src/HOL/Multivariate_Analysis/Integration.thy
author himmelma
Wed, 17 Feb 2010 18:33:45 +0100
changeset 35172 579dd5570f96
permissions -rw-r--r--
Added integration to Multivariate-Analysis (upto FTC)
himmelma@35172
     1
himmelma@35172
     2
header {* Kurzweil-Henstock gauge integration in many dimensions. *}
himmelma@35172
     3
(*  Author:                     John Harrison
himmelma@35172
     4
    Translation from HOL light: Robert Himmelmann, TU Muenchen *)
himmelma@35172
     5
himmelma@35172
     6
theory Integration_Aleph
himmelma@35172
     7
  imports Derivative SMT
himmelma@35172
     8
begin
himmelma@35172
     9
himmelma@35172
    10
declare [[smt_certificates="~~/src/HOL/Multivariate_Analysis/Integration.cert"]]
himmelma@35172
    11
declare [[smt_record=true]]
himmelma@35172
    12
declare [[z3_proofs=true]]
himmelma@35172
    13
himmelma@35172
    14
lemma conjunctD2: assumes "a \<and> b" shows a b using assms by auto
himmelma@35172
    15
lemma conjunctD3: assumes "a \<and> b \<and> c" shows a b c using assms by auto
himmelma@35172
    16
lemma conjunctD4: assumes "a \<and> b \<and> c \<and> d" shows a b c d using assms by auto
himmelma@35172
    17
lemma conjunctD5: assumes "a \<and> b \<and> c \<and> d \<and> e" shows a b c d e using assms by auto
himmelma@35172
    18
himmelma@35172
    19
declare smult_conv_scaleR[simp]
himmelma@35172
    20
himmelma@35172
    21
subsection {* Some useful lemmas about intervals. *}
himmelma@35172
    22
himmelma@35172
    23
lemma empty_as_interval: "{} = {1..0::real^'n}"
himmelma@35172
    24
  apply(rule set_ext,rule) defer unfolding vector_le_def mem_interval
himmelma@35172
    25
  using UNIV_witness[where 'a='n] apply(erule_tac exE,rule_tac x=x in allE) by auto
himmelma@35172
    26
himmelma@35172
    27
lemma interior_subset_union_intervals: 
himmelma@35172
    28
  assumes "i = {a..b::real^'n}" "j = {c..d}" "interior j \<noteq> {}" "i \<subseteq> j \<union> s" "interior(i) \<inter> interior(j) = {}"
himmelma@35172
    29
  shows "interior i \<subseteq> interior s" proof-
himmelma@35172
    30
  have "{a<..<b} \<inter> {c..d} = {}" using inter_interval_mixed_eq_empty[of c d a b] and assms(3,5)
himmelma@35172
    31
    unfolding assms(1,2) interior_closed_interval by auto
himmelma@35172
    32
  moreover have "{a<..<b} \<subseteq> {c..d} \<union> s" apply(rule order_trans,rule interval_open_subset_closed)
himmelma@35172
    33
    using assms(4) unfolding assms(1,2) by auto
himmelma@35172
    34
  ultimately show ?thesis apply-apply(rule interior_maximal) defer apply(rule open_interior)
himmelma@35172
    35
    unfolding assms(1,2) interior_closed_interval by auto qed
himmelma@35172
    36
himmelma@35172
    37
lemma inter_interior_unions_intervals: fixes f::"(real^'n) set set"
himmelma@35172
    38
  assumes "finite f" "open s" "\<forall>t\<in>f. \<exists>a b. t = {a..b}" "\<forall>t\<in>f. s \<inter> (interior t) = {}"
himmelma@35172
    39
  shows "s \<inter> interior(\<Union>f) = {}" proof(rule ccontr,unfold ex_in_conv[THEN sym]) case goal1
himmelma@35172
    40
  have lem1:"\<And>x e s U. ball x e \<subseteq> s \<inter> interior U \<longleftrightarrow> ball x e \<subseteq> s \<inter> U" apply rule  defer apply(rule_tac Int_greatest)
himmelma@35172
    41
    unfolding open_subset_interior[OF open_ball]  using interior_subset by auto
himmelma@35172
    42
  have lem2:"\<And>x s P. \<exists>x\<in>s. P x \<Longrightarrow> \<exists>x\<in>insert x s. P x" by auto
himmelma@35172
    43
  have "\<And>f. finite f \<Longrightarrow> (\<forall>t\<in>f. \<exists>a b. t = {a..b}) \<Longrightarrow> (\<exists>x. x \<in> s \<inter> interior (\<Union>f)) \<Longrightarrow> (\<exists>t\<in>f. \<exists>x. \<exists>e>0. ball x e \<subseteq> s \<inter> t)" proof- case goal1
himmelma@35172
    44
  thus ?case proof(induct rule:finite_induct) 
himmelma@35172
    45
    case empty from this(2) guess x .. hence False unfolding Union_empty interior_empty by auto thus ?case by auto next
himmelma@35172
    46
    case (insert i f) guess x using insert(5) .. note x = this
himmelma@35172
    47
    then guess e unfolding open_contains_ball_eq[OF open_Int[OF assms(2) open_interior],rule_format] .. note e=this
himmelma@35172
    48
    guess a using insert(4)[rule_format,OF insertI1] .. then guess b .. note ab = this
himmelma@35172
    49
    show ?case proof(cases "x\<in>i") case False hence "x \<in> UNIV - {a..b}" unfolding ab by auto
himmelma@35172
    50
      then guess d unfolding open_contains_ball_eq[OF open_Diff[OF open_UNIV closed_interval],rule_format] ..
himmelma@35172
    51
      hence "0 < d" "ball x (min d e) \<subseteq> UNIV - i" using e unfolding ab by auto
himmelma@35172
    52
      hence "ball x (min d e) \<subseteq> s \<inter> interior (\<Union>f)" using e unfolding lem1 by auto hence "x \<in> s \<inter> interior (\<Union>f)" using `d>0` e by auto
himmelma@35172
    53
      hence "\<exists>t\<in>f. \<exists>x e. 0 < e \<and> ball x e \<subseteq> s \<inter> t" apply-apply(rule insert(3)) using insert(4) by auto thus ?thesis by auto next
himmelma@35172
    54
    case True show ?thesis proof(cases "x\<in>{a<..<b}")
himmelma@35172
    55
      case True then guess d unfolding open_contains_ball_eq[OF open_interval,rule_format] ..
himmelma@35172
    56
      thus ?thesis apply(rule_tac x=i in bexI,rule_tac x=x in exI,rule_tac x="min d e" in exI)
himmelma@35172
    57
	unfolding ab using interval_open_subset_closed[of a b] and e by fastsimp+ next
himmelma@35172
    58
    case False then obtain k where "x$k \<le> a$k \<or> x$k \<ge> b$k" unfolding mem_interval by(auto simp add:not_less) 
himmelma@35172
    59
    hence "x$k = a$k \<or> x$k = b$k" using True unfolding ab and mem_interval apply(erule_tac x=k in allE) by auto
himmelma@35172
    60
    hence "\<exists>x. ball x (e/2) \<subseteq> s \<inter> (\<Union>f)" proof(erule_tac disjE)
himmelma@35172
    61
      let ?z = "x - (e/2) *\<^sub>R basis k" assume as:"x$k = a$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
himmelma@35172
    62
	fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto
himmelma@35172
    63
	hence "\<bar>(?z - y) $ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding vector_dist_norm by auto
himmelma@35172
    64
	hence "y$k < a$k" unfolding vector_component_simps vector_scaleR_component as using e[THEN conjunct1] by(auto simp add:field_simps)
himmelma@35172
    65
	hence "y \<notin> i" unfolding ab mem_interval not_all by(rule_tac x=k in exI,auto) thus False using yi by auto qed
himmelma@35172
    66
      moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof
himmelma@35172
    67
	fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y - (e / 2) *\<^sub>R basis k)"
himmelma@35172
    68
	   apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "(e/2) *\<^sub>R basis k"])
himmelma@35172
    69
	  unfolding norm_scaleR norm_basis by auto
himmelma@35172
    70
	also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps)
himmelma@35172
    71
	finally show "y\<in>ball x e" unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps) qed
himmelma@35172
    72
      ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto
himmelma@35172
    73
    next let ?z = "x + (e/2) *\<^sub>R basis k" assume as:"x$k = b$k" have "ball ?z (e / 2) \<inter> i = {}" apply(rule ccontr) unfolding ex_in_conv[THEN sym] proof(erule exE)
himmelma@35172
    74
	fix y assume "y \<in> ball ?z (e / 2) \<inter> i" hence "dist ?z y < e/2" and yi:"y\<in>i" by auto
himmelma@35172
    75
	hence "\<bar>(?z - y) $ k\<bar> < e/2" using component_le_norm[of "?z - y" k] unfolding vector_dist_norm by auto
himmelma@35172
    76
	hence "y$k > b$k" unfolding vector_component_simps vector_scaleR_component as using e[THEN conjunct1] by(auto simp add:field_simps)
himmelma@35172
    77
	hence "y \<notin> i" unfolding ab mem_interval not_all by(rule_tac x=k in exI,auto) thus False using yi by auto qed
himmelma@35172
    78
      moreover have "ball ?z (e/2) \<subseteq> s \<inter> (\<Union>insert i f)" apply(rule order_trans[OF _ e[THEN conjunct2, unfolded lem1]]) proof
himmelma@35172
    79
	fix y assume as:"y\<in> ball ?z (e/2)" have "norm (x - y) \<le> \<bar>e\<bar> / 2 + norm (x - y + (e / 2) *\<^sub>R basis k)"
himmelma@35172
    80
	   apply-apply(rule order_trans,rule norm_triangle_sub[of "x - y" "- (e/2) *\<^sub>R basis k"])
himmelma@35172
    81
	  unfolding norm_scaleR norm_basis by auto
himmelma@35172
    82
	also have "\<dots> < \<bar>e\<bar> / 2 + \<bar>e\<bar> / 2" apply(rule add_strict_left_mono) using as unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps)
himmelma@35172
    83
	finally show "y\<in>ball x e" unfolding mem_ball vector_dist_norm using e by(auto simp add:field_simps) qed
himmelma@35172
    84
      ultimately show ?thesis apply(rule_tac x="?z" in exI) unfolding Union_insert by auto qed 
himmelma@35172
    85
    then guess x .. hence "x \<in> s \<inter> interior (\<Union>f)" unfolding lem1[where U="\<Union>f",THEN sym] using centre_in_ball e[THEN conjunct1] by auto
himmelma@35172
    86
    thus ?thesis apply-apply(rule lem2,rule insert(3)) using insert(4) by auto qed qed qed qed note * = this
himmelma@35172
    87
  guess t using *[OF assms(1,3) goal1]  .. from this(2) guess x .. then guess e ..
