n \<Longrightarrow> 
haftmann@37660
  3281
    to_bl sl = takefill False fs (drop k (to_bl w))"
haftmann@37660
  3282
  unfolding slice1_def word_size of_bl_def uint_bl
haftmann@37660
  3283
  by (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop drop_takefill)
haftmann@37660
  3284
haftmann@37660
  3285
lemma slice1_up_alt': 
haftmann@41075
  3286
  "sl = slice1 n w \<Longrightarrow> fs = size sl \<Longrightarrow> fs = n + k \<Longrightarrow> 
haftmann@37660
  3287
    to_bl sl = takefill False fs (replicate k False @ (to_bl w))"
haftmann@37660
  3288
  apply (unfold slice1_def word_size of_bl_def uint_bl)
haftmann@37660
  3289
  apply (clarsimp simp: word_ubin.eq_norm bl_bin_bl_rep_drop 
haftmann@37660
  3290
                        takefill_append [symmetric])
haftmann@37660
  3291
  apply (rule_tac f = "%k. takefill False (len_of TYPE('a))
haftmann@37660
  3292
    (replicate k False @ bin_to_bl (len_of TYPE('b)) (uint w))" in arg_cong)
haftmann@37660
  3293
  apply arith
haftmann@37660
  3294
  done
haftmann@37660
  3295
    
haftmann@37660
  3296
lemmas sd1 = slice1_down_alt' [OF refl refl, unfolded word_size]
haftmann@37660
  3297
lemmas su1 = slice1_up_alt' [OF refl refl, unfolded word_size]
haftmann@37660
  3298
lemmas slice1_down_alt = le_add_diff_inverse [THEN sd1]
haftmann@37660
  3299
lemmas slice1_up_alts = 
haftmann@37660
  3300
  le_add_diff_inverse [symmetric, THEN su1] 
haftmann@37660
  3301
  le_add_diff_inverse2 [symmetric, THEN su1]
haftmann@37660
  3302
haftmann@37660
  3303
lemma ucast_slice1: "ucast w = slice1 (size w) w"
haftmann@37660
  3304
  unfolding slice1_def ucast_bl
haftmann@37660
  3305
  by (simp add : takefill_same' word_size)
haftmann@37660
  3306
haftmann@37660
  3307
lemma ucast_slice: "ucast w = slice 0 w"
haftmann@37660
  3308
  unfolding slice_def by (simp add : ucast_slice1)
haftmann@37660
  3309
huffman@46687
  3310
lemma slice_id: "slice 0 t = t"
huffman@46687
  3311
  by (simp only: ucast_slice [symmetric] ucast_id)
huffman@46687
  3312
huffman@46687
  3313
lemma revcast_slice1 [OF refl]: 
haftmann@41075
  3314
  "rc = revcast w \<Longrightarrow> slice1 (size rc) w = rc"
haftmann@37660
  3315
  unfolding slice1_def revcast_def' by (simp add : word_size)
haftmann@37660
  3316
haftmann@37660
  3317
lemma slice1_tf_tf': 
haftmann@37660
  3318
  "to_bl (slice1 n w :: 'a :: len0 word) = 
haftmann@37660
  3319
   rev (takefill False (len_of TYPE('a)) (rev (takefill False n (to_bl w))))"
haftmann@37660
  3320
  unfolding slice1_def by (rule word_rev_tf)
haftmann@37660
  3321
wenzelm@46475
  3322
lemmas slice1_tf_tf = slice1_tf_tf' [THEN word_bl.Rep_inverse', symmetric]
haftmann@37660
  3323
haftmann@37660
  3324
lemma rev_slice1:
haftmann@37660
  3325
  "n + k = len_of TYPE('a) + len_of TYPE('b) \<Longrightarrow> 
haftmann@37660
  3326
  slice1 n (word_reverse w :: 'b :: len0 word) = 
haftmann@37660
  3327
  word_reverse (slice1 k w :: 'a :: len0 word)"
haftmann@37660
  3328
  apply (unfold word_reverse_def slice1_tf_tf)
haftmann@37660
  3329
  apply (rule word_bl.Rep_inverse')
haftmann@37660
  3330
  apply (rule rev_swap [THEN iffD1])
haftmann@37660
  3331
  apply (rule trans [symmetric])
haftmann@37660
  3332
  apply (rule tf_rev)
haftmann@37660
  3333
   apply (simp add: word_bl.Abs_inverse)
haftmann@37660
  3334
  apply (simp add: word_bl.Abs_inverse)
haftmann@37660
  3335
  done
haftmann@37660
  3336
huffman@46687
  3337
lemma rev_slice:
huffman@46687
  3338
  "n + k + len_of TYPE('a::len0) = len_of TYPE('b::len0) \<Longrightarrow>
huffman@46687
  3339
    slice n (word_reverse (w::'b word)) = word_reverse (slice k w::'a word)"
haftmann@37660
  3340
  apply (unfold slice_def word_size)
haftmann@37660
  3341
  apply (rule rev_slice1)
haftmann@37660
  3342
  apply arith
haftmann@37660
  3343
  done
haftmann@37660
  3344
haftmann@37660
  3345
lemmas sym_notr = 
haftmann@37660
  3346
  not_iff [THEN iffD2, THEN not_sym, THEN not_iff [THEN iffD1]]
haftmann@37660
  3347
haftmann@37660
  3348
-- {* problem posed by TPHOLs referee:
haftmann@37660
  3349
      criterion for overflow of addition of signed integers *}
haftmann@37660
  3350
haftmann@37660
  3351
lemma sofl_test:
haftmann@37660
  3352
  "(sint (x :: 'a :: len word) + sint y = sint (x + y)) = 
haftmann@37660
  3353
     ((((x+y) XOR x) AND ((x+y) XOR y)) >> (size x - 1) = 0)"
haftmann@37660
  3354
  apply (unfold word_size)
haftmann@37660
  3355
  apply (cases "len_of TYPE('a)", simp) 
haftmann@37660
  3356
  apply (subst msb_shift [THEN sym_notr])
haftmann@37660
  3357
  apply (simp add: word_ops_msb)
haftmann@37660
  3358
  apply (simp add: word_msb_sint)
haftmann@37660
  3359
  apply safe
haftmann@37660
  3360
       apply simp_all
haftmann@37660
  3361
     apply (unfold sint_word_ariths)
haftmann@37660
  3362
     apply (unfold word_sbin.set_iff_norm [symmetric] sints_num)
haftmann@37660
  3363
     apply safe
haftmann@37660
  3364
        apply (insert sint_range' [where x=x])
haftmann@37660
  3365
        apply (insert sint_range' [where x=y])
haftmann@37660
  3366
        defer 
haftmann@37660
  3367
        apply (simp (no_asm), arith)
haftmann@37660
  3368
       apply (simp (no_asm), arith)
haftmann@37660
  3369
      defer
haftmann@37660
  3370
      defer
haftmann@37660
  3371
      apply (simp (no_asm), arith)
haftmann@37660
  3372
     apply (simp (no_asm), arith)
haftmann@37660
  3373
    apply (rule notI [THEN notnotD],
haftmann@37660
  3374
           drule leI not_leE,
haftmann@37660
  3375
           drule sbintrunc_inc sbintrunc_dec,      
haftmann@37660
  3376
           simp)+
haftmann@37660
  3377
  done
haftmann@37660
  3378
haftmann@37660
  3379
haftmann@37660
  3380
subsection "Split and cat"
haftmann@37660
  3381
haftmann@41075
  3382
lemmas word_split_bin' = word_split_def
haftmann@41075
  3383
lemmas word_cat_bin' = word_cat_def
haftmann@37660
  3384
haftmann@37660
  3385
lemma word_rsplit_no:
haftmann@37660
  3386
  "(word_rsplit (number_of bin :: 'b :: len0 word) :: 'a word list) = 
huffman@47832
  3387
    map word_of_int (bin_rsplit (len_of TYPE('a :: len)) 
huffman@47832
  3388
      (len_of TYPE('b), bintrunc (len_of TYPE('b)) (number_of bin)))"
huffman@47832
  3389
  unfolding word_rsplit_def by (simp add: word_ubin.eq_norm)
haftmann@37660
  3390
haftmann@37660
  3391
lemmas word_rsplit_no_cl [simp] = word_rsplit_no
haftmann@37660
  3392
  [unfolded bin_rsplitl_def bin_rsplit_l [symmetric]]
haftmann@37660
  3393
haftmann@37660
  3394
lemma test_bit_cat:
haftmann@41075
  3395
  "wc = word_cat a b \<Longrightarrow> wc !! n = (n < size wc & 
haftmann@37660
  3396
    (if n < size b then b !! n else a !! (n - size b)))"
haftmann@37660
  3397
  apply (unfold word_cat_bin' test_bit_bin)
haftmann@37660
  3398
  apply (auto simp add : word_ubin.eq_norm nth_bintr bin_nth_cat word_size)
haftmann@37660
  3399
  apply (erule bin_nth_uint_imp)
haftmann@37660
  3400
  done
haftmann@37660
  3401
haftmann@37660
  3402
lemma word_cat_bl: "word_cat a b = of_bl (to_bl a @ to_bl b)"
haftmann@37660
  3403
  apply (unfold of_bl_def to_bl_def word_cat_bin')
haftmann@37660
  3404
  apply (simp add: bl_to_bin_app_cat)
haftmann@37660
  3405
  done
haftmann@37660
  3406
haftmann@37660
  3407
lemma of_bl_append:
haftmann@37660
  3408
  "(of_bl (xs @ ys) :: 'a :: len word) = of_bl xs * 2^(length ys) + of_bl ys"
haftmann@37660
  3409
  apply (unfold of_bl_def)
haftmann@37660
  3410
  apply (simp add: bl_to_bin_app_cat bin_cat_num)
huffman@46879
  3411
  apply (simp add: word_of_int_power_hom [symmetric] word_of_int_hom_syms)
haftmann@37660
  3412
  done
haftmann@37660
  3413
haftmann@37660
  3414
lemma of_bl_False [simp]:
haftmann@37660
  3415
  "of_bl (False#xs) = of_bl xs"
haftmann@37660
  3416
  by (rule word_eqI)
haftmann@37660
  3417
     (auto simp add: test_bit_of_bl nth_append)
haftmann@37660
  3418
huffman@46676
  3419
lemma of_bl_True [simp]:
haftmann@37660
  3420
  "(of_bl (True#xs)::'a::len word) = 2^length xs + of_bl xs"
haftmann@37660
  3421
  by (subst of_bl_append [where xs="[True]", simplified])
haftmann@37660
  3422
     (simp add: word_1_bl)
haftmann@37660
  3423
haftmann@37660
  3424
lemma of_bl_Cons:
haftmann@37660
  3425
  "of_bl (x#xs) = of_bool x * 2^length xs + of_bl xs"
huffman@46676
  3426
  by (cases x) simp_all
haftmann@37660
  3427
haftmann@41075
  3428
lemma split_uint_lem: "bin_split n (uint (w :: 'a :: len0 word)) = (a, b) \<Longrightarrow> 
haftmann@37660
  3429
  a = bintrunc (len_of TYPE('a) - n) a & b = bintrunc (len_of TYPE('a)) b"
haftmann@37660
  3430