himmelma@35172
    88
  hence "x \<in> s" "x\<in>interior t" defer using open_subset_interior[OF open_ball, of x e t] by auto
himmelma@35172
    89
  thus False using `t\<in>f` assms(4) by auto qed
himmelma@35172
    90
subsection {* Bounds on intervals where they exist. *}
himmelma@35172
    91
himmelma@35172
    92
definition "interval_upperbound (s::(real^'n) set) = (\<chi> i. Sup {a. \<exists>x\<in>s. x$i = a})"
himmelma@35172
    93
himmelma@35172
    94
definition "interval_lowerbound (s::(real^'n) set) = (\<chi> i. Inf {a. \<exists>x\<in>s. x$i = a})"
himmelma@35172
    95
himmelma@35172
    96
lemma interval_upperbound[simp]: assumes "\<forall>i. a$i \<le> b$i" shows "interval_upperbound {a..b} = b"
himmelma@35172
    97
  using assms unfolding interval_upperbound_def Cart_eq Cart_lambda_beta apply-apply(rule,erule_tac x=i in allE)
himmelma@35172
    98
  apply(rule Sup_unique) unfolding setle_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer
himmelma@35172
    99
  apply(rule,rule) apply(rule_tac x="b$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=b in bexI)
himmelma@35172
   100
  unfolding mem_interval using assms by auto
himmelma@35172
   101
himmelma@35172
   102
lemma interval_lowerbound[simp]: assumes "\<forall>i. a$i \<le> b$i" shows "interval_lowerbound {a..b} = a"
himmelma@35172
   103
  using assms unfolding interval_lowerbound_def Cart_eq Cart_lambda_beta apply-apply(rule,erule_tac x=i in allE)
himmelma@35172
   104
  apply(rule Inf_unique) unfolding setge_def apply rule unfolding mem_Collect_eq apply(erule bexE) unfolding mem_interval defer
himmelma@35172
   105
  apply(rule,rule) apply(rule_tac x="a$i" in bexI) defer unfolding mem_Collect_eq apply(rule_tac x=a in bexI)
himmelma@35172
   106
  unfolding mem_interval using assms by auto
himmelma@35172
   107
himmelma@35172
   108
lemmas interval_bounds = interval_upperbound interval_lowerbound
himmelma@35172
   109
himmelma@35172
   110
lemma interval_bounds'[simp]: assumes "{a..b}\<noteq>{}" shows "interval_upperbound {a..b} = b" "interval_lowerbound {a..b} = a"
himmelma@35172
   111
  using assms unfolding interval_ne_empty by auto
himmelma@35172
   112
himmelma@35172
   113
lemma interval_upperbound_1[simp]: "dest_vec1 a \<le> dest_vec1 b \<Longrightarrow> interval_upperbound {a..b} = (b::real^1)"
himmelma@35172
   114
  apply(rule interval_upperbound) by auto
himmelma@35172
   115
himmelma@35172
   116
lemma interval_lowerbound_1[simp]: "dest_vec1 a \<le> dest_vec1 b \<Longrightarrow> interval_lowerbound {a..b} = (a::real^1)"
himmelma@35172
   117
  apply(rule interval_lowerbound) by auto
himmelma@35172
   118
himmelma@35172
   119
lemmas interval_bound_1 = interval_upperbound_1 interval_lowerbound_1
himmelma@35172
   120
himmelma@35172
   121
subsection {* Content (length, area, volume...) of an interval. *}
himmelma@35172
   122
himmelma@35172
   123
definition "content (s::(real^'n) set) =
himmelma@35172
   124
       (if s = {} then 0 else (\<Prod>i\<in>UNIV. (interval_upperbound s)$i - (interval_lowerbound s)$i))"
himmelma@35172
   125
himmelma@35172
   126
lemma interval_not_empty:"\<forall>i. a$i \<le> b$i \<Longrightarrow> {a..b::real^'n} \<noteq> {}"
himmelma@35172
   127
  unfolding interval_eq_empty unfolding not_ex not_less by assumption
himmelma@35172
   128
himmelma@35172
   129
lemma content_closed_interval: assumes "\<forall>i. a$i \<le> b$i"
himmelma@35172
   130
  shows "content {a..b} = (\<Prod>i\<in>UNIV. b$i - a$i)"
himmelma@35172
   131
  using interval_not_empty[OF assms] unfolding content_def interval_upperbound[OF assms] interval_lowerbound[OF assms] by auto
himmelma@35172
   132
himmelma@35172
   133
lemma content_closed_interval': assumes "{a..b}\<noteq>{}" shows "content {a..b} = (\<Prod>i\<in>UNIV. b$i - a$i)"
himmelma@35172
   134
  apply(rule content_closed_interval) using assms unfolding interval_ne_empty .
himmelma@35172
   135
himmelma@35172
   136
lemma content_1:"dest_vec1 a \<le> dest_vec1 b \<Longrightarrow> content {a..b} = dest_vec1 b - dest_vec1 a"
himmelma@35172
   137
  using content_closed_interval[of a b] by auto
himmelma@35172
   138
himmelma@35172
   139
lemma content_1':"a \<le> b \<Longrightarrow> content {vec1 a..vec1 b} = b - a" using content_1[of "vec a" "vec b"] by auto
himmelma@35172
   140
himmelma@35172
   141
lemma content_unit[intro]: "content{0..1::real^'n} = 1" proof-
himmelma@35172
   142
  have *:"\<forall>i. 0$i \<le> (1::real^'n::finite)$i" by auto
himmelma@35172
   143
  have "0 \<in> {0..1::real^'n::finite}" unfolding mem_interval by auto
himmelma@35172
   144
  thus ?thesis unfolding content_def interval_bounds[OF *] using setprod_1 by auto qed
himmelma@35172
   145
himmelma@35172
   146
lemma content_pos_le[intro]: "0 \<le> content {a..b}" proof(cases "{a..b}={}")
himmelma@35172
   147
  case False hence *:"\<forall>i. a $ i \<le> b $ i" unfolding interval_ne_empty by assumption
himmelma@35172
   148
  have "(\<Prod>i\<in>UNIV. interval_upperbound {a..b} $ i - interval_lowerbound {a..b} $ i) \<ge> 0"
himmelma@35172
   149
    apply(rule setprod_nonneg) unfolding interval_bounds[OF *] using * apply(erule_tac x=x in allE) by auto
himmelma@35172
   150
  thus ?thesis unfolding content_def by(auto simp del:interval_bounds') qed(unfold content_def, auto)
himmelma@35172
   151
himmelma@35172
   152
lemma content_pos_lt: assumes "\<forall>i. a$i < b$i" shows "0 < content {a..b}"
himmelma@35172
   153
proof- have help_lemma1: "\<forall>i. a$i < b$i \<Longrightarrow> \<forall>i. a$i \<le> ((b$i)::real)" apply(rule,erule_tac x=i in allE) by auto
himmelma@35172
   154
  show ?thesis unfolding content_closed_interval[OF help_lemma1[OF assms]] apply(rule setprod_pos)
himmelma@35172
   155
    using assms apply(erule_tac x=x in allE) by auto qed
himmelma@35172
   156
himmelma@35172
   157
lemma content_pos_lt_1: "dest_vec1 a < dest_vec1 b \<Longrightarrow> 0 < content({a..b})"
himmelma@35172
   158
  apply(rule content_pos_lt) by auto
himmelma@35172
   159
himmelma@35172
   160
lemma content_eq_0: "content({a..b::real^'n}) = 0 \<longleftrightarrow> (\<exists>i. b$i \<le> a$i)" proof(cases "{a..b} = {}")
himmelma@35172
   161
  case True thus ?thesis unfolding content_def if_P[OF True] unfolding interval_eq_empty apply-
himmelma@35172
   162
    apply(rule,erule exE) apply(rule_tac x=i in exI) by auto next
himmelma@35172
   163
  guess a using UNIV_witness[where 'a='n] .. case False note as=this[unfolded interval_eq_empty not_ex not_less]
himmelma@35172
   164
  show ?thesis unfolding content_def if_not_P[OF False] setprod_zero_iff[OF finite_UNIV]
himmelma@35172
   165
    apply(rule) apply(erule_tac[!] exE bexE) unfolding interval_bounds[OF as] apply(rule_tac x=x in exI) defer
himmelma@35172
   166
    apply(rule_tac x=i in bexI) using as apply(erule_tac x=i in allE) by auto qed
himmelma@35172
   167
himmelma@35172
   168
lemma cond_cases:"(P \<Longrightarrow> Q x) \<Longrightarrow> (\<not> P \<Longrightarrow> Q y) \<Longrightarrow> Q (if P then x else y)" by auto
himmelma@35172
   169
himmelma@35172
   170
lemma content_closed_interval_cases:
himmelma@35172
   171
  "content {a..b} = (if \<forall>i. a$i \<le> b$i then setprod (\<lambda>i. b$i - a$i) UNIV else 0)" apply(rule cond_cases) 
himmelma@35172
   172
  apply(rule content_closed_interval) unfolding content_eq_0 not_all not_le defer apply(erule exE,rule_tac x=x in exI) by auto
himmelma@35172
   173
himmelma@35172
   174
lemma content_eq_0_interior: "content {a..b} = 0 \<longleftrightarrow> interior({a..b}) = {}"
himmelma@35172
   175
  unfolding content_eq_0 interior_closed_interval interval_eq_empty by auto
himmelma@35172
   176
himmelma@35172
   177
lemma content_eq_0_1: "content {a..b::real^1} = 0 \<longleftrightarrow> dest_vec1 b \<le> dest_vec1 a"
himmelma@35172
   178
  unfolding content_eq_0 by auto
himmelma@35172
   179
himmelma@35172
   180
lemma content_pos_lt_eq: "0 < content {a..b} \<longleftrightarrow> (\<forall>i. a$i < b$i)"
himmelma@35172
   181
  apply(rule) defer apply(rule content_pos_lt,assumption) proof- assume "0 < content {a..b}"
himmelma@35172
   182
  hence "content {a..b} \<noteq> 0" by auto thus "\<forall>i. a$i < b$i" unfolding content_eq_0 not_ex not_le by auto qed
himmelma@35172
   183
himmelma@35172
   184
lemma content_empty[simp]: "content {} = 0" unfolding content_def by auto
himmelma@35172
   185
himmelma@35172
   186
lemma content_subset: assumes "{a..b} \<subseteq> {c..d}" shows "content {a..b::real^'n} \<le> content {c..d}" proof(cases "{a..b}={}")
himmelma@35172
   187
  case True thus ?thesis using content_pos_le[of c d] by auto next
himmelma@35172
   188
  case False hence ab_ne:"\<forall>i. a $ i \<le> b $ i" unfolding interval_ne_empty by auto
himmelma@35172
   189
  hence ab_ab:"a\<in>{a..b}" "b\<in>{a..b}" unfolding mem_interval by auto
himmelma@35172
   190
  have "{c..d} \<noteq> {}" using assms False by auto
himmelma@35172
   191
  hence cd_ne:"\<forall>i. c $ i \<le> d $ i" using assms unfolding interval_ne_empty by auto
himmelma@35172
   192
  show ?thesis unfolding content_def unfolding interval_bounds[OF ab_ne] interval_bounds[OF cd_ne]
himmelma@35172
   193
    unfolding if_not_P[OF False] if_not_P[OF `{c..d} \<noteq> {}`] apply(rule setprod_mono,rule) proof fix i::'n
himmelma@35172
   194
    show "0 \<le> b $ i - a $ i" using ab_ne[THEN spec[where x=i]] by auto
himmelma@35172
   195
    show "b $ i - a $ i \<le> d $ i - c $ i"
himmelma@35172
   196
      using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(2),of i]
himmelma@35172
   197
      using assms[unfolded subset_eq mem_interval,rule_format,OF ab_ab(1),of i] by auto qed qed
himmelma@35172
   198
himmelma@35172
   199
lemma content_lt_nz: "0 < content {a..b} \<longleftrightarrow> content {a..b} \<noteq> 0"
himmelma@35172
   200
  unfolding content_pos_lt_eq content_eq_0 unfolding not_ex not_le by auto
himmelma@35172
   201
himmelma@35172
   202
subsection {* The notion of a gauge --- simply an open set containing the point. *}
himmelma@35172
   203
himmelma@35172
   204
definition gauge where "gauge d \<longleftrightarrow> (\<forall>x. x\<in>(d x) \<and> open(d x))"
himmelma@35172
   205
himmelma@35172
   206
lemma gaugeI:assumes "\<And>x. x\<in>g x" "\<And>x. open (g x)" shows "gauge g"
himmelma@35172
   207
  using assms unfolding gauge_def by auto
himmelma@35172
   208
himmelma@35172
   209
lemma gaugeD[dest]: assumes "gauge d" shows "x\<in>d x" "open (d x)" using assms unfolding gauge_def by auto
himmelma@35172
   210
himmelma@35172
   211
lemma gauge_ball_dependent: "\<forall>x. 0 < e x \<Longrightarrow> gauge (\<lambda>x. ball x (e x))"
himmelma@35172
   212
  unfolding gauge_def by auto 
himmelma@35172
   213
himmelma@35172
   214
lemma gauge_ball[intro?]: "0 < e \<Longrightarrow> gauge (\<lambda>x. ball x e)" unfolding gauge_def by auto 
himmelma@35172
   215
himmelma@35172
   216
lemma gauge_trivial[intro]: "gauge (\<lambda>x. ball x 1)" apply(rule gauge_ball) by auto
himmelma@35172
   217
himmelma@35172
   218
lemma gauge_inter: "gauge d1 \<Longrightarrow> gauge d2 \<Longrightarrow> gauge (\<lambda>x. (d1 x) \<inter> (d2 x))"
himmelma@35172
   219
  unfolding gauge_def by auto 
himmelma@35172
   220
himmelma@35172
   221
lemma gauge_inters: assumes "finite s" "\<forall>d\<in>s. gauge (f d)" shows "gauge(\<lambda>x. \<Inter> {f d x | d. d \<in> s})" proof-
himmelma@35172
   222
  have *:"\<And>x. {f d x |d. d \<in> s} = (\<lambda>d. f d x) ` s" by auto show ?thesis
himmelma@35172
   223
  unfolding gauge_def unfolding * 
himmelma@35172
   224
  using assms unfolding Ball_def Inter_iff mem_Collect_eq gauge_def by auto qed
himmelma@35172
   225
himmelma@35172
   226
lemma gauge_existence_lemma: "(\<forall>x. \<exists>d::real. p x \<longrightarrow> 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. p x \<longrightarrow> q d x)" by(meson zero_less_one)
himmelma@35172
   227
himmelma@35172
   228
subsection {* Divisions. *}
himmelma@35172
   229
himmelma@35172
   230
definition division_of (infixl "division'_of" 40) where
himmelma@35172
   231
  "s division_of i \<equiv>
himmelma@35172
   232
        finite s \<and>
himmelma@35172
   233
        (\<forall>k\<in>s. k \<subseteq> i \<and> k \<noteq> {} \<and> (\<exists>a b. k = {a..b})) \<and>
himmelma@35172
   234
        (\<forall>k1\<in>s. \<forall>k2\<in>s. k1 \<noteq> k2 \<longrightarrow> interior(k1) \<inter> interior(k2) = {}) \<and>
himmelma@35172
   235
        (\<Union>s = i)"
himmelma@35172
   236
himmelma@35172
   237
lemma division_ofD[dest]: assumes  "s division_of i"
himmelma@35172
   238
  shows"finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
himmelma@35172
   239
  "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i" using assms unfolding division_of_def by auto
himmelma@35172
   240
himmelma@35172
   241
lemma division_ofI:
himmelma@35172
   242
  assumes "finite s" "\<And>k. k\<in>s \<Longrightarrow> k \<subseteq> i" "\<And>k. k\<in>s \<Longrightarrow>  k \<noteq> {}" "\<And>k. k\<in>s \<Longrightarrow> (\<exists>a b. k = {a..b})"
himmelma@35172
   243
  "\<And>k1 k2. \<lbrakk>k1\<in>s; k2\<in>s; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}" "\<Union>s = i"
himmelma@35172
   244
  shows "s division_of i" using assms unfolding division_of_def by auto
himmelma@35172
   245
himmelma@35172
   246
lemma division_of_finite: "s division_of i \<Longrightarrow> finite s"
himmelma@35172
   247
  unfolding division_of_def by auto
himmelma@35172
   248
himmelma@35172
   249
lemma division_of_self[intro]: "{a..b} \<noteq> {} \<Longrightarrow> {{a..b}} division_of {a..b}"
himmelma@35172
   250
  unfolding division_of_def by auto
himmelma@35172
   251
himmelma@35172
   252
lemma division_of_trivial[simp]: "s division_of {} \<longleftrightarrow> s = {}" unfolding division_of_def by auto 
himmelma@35172
   253
himmelma@35172
   254
lemma division_of_sing[simp]: "s division_of {a..a::real^'n} \<longleftrightarrow> s = {{a..a}}" (is "?l = ?r") proof
himmelma@35172
   255
  assume ?r moreover { assume "s = {{a}}" moreover fix k assume "k\<in>s" 
himmelma@35172
   256
    ultimately have"\<exists>x y. k = {x..y}" apply(rule_tac x=a in exI)+ unfolding interval_sing[THEN conjunct1] by auto }
himmelma@35172
   257
  ultimately show ?l unfolding division_of_def interval_sing[THEN conjunct1] by auto next
himmelma@35172
   258
  assume ?l note as=conjunctD4[OF this[unfolded division_of_def interval_sing[THEN conjunct1]]]
himmelma@35172
   259
  { fix x assume x:"x\<in>s" have "x={a}" using as(2)[rule_format,OF x] by auto }
himmelma@35172
   260
  moreover have "s \<noteq> {}" using as(4) by auto ultimately show ?r unfolding interval_sing[THEN conjunct1] by auto qed
himmelma@35172
   261
himmelma@35172
   262
lemma elementary_empty: obtains p where "p division_of {}"
himmelma@35172
   263
  unfolding division_of_trivial by auto
himmelma@35172
   264
himmelma@35172
   265
lemma elementary_interval: obtains p where  "p division_of {a..b}"
himmelma@35172
   266
  by(metis division_of_trivial division_of_self)
himmelma@35172
   267
himmelma@35172
   268
lemma division_contains: "s division_of i \<Longrightarrow> \<forall>x\<in>i. \<exists>k\<in>s. x \<in> k"
himmelma@35172
   269
  unfolding division_of_def by auto
himmelma@35172
   270
himmelma@35172
   271
lemma forall_in_division:
himmelma@35172
   272
 "d division_of i \<Longrightarrow> ((\<forall>x\<in>d. P x) \<longleftrightarrow> (\<forall>a b. {a..b} \<in> d \<longrightarrow> P {a..b}))"
himmelma@35172
   273
  unfolding division_of_def by fastsimp
himmelma@35172
   274
himmelma@35172
   275
lemma division_of_subset: assumes "p division_of (\<Union>p)" "q \<subseteq> p" shows "q division_of (\<Union>q)"
himmelma@35172
   276
  apply(rule division_ofI) proof- note as=division_ofD[OF assms(1)]
himmelma@35172
   277
  show "finite q" apply(rule finite_subset) using as(1) assms(2) by auto
himmelma@35172
   278
  { fix k assume "k \<in> q" hence kp:"k\<in>p" using assms(2) by auto show "k\<subseteq>\<Union>q" using `k \<in> q` by auto
himmelma@35172
   279
  show "\<exists>a b. k = {a..b}" using as(4)[OF kp] by auto show "k \<noteq> {}" using as(3)[OF kp] by auto }
himmelma@35172
   280
  fix k1 k2 assume "k1 \<in> q" "k2 \<in> q" "k1 \<noteq> k2" hence *:"k1\<in>p" "k2\<in>p" "k1\<noteq>k2" using assms(2) by auto
himmelma@35172
   281
  show "interior k1 \<inter> interior k2 = {}" using as(5)[OF *] by auto qed auto
himmelma@35172
   282
himmelma@35172
   283
lemma division_of_union_self[intro]: "p division_of s \<Longrightarrow> p division_of (\<Union>p)" unfolding division_of_def by auto
himmelma@35172
   284
himmelma@35172
   285
lemma division_of_content_0: assumes "content {a..b} = 0" "d division_of {a..b}" shows "\<forall>k\<in>d. content k = 0"
himmelma@35172
   286
  unfolding forall_in_division[OF assms(2)] apply(rule,rule,rule) apply(drule division_ofD(2)[OF assms(2)])
himmelma@35172
   287
  apply(drule content_subset) unfolding assms(1) proof- case goal1 thus ?case using content_pos_le[of a b] by auto qed
himmelma@35172
   288
himmelma@35172
   289
lemma division_inter: assumes "p1 division_of s1" "p2 division_of (s2::(real^'a) set)"
himmelma@35172
   290
  shows "{k1 \<inter> k2 | k1 k2 .k1 \<in> p1 \<and> k2 \<in> p2 \<and> k1 \<inter> k2 \<noteq> {}} division_of (s1 \<inter> s2)" (is "?A' division_of _") proof-
himmelma@35172
   291
let ?A = "{s. s \<in>  (\<lambda>(k1,k2). k1 \<inter> k2) ` (p1 \<times> p2) \<and> s \<noteq> {}}" have *:"?A' = ?A" by auto
himmelma@35172
   292
show ?thesis unfolding * proof(rule division_ofI) have "?A \<subseteq> (\<lambda>(x, y). x \<inter> y) ` (p1 \<times> p2)" by auto
himmelma@35172
   293
  moreover have "finite (p1 \<times> p2)" using assms unfolding division_of_def by auto ultimately show "finite ?A" by auto
himmelma@35172
   294
  have *:"\<And>s. \<Union>{x\<in>s. x \<noteq> {}} = \<Union>s" by auto show "\<Union>?A = s1 \<inter> s2" apply(rule set_ext) unfolding * and Union_image_eq UN_iff
himmelma@35172
   295
    using division_ofD(6)[OF assms(1)] and division_ofD(6)[OF assms(2)] by auto
himmelma@35172
   296