  apply (frule word_ubin.norm_Rep [THEN ssubst])
haftmann@37660
  3431
  apply (drule bin_split_trunc1)
haftmann@37660
  3432
  apply (drule sym [THEN trans])
haftmann@37660
  3433
  apply assumption
haftmann@37660
  3434
  apply safe
haftmann@37660
  3435
  done
haftmann@37660
  3436
haftmann@37660
  3437
lemma word_split_bl': 
haftmann@41075
  3438
  "std = size c - size b \<Longrightarrow> (word_split c = (a, b)) \<Longrightarrow> 
haftmann@37660
  3439
    (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c)))"
haftmann@37660
  3440
  apply (unfold word_split_bin')
haftmann@37660
  3441
  apply safe
haftmann@37660
  3442
   defer
haftmann@37660
  3443
   apply (clarsimp split: prod.splits)
haftmann@37660
  3444
   apply (drule word_ubin.norm_Rep [THEN ssubst])
haftmann@37660
  3445
   apply (drule split_bintrunc)
haftmann@37660
  3446
   apply (simp add : of_bl_def bl2bin_drop word_size
haftmann@37660
  3447
       word_ubin.norm_eq_iff [symmetric] min_def del : word_ubin.norm_Rep)    
haftmann@37660
  3448
  apply (clarsimp split: prod.splits)
haftmann@37660
  3449
  apply (frule split_uint_lem [THEN conjunct1])
haftmann@37660
  3450
  apply (unfold word_size)
haftmann@37660
  3451
  apply (cases "len_of TYPE('a) >= len_of TYPE('b)")
haftmann@37660
  3452
   defer
huffman@46872
  3453
   apply simp
haftmann@37660
  3454
  apply (simp add : of_bl_def to_bl_def)
haftmann@37660
  3455
  apply (subst bin_split_take1 [symmetric])
haftmann@37660
  3456
    prefer 2
haftmann@37660
  3457
    apply assumption
haftmann@37660
  3458
   apply simp
haftmann@37660
  3459
  apply (erule thin_rl)
haftmann@37660
  3460
  apply (erule arg_cong [THEN trans])
haftmann@37660
  3461
  apply (simp add : word_ubin.norm_eq_iff [symmetric])
haftmann@37660
  3462
  done
haftmann@37660
  3463
haftmann@41075
  3464
lemma word_split_bl: "std = size c - size b \<Longrightarrow> 
haftmann@37660
  3465
    (a = of_bl (take std (to_bl c)) & b = of_bl (drop std (to_bl c))) <-> 
haftmann@37660
  3466
    word_split c = (a, b)"
haftmann@37660
  3467
  apply (rule iffI)
haftmann@37660
  3468
   defer
haftmann@37660
  3469
   apply (erule (1) word_split_bl')
haftmann@37660
  3470
  apply (case_tac "word_split c")
haftmann@37660
  3471
  apply (auto simp add : word_size)
haftmann@37660
  3472
  apply (frule word_split_bl' [rotated])
haftmann@37660
  3473
  apply (auto simp add : word_size)
haftmann@37660
  3474
  done
haftmann@37660
  3475
haftmann@37660
  3476
lemma word_split_bl_eq:
haftmann@37660
  3477
   "(word_split (c::'a::len word) :: ('c :: len0 word * 'd :: len0 word)) =
haftmann@37660
  3478
      (of_bl (take (len_of TYPE('a::len) - len_of TYPE('d::len0)) (to_bl c)),
haftmann@37660
  3479
       of_bl (drop (len_of TYPE('a) - len_of TYPE('d)) (to_bl c)))"
haftmann@37660
  3480
  apply (rule word_split_bl [THEN iffD1])
haftmann@37660
  3481
  apply (unfold word_size)
haftmann@37660
  3482
  apply (rule refl conjI)+
haftmann@37660
  3483
  done
haftmann@37660
  3484
haftmann@37660
  3485
-- "keep quantifiers for use in simplification"
haftmann@37660
  3486
lemma test_bit_split':
haftmann@37660
  3487
  "word_split c = (a, b) --> (ALL n m. b !! n = (n < size b & c !! n) & 
haftmann@37660
  3488
    a !! m = (m < size a & c !! (m + size b)))"
haftmann@37660
  3489
  apply (unfold word_split_bin' test_bit_bin)
haftmann@37660
  3490
  apply (clarify)
haftmann@37660
  3491
  apply (clarsimp simp: word_ubin.eq_norm nth_bintr word_size split: prod.splits)
haftmann@37660
  3492
  apply (drule bin_nth_split)
haftmann@37660
  3493
  apply safe
haftmann@37660
  3494
       apply (simp_all add: add_commute)
haftmann@37660
  3495
   apply (erule bin_nth_uint_imp)+
haftmann@37660
  3496
  done
haftmann@37660
  3497
haftmann@37660
  3498
lemma test_bit_split:
haftmann@37660
  3499
  "word_split c = (a, b) \<Longrightarrow>
haftmann@37660
  3500
    (\<forall>n\<Colon>nat. b !! n \<longleftrightarrow> n < size b \<and> c !! n) \<and> (\<forall>m\<Colon>nat. a !! m \<longleftrightarrow> m < size a \<and> c !! (m + size b))"
haftmann@37660
  3501
  by (simp add: test_bit_split')
haftmann@37660
  3502
haftmann@37660
  3503
lemma test_bit_split_eq: "word_split c = (a, b) <-> 
haftmann@37660
  3504
  ((ALL n::nat. b !! n = (n < size b & c !! n)) &
haftmann@37660
  3505
    (ALL m::nat. a !! m = (m < size a & c !! (m + size b))))"
haftmann@37660
  3506
  apply (rule_tac iffI)
haftmann@37660
  3507
   apply (rule_tac conjI)
haftmann@37660
  3508
    apply (erule test_bit_split [THEN conjunct1])
haftmann@37660
  3509
   apply (erule test_bit_split [THEN conjunct2])
haftmann@37660
  3510
  apply (case_tac "word_split c")
haftmann@37660
  3511
  apply (frule test_bit_split)
haftmann@37660
  3512
  apply (erule trans)
nipkow@45761
  3513
  apply (fastforce intro ! : word_eqI simp add : word_size)
haftmann@37660
  3514
  done
haftmann@37660
  3515
haftmann@37660
  3516
-- {* this odd result is analogous to @{text "ucast_id"}, 
haftmann@37660
  3517
      result to the length given by the result type *}
haftmann@37660
  3518
haftmann@37660
  3519
lemma word_cat_id: "word_cat a b = b"
haftmann@37660
  3520
  unfolding word_cat_bin' by (simp add: word_ubin.inverse_norm)
haftmann@37660
  3521
haftmann@37660
  3522
-- "limited hom result"
haftmann@37660
  3523
lemma word_cat_hom:
haftmann@37660
  3524
  "len_of TYPE('a::len0) <= len_of TYPE('b::len0) + len_of TYPE ('c::len0)
haftmann@41075
  3525
  \<Longrightarrow>
haftmann@37660
  3526
  (word_cat (word_of_int w :: 'b word) (b :: 'c word) :: 'a word) = 
haftmann@37660
  3527
  word_of_int (bin_cat w (size b) (uint b))"
haftmann@37660
  3528
  apply (unfold word_cat_def word_size) 
haftmann@37660
  3529
  apply (clarsimp simp add: word_ubin.norm_eq_iff [symmetric]
haftmann@37660
  3530
      word_ubin.eq_norm bintr_cat min_max.inf_absorb1)
haftmann@37660
  3531
  done
haftmann@37660
  3532
haftmann@37660
  3533
lemma word_cat_split_alt:
haftmann@41075
  3534
  "size w <= size u + size v \<Longrightarrow> word_split w = (u, v) \<Longrightarrow> word_cat u v = w"
haftmann@37660
  3535
  apply (rule word_eqI)
haftmann@37660
  3536
  apply (drule test_bit_split)
haftmann@37660
  3537
  apply (clarsimp simp add : test_bit_cat word_size)
haftmann@37660
  3538
  apply safe
haftmann@37660
  3539
  apply arith
haftmann@37660
  3540
  done
haftmann@37660
  3541
wenzelm@46475
  3542
lemmas word_cat_split_size = sym [THEN [2] word_cat_split_alt [symmetric]]
haftmann@37660
  3543
haftmann@37660
  3544
haftmann@37660
  3545
subsubsection "Split and slice"
haftmann@37660
  3546
haftmann@37660
  3547
lemma split_slices: 
haftmann@41075
  3548
  "word_split w = (u, v) \<Longrightarrow> u = slice (size v) w & v = slice 0 w"
haftmann@37660
  3549
  apply (drule test_bit_split)
haftmann@37660
  3550
  apply (rule conjI)
haftmann@37660
  3551
   apply (rule word_eqI, clarsimp simp: nth_slice word_size)+
haftmann@37660
  3552
  done
haftmann@37660
  3553
huffman@46687
  3554
lemma slice_cat1 [OF refl]:
haftmann@41075
  3555
  "wc = word_cat a b \<Longrightarrow> size wc >= size a + size b \<Longrightarrow> slice (size b) wc = a"
haftmann@37660
  3556
  apply safe
haftmann@37660
  3557
  apply (rule word_eqI)
haftmann@37660
  3558
  apply (simp add: nth_slice test_bit_cat word_size)
haftmann@37660
  3559
  done
haftmann@37660
  3560
haftmann@37660
  3561
lemmas slice_cat2 = trans [OF slice_id word_cat_id]
haftmann@37660
  3562
haftmann@37660
  3563
lemma cat_slices:
haftmann@41075
  3564
  "a = slice n c \<Longrightarrow> b = slice 0 c \<Longrightarrow> n = size b \<Longrightarrow>
haftmann@41075
  3565
    size a + size b >= size c \<Longrightarrow> word_cat a b = c"
haftmann@37660
  3566
  apply safe
haftmann@37660
  3567
  apply (rule word_eqI)
haftmann@37660
  3568
  apply (simp add: nth_slice test_bit_cat word_size)
haftmann@37660
  3569
  apply safe
haftmann@37660
  3570
  apply arith
haftmann@37660
  3571
  done
haftmann@37660
  3572
haftmann@37660
  3573
lemma word_split_cat_alt:
haftmann@41075
  3574
  "w = word_cat u v \<Longrightarrow> size u + size v <= size w \<Longrightarrow> word_split w = (u, v)"
haftmann@37660
  3575
  apply (case_tac "word_split ?w")
haftmann@37660
  3576
  apply (rule trans, assumption)
haftmann@37660
  3577
  apply (drule test_bit_split)
haftmann@37660
  3578
  apply safe
haftmann@37660
  3579
   apply (rule word_eqI, clarsimp simp: test_bit_cat word_size)+
haftmann@37660
  3580
  done
haftmann@37660
  3581
haftmann@37660
  3582
lemmas word_cat_bl_no_bin [simp] =
haftmann@37660
  3583