  { fix k assume "k\<in>?A" then obtain k1 k2 where k:"k = k1 \<inter> k2" "k1\<in>p1" "k2\<in>p2" "k\<noteq>{}" by auto thus "k \<noteq> {}" by auto
himmelma@35172
   297
  show "k \<subseteq> s1 \<inter> s2" using division_ofD(2)[OF assms(1) k(2)] and division_ofD(2)[OF assms(2) k(3)] unfolding k by auto
himmelma@35172
   298
  guess a1 using division_ofD(4)[OF assms(1) k(2)] .. then guess b1 .. note ab1=this
himmelma@35172
   299
  guess a2 using division_ofD(4)[OF assms(2) k(3)] .. then guess b2 .. note ab2=this
himmelma@35172
   300
  show "\<exists>a b. k = {a..b}" unfolding k ab1 ab2 unfolding inter_interval by auto } fix k1 k2
himmelma@35172
   301
  assume "k1\<in>?A" then obtain x1 y1 where k1:"k1 = x1 \<inter> y1" "x1\<in>p1" "y1\<in>p2" "k1\<noteq>{}" by auto
himmelma@35172
   302
  assume "k2\<in>?A" then obtain x2 y2 where k2:"k2 = x2 \<inter> y2" "x2\<in>p1" "y2\<in>p2" "k2\<noteq>{}" by auto
himmelma@35172
   303
  assume "k1 \<noteq> k2" hence th:"x1\<noteq>x2 \<or> y1\<noteq>y2" unfolding k1 k2 by auto
himmelma@35172
   304
  have *:"(interior x1 \<inter> interior x2 = {} \<or> interior y1 \<inter> interior y2 = {}) \<Longrightarrow>
himmelma@35172
   305
      interior(x1 \<inter> y1) \<subseteq> interior(x1) \<Longrightarrow> interior(x1 \<inter> y1) \<subseteq> interior(y1) \<Longrightarrow>
himmelma@35172
   306
      interior(x2 \<inter> y2) \<subseteq> interior(x2) \<Longrightarrow> interior(x2 \<inter> y2) \<subseteq> interior(y2)
himmelma@35172
   307
      \<Longrightarrow> interior(x1 \<inter> y1) \<inter> interior(x2 \<inter> y2) = {}" by auto
himmelma@35172
   308
  show "interior k1 \<inter> interior k2 = {}" unfolding k1 k2 apply(rule *) defer apply(rule_tac[1-4] subset_interior)
himmelma@35172
   309
    using division_ofD(5)[OF assms(1) k1(2) k2(2)]
himmelma@35172
   310
    using division_ofD(5)[OF assms(2) k1(3) k2(3)] using th by auto qed qed
himmelma@35172
   311
himmelma@35172
   312
lemma division_inter_1: assumes "d division_of i" "{a..b::real^'n} \<subseteq> i"
himmelma@35172
   313
  shows "{ {a..b} \<inter> k |k. k \<in> d \<and> {a..b} \<inter> k \<noteq> {} } division_of {a..b}" proof(cases "{a..b} = {}")
himmelma@35172
   314
  case True show ?thesis unfolding True and division_of_trivial by auto next
himmelma@35172
   315
  have *:"{a..b} \<inter> i = {a..b}" using assms(2) by auto 
himmelma@35172
   316
  case False show ?thesis using division_inter[OF division_of_self[OF False] assms(1)] unfolding * by auto qed
himmelma@35172
   317
himmelma@35172
   318
lemma elementary_inter: assumes "p1 division_of s" "p2 division_of (t::(real^'n) set)"
himmelma@35172
   319
  shows "\<exists>p. p division_of (s \<inter> t)"
himmelma@35172
   320
  by(rule,rule division_inter[OF assms])
himmelma@35172
   321
himmelma@35172
   322
lemma elementary_inters: assumes "finite f" "f\<noteq>{}" "\<forall>s\<in>f. \<exists>p. p division_of (s::(real^'n) set)"
himmelma@35172
   323
  shows "\<exists>p. p division_of (\<Inter> f)" using assms apply-proof(induct f rule:finite_induct)
himmelma@35172
   324
case (insert x f) show ?case proof(cases "f={}")
himmelma@35172
   325
  case True thus ?thesis unfolding True using insert by auto next
himmelma@35172
   326
  case False guess p using insert(3)[OF False insert(5)[unfolded ball_simps,THEN conjunct2]] ..
himmelma@35172
   327
  moreover guess px using insert(5)[rule_format,OF insertI1] .. ultimately
himmelma@35172
   328
  show ?thesis unfolding Inter_insert apply(rule_tac elementary_inter) by assumption+ qed qed auto
himmelma@35172
   329
himmelma@35172
   330
lemma division_disjoint_union:
himmelma@35172
   331
  assumes "p1 division_of s1" "p2 division_of s2" "interior s1 \<inter> interior s2 = {}"
himmelma@35172
   332
  shows "(p1 \<union> p2) division_of (s1 \<union> s2)" proof(rule division_ofI) 
himmelma@35172
   333
  note d1 = division_ofD[OF assms(1)] and d2 = division_ofD[OF assms(2)]
himmelma@35172
   334
  show "finite (p1 \<union> p2)" using d1(1) d2(1) by auto
himmelma@35172
   335
  show "\<Union>(p1 \<union> p2) = s1 \<union> s2" using d1(6) d2(6) by auto
himmelma@35172
   336
  { fix k1 k2 assume as:"k1 \<in> p1 \<union> p2" "k2 \<in> p1 \<union> p2" "k1 \<noteq> k2" moreover let ?g="interior k1 \<inter> interior k2 = {}"
himmelma@35172
   337
  { assume as:"k1\<in>p1" "k2\<in>p2" have ?g using subset_interior[OF d1(2)[OF as(1)]] subset_interior[OF d2(2)[OF as(2)]]
himmelma@35172
   338
      using assms(3) by blast } moreover
himmelma@35172
   339
  { assume as:"k1\<in>p2" "k2\<in>p1" have ?g using subset_interior[OF d1(2)[OF as(2)]] subset_interior[OF d2(2)[OF as(1)]]
himmelma@35172
   340
      using assms(3) by blast} ultimately
himmelma@35172
   341
  show ?g using d1(5)[OF _ _ as(3)] and d2(5)[OF _ _ as(3)] by auto }
himmelma@35172
   342
  fix k assume k:"k \<in> p1 \<union> p2"  show "k \<subseteq> s1 \<union> s2" using k d1(2) d2(2) by auto
himmelma@35172
   343
  show "k \<noteq> {}" using k d1(3) d2(3) by auto show "\<exists>a b. k = {a..b}" using k d1(4) d2(4) by auto qed
himmelma@35172
   344
himmelma@35172
   345
lemma partial_division_extend_1:
himmelma@35172
   346
  assumes "{c..d} \<subseteq> {a..b::real^'n}" "{c..d} \<noteq> {}"
himmelma@35172
   347
  obtains p where "p division_of {a..b}" "{c..d} \<in> p"
himmelma@35172
   348
proof- def n \<equiv> "CARD('n)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def by auto
himmelma@35172
   349
  guess \<pi> using ex_bij_betw_nat_finite_1[OF finite_UNIV[where 'a='n]] .. note \<pi>=this
himmelma@35172
   350
  def \<pi>' \<equiv> "inv_into {1..n} \<pi>"
himmelma@35172
   351
  have \<pi>':"bij_betw \<pi>' UNIV {1..n}" using bij_betw_inv_into[OF \<pi>] unfolding \<pi>'_def n_def by auto
himmelma@35172
   352
  hence \<pi>'i:"\<And>i. \<pi>' i \<in> {1..n}" unfolding bij_betw_def by auto 
himmelma@35172
   353
  have \<pi>\<pi>'[simp]:"\<And>i. \<pi> (\<pi>' i) = i" unfolding \<pi>'_def apply(rule f_inv_into_f) unfolding n_def using \<pi> unfolding bij_betw_def by auto
himmelma@35172
   354
  have \<pi>'\<pi>[simp]:"\<And>i. i\<in>{1..n} \<Longrightarrow> \<pi>' (\<pi> i) = i" unfolding \<pi>'_def apply(rule inv_into_f_eq) using \<pi> unfolding n_def bij_betw_def by auto
himmelma@35172
   355
  have "{c..d} \<noteq> {}" using assms by auto
himmelma@35172
   356
  let ?p1 = "\<lambda>l. {(\<chi> i. if \<pi>' i < l then c$i else a$i) .. (\<chi> i. if \<pi>' i < l then d$i else if \<pi>' i = l then c$\<pi> l else b$i)}"
himmelma@35172
   357
  let ?p2 = "\<lambda>l. {(\<chi> i. if \<pi>' i < l then c$i else if \<pi>' i = l then d$\<pi> l else a$i) .. (\<chi> i. if \<pi>' i < l then d$i else b$i)}"
himmelma@35172
   358
  let ?p =  "{?p1 l |l. l \<in> {1..n+1}} \<union> {?p2 l |l. l \<in> {1..n+1}}"
himmelma@35172
   359
  have abcd:"\<And>i. a $ i \<le> c $ i \<and> c$i \<le> d$i \<and> d $ i \<le> b $ i" using assms unfolding subset_interval interval_eq_empty by(auto simp add:not_le not_less)
himmelma@35172
   360
  show ?thesis apply(rule that[of ?p]) apply(rule division_ofI)
himmelma@35172
   361
  proof- have "\<And>i. \<pi>' i < Suc n"
himmelma@35172
   362
    proof(rule ccontr,unfold not_less) fix i assume "Suc n \<le> \<pi>' i"
himmelma@35172
   363
      hence "\<pi>' i \<notin> {1..n}" by auto thus False using \<pi>' unfolding bij_betw_def by auto
himmelma@35172
   364
    qed hence "c = (\<chi> i. if \<pi>' i < Suc n then c $ i else a $ i)"
himmelma@35172
   365
        "d = (\<chi> i. if \<pi>' i < Suc n then d $ i else if \<pi>' i = n + 1 then c $ \<pi> (n + 1) else b $ i)"
himmelma@35172
   366
      unfolding Cart_eq Cart_lambda_beta using \<pi>' unfolding bij_betw_def by auto
himmelma@35172
   367
    thus cdp:"{c..d} \<in> ?p" apply-apply(rule UnI1) unfolding mem_Collect_eq apply(rule_tac x="n + 1" in exI) by auto
himmelma@35172
   368
    have "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p1 l \<subseteq> {a..b}"  "\<And>l. l\<in>{1..n+1} \<Longrightarrow> ?p2 l \<subseteq> {a..b}"
himmelma@35172
   369
      unfolding subset_eq apply(rule_tac[!] ballI,rule_tac[!] ccontr)
himmelma@35172
   370
    proof- fix l assume l:"l\<in>{1..n+1}" fix x assume "x\<notin>{a..b}"
himmelma@35172
   371
      then guess i unfolding mem_interval not_all .. note i=this
himmelma@35172
   372
      show "x \<in> ?p1 l \<Longrightarrow> False" "x \<in> ?p2 l \<Longrightarrow> False" unfolding mem_interval apply(erule_tac[!] x=i in allE)
himmelma@35172
   373
        apply(case_tac[!] "\<pi>' i < l", case_tac[!] "\<pi>' i = l") using abcd[of i] i by auto 
himmelma@35172
   374
    qed moreover have "\<And>x. x \<in> {a..b} \<Longrightarrow> x \<in> \<Union>?p"
himmelma@35172
   375
    proof- fix x assume x:"x\<in>{a..b}"
himmelma@35172
   376
      { presume "x\<notin>{c..d} \<Longrightarrow> x \<in> \<Union>?p" thus "x \<in> \<Union>?p" using cdp by blast }
himmelma@35172
   377
      let ?M = "{i. i\<in>{1..n+1} \<and> \<not> (c $ \<pi> i \<le> x $ \<pi> i \<and> x $ \<pi> i \<le> d $ \<pi> i)}"
himmelma@35172
   378
      assume "x\<notin>{c..d}" then guess i0 unfolding mem_interval not_all ..
himmelma@35172
   379
      hence "\<pi>' i0 \<in> ?M" using \<pi>' unfolding bij_betw_def by(auto intro!:le_SucI)
himmelma@35172
   380
      hence M:"finite ?M" "?M \<noteq> {}" by auto
himmelma@35172
   381
      def l \<equiv> "Min ?M" note l = Min_less_iff[OF M,unfolded l_def[symmetric]] Min_in[OF M,unfolded mem_Collect_eq l_def[symmetric]]
himmelma@35172
   382
        Min_gr_iff[OF M,unfolded l_def[symmetric]]
himmelma@35172
   383
      have "x\<in>?p1 l \<or> x\<in>?p2 l" using l(2)[THEN conjunct2] unfolding de_Morgan_conj not_le
himmelma@35172
   384
        apply- apply(erule disjE) apply(rule disjI1) defer apply(rule disjI2)
himmelma@35172
   385
      proof- assume as:"x $ \<pi> l < c $ \<pi> l"
himmelma@35172
   386
        show "x \<in> ?p1 l" unfolding mem_interval Cart_lambda_beta
himmelma@35172
   387
        proof case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le by auto
himmelma@35172
   388
          thus ?case using as x[unfolded mem_interval,rule_format,of i]
himmelma@35172
   389
            apply auto using l(3)[of "\<pi>' i"] by(auto elim!:ballE[where x="\<pi>' i"])
himmelma@35172
   390
        qed
himmelma@35172
   391
      next assume as:"x $ \<pi> l > d $ \<pi> l"
himmelma@35172
   392
        show "x \<in> ?p2 l" unfolding mem_interval Cart_lambda_beta
himmelma@35172
   393
        proof case goal1 have "\<pi>' i \<in> {1..n}" using \<pi>' unfolding bij_betw_def not_le by auto
himmelma@35172
   394
          thus ?case using as x[unfolded mem_interval,rule_format,of i]
himmelma@35172
   395
            apply auto using l(3)[of "\<pi>' i"] by(auto elim!:ballE[where x="\<pi>' i"])
himmelma@35172
   396
        qed qed
himmelma@35172
   397
      thus "x \<in> \<Union>?p" using l(2) by blast 
himmelma@35172
   398
    qed ultimately show "\<Union>?p = {a..b}" apply-apply(rule) defer apply(rule) by(assumption,blast)
himmelma@35172
   399
    
himmelma@35172
   400
    show "finite ?p" by auto
himmelma@35172
   401
    fix k assume k:"k\<in>?p" then obtain l where l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" by auto
himmelma@35172
   402
    show "k\<subseteq>{a..b}" apply(rule,unfold mem_interval,rule,rule) 
himmelma@35172
   403
    proof- fix i::'n and x assume "x \<in> k" moreover have "\<pi>' i < l \<or> \<pi>' i = l \<or> \<pi>' i > l" by auto
himmelma@35172
   404
      ultimately show "a$i \<le> x$i" "x$i \<le> b$i" using abcd[of i] using l by(auto elim:disjE elim!:allE[where x=i] simp add:vector_le_def)
himmelma@35172
   405
    qed have "\<And>l. ?p1 l \<noteq> {}" "\<And>l. ?p2 l \<noteq> {}" unfolding interval_eq_empty not_ex apply(rule_tac[!] allI)
himmelma@35172
   406
    proof- case goal1 thus ?case using abcd[of x] by auto
himmelma@35172
   407
    next   case goal2 thus ?case using abcd[of x] by auto
himmelma@35172
   408
    qed thus "k \<noteq> {}" using k by auto
himmelma@35172
   409
    show "\<exists>a b. k = {a..b}" using k by auto
himmelma@35172
   410
    fix k' assume k':"k' \<in> ?p" "k \<noteq> k'" then obtain l' where l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" by auto
himmelma@35172
   411
    { fix k k' l l'
himmelma@35172
   412
      assume k:"k\<in>?p" and l:"k = ?p1 l \<or> k = ?p2 l" "l \<in> {1..n + 1}" 
himmelma@35172
   413
      assume k':"k' \<in> ?p" "k \<noteq> k'" and  l':"k' = ?p1 l' \<or> k' = ?p2 l'" "l' \<in> {1..n + 1}" 
himmelma@35172
   414
      assume "l \<le> l'" fix x
himmelma@35172
   415
      have "x \<notin> interior k \<inter> interior k'" 
himmelma@35172
   416
      proof(rule,cases "l' = n+1") assume x:"x \<in> interior k \<inter> interior k'"
himmelma@35172
   417
        case True hence "\<And>i. \<pi>' i < l'" using \<pi>'i by(auto simp add:less_Suc_eq_le)
himmelma@35172
   418
        hence k':"k' = {c..d}" using l'(1) \<pi>'i by(auto simp add:Cart_nth_inverse)
himmelma@35172
   419
        have ln:"l < n + 1" 
himmelma@35172
   420
        proof(rule ccontr) case goal1 hence l2:"l = n+1" using l by auto
himmelma@35172
   421
          hence "\<And>i. \<pi>' i < l" using \<pi>'i by(auto simp add:less_Suc_eq_le)
himmelma@35172
   422
          hence "k = {c..d}" using l(1) \<pi>'i by(auto simp add:Cart_nth_inverse)
himmelma@35172
   423
          thus False using `k\<noteq>k'` k' by auto
himmelma@35172
   424
        qed have **:"\<pi>' (\<pi> l) = l" using \<pi>'\<pi>[of l] using l ln by auto
himmelma@35172
   425
        have "x $ \<pi> l < c $ \<pi> l \<or> d $ \<pi> l < x $ \<pi> l" using l(1) apply-
himmelma@35172
   426
        proof(erule disjE)
himmelma@35172
   427
          assume as:"k = ?p1 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
himmelma@35172
   428
          show ?thesis using *[of "\<pi> l"] using ln unfolding Cart_lambda_beta ** by auto
himmelma@35172
   429
        next assume as:"k = ?p2 l" note * = conjunct1[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
himmelma@35172
   430
          show ?thesis using *[of "\<pi> l"] using ln unfolding Cart_lambda_beta ** by auto
himmelma@35172
   431
        qed thus False using x unfolding k' unfolding Int_iff interior_closed_interval mem_interval
himmelma@35172
   432
          by(auto elim!:allE[where x="\<pi> l"])
himmelma@35172
   433
      next case False hence "l < n + 1" using l'(2) using `l\<le>l'` by auto
himmelma@35172
   434
        hence ln:"l \<in> {1..n}" "l' \<in> {1..n}" using l l' False by auto
himmelma@35172
   435
        note \<pi>l = \<pi>'\<pi>[OF ln(1)] \<pi>'\<pi>[OF ln(2)]
himmelma@35172
   436
        assume x:"x \<in> interior k \<inter> interior k'"
himmelma@35172
   437
        show False using l(1) l'(1) apply-
himmelma@35172
   438
        proof(erule_tac[!] disjE)+
himmelma@35172
   439
          assume as:"k = ?p1 l" "k' = ?p1 l'"
himmelma@35172
   440
          note * = x[unfolded as Int_iff interior_closed_interval mem_interval]
himmelma@35172
   441
          have "l \<noteq> l'" using k'(2)[unfolded as] by auto
himmelma@35172
   442
          thus False using * by(smt Cart_lambda_beta \<pi>l)
himmelma@35172
   443
        next assume as:"k = ?p2 l" "k' = ?p2 l'"
himmelma@35172
   444
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
himmelma@35172
   445
          have "l \<noteq> l'" apply(rule) using k'(2)[unfolded as] by auto
himmelma@35172
   446
          thus False using *[of "\<pi> l"] *[of "\<pi> l'"]
himmelma@35172
   447
            unfolding Cart_lambda_beta \<pi>l using `l \<le> l'` by auto
himmelma@35172
   448
        next assume as:"k = ?p1 l" "k' = ?p2 l'"
himmelma@35172
   449
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
himmelma@35172
   450
          show False using *[of "\<pi> l"] *[of "\<pi> l'"]
himmelma@35172
   451
            unfolding Cart_lambda_beta \<pi>l using `l \<le> l'` using abcd[of "\<pi> l'"] by smt 
himmelma@35172
   452
        next assume as:"k = ?p2 l" "k' = ?p1 l'"
himmelma@35172
   453
          note * = conjunctD2[OF x[unfolded as Int_iff interior_closed_interval mem_interval],rule_format]
himmelma@35172
   454
          show False using *[of "\<pi> l"] *[of "\<pi> l'"]
himmelma@35172
   455
            unfolding Cart_lambda_beta \<pi>l using `l \<le> l'` using abcd[of "\<pi> l'"] by smt
himmelma@35172
   456
        qed qed } 
himmelma@35172
   457
    from this[OF k l k' l'] this[OF k'(1) l' k _ l] have "\<And>x. x \<notin> interior k \<inter> interior k'"
himmelma@35172
   458
      apply - apply(cases "l' \<le> l") using k'(2) by auto            
himmelma@35172
   459
    thus "interior k \<inter> interior k' = {}" by auto        
himmelma@35172
   460
qed qed
himmelma@35172
   461
himmelma@35172
   462
lemma partial_division_extend_interval: assumes "p division_of (\<Union>p)" "(\<Union>p) \<subseteq> {a..b}"
himmelma@35172
   463
  obtains q where "p \<subseteq> q" "q division_of {a..b::real^'n}" proof(cases "p = {}")
himmelma@35172
   464
  case True guess q apply(rule elementary_interval[of a b]) .