  word_cat_bl [where a="number_of a" 
haftmann@37660
  3584
                 and b="number_of b", 
wenzelm@46475
  3585
               unfolded to_bl_no_bin]
wenzelm@46475
  3586
  for a b
haftmann@37660
  3587
haftmann@37660
  3588
lemmas word_split_bl_no_bin [simp] =
wenzelm@46475
  3589
  word_split_bl_eq [where c="number_of c", unfolded to_bl_no_bin] for c
haftmann@37660
  3590
haftmann@37660
  3591
-- {* this odd result arises from the fact that the statement of the
haftmann@37660
  3592
      result implies that the decoded words are of the same type, 
haftmann@37660
  3593
      and therefore of the same length, as the original word *}
haftmann@37660
  3594
haftmann@37660
  3595
lemma word_rsplit_same: "word_rsplit w = [w]"
haftmann@37660
  3596
  unfolding word_rsplit_def by (simp add : bin_rsplit_all)
haftmann@37660
  3597
haftmann@37660
  3598
lemma word_rsplit_empty_iff_size:
haftmann@37660
  3599
  "(word_rsplit w = []) = (size w = 0)" 
haftmann@37660
  3600
  unfolding word_rsplit_def bin_rsplit_def word_size
haftmann@37660
  3601
  by (simp add: bin_rsplit_aux_simp_alt Let_def split: Product_Type.split_split)
haftmann@37660
  3602
haftmann@37660
  3603
lemma test_bit_rsplit:
haftmann@41075
  3604
  "sw = word_rsplit w \<Longrightarrow> m < size (hd sw :: 'a :: len word) \<Longrightarrow> 
haftmann@41075
  3605
    k < length sw \<Longrightarrow> (rev sw ! k) !! m = (w !! (k * size (hd sw) + m))"
haftmann@37660
  3606
  apply (unfold word_rsplit_def word_test_bit_def)
haftmann@37660
  3607
  apply (rule trans)
haftmann@37660
  3608
   apply (rule_tac f = "%x. bin_nth x m" in arg_cong)
haftmann@37660
  3609
   apply (rule nth_map [symmetric])
haftmann@37660
  3610
   apply simp
haftmann@37660
  3611
  apply (rule bin_nth_rsplit)
haftmann@37660
  3612
     apply simp_all
haftmann@37660
  3613
  apply (simp add : word_size rev_map)
haftmann@37660
  3614
  apply (rule trans)
haftmann@37660
  3615
   defer
haftmann@37660
  3616
   apply (rule map_ident [THEN fun_cong])
haftmann@37660
  3617
  apply (rule refl [THEN map_cong])
haftmann@37660
  3618
  apply (simp add : word_ubin.eq_norm)
haftmann@37660
  3619
  apply (erule bin_rsplit_size_sign [OF len_gt_0 refl])
haftmann@37660
  3620
  done
haftmann@37660
  3621
haftmann@41075
  3622
lemma word_rcat_bl: "word_rcat wl = of_bl (concat (map to_bl wl))"
haftmann@37660
  3623
  unfolding word_rcat_def to_bl_def' of_bl_def
haftmann@37660
  3624
  by (clarsimp simp add : bin_rcat_bl)
haftmann@37660
  3625
haftmann@37660
  3626
lemma size_rcat_lem':
haftmann@37660
  3627
  "size (concat (map to_bl wl)) = length wl * size (hd wl)"
haftmann@37660
  3628
  unfolding word_size by (induct wl) auto
haftmann@37660
  3629
haftmann@37660
  3630
lemmas size_rcat_lem = size_rcat_lem' [unfolded word_size]
haftmann@37660
  3631
wenzelm@46475
  3632
lemmas td_gal_lt_len = len_gt_0 [THEN td_gal_lt]
haftmann@37660
  3633
huffman@46687
  3634
lemma nth_rcat_lem:
huffman@46687
  3635
  "n < length (wl::'a word list) * len_of TYPE('a::len) \<Longrightarrow>
huffman@46687
  3636
    rev (concat (map to_bl wl)) ! n =
huffman@46687
  3637
    rev (to_bl (rev wl ! (n div len_of TYPE('a)))) ! (n mod len_of TYPE('a))"
haftmann@37660
  3638
  apply (induct "wl")
haftmann@37660
  3639
   apply clarsimp
haftmann@37660
  3640
  apply (clarsimp simp add : nth_append size_rcat_lem)
haftmann@37660
  3641
  apply (simp (no_asm_use) only:  mult_Suc [symmetric] 
haftmann@37660
  3642
         td_gal_lt_len less_Suc_eq_le mod_div_equality')
haftmann@37660
  3643
  apply clarsimp
haftmann@37660
  3644
  done
haftmann@37660
  3645
haftmann@37660
  3646
lemma test_bit_rcat:
haftmann@41075
  3647
  "sw = size (hd wl :: 'a :: len word) \<Longrightarrow> rc = word_rcat wl \<Longrightarrow> rc !! n = 
haftmann@37660
  3648
    (n < size rc & n div sw < size wl & (rev wl) ! (n div sw) !! (n mod sw))"
haftmann@37660
  3649
  apply (unfold word_rcat_bl word_size)
haftmann@37660
  3650
  apply (clarsimp simp add : 
haftmann@37660
  3651
    test_bit_of_bl size_rcat_lem word_size td_gal_lt_len)
haftmann@37660
  3652
  apply safe
haftmann@37660
  3653
   apply (auto simp add : 
haftmann@37660
  3654
    test_bit_bl word_size td_gal_lt_len [THEN iffD2, THEN nth_rcat_lem])
haftmann@37660
  3655
  done
haftmann@37660
  3656
huffman@46687
  3657
lemma foldl_eq_foldr:
huffman@46687
  3658
  "foldl op + x xs = foldr op + (x # xs) (0 :: 'a :: comm_monoid_add)" 
huffman@46687
  3659
  by (induct xs arbitrary: x) (auto simp add : add_assoc)
haftmann@37660
  3660
haftmann@37660
  3661
lemmas test_bit_cong = arg_cong [where f = "test_bit", THEN fun_cong]
haftmann@37660
  3662
haftmann@37660
  3663
lemmas test_bit_rsplit_alt = 
haftmann@37660
  3664
  trans [OF nth_rev_alt [THEN test_bit_cong] 
haftmann@37660
  3665
  test_bit_rsplit [OF refl asm_rl diff_Suc_less]]
haftmann@37660
  3666
haftmann@37660
  3667
-- "lazy way of expressing that u and v, and su and sv, have same types"
huffman@46687
  3668
lemma word_rsplit_len_indep [OF refl refl refl refl]:
haftmann@41075
  3669
  "[u,v] = p \<Longrightarrow> [su,sv] = q \<Longrightarrow> word_rsplit u = su \<Longrightarrow> 
haftmann@41075
  3670
    word_rsplit v = sv \<Longrightarrow> length su = length sv"
haftmann@37660
  3671
  apply (unfold word_rsplit_def)
haftmann@37660
  3672
  apply (auto simp add : bin_rsplit_len_indep)
haftmann@37660
  3673
  done
haftmann@37660
  3674
haftmann@37660
  3675
lemma length_word_rsplit_size: 
haftmann@41075
  3676
  "n = len_of TYPE ('a :: len) \<Longrightarrow> 
haftmann@37660
  3677
    (length (word_rsplit w :: 'a word list) <= m) = (size w <= m * n)"
haftmann@37660
  3678
  apply (unfold word_rsplit_def word_size)
haftmann@37660
  3679
  apply (clarsimp simp add : bin_rsplit_len_le)
haftmann@37660
  3680
  done
haftmann@37660
  3681
haftmann@37660
  3682
lemmas length_word_rsplit_lt_size = 
haftmann@37660
  3683
  length_word_rsplit_size [unfolded Not_eq_iff linorder_not_less [symmetric]]
haftmann@37660
  3684
huffman@46687
  3685
lemma length_word_rsplit_exp_size:
haftmann@41075
  3686
  "n = len_of TYPE ('a :: len) \<Longrightarrow> 
haftmann@37660
  3687
    length (word_rsplit w :: 'a word list) = (size w + n - 1) div n"
haftmann@37660
  3688
  unfolding word_rsplit_def by (clarsimp simp add : word_size bin_rsplit_len)
haftmann@37660
  3689
haftmann@37660
  3690
lemma length_word_rsplit_even_size: 
haftmann@41075
  3691
  "n = len_of TYPE ('a :: len) \<Longrightarrow> size w = m * n \<Longrightarrow> 
haftmann@37660
  3692
    length (word_rsplit w :: 'a word list) = m"
haftmann@37660
  3693
  by (clarsimp simp add : length_word_rsplit_exp_size given_quot_alt)
haftmann@37660
  3694
haftmann@37660
  3695
lemmas length_word_rsplit_exp_size' = refl [THEN length_word_rsplit_exp_size]
haftmann@37660
  3696
haftmann@37660
  3697
(* alternative proof of word_rcat_rsplit *)
haftmann@37660
  3698
lemmas tdle = iffD2 [OF split_div_lemma refl, THEN conjunct1] 
haftmann@37660
  3699
lemmas dtle = xtr4 [OF tdle mult_commute]
haftmann@37660
  3700
haftmann@37660
  3701
lemma word_rcat_rsplit: "word_rcat (word_rsplit w) = w"
haftmann@37660
  3702
  apply (rule word_eqI)
haftmann@37660
  3703
  apply (clarsimp simp add : test_bit_rcat word_size)
haftmann@37660
  3704
  apply (subst refl [THEN test_bit_rsplit])
haftmann@37660
  3705
    apply (simp_all add: word_size 
haftmann@37660
  3706
      refl [THEN length_word_rsplit_size [simplified not_less [symmetric], simplified]])
haftmann@37660
  3707
   apply safe
haftmann@37660
  3708
   apply (erule xtr7, rule len_gt_0 [THEN dtle])+
haftmann@37660
  3709
  done
haftmann@37660
  3710
huffman@46687
  3711
lemma size_word_rsplit_rcat_size:
huffman@46687
  3712
  "\<lbrakk>word_rcat (ws::'a::len word list) = (frcw::'b::len0 word);
huffman@46687
  3713
     size frcw = length ws * len_of TYPE('a)\<rbrakk>
huffman@46687
  3714
    \<Longrightarrow> length (word_rsplit frcw::'a word list) = length ws"
haftmann@37660
  3715
  apply (clarsimp simp add : word_size length_word_rsplit_exp_size')
haftmann@37660
  3716
  apply (fast intro: given_quot_alt)
haftmann@37660
  3717
  done
haftmann@37660
  3718
haftmann@37660
  3719
lemma msrevs:
haftmann@37660
  3720
  fixes n::nat
haftmann@37660
  3721
  shows "0 < n \<Longrightarrow> (k * n + m) div n = m div n + k"
haftmann@37660
  3722
  and   "(k * n + m) mod n = m mod n"
haftmann@37660
  3723
  by (auto simp: add_commute)
haftmann@37660
  3724
huffman@46687
  3725
lemma word_rsplit_rcat_size [OF refl]:
haftmann@41075
  3726
  "word_rcat (ws :: 'a :: len word list) = frcw \<Longrightarrow> 
haftmann@41075
  3727
    size frcw = length ws * len_of TYPE ('a) \<Longrightarrow> word_rsplit frcw = ws" 
haftmann@37660
  3728
  apply (frule size_word_rsplit_rcat_size, assumption)
haftmann@37660
  3729
  apply (clarsimp simp add : word_size)
haftmann@37660
  3730
  apply (rule nth_equalityI, assumption)
haftmann@37660
  3731
  apply clarsimp
huffman@46893
  3732
  apply (rule word_eqI [rule_format])
haftmann@37660
  3733
  apply (rule trans)
haftmann@37660
  3734
   apply (rule test_bit_rsplit_alt)
haftmann@37660
  3735
     apply (clarsimp simp: word_size)+
haftmann@37660
  3736
  apply (rule trans)
haftmann@37660
  3737
  apply (rule test_bit_rcat [OF refl refl])
wenzelm@41798
  3738
  apply (simp add: word_size msrevs)
haftmann@37660
  3739
  apply (subst nth_rev)
haftmann@37660
  3740
   apply arith
wenzelm@41798
  3741
  apply (simp add: le0 [THEN [2] xtr7, THEN diff_Suc_less])
haftmann@37660
  3742
  apply safe
wenzelm@41798
  3743
  apply (simp add: diff_mult_distrib)
haftmann@37660
  3744
  apply (rule mpl_lem)
haftmann@37660
  3745
  apply (cases "size ws")
haftmann@37660
  3746
   apply simp_all
haftmann@37660
  3747
  done
haftmann@37660
  3748
haftmann@37660
  3749
haftmann@37660
  3750
subsection "Rotation"
haftmann@37660
  3751
haftmann@37660
  3752
lemmas rotater_0' [simp] = rotater_def [where n = "0", simplified]
haftmann@37660
  3753
haftmann@37660
  3754
lemmas word_rot_defs = word_roti_def word_rotr_def word_rotl_def
haftmann@37660
  3755
haftmann@37660
  3756
lemma rotate_eq_mod: 
haftmann@41075
  3757
  "m mod length xs = n mod length xs \<Longrightarrow> rotate m xs = rotate n xs"
haftmann@37660
  3758
  apply (rule box_equals)
haftmann@37660
  3759
    defer
haftmann@37660
  3760
    apply (rule rotate_conv_mod [symmetric])+
haftmann@37660
  3761
  apply simp
haftmann@37660
  3762
  done
haftmann@37660
  3763
wenzelm@46475
  3764
lemmas rotate_eqs = 
haftmann@37660
  3765
  trans [OF rotate0 [THEN fun_cong] id_apply]
haftmann@37660
  3766
  rotate_rotate [symmetric] 
wenzelm@46475
  3767
  rotate_id
haftmann@37660
  3768
  rotate_conv_mod 
haftmann@37660
  3769
  rotate_eq_mod
haftmann@37660
  3770
haftmann@37660
  3771
haftmann@37660
  3772
subsubsection "Rotation of list to right"
haftmann@37660
  3773
haftmann@37660
  3774
lemma rotate1_rl': "rotater1 (l @ [a]) = a # l"
haftmann@37660
  3775
  unfolding rotater1_def by (cases l) auto
haftmann@37660
  3776
haftmann@37660
  3777
lemma rotate1_rl [simp] : "rotater1 (rotate1 l) = l"
haftmann@37660
  3778
  apply (unfold rotater1_def)
haftmann@37660
  3779
  apply (cases "l")
haftmann@37660
  3780
  apply (case_tac [2] "list")
haftmann@37660
  3781
  apply auto
haftmann@37660
  3782
  done
haftmann@37660
  3783
haftmann@37660
  3784
lemma rotate1_lr [simp] : "rotate1 (rotater1 l) = l"
haftmann@37660
  3785
  unfolding rotater1_def by (cases l) auto
haftmann@37660
  3786
haftmann@37660
  3787
lemma rotater1_rev': "rotater1 (rev xs) = rev (rotate1 xs)"
haftmann@37660
  3788
  apply (cases "xs")
haftmann@37660
  3789
  apply (simp add : rotater1_def)
haftmann@37660
  3790
  apply (simp add : rotate1_rl')
haftmann@37660
  3791
  done
haftmann@37660
  3792
  
haftmann@37660
  3793
lemma rotater_rev': "rotater n (rev xs) = rev (rotate n xs)"
haftmann@37660
  3794
  unfolding rotater_def by (induct n) (auto intro: rotater1_rev')
haftmann@37660
  3795
huffman@46687
  3796
lemma rotater_rev: "rotater n ys = rev (rotate n (rev ys))"
huffman@46687
  3797
  using rotater_rev' [where xs = "rev ys"] by simp
haftmann@37660
  3798
haftmann@37660
  3799
lemma rotater_drop_take: 
haftmann@37660
  3800
  "rotater n xs = 
haftmann@37660
  3801
   drop (length xs - n mod length xs) xs @
haftmann@37660
  3802
   take (length xs - n mod length xs) xs"
haftmann@37660
  3803
  by (clarsimp simp add : rotater_rev rotate_drop_take rev_take rev_drop)
haftmann@37660
  3804
haftmann@37660
  3805
lemma rotater_Suc [simp] : 
haftmann@37660
  3806
  "rotater (Suc n) xs = rotater1 (rotater n xs)"
haftmann@37660
  3807
  unfolding rotater_def by auto
haftmann@37660
  3808
haftmann@37660
  3809
lemma rotate_inv_plus [rule_format] :
haftmann@37660
  3810
  "ALL k. k = m + n --> rotater k (rotate n xs) = rotater m xs & 
haftmann@37660
  3811
    rotate k (rotater n xs) = rotate m xs & 
haftmann@37660
  3812
    rotater n (rotate k xs) = rotate m xs & 
haftmann@37660
  3813
    rotate n (rotater k xs) = rotater m xs"
haftmann@37660
  3814
  unfolding rotater_def rotate_def
haftmann@37660
  3815
  by (induct n) (auto intro: funpow_swap1 [THEN trans])
haftmann@37660
  3816
  
haftmann@37660
  3817
lemmas rotate_inv_rel = le_add_diff_inverse2 [symmetric, THEN rotate_inv_plus]
haftmann@37660
  3818
haftmann@37660
  3819
lemmas rotate_inv_eq = order_refl [THEN rotate_inv_rel, simplified]
haftmann@37660
  3820
wenzelm@46475
  3821
lemmas rotate_lr [simp] = rotate_inv_eq [THEN conjunct1]
wenzelm@46475
  3822
lemmas rotate_rl [simp] = rotate_inv_eq [THEN conjunct2, THEN conjunct1]
haftmann@37660
  3823
haftmann@37660
  3824
lemma rotate_gal: "(rotater n xs = ys) = (rotate n ys = xs)"
haftmann@37660
  3825
  by auto
haftmann@37660
  3826
haftmann@37660
  3827
lemma rotate_gal': "(ys = rotater n xs) = (xs = rotate n ys)"
haftmann@37660
  3828
  by auto
haftmann@37660
  3829
haftmann@37660
  3830
lemma length_rotater [simp]: 
haftmann@37660
  3831
  "length (rotater n xs) = length xs"
haftmann@37660
  3832
  by (simp add : rotater_rev)
haftmann@37660
  3833
haftmann@38752
  3834
lemma restrict_to_left:
haftmann@38752
  3835
  assumes "x = y"
haftmann@38752
  3836
  shows "(x = z) = (y = z)"
haftmann@38752
  3837
  using assms by simp
haftmann@38752
  3838
haftmann@37660
  3839
lemmas rrs0 = rotate_eqs [THEN restrict_to_left, 
wenzelm@46475
  3840
  simplified rotate_gal [symmetric] rotate_gal' [symmetric]]
haftmann@37660
  3841
lemmas rrs1 = rrs0 [THEN refl [THEN rev_iffD1]]
wenzelm@46475
  3842
lemmas rotater_eqs = rrs1 [simplified length_rotater]
haftmann@37660
  3843
lemmas rotater_0 = rotater_eqs (1)
haftmann@37660
  3844
lemmas rotater_add = rotater_eqs (2)
haftmann@37660
  3845
haftmann@37660
  3846
haftmann@37660
  3847
subsubsection "map, map2, commuting with rotate(r)"
haftmann@37660
  3848
haftmann@41075
  3849
lemma last_map: "xs ~= [] \<Longrightarrow> last (map f xs) = f (last xs)"
haftmann@37660
  3850
  by (induct xs) auto
haftmann@37660
  3851
haftmann@37660
  3852
lemma butlast_map:
haftmann@41075
  3853
  "xs ~= [] \<Longrightarrow> butlast (map f xs) = map f (butlast xs)"
haftmann@37660
  3854
  by (induct xs) auto
haftmann@37660
  3855
haftmann@37660
  3856
lemma rotater1_map: "rotater1 (map f xs) = map f (rotater1 xs)" 
haftmann@37660
  3857
  unfolding rotater1_def
haftmann@37660
  3858
  by (cases xs) (auto simp add: last_map butlast_map)
haftmann@37660
  3859
haftmann@37660
  3860
lemma rotater_map:
haftmann@37660
  3861
  "rotater n (map f xs) = map f (rotater n xs)" 
haftmann@37660
  3862
  unfolding rotater_def
haftmann@37660
  3863
  by (induct n) (auto simp add : rotater1_map)
haftmann@37660
  3864
haftmann@37660
  3865
lemma but_last_zip [rule_format] :
haftmann@37660
  3866
  "ALL ys. length xs = length ys --> xs ~= [] --> 
haftmann@37660
  3867
    last (zip xs ys) = (last xs, last ys) & 
haftmann@37660
  3868
    butlast (zip xs ys) = zip (butlast xs) (butlast ys)" 
haftmann@37660
  3869
  apply (induct "xs")
haftmann@37660
  3870
  apply auto
haftmann@37660
  3871
     apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+
haftmann@37660
  3872
  done
haftmann@37660
  3873
haftmann@37660
  3874
lemma but_last_map2 [rule_format] :
haftmann@37660
  3875
  "ALL ys. length xs = length ys --> xs ~= [] --> 
haftmann@37660
  3876
    last (map2 f xs ys) = f (last xs) (last ys) & 
haftmann@37660
  3877
    butlast (map2 f xs ys) = map2 f (butlast xs) (butlast ys)" 
haftmann@37660
  3878
  apply (induct "xs")
haftmann@37660
  3879
  apply auto
haftmann@37660
  3880
     apply (unfold map2_def)
haftmann@37660
  3881
     apply ((case_tac ys, auto simp: neq_Nil_conv)[1])+
haftmann@37660
  3882
  done
haftmann@37660
  3883
haftmann@37660
  3884
lemma rotater1_zip:
haftmann@41075
  3885
  "length xs = length ys \<Longrightarrow> 
haftmann@37660
  3886
    rotater1 (zip xs ys) = zip (rotater1 xs) (rotater1 ys)" 
haftmann@37660
  3887
  apply (unfold rotater1_def)
haftmann@37660
  3888
  apply (cases "xs")
haftmann@37660
  3889
   apply auto
haftmann@37660
  3890
   apply ((case_tac ys, auto simp: neq_Nil_conv but_last_zip)[1])+