himmelma@35172
   465
  thus ?thesis apply- apply(rule that[of q]) unfolding True by auto next
himmelma@35172
   466
  case False note p = division_ofD[OF assms(1)]
himmelma@35172
   467
  have *:"\<forall>k\<in>p. \<exists>q. q division_of {a..b} \<and> k\<in>q" proof case goal1
himmelma@35172
   468
    guess c using p(4)[OF goal1] .. then guess d .. note cd_ = this
himmelma@35172
   469
    have *:"{c..d} \<subseteq> {a..b}" "{c..d} \<noteq> {}" using p(2,3)[OF goal1, unfolded cd_] using assms(2) by auto
himmelma@35172
   470
    guess q apply(rule partial_division_extend_1[OF *]) . thus ?case unfolding cd_ by auto qed
himmelma@35172
   471
  guess q using bchoice[OF *] .. note q = conjunctD2[OF this[rule_format]]
himmelma@35172
   472
  have "\<And>x. x\<in>p \<Longrightarrow> \<exists>d. d division_of \<Union>(q x - {x})" apply(rule,rule_tac p="q x" in division_of_subset) proof-
himmelma@35172
   473
    fix x assume x:"x\<in>p" show "q x division_of \<Union>q x" apply-apply(rule division_ofI)
himmelma@35172
   474
      using division_ofD[OF q(1)[OF x]] by auto show "q x - {x} \<subseteq> q x" by auto qed
himmelma@35172
   475
  hence "\<exists>d. d division_of \<Inter> ((\<lambda>i. \<Union>(q i - {i})) ` p)" apply- apply(rule elementary_inters)
himmelma@35172
   476
    apply(rule finite_imageI[OF p(1)]) unfolding image_is_empty apply(rule False) by auto
himmelma@35172
   477
  then guess d .. note d = this
himmelma@35172
   478
  show ?thesis apply(rule that[of "d \<union> p"]) proof-
himmelma@35172
   479
    have *:"\<And>s f t. s \<noteq> {} \<Longrightarrow> (\<forall>i\<in>s. f i \<union> i = t) \<Longrightarrow> t = \<Inter> (f ` s) \<union> (\<Union>s)" by auto
himmelma@35172
   480
    have *:"{a..b} = \<Inter> (\<lambda>i. \<Union>(q i - {i})) ` p \<union> \<Union>p" apply(rule *[OF False]) proof fix i assume i:"i\<in>p"
himmelma@35172
   481
      show "\<Union>(q i - {i}) \<union> i = {a..b}" using division_ofD(6)[OF q(1)[OF i]] using q(2)[OF i] by auto qed
himmelma@35172
   482
    show "d \<union> p division_of {a..b}" unfolding * apply(rule division_disjoint_union[OF d assms(1)])
himmelma@35172
   483
      apply(rule inter_interior_unions_intervals) apply(rule p open_interior ballI)+ proof(assumption,rule)
himmelma@35172
   484
      fix k assume k:"k\<in>p" have *:"\<And>u t s. u \<subseteq> s \<Longrightarrow> s \<inter> t = {} \<Longrightarrow> u \<inter> t = {}" by auto
himmelma@35172
   485
      show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<inter> interior k = {}" apply(rule *[of _ "interior (\<Union>(q k - {k}))"])
himmelma@35172
   486
	defer apply(subst Int_commute) apply(rule inter_interior_unions_intervals) proof- note qk=division_ofD[OF q(1)[OF k]]
himmelma@35172
   487
	show "finite (q k - {k})" "open (interior k)"  "\<forall>t\<in>q k - {k}. \<exists>a b. t = {a..b}" using qk by auto
himmelma@35172
   488
	show "\<forall>t\<in>q k - {k}. interior k \<inter> interior t = {}" using qk(5) using q(2)[OF k] by auto
himmelma@35172
   489
	have *:"\<And>x s. x \<in> s \<Longrightarrow> \<Inter>s \<subseteq> x" by auto show "interior (\<Inter>(\<lambda>i. \<Union>(q i - {i})) ` p) \<subseteq> interior (\<Union>(q k - {k}))"
himmelma@35172
   490
	  apply(rule subset_interior *)+ using k by auto qed qed qed auto qed
himmelma@35172
   491
himmelma@35172
   492
lemma elementary_bounded[dest]: "p division_of s \<Longrightarrow> bounded (s::(real^'n) set)"
himmelma@35172
   493
  unfolding division_of_def by(metis bounded_Union bounded_interval) 
himmelma@35172
   494
himmelma@35172
   495
lemma elementary_subset_interval: "p division_of s \<Longrightarrow> \<exists>a b. s \<subseteq> {a..b::real^'n}"
himmelma@35172
   496
  by(meson elementary_bounded bounded_subset_closed_interval)
himmelma@35172
   497
himmelma@35172
   498
lemma division_union_intervals_exists: assumes "{a..b::real^'n} \<noteq> {}"
himmelma@35172
   499
  obtains p where "(insert {a..b} p) division_of ({a..b} \<union> {c..d})" proof(cases "{c..d} = {}")
himmelma@35172
   500
  case True show ?thesis apply(rule that[of "{}"]) unfolding True using assms by auto next
himmelma@35172
   501
  case False note false=this show ?thesis proof(cases "{a..b} \<inter> {c..d} = {}")
himmelma@35172
   502
  have *:"\<And>a b. {a,b} = {a} \<union> {b}" by auto
himmelma@35172
   503
  case True show ?thesis apply(rule that[of "{{c..d}}"]) unfolding * apply(rule division_disjoint_union)
himmelma@35172
   504
    using false True assms using interior_subset by auto next
himmelma@35172
   505
  case False obtain u v where uv:"{a..b} \<inter> {c..d} = {u..v}" unfolding inter_interval by auto
himmelma@35172
   506
  have *:"{u..v} \<subseteq> {c..d}" using uv by auto
himmelma@35172
   507
  guess p apply(rule partial_division_extend_1[OF * False[unfolded uv]]) . note p=this division_ofD[OF this(1)]
himmelma@35172
   508
  have *:"{a..b} \<union> {c..d} = {a..b} \<union> \<Union>(p - {{u..v}})" "\<And>x s. insert x s = {x} \<union> s" using p(8) unfolding uv[THEN sym] by auto
himmelma@35172
   509
  show thesis apply(rule that[of "p - {{u..v}}"]) unfolding *(1) apply(subst *(2)) apply(rule division_disjoint_union)
himmelma@35172
   510
    apply(rule,rule assms) apply(rule division_of_subset[of p]) apply(rule division_of_union_self[OF p(1)]) defer
himmelma@35172
   511
    unfolding interior_inter[THEN sym] proof-
himmelma@35172
   512
    have *:"\<And>cd p uv ab. p \<subseteq> cd \<Longrightarrow> ab \<inter> cd = uv \<Longrightarrow> ab \<inter> p = uv \<inter> p" by auto
himmelma@35172
   513
    have "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = interior({u..v} \<inter> \<Union>(p - {{u..v}}))" 
himmelma@35172
   514
      apply(rule arg_cong[of _ _ interior]) apply(rule *[OF _ uv]) using p(8) by auto
himmelma@35172
   515
    also have "\<dots> = {}" unfolding interior_inter apply(rule inter_interior_unions_intervals) using p(6) p(7)[OF p(2)] p(3) by auto
himmelma@35172
   516
    finally show "interior ({a..b} \<inter> \<Union>(p - {{u..v}})) = {}" by assumption qed auto qed qed
himmelma@35172
   517
himmelma@35172
   518
lemma division_of_unions: assumes "finite f"  "\<And>p. p\<in>f \<Longrightarrow> p division_of (\<Union>p)"
himmelma@35172
   519
  "\<And>k1 k2. \<lbrakk>k1 \<in> \<Union>f; k2 \<in> \<Union>f; k1 \<noteq> k2\<rbrakk> \<Longrightarrow> interior k1 \<inter> interior k2 = {}"
himmelma@35172
   520
  shows "\<Union>f division_of \<Union>\<Union>f" apply(rule division_ofI) prefer 5 apply(rule assms(3)|assumption)+
himmelma@35172
   521
  apply(rule finite_Union assms(1))+ prefer 3 apply(erule UnionE) apply(rule_tac s=X in division_ofD(3)[OF assms(2)])
himmelma@35172
   522
  using division_ofD[OF assms(2)] by auto
himmelma@35172
   523
  
himmelma@35172
   524
lemma elementary_union_interval: assumes "p division_of \<Union>p"
himmelma@35172
   525
  obtains q where "q division_of ({a..b::real^'n} \<union> \<Union>p)" proof-
himmelma@35172
   526
  note assm=division_ofD[OF assms]
himmelma@35172
   527
  have lem1:"\<And>f s. \<Union>\<Union> (f ` s) = \<Union>(\<lambda>x.\<Union>(f x)) ` s" by auto
himmelma@35172
   528
  have lem2:"\<And>f s. f \<noteq> {} \<Longrightarrow> \<Union>{s \<union> t |t. t \<in> f} = s \<union> \<Union>f" by auto
himmelma@35172
   529
{ presume "p={} \<Longrightarrow> thesis" "{a..b} = {} \<Longrightarrow> thesis" "{a..b} \<noteq> {} \<Longrightarrow> interior {a..b} = {} \<Longrightarrow> thesis"
himmelma@35172
   530
    "p\<noteq>{} \<Longrightarrow> interior {a..b}\<noteq>{} \<Longrightarrow> {a..b} \<noteq> {} \<Longrightarrow> thesis"
himmelma@35172
   531
  thus thesis by auto
himmelma@35172
   532
next assume as:"p={}" guess p apply(rule elementary_interval[of a b]) .
himmelma@35172
   533
  thus thesis apply(rule_tac that[of p]) unfolding as by auto 
himmelma@35172
   534
next assume as:"{a..b}={}" show thesis apply(rule that) unfolding as using assms by auto
himmelma@35172
   535
next assume as:"interior {a..b} = {}" "{a..b} \<noteq> {}"
himmelma@35172
   536
  show thesis apply(rule that[of "insert {a..b} p"],rule division_ofI)
himmelma@35172
   537
    unfolding finite_insert apply(rule assm(1)) unfolding Union_insert  
himmelma@35172
   538
    using assm(2-4) as apply- by(fastsimp dest: assm(5))+
himmelma@35172
   539
next assume as:"p \<noteq> {}" "interior {a..b} \<noteq> {}" "{a..b}\<noteq>{}"
himmelma@35172
   540
  have "\<forall>k\<in>p. \<exists>q. (insert {a..b} q) division_of ({a..b} \<union> k)" proof case goal1
himmelma@35172
   541
    from assm(4)[OF this] guess c .. then guess d ..