haftmann@37660
  3891
  done
haftmann@37660
  3892
haftmann@37660
  3893
lemma rotater1_map2:
haftmann@41075
  3894
  "length xs = length ys \<Longrightarrow> 
haftmann@37660
  3895
    rotater1 (map2 f xs ys) = map2 f (rotater1 xs) (rotater1 ys)" 
haftmann@37660
  3896
  unfolding map2_def by (simp add: rotater1_map rotater1_zip)
haftmann@37660
  3897
haftmann@37660
  3898
lemmas lrth = 
haftmann@37660
  3899
  box_equals [OF asm_rl length_rotater [symmetric] 
haftmann@37660
  3900
                 length_rotater [symmetric], 
haftmann@37660
  3901
              THEN rotater1_map2]
haftmann@37660
  3902
haftmann@37660
  3903
lemma rotater_map2: 
haftmann@41075
  3904
  "length xs = length ys \<Longrightarrow> 
haftmann@37660
  3905
    rotater n (map2 f xs ys) = map2 f (rotater n xs) (rotater n ys)" 
haftmann@37660
  3906
  by (induct n) (auto intro!: lrth)
haftmann@37660
  3907
haftmann@37660
  3908
lemma rotate1_map2:
haftmann@41075
  3909
  "length xs = length ys \<Longrightarrow> 
haftmann@37660
  3910
    rotate1 (map2 f xs ys) = map2 f (rotate1 xs) (rotate1 ys)" 
haftmann@37660
  3911
  apply (unfold map2_def)
haftmann@37660
  3912
  apply (cases xs)
blanchet@47268
  3913
   apply (cases ys, auto)+
haftmann@37660
  3914
  done
haftmann@37660
  3915
haftmann@37660
  3916
lemmas lth = box_equals [OF asm_rl length_rotate [symmetric] 
haftmann@37660
  3917
  length_rotate [symmetric], THEN rotate1_map2]
haftmann@37660
  3918
haftmann@37660
  3919
lemma rotate_map2: 
haftmann@41075
  3920
  "length xs = length ys \<Longrightarrow> 
haftmann@37660
  3921
    rotate n (map2 f xs ys) = map2 f (rotate n xs) (rotate n ys)" 
haftmann@37660
  3922
  by (induct n) (auto intro!: lth)
haftmann@37660
  3923
haftmann@37660
  3924
haftmann@37660
  3925
-- "corresponding equalities for word rotation"
haftmann@37660
  3926
haftmann@37660
  3927
lemma to_bl_rotl: 
haftmann@37660
  3928
  "to_bl (word_rotl n w) = rotate n (to_bl w)"
haftmann@37660
  3929
  by (simp add: word_bl.Abs_inverse' word_rotl_def)
haftmann@37660
  3930
haftmann@37660
  3931
lemmas blrs0 = rotate_eqs [THEN to_bl_rotl [THEN trans]]
haftmann@37660
  3932
haftmann@37660
  3933
lemmas word_rotl_eqs =
wenzelm@46409
  3934
  blrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotl [symmetric]]
haftmann@37660
  3935
haftmann@37660
  3936
lemma to_bl_rotr: 
haftmann@37660
  3937
  "to_bl (word_rotr n w) = rotater n (to_bl w)"
haftmann@37660
  3938
  by (simp add: word_bl.Abs_inverse' word_rotr_def)
haftmann@37660
  3939
haftmann@37660
  3940
lemmas brrs0 = rotater_eqs [THEN to_bl_rotr [THEN trans]]
haftmann@37660
  3941
haftmann@37660
  3942
lemmas word_rotr_eqs =
wenzelm@46409
  3943
  brrs0 [simplified word_bl_Rep' word_bl.Rep_inject to_bl_rotr [symmetric]]
haftmann@37660
  3944
haftmann@37660
  3945
declare word_rotr_eqs (1) [simp]
haftmann@37660
  3946
declare word_rotl_eqs (1) [simp]
haftmann@37660
  3947
haftmann@37660
  3948
lemma
haftmann@37660
  3949
  word_rot_rl [simp]:
haftmann@37660
  3950
  "word_rotl k (word_rotr k v) = v" and
haftmann@37660
  3951
  word_rot_lr [simp]:
haftmann@37660
  3952
  "word_rotr k (word_rotl k v) = v"
haftmann@37660
  3953
  by (auto simp add: to_bl_rotr to_bl_rotl word_bl.Rep_inject [symmetric])
haftmann@37660
  3954
haftmann@37660
  3955
lemma
haftmann@37660
  3956
  word_rot_gal:
haftmann@37660
  3957
  "(word_rotr n v = w) = (word_rotl n w = v)" and
haftmann@37660
  3958
  word_rot_gal':
haftmann@37660
  3959
  "(w = word_rotr n v) = (v = word_rotl n w)"
haftmann@37660
  3960
  by (auto simp: to_bl_rotr to_bl_rotl word_bl.Rep_inject [symmetric] 
haftmann@37660
  3961
           dest: sym)
haftmann@37660
  3962
haftmann@37660
  3963
lemma word_rotr_rev:
haftmann@37660
  3964
  "word_rotr n w = word_reverse (word_rotl n (word_reverse w))"
haftmann@37660
  3965
  by (simp add: word_bl.Rep_inject [symmetric] to_bl_word_rev
haftmann@37660
  3966
                to_bl_rotr to_bl_rotl rotater_rev)
haftmann@37660
  3967
  
haftmann@37660
  3968
lemma word_roti_0 [simp]: "word_roti 0 w = w"
haftmann@37660
  3969
  by (unfold word_rot_defs) auto
haftmann@37660
  3970
haftmann@37660
  3971
lemmas abl_cong = arg_cong [where f = "of_bl"]
haftmann@37660
  3972
haftmann@37660
  3973
lemma word_roti_add: 
haftmann@37660
  3974
  "word_roti (m + n) w = word_roti m (word_roti n w)"
haftmann@37660
  3975
proof -
haftmann@37660
  3976
  have rotater_eq_lem: 
haftmann@41075
  3977
    "\<And>m n xs. m = n \<Longrightarrow> rotater m xs = rotater n xs"
haftmann@37660
  3978
    by auto
haftmann@37660
  3979
haftmann@37660
  3980
  have rotate_eq_lem: 
haftmann@41075
  3981
    "\<And>m n xs. m = n \<Longrightarrow> rotate m xs = rotate n xs"
haftmann@37660
  3982
    by auto
haftmann@37660
  3983
wenzelm@46475
  3984
  note rpts [symmetric] = 
haftmann@37660
  3985
    rotate_inv_plus [THEN conjunct1]
haftmann@37660
  3986
    rotate_inv_plus [THEN conjunct2, THEN conjunct1]
haftmann@37660
  3987
    rotate_inv_plus [THEN conjunct2, THEN conjunct2, THEN conjunct1]
haftmann@37660
  3988
    rotate_inv_plus [THEN conjunct2, THEN conjunct2, THEN conjunct2]
haftmann@37660
  3989
haftmann@37660
  3990
  note rrp = trans [symmetric, OF rotate_rotate rotate_eq_lem]
haftmann@37660
  3991
  note rrrp = trans [symmetric, OF rotater_add [symmetric] rotater_eq_lem]
haftmann@37660
  3992
haftmann@37660
  3993
  show ?thesis
haftmann@37660
  3994
  apply (unfold word_rot_defs)
haftmann@37660
  3995
  apply (simp only: split: split_if)
haftmann@37660
  3996
  apply (safe intro!: abl_cong)
haftmann@37660
  3997
  apply (simp_all only: to_bl_rotl [THEN word_bl.Rep_inverse'] 
haftmann@37660
  3998
                    to_bl_rotl
haftmann@37660
  3999
                    to_bl_rotr [THEN word_bl.Rep_inverse']
haftmann@37660
  4000
                    to_bl_rotr)
haftmann@37660
  4001
  apply (rule rrp rrrp rpts,
haftmann@37660
  4002
         simp add: nat_add_distrib [symmetric] 
haftmann@37660
  4003
                   nat_diff_distrib [symmetric])+
haftmann@37660
  4004
  done
haftmann@37660
  4005
qed
haftmann@37660
  4006
    
haftmann@37660
  4007
lemma word_roti_conv_mod': "word_roti n w = word_roti (n mod int (size w)) w"
haftmann@37660
  4008
  apply (unfold word_rot_defs)
haftmann@37660
  4009
  apply (cut_tac y="size w" in gt_or_eq_0)
haftmann@37660
  4010
  apply (erule disjE)
haftmann@37660
  4011
   apply simp_all
haftmann@37660
  4012
  apply (safe intro!: abl_cong)
haftmann@37660
  4013
   apply (rule rotater_eqs)
haftmann@37660
  4014
   apply (simp add: word_size nat_mod_distrib)
haftmann@37660
  4015
  apply (simp add: rotater_add [symmetric] rotate_gal [symmetric])
haftmann@37660
  4016
  apply (rule rotater_eqs)
haftmann@37660
  4017
  apply (simp add: word_size nat_mod_distrib)
haftmann@37660
  4018
  apply (rule int_eq_0_conv [THEN iffD1])
huffman@45692
  4019
  apply (simp only: zmod_int of_nat_add)
haftmann@37660
  4020
  apply (simp add: rdmods)
haftmann@37660
  4021
  done
haftmann@37660
  4022
haftmann@37660
  4023
lemmas word_roti_conv_mod = word_roti_conv_mod' [unfolded word_size]
haftmann@37660
  4024
haftmann@37660
  4025
haftmann@37660
  4026
subsubsection "Word rotation commutes with bit-wise operations"
haftmann@37660
  4027
haftmann@37660
  4028
(* using locale to not pollute lemma namespace *)
haftmann@37660
  4029
locale word_rotate 
haftmann@37660
  4030
begin
haftmann@37660
  4031
haftmann@37660
  4032
lemmas word_rot_defs' = to_bl_rotl to_bl_rotr
haftmann@37660
  4033
haftmann@37660
  4034
lemmas blwl_syms [symmetric] = bl_word_not bl_word_and bl_word_or bl_word_xor
haftmann@37660
  4035
wenzelm@46409
  4036
lemmas lbl_lbl = trans [OF word_bl_Rep' word_bl_Rep' [symmetric]]
haftmann@37660
  4037
haftmann@37660
  4038
lemmas ths_map2 [OF lbl_lbl] = rotate_map2 rotater_map2
haftmann@37660
  4039
wenzelm@46475
  4040
lemmas ths_map [where xs = "to_bl v"] = rotate_map rotater_map for v
haftmann@37660
  4041
haftmann@37660
  4042
lemmas th1s [simplified word_rot_defs' [symmetric]] = ths_map2 ths_map
haftmann@37660
  4043
haftmann@37660
  4044
lemma word_rot_logs:
haftmann@37660
  4045
  "word_rotl n (NOT v) = NOT word_rotl n v"
haftmann@37660
  4046
  "word_rotr n (NOT v) = NOT word_rotr n v"
haftmann@37660
  4047
  "word_rotl n (x AND y) = word_rotl n x AND word_rotl n y"
haftmann@37660
  4048
  "word_rotr n (x AND y) = word_rotr n x AND word_rotr n y"
haftmann@37660
  4049
  "word_rotl n (x OR y) = word_rotl n x OR word_rotl n y"
haftmann@37660
  4050
  "word_rotr n (x OR y) = word_rotr n x OR word_rotr n y"
haftmann@37660
  4051
  "word_rotl n (x XOR y) = word_rotl n x XOR word_rotl n y"
haftmann@37660
  4052
  "word_rotr n (x XOR y) = word_rotr n x XOR word_rotr n y"  
haftmann@37660
  4053
  by (rule word_bl.Rep_eqD,
haftmann@37660
  4054
      rule word_rot_defs' [THEN trans],
haftmann@37660
  4055
      simp only: blwl_syms [symmetric],
haftmann@37660
  4056
      rule th1s [THEN trans], 
haftmann@37660
  4057
      rule refl)+
haftmann@37660
  4058
end
haftmann@37660
  4059
haftmann@37660
  4060
lemmas word_rot_logs = word_rotate.word_rot_logs
haftmann@37660
  4061
haftmann@37660
  4062
lemmas bl_word_rotl_dt = trans [OF to_bl_rotl rotate_drop_take,
wenzelm@46475
  4063
  simplified word_bl_Rep']
haftmann@37660
  4064
haftmann@37660
  4065
lemmas bl_word_rotr_dt = trans [OF to_bl_rotr rotater_drop_take,
wenzelm@46475
  4066
  simplified word_bl_Rep']
haftmann@37660
  4067
haftmann@37660
  4068
lemma bl_word_roti_dt': 
haftmann@41075
  4069
  "n = nat ((- i) mod int (size (w :: 'a :: len word))) \<Longrightarrow> 
haftmann@37660
  4070
    to_bl (word_roti i w) = drop n (to_bl w) @ take n (to_bl w)"
haftmann@37660
  4071
  apply (unfold word_roti_def)
haftmann@37660
  4072
  apply (simp add: bl_word_rotl_dt bl_word_rotr_dt word_size)
haftmann@37660
  4073
  apply safe
haftmann@37660
  4074
   apply (simp add: zmod_zminus1_eq_if)
haftmann@37660
  4075
   apply safe
haftmann@37660
  4076
    apply (simp add: nat_mult_distrib)
haftmann@37660
  4077
   apply (simp add: nat_diff_distrib [OF pos_mod_sign pos_mod_conj 
haftmann@37660
  4078
                                      [THEN conjunct2, THEN order_less_imp_le]]
haftmann@37660
  4079
                    nat_mod_distrib)
haftmann@37660
  4080
  apply (simp add: nat_mod_distrib)
haftmann@37660
  4081
  done
haftmann@37660
  4082
haftmann@37660
  4083
lemmas bl_word_roti_dt = bl_word_roti_dt' [unfolded word_size]
haftmann@37660
  4084
wenzelm@46475
  4085
lemmas word_rotl_dt = bl_word_rotl_dt [THEN word_bl.Rep_inverse' [symmetric]] 
wenzelm@46475
  4086
lemmas word_rotr_dt = bl_word_rotr_dt [THEN word_bl.Rep_inverse' [symmetric]]
wenzelm@46475
  4087
lemmas word_roti_dt = bl_word_roti_dt [THEN word_bl.Rep_inverse' [symmetric]]
haftmann@37660
  4088
haftmann@37660
  4089
lemma word_rotx_0 [simp] : "word_rotr i 0 = 0 & word_rotl i 0 = 0"
huffman@46676
  4090
  by (simp add : word_rotr_dt word_rotl_dt replicate_add [symmetric])
haftmann@37660
  4091
haftmann@37660
  4092
lemma word_roti_0' [simp] : "word_roti n 0 = 0"
haftmann@37660
  4093
  unfolding word_roti_def by auto
haftmann@37660
  4094
haftmann@37660
  4095
lemmas word_rotr_dt_no_bin' [simp] = 
wenzelm@46475
  4096
  word_rotr_dt [where w="number_of w", unfolded to_bl_no_bin] for w
haftmann@37660
  4097
haftmann@37660
  4098
lemmas word_rotl_dt_no_bin' [simp] = 
wenzelm@46475
  4099
  word_rotl_dt [where w="number_of w", unfolded to_bl_no_bin] for w
haftmann@37660
  4100
haftmann@37660
  4101
declare word_roti_def [simp]
haftmann@37660
  4102
haftmann@37660
  4103
huffman@46880
  4104
subsection {* Maximum machine word *}
haftmann@37660
  4105
haftmann@37660
  4106
lemma word_int_cases:
wenzelm@46995
  4107
  obtains n where "(x ::'a::len0 word) = word_of_int n" and "0 \<le> n" and "n < 2^len_of TYPE('a)"
haftmann@37660
  4108
  by (cases x rule: word_uint.Abs_cases) (simp add: uints_num)
haftmann@37660
  4109
haftmann@37660
  4110
lemma word_nat_cases [cases type: word]:
wenzelm@46995
  4111
  obtains n where "(x ::'a::len word) = of_nat n" and "n < 2^len_of TYPE('a)"
haftmann@37660
  4112
  by (cases x rule: word_unat.Abs_cases) (simp add: unats_def)
haftmann@37660
  4113
wenzelm@46995
  4114
lemma max_word_eq: "(max_word::'a::len word) = 2^len_of TYPE('a) - 1"
haftmann@37660
  4115
  by (simp add: max_word_def word_of_int_hom_syms word_of_int_2p)
haftmann@37660
  4116
wenzelm@46995
  4117
lemma max_word_max [simp,intro!]: "n \<le> max_word"
haftmann@37660
  4118
  by (cases n rule: word_int_cases)
haftmann@37660
  4119
     (simp add: max_word_def word_le_def int_word_uint int_mod_eq')
haftmann@37660
  4120
  
wenzelm@46995
  4121
lemma word_of_int_2p_len: "word_of_int (2 ^ len_of TYPE('a)) = (0::'a::len0 word)"
haftmann@37660
  4122
  by (subst word_uint.Abs_norm [symmetric]) 
haftmann@37660
  4123
     (simp add: word_of_int_hom_syms)
haftmann@37660
  4124
haftmann@37660
  4125
lemma word_pow_0:
haftmann@37660
  4126
  "(2::'a::len word) ^ len_of TYPE('a) = 0"
haftmann@37660
  4127
proof -
haftmann@37660
  4128
  have "word_of_int (2 ^ len_of TYPE('a)) = (0::'a word)"
haftmann@37660
  4129
    by (rule word_of_int_2p_len)
haftmann@37660
  4130
  thus ?thesis by (simp add: word_of_int_2p)
haftmann@37660
  4131
qed
haftmann@37660
  4132
haftmann@37660
  4133
lemma max_word_wrap: "x + 1 = 0 \<Longrightarrow> x = max_word"
haftmann@37660
  4134
  apply (simp add: max_word_eq)
haftmann@37660
  4135
  apply uint_arith
haftmann@37660
  4136
  apply auto
haftmann@37660
  4137
  apply (simp add: word_pow_0)
haftmann@37660
  4138
  done
haftmann@37660
  4139
haftmann@37660
  4140
lemma max_word_minus: 
haftmann@37660
  4141
  "max_word = (-1::'a::len word)"
haftmann@37660
  4142
proof -
haftmann@37660
  4143
  have "-1 + 1 = (0::'a word)" by simp
haftmann@37660
  4144
  thus ?thesis by (rule max_word_wrap [symmetric])
haftmann@37660
  4145
qed
haftmann@37660
  4146
haftmann@37660
  4147
lemma max_word_bl [simp]:
haftmann@37660
  4148
  "to_bl (max_word::'a::len word) = replicate (len_of TYPE('a)) True"
haftmann@37660
  4149
  by (subst max_word_minus to_bl_n1)+ simp
haftmann@37660
  4150
haftmann@37660
  4151
lemma max_test_bit [simp]:
haftmann@37660
  4152
  "(max_word::'a::len word) !! n = (n < len_of TYPE('a))"
haftmann@37660
  4153
  by (auto simp add: test_bit_bl word_size)
haftmann@37660
  4154
haftmann@37660
  4155
lemma word_and_max [simp]:
haftmann@37660
  4156
  "x AND max_word = x"
haftmann@37660
  4157
  by (rule word_eqI) (simp add: word_ops_nth_size word_size)
haftmann@37660
  4158
haftmann@37660
  4159
lemma word_or_max [simp]:
haftmann@37660
  4160
  "x OR max_word = max_word"
haftmann@37660
  4161
  by (rule word_eqI) (simp add: word_ops_nth_size word_size)
haftmann@37660
  4162
haftmann@37660
  4163
lemma word_ao_dist2:
haftmann@37660
  4164
  "x AND (y OR z) = x AND y OR x AND (z::'a::len0 word)"
haftmann@37660
  4165
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
haftmann@37660
  4166
haftmann@37660
  4167
lemma word_oa_dist2:
haftmann@37660
  4168
  "x OR y AND z = (x OR y) AND (x OR (z::'a::len0 word))"
haftmann@37660
  4169
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
haftmann@37660
  4170
haftmann@37660
  4171
lemma word_and_not [simp]:
haftmann@37660
  4172
  "x AND NOT x = (0::'a::len0 word)"
haftmann@37660
  4173
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
haftmann@37660
  4174
haftmann@37660
  4175
lemma word_or_not [simp]:
haftmann@37660
  4176
  "x OR NOT x = max_word"
haftmann@37660
  4177
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
haftmann@37660
  4178
haftmann@37660
  4179
lemma word_boolean:
haftmann@37660
  4180
  "boolean (op AND) (op OR) bitNOT 0 max_word"
haftmann@37660
  4181
  apply (rule boolean.intro)
haftmann@37660
  4182
           apply (rule word_bw_assocs)
haftmann@37660
  4183
          apply (rule word_bw_assocs)
haftmann@37660
  4184
         apply (rule word_bw_comms)
haftmann@37660
  4185
        apply (rule word_bw_comms)
haftmann@37660
  4186
       apply (rule word_ao_dist2)
haftmann@37660
  4187
      apply (rule word_oa_dist2)
haftmann@37660
  4188
     apply (rule word_and_max)
haftmann@37660
  4189
    apply (rule word_log_esimps)
haftmann@37660
  4190
   apply (rule word_and_not)
haftmann@37660
  4191
  apply (rule word_or_not)
haftmann@37660
  4192
  done
haftmann@37660
  4193
haftmann@37660
  4194
interpretation word_bool_alg:
haftmann@37660
  4195
  boolean "op AND" "op OR" bitNOT 0 max_word
haftmann@37660
  4196
  by (rule word_boolean)
haftmann@37660
  4197
haftmann@37660
  4198
lemma word_xor_and_or:
haftmann@37660
  4199
  "x XOR y = x AND NOT y OR NOT x AND (y::'a::len0 word)"
haftmann@37660
  4200
  by (rule word_eqI) (auto simp add: word_ops_nth_size word_size)
haftmann@37660
  4201
haftmann@37660
  4202
interpretation word_bool_alg:
haftmann@37660
  4203
  boolean_xor "op AND" "op OR" bitNOT 0 max_word "op XOR"
haftmann@37660
  4204
  apply (rule boolean_xor.intro)
haftmann@37660
  4205
   apply (rule word_boolean)
haftmann@37660
  4206
  apply (rule boolean_xor_axioms.intro)
haftmann@37660
  4207