himmelma@35172
   542
    thus ?case apply-apply(rule division_union_intervals_exists[OF as(3),of c d]) by auto
himmelma@35172
   543
  qed from bchoice[OF this] guess q .. note q=division_ofD[OF this[rule_format]]
himmelma@35172
   544
  let ?D = "\<Union>{insert {a..b} (q k) | k. k \<in> p}"
himmelma@35172
   545
  show thesis apply(rule that[of "?D"]) proof(rule division_ofI)
himmelma@35172
   546
    have *:"{insert {a..b} (q k) |k. k \<in> p} = (\<lambda>k. insert {a..b} (q k)) ` p" by auto
himmelma@35172
   547
    show "finite ?D" apply(rule finite_Union) unfolding * apply(rule finite_imageI) using assm(1) q(1) by auto
himmelma@35172
   548
    show "\<Union>?D = {a..b} \<union> \<Union>p" unfolding * lem1 unfolding lem2[OF as(1), of "{a..b}",THEN sym]
himmelma@35172
   549
      using q(6) by auto
himmelma@35172
   550
    fix k assume k:"k\<in>?D" thus " k \<subseteq> {a..b} \<union> \<Union>p" using q(2) by auto
himmelma@35172
   551
    show "k \<noteq> {}" using q(3) k by auto show "\<exists>a b. k = {a..b}" using q(4) k by auto
himmelma@35172
   552
    fix k' assume k':"k'\<in>?D" "k\<noteq>k'"
himmelma@35172
   553
    obtain x  where x: "k \<in>insert {a..b} (q x)"  "x\<in>p"  using k  by auto
himmelma@35172
   554
    obtain x' where x':"k'\<in>insert {a..b} (q x')" "x'\<in>p" using k' by auto
himmelma@35172
   555
    show "interior k \<inter> interior k' = {}" proof(cases "x=x'")
himmelma@35172
   556
      case True show ?thesis apply(rule q(5)) using x x' k' unfolding True by auto
himmelma@35172
   557
    next case False 
himmelma@35172
   558
      { presume "k = {a..b} \<Longrightarrow> ?thesis" "k' = {a..b} \<Longrightarrow> ?thesis" 
himmelma@35172
   559
        "k \<noteq> {a..b} \<Longrightarrow> k' \<noteq> {a..b} \<Longrightarrow> ?thesis"
himmelma@35172
   560
        thus ?thesis by auto }
himmelma@35172
   561
      { assume as':"k  = {a..b}" show ?thesis apply(rule q(5)) using x' k'(2) unfolding as' by auto }
himmelma@35172
   562
      { assume as':"k' = {a..b}" show ?thesis apply(rule q(5)) using x  k'(2) unfolding as' by auto }
himmelma@35172
   563
      assume as':"k \<noteq> {a..b}" "k' \<noteq> {a..b}"
himmelma@35172
   564
      guess c using q(4)[OF x(2,1)] .. then guess d .. note c_d=this
himmelma@35172
   565
      have "interior k  \<inter> interior {a..b} = {}" apply(rule q(5)) using x  k'(2) using as' by auto
himmelma@35172
   566
      hence "interior k \<subseteq> interior x" apply-
himmelma@35172
   567
        apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x(2,1)]]) by auto moreover
himmelma@35172
   568
      guess c using q(4)[OF x'(2,1)] .. then guess d .. note c_d=this
himmelma@35172
   569
      have "interior k' \<inter> interior {a..b} = {}" apply(rule q(5)) using x' k'(2) using as' by auto
himmelma@35172
   570
      hence "interior k' \<subseteq> interior x'" apply-
himmelma@35172
   571
        apply(rule interior_subset_union_intervals[OF c_d _ as(2) q(2)[OF x'(2,1)]]) by auto
himmelma@35172
   572
      ultimately show ?thesis using assm(5)[OF x(2) x'(2) False] by auto
himmelma@35172
   573
    qed qed } qed
himmelma@35172
   574
himmelma@35172
   575
lemma elementary_unions_intervals:
himmelma@35172
   576
  assumes "finite f" "\<And>s. s \<in> f \<Longrightarrow> \<exists>a b. s = {a..b::real^'n}"
himmelma@35172
   577
  obtains p where "p division_of (\<Union>f)" proof-
himmelma@35172
   578
  have "\<exists>p. p division_of (\<Union>f)" proof(induct_tac f rule:finite_subset_induct) 
himmelma@35172
   579
    show "\<exists>p. p division_of \<Union>{}" using elementary_empty by auto
himmelma@35172
   580
    fix x F assume as:"finite F" "x \<notin> F" "\<exists>p. p division_of \<Union>F" "x\<in>f"
himmelma@35172
   581
    from this(3) guess p .. note p=this
himmelma@35172
   582
    from assms(2)[OF as(4)] guess a .. then guess b .. note ab=this
himmelma@35172
   583
    have *:"\<Union>F = \<Union>p" using division_ofD[OF p] by auto
himmelma@35172
   584
    show "\<exists>p. p division_of \<Union>insert x F" using elementary_union_interval[OF p[unfolded *], of a b]
himmelma@35172
   585
      unfolding Union_insert ab * by auto
himmelma@35172
   586
  qed(insert assms,auto) thus ?thesis apply-apply(erule exE,rule that) by auto qed
himmelma@35172
   587
himmelma@35172
   588
lemma elementary_union: assumes "ps division_of s" "pt division_of (t::(real^'n) set)"
himmelma@35172
   589
  obtains p where "p division_of (s \<union> t)"
himmelma@35172
   590
proof- have "s \<union> t = \<Union>ps \<union> \<Union>pt" using assms unfolding division_of_def by auto
himmelma@35172
   591
  hence *:"\<Union>(ps \<union> pt) = s \<union> t" by auto
himmelma@35172
   592
  show ?thesis apply-apply(rule elementary_unions_intervals[of "ps\<union>pt"])
himmelma@35172
   593
    unfolding * prefer 3 apply(rule_tac p=p in that)
himmelma@35172
   594
    using assms[unfolded division_of_def] by auto qed
himmelma@35172
   595
himmelma@35172
   596
lemma partial_division_extend: fixes t::"(real^'n) set"
himmelma@35172
   597
  assumes "p division_of s" "q division_of t" "s \<subseteq> t"
himmelma@35172
   598
  obtains r where "p \<subseteq> r" "r division_of t" proof-
himmelma@35172
   599
  note divp = division_ofD[OF assms(1)] and divq = division_ofD[OF assms(2)]
himmelma@35172
   600
  obtain a b where ab:"t\<subseteq>{a..b}" using elementary_subset_interval[OF assms(2)] by auto
himmelma@35172
   601
  guess r1 apply(rule partial_division_extend_interval) apply(rule assms(1)[unfolded divp(6)[THEN sym]])
himmelma@35172
   602
    apply(rule subset_trans) by(rule ab assms[unfolded divp(6)[THEN sym]])+  note r1 = this division_ofD[OF this(2)]
himmelma@35172
   603
  guess p' apply(rule elementary_unions_intervals[of "r1 - p"]) using r1(3,6) by auto 
himmelma@35172
   604
  then obtain r2 where r2:"r2 division_of (\<Union>(r1 - p)) \<inter> (\<Union>q)" 
himmelma@35172
   605
    apply- apply(drule elementary_inter[OF _ assms(2)[unfolded divq(6)[THEN sym]]]) by auto
himmelma@35172
   606
  { fix x assume x:"x\<in>t" "x\<notin>s"
himmelma@35172
   607
    hence "x\<in>\<Union>r1" unfolding r1 using ab by auto
himmelma@35172
   608
    then guess r unfolding Union_iff .. note r=this moreover
himmelma@35172
   609
    have "r \<notin> p" proof assume "r\<in>p" hence "x\<in>s" using divp(2) r by auto
himmelma@35172
   610
      thus False using x by auto qed
himmelma@35172
   611
    ultimately have "x\<in>\<Union>(r1 - p)" by auto }
himmelma@35172
   612
  hence *:"t = \<Union>p \<union> (\<Union>(r1 - p) \<inter> \<Union>q)" unfolding divp divq using assms(3) by auto
himmelma@35172
   613
  show ?thesis apply(rule that[of "p \<union> r2"]) unfolding * defer apply(rule division_disjoint_union)
himmelma@35172
   614
    unfolding divp(6) apply(rule assms r2)+
himmelma@35172
   615
  proof- have "interior s \<inter> interior (\<Union>(r1-p)) = {}"
himmelma@35172
   616
    proof(rule inter_interior_unions_intervals)
himmelma@35172
   617
      show "finite (r1 - p)" "open (interior s)" "\<forall>t\<in>r1-p. \<exists>a b. t = {a..b}" using r1 by auto
himmelma@35172
   618
      have *:"\<And>s. (\<And>x. x \<in> s \<Longrightarrow> False) \<Longrightarrow> s = {}" by auto
himmelma@35172
   619
      show "\<forall>t\<in>r1-p. interior s \<inter> interior t = {}" proof(rule)
himmelma@35172
   620
        fix m x assume as:"m\<in>r1-p"
himmelma@35172
   621
        have "interior m \<inter> interior (\<Union>p) = {}" proof(rule inter_interior_unions_intervals)
himmelma@35172
   622
          show "finite p" "open (interior m)" "\<forall>t\<in>p. \<exists>a b. t = {a..b}" using divp by auto
himmelma@35172
   623
          show "\<forall>t\<in>p. interior m \<inter> interior t = {}" apply(rule, rule r1(7)) using as using r1 by auto
himmelma@35172
   624
        qed thus "interior s \<inter> interior m = {}" unfolding divp by auto
himmelma@35172
   625
      qed qed        
himmelma@35172
   626
    thus "interior s \<inter> interior (\<Union>(r1-p) \<inter> (\<Union>q)) = {}" using interior_subset by auto
himmelma@35172
   627
  qed auto qed
himmelma@35172
   628
himmelma@35172
   629
subsection {* Tagged (partial) divisions. *}
himmelma@35172
   630
himmelma@35172
   631
definition tagged_partial_division_of (infixr "tagged'_partial'_division'_of" 40) where
himmelma@35172
   632
  "(s tagged_partial_division_of i) \<equiv>
himmelma@35172
   633
        finite s \<and>
himmelma@35172
   634
        (\<forall>x k. (x,k) \<in> s \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
himmelma@35172
   635
        (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ((x1,k1) \<noteq> (x2,k2))
himmelma@35172
   636
                       \<longrightarrow> (interior(k1) \<inter> interior(k2) = {}))"
himmelma@35172
   637
himmelma@35172
   638
lemma tagged_partial_division_ofD[dest]: assumes "s tagged_partial_division_of i"
himmelma@35172
   639
  shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"
himmelma@35172
   640
  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
himmelma@35172
   641
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> (x1,k1) \<noteq> (x2,k2) \<Longrightarrow> interior(k1) \<inter> interior(k2) = {}"
himmelma@35172
   642
  using assms unfolding tagged_partial_division_of_def  apply- by blast+ 
himmelma@35172
   643
himmelma@35172
   644
definition tagged_division_of (infixr "tagged'_division'_of" 40) where
himmelma@35172
   645