  apply (rule word_xor_and_or)
haftmann@37660
  4208
  done
haftmann@37660
  4209
haftmann@37660
  4210
lemma shiftr_x_0 [iff]:
haftmann@37660
  4211
  "(x::'a::len0 word) >> 0 = x"
haftmann@37660
  4212
  by (simp add: shiftr_bl)
haftmann@37660
  4213
haftmann@37660
  4214
lemma shiftl_x_0 [simp]: 
haftmann@37660
  4215
  "(x :: 'a :: len word) << 0 = x"
haftmann@37660
  4216
  by (simp add: shiftl_t2n)
haftmann@37660
  4217
haftmann@37660
  4218
lemma shiftl_1 [simp]:
haftmann@37660
  4219
  "(1::'a::len word) << n = 2^n"
haftmann@37660
  4220
  by (simp add: shiftl_t2n)
haftmann@37660
  4221
haftmann@37660
  4222
lemma uint_lt_0 [simp]:
haftmann@37660
  4223
  "uint x < 0 = False"
haftmann@37660
  4224
  by (simp add: linorder_not_less)
haftmann@37660
  4225
haftmann@37660
  4226
lemma shiftr1_1 [simp]: 
haftmann@37660
  4227
  "shiftr1 (1::'a::len word) = 0"
huffman@46866
  4228
  unfolding shiftr1_def by simp
haftmann@37660
  4229
haftmann@37660
  4230
lemma shiftr_1[simp]: 
haftmann@37660
  4231
  "(1::'a::len word) >> n = (if n = 0 then 1 else 0)"
haftmann@37660
  4232
  by (induct n) (auto simp: shiftr_def)
haftmann@37660
  4233
haftmann@37660
  4234
lemma word_less_1 [simp]: 
haftmann@37660
  4235
  "((x::'a::len word) < 1) = (x = 0)"
haftmann@37660
  4236
  by (simp add: word_less_nat_alt unat_0_iff)
haftmann@37660
  4237
haftmann@37660
  4238
lemma to_bl_mask:
haftmann@37660
  4239
  "to_bl (mask n :: 'a::len word) = 
haftmann@37660
  4240
  replicate (len_of TYPE('a) - n) False @ 
haftmann@37660
  4241
    replicate (min (len_of TYPE('a)) n) True"
haftmann@37660
  4242
  by (simp add: mask_bl word_rep_drop min_def)
haftmann@37660
  4243
haftmann@37660
  4244
lemma map_replicate_True:
haftmann@41075
  4245
  "n = length xs \<Longrightarrow>
haftmann@37660
  4246
    map (\<lambda>(x,y). x & y) (zip xs (replicate n True)) = xs"
haftmann@37660
  4247
  by (induct xs arbitrary: n) auto
haftmann@37660
  4248
haftmann@37660
  4249
lemma map_replicate_False:
haftmann@41075
  4250
  "n = length xs \<Longrightarrow> map (\<lambda>(x,y). x & y)
haftmann@37660
  4251
    (zip xs (replicate n False)) = replicate n False"
haftmann@37660
  4252
  by (induct xs arbitrary: n) auto
haftmann@37660
  4253
haftmann@37660
  4254
lemma bl_and_mask:
haftmann@37660
  4255
  fixes w :: "'a::len word"
haftmann@37660
  4256
  fixes n
haftmann@37660
  4257
  defines "n' \<equiv> len_of TYPE('a) - n"
haftmann@37660
  4258
  shows "to_bl (w AND mask n) =  replicate n' False @ drop n' (to_bl w)"
haftmann@37660
  4259
proof - 
haftmann@37660
  4260
  note [simp] = map_replicate_True map_replicate_False
haftmann@37660
  4261
  have "to_bl (w AND mask n) = 
haftmann@37660
  4262
        map2 op & (to_bl w) (to_bl (mask n::'a::len word))"
haftmann@37660
  4263
    by (simp add: bl_word_and)
haftmann@37660
  4264
  also
haftmann@37660
  4265
  have "to_bl w = take n' (to_bl w) @ drop n' (to_bl w)" by simp
haftmann@37660
  4266
  also
haftmann@37660
  4267
  have "map2 op & \<dots> (to_bl (mask n::'a::len word)) = 
haftmann@37660
  4268
        replicate n' False @ drop n' (to_bl w)"
haftmann@37660
  4269
    unfolding to_bl_mask n'_def map2_def
haftmann@37660
  4270
    by (subst zip_append) auto
haftmann@37660
  4271
  finally
haftmann@37660
  4272
  show ?thesis .
haftmann@37660
  4273
qed
haftmann@37660
  4274
haftmann@37660
  4275
lemma drop_rev_takefill:
haftmann@41075
  4276
  "length xs \<le> n \<Longrightarrow>
haftmann@37660
  4277
    drop (n - length xs) (rev (takefill False n (rev xs))) = xs"
haftmann@37660
  4278
  by (simp add: takefill_alt rev_take)
haftmann@37660
  4279
haftmann@37660
  4280
lemma map_nth_0 [simp]:
haftmann@37660
  4281
  "map (op !! (0::'a::len0 word)) xs = replicate (length xs) False"
haftmann@37660
  4282
  by (induct xs) auto
haftmann@37660
  4283
haftmann@37660
  4284
lemma uint_plus_if_size:
haftmann@37660
  4285
  "uint (x + y) = 
haftmann@37660
  4286
  (if uint x + uint y < 2^size x then 
haftmann@37660
  4287
      uint x + uint y 
haftmann@37660
  4288
   else 
haftmann@37660
  4289
      uint x + uint y - 2^size x)" 
haftmann@37660
  4290
  by (simp add: word_arith_alts int_word_uint mod_add_if_z 
haftmann@37660
  4291
                word_size)
haftmann@37660
  4292
haftmann@37660
  4293
lemma unat_plus_if_size:
haftmann@37660
  4294
  "unat (x + (y::'a::len word)) = 
haftmann@37660
  4295
  (if unat x + unat y < 2^size x then 
haftmann@37660
  4296
      unat x + unat y 
haftmann@37660
  4297
   else 
haftmann@37660
  4298
      unat x + unat y - 2^size x)" 
haftmann@37660
  4299
  apply (subst word_arith_nat_defs)
haftmann@37660
  4300
  apply (subst unat_of_nat)
haftmann@37660
  4301
  apply (simp add:  mod_nat_add word_size)
haftmann@37660
  4302
  done
haftmann@37660
  4303
kleing@45809
  4304
lemma word_neq_0_conv:
haftmann@37660
  4305
  fixes w :: "'a :: len word"
haftmann@37660
  4306
  shows "(w \<noteq> 0) = (0 < w)"
haftmann@37660
  4307
proof -
haftmann@37660
  4308
  have "0 \<le> w" by (rule word_zero_le)
haftmann@37660
  4309
  thus ?thesis by (auto simp add: word_less_def)
haftmann@37660
  4310
qed
haftmann@37660
  4311
haftmann@37660
  4312
lemma max_lt:
haftmann@37660
  4313
  "unat (max a b div c) = unat (max a b) div unat (c:: 'a :: len word)"
haftmann@37660
  4314
  apply (subst word_arith_nat_defs)
haftmann@37660
  4315
  apply (subst word_unat.eq_norm)
haftmann@37660
  4316
  apply (subst mod_if)
haftmann@37660
  4317
  apply clarsimp
haftmann@37660
  4318
  apply (erule notE)
haftmann@37660
  4319
  apply (insert div_le_dividend [of "unat (max a b)" "unat c"])
haftmann@37660
  4320
  apply (erule order_le_less_trans)
haftmann@37660
  4321
  apply (insert unat_lt2p [of "max a b"])
haftmann@37660
  4322
  apply simp
haftmann@37660
  4323
  done
haftmann@37660
  4324
haftmann@37660
  4325
lemma uint_sub_if_size:
haftmann@37660
  4326
  "uint (x - y) = 
haftmann@37660
  4327
  (if uint y \<le> uint x then 
haftmann@37660
  4328
      uint x - uint y 
haftmann@37660
  4329
   else 
haftmann@37660
  4330
      uint x - uint y + 2^size x)"
haftmann@37660
  4331
  by (simp add: word_arith_alts int_word_uint mod_sub_if_z 
haftmann@37660
  4332
                word_size)
haftmann@37660
  4333
haftmann@37660
  4334
lemma unat_sub:
haftmann@41075
  4335
  "b <= a \<Longrightarrow> unat (a - b) = unat a - unat b"
haftmann@37660
  4336
  by (simp add: unat_def uint_sub_if_size word_le_def nat_diff_distrib)
haftmann@37660
  4337
wenzelm@46475
  4338
lemmas word_less_sub1_numberof [simp] = word_less_sub1 [of "number_of w"] for w
wenzelm@46475
  4339
lemmas word_le_sub1_numberof [simp] = word_le_sub1 [of "number_of w"] for w
haftmann@37660
  4340
  
haftmann@37660
  4341
lemma word_of_int_minus: 
haftmann@37660
  4342
  "word_of_int (2^len_of TYPE('a) - i) = (word_of_int (-i)::'a::len word)"
haftmann@37660
  4343
proof -
haftmann@37660
  4344
  have x: "2^len_of TYPE('a) - i = -i + 2^len_of TYPE('a)" by simp
haftmann@37660
  4345
  show ?thesis
haftmann@37660
  4346
    apply (subst x)
haftmann@37660
  4347
    apply (subst word_uint.Abs_norm [symmetric], subst mod_add_self2)
haftmann@37660
  4348
    apply simp
haftmann@37660
  4349
    done
haftmann@37660
  4350
qed
haftmann@37660
  4351
  
haftmann@37660
  4352
lemmas word_of_int_inj = 
haftmann@37660
  4353
  word_uint.Abs_inject [unfolded uints_num, simplified]
haftmann@37660
  4354
haftmann@37660
  4355
lemma word_le_less_eq:
haftmann@37660
  4356
  "(x ::'z::len word) \<le> y = (x = y \<or> x < y)"
haftmann@37660
  4357
  by (auto simp add: word_less_def)
haftmann@37660
  4358
haftmann@37660
  4359
lemma mod_plus_cong:
haftmann@37660
  4360
  assumes 1: "(b::int) = b'"
haftmann@37660
  4361
      and 2: "x mod b' = x' mod b'"
haftmann@37660
  4362
      and 3: "y mod b' = y' mod b'"
haftmann@37660
  4363
      and 4: "x' + y' = z'"
haftmann@37660
  4364
  shows "(x + y) mod b = z' mod b'"
haftmann@37660
  4365
proof -
haftmann@37660
  4366
  from 1 2[symmetric] 3[symmetric] have "(x + y) mod b = (x' mod b' + y' mod b') mod b'"
haftmann@37660
  4367
    by (simp add: mod_add_eq[symmetric])
haftmann@37660
  4368
  also have "\<dots> = (x' + y') mod b'"
haftmann@37660
  4369
    by (simp add: mod_add_eq[symmetric])
haftmann@37660
  4370
  finally show ?thesis by (simp add: 4)
haftmann@37660
  4371
qed
haftmann@37660
  4372
haftmann@37660
  4373
lemma mod_minus_cong:
haftmann@37660
  4374
  assumes 1: "(b::int) = b'"
haftmann@37660
  4375
      and 2: "x mod b' = x' mod b'"
haftmann@37660
  4376
      and 3: "y mod b' = y' mod b'"
haftmann@37660
  4377
      and 4: "x' - y' = z'"
haftmann@37660
  4378
  shows "(x - y) mod b = z' mod b'"
haftmann@37660
  4379
  using assms
haftmann@37660
  4380
  apply (subst zmod_zsub_left_eq)
haftmann@37660
  4381
  apply (subst zmod_zsub_right_eq)
haftmann@37660
  4382
  apply (simp add: zmod_zsub_left_eq [symmetric] zmod_zsub_right_eq [symmetric])
haftmann@37660
  4383
  done
haftmann@37660
  4384
haftmann@37660
  4385
lemma word_induct_less: 
haftmann@37660
  4386
  "\<lbrakk>P (0::'a::len word); \<And>n. \<lbrakk>n < m; P n\<rbrakk> \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P m"
haftmann@37660
  4387
  apply (cases m)
haftmann@37660
  4388
  apply atomize
haftmann@37660
  4389
  apply (erule rev_mp)+
haftmann@37660
  4390
  apply (rule_tac x=m in spec)
haftmann@37660
  4391
  apply (induct_tac n)
haftmann@37660
  4392
   apply simp
haftmann@37660
  4393
  apply clarsimp
haftmann@37660
  4394
  apply (erule impE)
haftmann@37660
  4395
   apply clarsimp
haftmann@37660
  4396
   apply (erule_tac x=n in allE)
haftmann@37660
  4397
   apply (erule impE)
haftmann@37660
  4398
    apply (simp add: unat_arith_simps)
haftmann@37660
  4399
    apply (clarsimp simp: unat_of_nat)
haftmann@37660
  4400
   apply simp
haftmann@37660
  4401
  apply (erule_tac x="of_nat na" in allE)
haftmann@37660
  4402
  apply (erule impE)
haftmann@37660
  4403
   apply (simp add: unat_arith_simps)
haftmann@37660
  4404
   apply (clarsimp simp: unat_of_nat)
haftmann@37660
  4405
  apply simp
haftmann@37660
  4406
  done
haftmann@37660
  4407
  
haftmann@37660
  4408
lemma word_induct: 
haftmann@37660
  4409
  "\<lbrakk>P (0::'a::len word); \<And>n. P n \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P m"
haftmann@37660
  4410
  by (erule word_induct_less, simp)
haftmann@37660
  4411
haftmann@37660
  4412
lemma word_induct2 [induct type]: 
haftmann@37660
  4413
  "\<lbrakk>P 0; \<And>n. \<lbrakk>1 + n \<noteq> 0; P n\<rbrakk> \<Longrightarrow> P (1 + n)\<rbrakk> \<Longrightarrow> P (n::'b::len word)"
haftmann@37660
  4414
  apply (rule word_induct, simp)
haftmann@37660
  4415
  apply (case_tac "1+n = 0", auto)
haftmann@37660
  4416
  done
haftmann@37660
  4417
huffman@46880
  4418
subsection {* Recursion combinator for words *}
huffman@46880
  4419
haftmann@37660
  4420
definition word_rec :: "'a \<Rightarrow> ('b::len word \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> 'b word \<Rightarrow> 'a" where
haftmann@41075
  4421
  "word_rec forZero forSuc n = nat_rec forZero (forSuc \<circ> of_nat) (unat n)"
haftmann@37660
  4422
haftmann@37660
  4423
lemma word_rec_0: "word_rec z s 0 = z"
haftmann@37660
  4424
  by (simp add: word_rec_def)
haftmann@37660
  4425
haftmann@37660
  4426
lemma word_rec_Suc: 
haftmann@37660
  4427
  "1 + n \<noteq> (0::'a::len word) \<Longrightarrow> word_rec z s (1 + n) = s n (word_rec z s n)"
haftmann@37660
  4428
  apply (simp add: word_rec_def unat_word_ariths)
haftmann@37660
  4429
  apply (subst nat_mod_eq')
haftmann@37660
  4430
   apply (cut_tac x=n in unat_lt2p)
haftmann@37660
  4431
   apply (drule Suc_mono)
haftmann@37660
  4432
   apply (simp add: less_Suc_eq_le)
haftmann@37660
  4433
   apply (simp only: order_less_le, simp)
haftmann@37660
  4434
   apply (erule contrapos_pn, simp)
haftmann@37660
  4435
   apply (drule arg_cong[where f=of_nat])
haftmann@37660
  4436
   apply simp
haftmann@37660
  4437
   apply (subst (asm) word_unat.Rep_inverse[of n])
haftmann@37660
  4438
   apply simp
haftmann@37660
  4439
  apply simp
haftmann@37660
  4440
  done
haftmann@37660
  4441
haftmann@37660
  4442
lemma word_rec_Pred: 
haftmann@37660
  4443
  "n \<noteq> 0 \<Longrightarrow> word_rec z s n = s (n - 1) (word_rec z s (n - 1))"
haftmann@37660
  4444
  apply (rule subst[where t="n" and s="1 + (n - 1)"])
haftmann@37660
  4445
   apply simp
haftmann@37660
  4446
  apply (subst word_rec_Suc)
haftmann@37660
  4447
   apply simp
haftmann@37660
  4448
  apply simp
haftmann@37660
  4449
  done
haftmann@37660
  4450
haftmann@37660
  4451
lemma word_rec_in: 
haftmann@37660
  4452
  "f (word_rec z (\<lambda>_. f) n) = word_rec (f z) (\<lambda>_. f) n"
haftmann@37660
  4453
  by (induct n) (simp_all add: word_rec_0 word_rec_Suc)
haftmann@37660
  4454
haftmann@37660
  4455
lemma word_rec_in2: 
haftmann@37660
  4456
  "f n (word_rec z f n) = word_rec (f 0 z) (f \<circ> op + 1) n"
haftmann@37660
  4457
  by (induct n) (simp_all add: word_rec_0 word_rec_Suc)
haftmann@37660
  4458
haftmann@37660
  4459
lemma word_rec_twice: 
haftmann@37660
  4460
  "m \<le> n \<Longrightarrow> word_rec z f n = word_rec (word_rec z f (n - m)) (f \<circ> op + (n - m)) m"
haftmann@37660
  4461
apply (erule rev_mp)
haftmann@37660
  4462
apply (rule_tac x=z in spec)
haftmann@37660
  4463
apply (rule_tac x=f in spec)
haftmann@37660
  4464
apply (induct n)
haftmann@37660
  4465
 apply (simp add: word_rec_0)
haftmann@37660
  4466
apply clarsimp
haftmann@37660
  4467
apply (rule_tac t="1 + n - m" and s="1 + (n - m)" in subst)
haftmann@37660
  4468
 apply simp
haftmann@37660
  4469
apply (case_tac "1 + (n - m) = 0")
haftmann@37660
  4470
 apply (simp add: word_rec_0)
haftmann@37660
  4471
 apply (rule_tac f = "word_rec ?a ?b" in arg_cong)
haftmann@37660
  4472
 apply (rule_tac t="m" and s="m + (1 + (n - m))" in subst)
haftmann@37660
  4473
  apply simp
haftmann@37660
  4474
 apply (simp (no_asm_use))
haftmann@37660
  4475
apply (simp add: word_rec_Suc word_rec_in2)
haftmann@37660
  4476
apply (erule impE)
haftmann@37660
  4477
 apply uint_arith
haftmann@37660
  4478
apply (drule_tac x="x \<circ> op + 1" in spec)
haftmann@37660
  4479
apply (drule_tac x="x 0 xa" in spec)
haftmann@37660
  4480
apply simp
haftmann@37660
  4481
apply (rule_tac t="\<lambda>a. x (1 + (n - m + a))" and s="\<lambda>a. x (1 + (n - m) + a)"
haftmann@37660
  4482
       in subst)
nipkow@39535
  4483
 apply (clarsimp simp add: fun_eq_iff)
haftmann@37660
  4484
 apply (rule_tac t="(1 + (n - m + xb))" and s="1 + (n - m) + xb" in subst)
haftmann@37660
  4485
  apply simp
haftmann@37660
  4486
 apply (rule refl)
haftmann@37660
  4487
apply (rule refl)
haftmann@37660
  4488
done
haftmann@37660
  4489
haftmann@37660
  4490
lemma word_rec_id: "word_rec z (\<lambda>_. id) n = z"
haftmann@37660
  4491
  by (induct n) (auto simp add: word_rec_0 word_rec_Suc)
haftmann@37660
  4492
haftmann@37660
  4493
lemma word_rec_id_eq: "\<forall>m < n. f m = id \<Longrightarrow> word_rec z f n = z"
haftmann@37660
  4494
apply (erule rev_mp)
haftmann@37660
  4495
apply (induct n)
haftmann@37660
  4496
 apply (auto simp add: word_rec_0 word_rec_Suc)
haftmann@37660
  4497
 apply (drule spec, erule mp)
haftmann@37660
  4498
 apply uint_arith
haftmann@37660
  4499
apply (drule_tac x=n in spec, erule impE)
haftmann@37660
  4500
 apply uint_arith
haftmann@37660
  4501
apply simp
haftmann@37660
  4502
done
haftmann@37660
  4503
haftmann@37660
  4504
lemma word_rec_max: 
haftmann@37660
  4505
  "\<forall>m\<ge>n. m \<noteq> -1 \<longrightarrow> f m = id \<Longrightarrow> word_rec z f -1 = word_rec z f n"
haftmann@37660
  4506
apply (subst word_rec_twice[where n="-1" and m="-1 - n"])
haftmann@37660
  4507
 apply simp
haftmann@37660
  4508
apply simp
haftmann@37660
  4509
apply (rule word_rec_id_eq)
haftmann@37660
  4510
apply clarsimp
haftmann@37660
  4511
apply (drule spec, rule mp, erule mp)
haftmann@37660
  4512
 apply (rule word_plus_mono_right2[OF _ order_less_imp_le])
haftmann@37660
  4513
  prefer 2 
haftmann@37660
  4514
  apply assumption
haftmann@37660
  4515
 apply simp
haftmann@37660
  4516
apply (erule contrapos_pn)
haftmann@37660
  4517
apply simp
haftmann@37660
  4518
apply (drule arg_cong[where f="\<lambda>x. x - n"])
haftmann@37660
  4519
apply simp
haftmann@37660
  4520
done
haftmann@37660
  4521
haftmann@37660
  4522
lemma unatSuc: 
haftmann@37660
  4523
  "1 + n \<noteq> (0::'a::len word) \<Longrightarrow> unat (1 + n) = Suc (unat n)"
haftmann@37660
  4524
  by unat_arith
haftmann@37660
  4525
haftmann@37660
  4526
huffman@46676
  4527
lemma word_no_1 [simp]: "(Numeral1::'a::len0 word) = 1"
huffman@46890
  4528
  by (fact word_1_no [symmetric])
huffman@46676
  4529
huffman@46676
  4530
lemma word_no_0 [simp]: "(Numeral0::'a::len0 word) = 0"
huffman@46676
  4531
  by (fact word_0_no [symmetric])
huffman@46676
  4532
haftmann@37660
  4533
declare bin_to_bl_def [simp]
haftmann@37660
  4534
haftmann@37660
  4535
boehmes@41308
  4536
use "~~/src/HOL/Word/Tools/smt_word.ML"
boehmes@36891
  4537
setup {* SMT_Word.setup *}
boehmes@36891
  4538
boehmes@41308
  4539
end