  "(s tagged_division_of i) \<equiv>
himmelma@35172
   646
        (s tagged_partial_division_of i) \<and> (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
himmelma@35172
   647
himmelma@35172
   648
lemma tagged_division_of_finite[dest]: "s tagged_division_of i \<Longrightarrow> finite s"
himmelma@35172
   649
  unfolding tagged_division_of_def tagged_partial_division_of_def by auto
himmelma@35172
   650
himmelma@35172
   651
lemma tagged_division_of:
himmelma@35172
   652
 "(s tagged_division_of i) \<longleftrightarrow>
himmelma@35172
   653
        finite s \<and>
himmelma@35172
   654
        (\<forall>x k. (x,k) \<in> s
himmelma@35172
   655
               \<longrightarrow> x \<in> k \<and> k \<subseteq> i \<and> (\<exists>a b. k = {a..b})) \<and>
himmelma@35172
   656
        (\<forall>x1 k1 x2 k2. (x1,k1) \<in> s \<and> (x2,k2) \<in> s \<and> ~((x1,k1) = (x2,k2))
himmelma@35172
   657
                       \<longrightarrow> (interior(k1) \<inter> interior(k2) = {})) \<and>
himmelma@35172
   658
        (\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
himmelma@35172
   659
  unfolding tagged_division_of_def tagged_partial_division_of_def by auto
himmelma@35172
   660
himmelma@35172
   661
lemma tagged_division_ofI: assumes
himmelma@35172
   662
  "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
himmelma@35172
   663
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
himmelma@35172
   664
  "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)"
himmelma@35172
   665
  shows "s tagged_division_of i"
himmelma@35172
   666
  unfolding tagged_division_of apply(rule) defer apply rule
himmelma@35172
   667
  apply(rule allI impI conjI assms)+ apply assumption
himmelma@35172
   668
  apply(rule, rule assms, assumption) apply(rule assms, assumption)
himmelma@35172
   669
  using assms(1,5-) apply- by blast+
himmelma@35172
   670
himmelma@35172
   671
lemma tagged_division_ofD[dest]: assumes "s tagged_division_of i"
himmelma@35172
   672
  shows "finite s" "\<And>x k. (x,k) \<in> s \<Longrightarrow> x \<in> k" "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> i"  "\<And>x k. (x,k) \<in> s \<Longrightarrow> \<exists>a b. k = {a..b}"
himmelma@35172
   673
  "\<And>x1 k1 x2 k2. (x1,k1) \<in> s \<Longrightarrow> (x2,k2) \<in> s \<Longrightarrow> ~((x1,k1) = (x2,k2)) \<Longrightarrow> (interior(k1) \<inter> interior(k2) = {})"
himmelma@35172
   674
  "(\<Union>{k. \<exists>x. (x,k) \<in> s} = i)" using assms unfolding tagged_division_of apply- by blast+
himmelma@35172
   675
himmelma@35172
   676
lemma division_of_tagged_division: assumes"s tagged_division_of i"  shows "(snd ` s) division_of i"
himmelma@35172
   677
proof(rule division_ofI) note assm=tagged_division_ofD[OF assms]
himmelma@35172
   678
  show "\<Union>snd ` s = i" "finite (snd ` s)" using assm by auto
himmelma@35172
   679
  fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto
himmelma@35172
   680
  thus  "k \<subseteq> i" "k \<noteq> {}" "\<exists>a b. k = {a..b}" using assm apply- by fastsimp+
himmelma@35172
   681
  fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto
himmelma@35172
   682
  thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
himmelma@35172
   683
qed
himmelma@35172
   684
himmelma@35172
   685
lemma partial_division_of_tagged_division: assumes "s tagged_partial_division_of i"
himmelma@35172
   686
  shows "(snd ` s) division_of \<Union>(snd ` s)"
himmelma@35172
   687
proof(rule division_ofI) note assm=tagged_partial_division_ofD[OF assms]
himmelma@35172
   688
  show "finite (snd ` s)" "\<Union>snd ` s = \<Union>snd ` s" using assm by auto
himmelma@35172
   689
  fix k assume k:"k \<in> snd ` s" then obtain xk where xk:"(xk, k) \<in> s" by auto
himmelma@35172
   690
  thus "k\<noteq>{}" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>snd ` s" using assm by auto
himmelma@35172
   691
  fix k' assume k':"k' \<in> snd ` s" "k \<noteq> k'" from this(1) obtain xk' where xk':"(xk', k') \<in> s" by auto
himmelma@35172
   692
  thus "interior k \<inter> interior k' = {}" apply-apply(rule assm(5)) apply(rule xk xk')+ using k' by auto
himmelma@35172
   693
qed
himmelma@35172
   694
himmelma@35172
   695
lemma tagged_partial_division_subset: assumes "s tagged_partial_division_of i" "t \<subseteq> s"
himmelma@35172
   696
  shows "t tagged_partial_division_of i"
himmelma@35172
   697
  using assms unfolding tagged_partial_division_of_def using finite_subset[OF assms(2)] by blast
himmelma@35172
   698
himmelma@35172
   699
lemma setsum_over_tagged_division_lemma: fixes d::"(real^'m) set \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
   700
  assumes "p tagged_division_of i" "\<And>u v. {u..v} \<noteq> {} \<Longrightarrow> content {u..v} = 0 \<Longrightarrow> d {u..v} = 0"
himmelma@35172
   701
  shows "setsum (\<lambda>(x,k). d k) p = setsum d (snd ` p)"
himmelma@35172
   702
proof- note assm=tagged_division_ofD[OF assms(1)]
himmelma@35172
   703
  have *:"(\<lambda>(x,k). d k) = d \<circ> snd" unfolding o_def apply(rule ext) by auto
himmelma@35172
   704
  show ?thesis unfolding * apply(subst eq_commute) proof(rule setsum_reindex_nonzero)
himmelma@35172
   705
    show "finite p" using assm by auto
himmelma@35172
   706
    fix x y assume as:"x\<in>p" "y\<in>p" "x\<noteq>y" "snd x = snd y" 
himmelma@35172
   707
    obtain a b where ab:"snd x = {a..b}" using assm(4)[of "fst x" "snd x"] as(1) by auto
himmelma@35172
   708
    have "(fst x, snd y) \<in> p" "(fst x, snd y) \<noteq> y" unfolding as(4)[THEN sym] using as(1-3) by auto
himmelma@35172
   709
    hence "interior (snd x) \<inter> interior (snd y) = {}" apply-apply(rule assm(5)[of "fst x" _ "fst y"]) using as by auto 
himmelma@35172
   710
    hence "content {a..b} = 0" unfolding as(4)[THEN sym] ab content_eq_0_interior by auto
himmelma@35172
   711
    hence "d {a..b} = 0" apply-apply(rule assms(2)) using assm(2)[of "fst x" "snd x"] as(1) unfolding ab[THEN sym] by auto
himmelma@35172
   712
    thus "d (snd x) = 0" unfolding ab by auto qed qed
himmelma@35172
   713
himmelma@35172
   714
lemma tag_in_interval: "p tagged_division_of i \<Longrightarrow> (x,k) \<in> p \<Longrightarrow> x \<in> i" by auto
himmelma@35172
   715
himmelma@35172
   716
lemma tagged_division_of_empty: "{} tagged_division_of {}"
himmelma@35172
   717
  unfolding tagged_division_of by auto
himmelma@35172
   718
himmelma@35172
   719
lemma tagged_partial_division_of_trivial[simp]:
himmelma@35172
   720
 "p tagged_partial_division_of {} \<longleftrightarrow> p = {}"
himmelma@35172
   721
  unfolding tagged_partial_division_of_def by auto
himmelma@35172
   722
himmelma@35172
   723
lemma tagged_division_of_trivial[simp]:
himmelma@35172
   724
 "p tagged_division_of {} \<longleftrightarrow> p = {}"
himmelma@35172
   725
  unfolding tagged_division_of by auto
himmelma@35172
   726
himmelma@35172
   727
lemma tagged_division_of_self:
himmelma@35172
   728
 "x \<in> {a..b} \<Longrightarrow> {(x,{a..b})} tagged_division_of {a..b}"
himmelma@35172
   729
  apply(rule tagged_division_ofI) by auto
himmelma@35172
   730
himmelma@35172
   731
lemma tagged_division_union:
himmelma@35172
   732
  assumes "p1 tagged_division_of s1"  "p2 tagged_division_of s2" "interior s1 \<inter> interior s2 = {}"
himmelma@35172
   733
  shows "(p1 \<union> p2) tagged_division_of (s1 \<union> s2)"
himmelma@35172
   734
proof(rule tagged_division_ofI) note p1=tagged_division_ofD[OF assms(1)] and p2=tagged_division_ofD[OF assms(2)]
himmelma@35172
   735
  show "finite (p1 \<union> p2)" using p1(1) p2(1) by auto
himmelma@35172
   736
  show "\<Union>{k. \<exists>x. (x, k) \<in> p1 \<union> p2} = s1 \<union> s2" using p1(6) p2(6) by blast
himmelma@35172
   737
  fix x k assume xk:"(x,k)\<in>p1\<union>p2" show "x\<in>k" "\<exists>a b. k = {a..b}" using xk p1(2,4) p2(2,4) by auto
himmelma@35172
   738
  show "k\<subseteq>s1\<union>s2" using xk p1(3) p2(3) by blast
himmelma@35172
   739
  fix x' k' assume xk':"(x',k')\<in>p1\<union>p2" "(x,k) \<noteq> (x',k')"
himmelma@35172
   740
  have *:"\<And>a b. a\<subseteq> s1 \<Longrightarrow> b\<subseteq> s2 \<Longrightarrow> interior a \<inter> interior b = {}" using assms(3) subset_interior by blast
himmelma@35172
   741
  show "interior k \<inter> interior k' = {}" apply(cases "(x,k)\<in>p1", case_tac[!] "(x',k')\<in>p1")
himmelma@35172
   742
    apply(rule p1(5)) prefer 4 apply(rule *) prefer 6 apply(subst Int_commute,rule *) prefer 8 apply(rule p2(5))
himmelma@35172
   743
    using p1(3) p2(3) using xk xk' by auto qed 
himmelma@35172
   744
himmelma@35172
   745
lemma tagged_division_unions:
himmelma@35172
   746
  assumes "finite iset" "\<forall>i\<in>iset. (pfn(i) tagged_division_of i)"
himmelma@35172
   747
  "\<forall>i1 \<in> iset. \<forall>i2 \<in> iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})"
himmelma@35172
   748
  shows "\<Union>(pfn ` iset) tagged_division_of (\<Union>iset)"
himmelma@35172
   749
proof(rule tagged_division_ofI)
himmelma@35172
   750
  note assm = tagged_division_ofD[OF assms(2)[rule_format]]
himmelma@35172
   751
  show "finite (\<Union>pfn ` iset)" apply(rule finite_Union) using assms by auto
himmelma@35172
   752
  have "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>(\<lambda>i. \<Union>{k. \<exists>x. (x, k) \<in> pfn i}) ` iset" by blast 
himmelma@35172
   753
  also have "\<dots> = \<Union>iset" using assm(6) by auto
himmelma@35172
   754
  finally show "\<Union>{k. \<exists>x. (x, k) \<in> \<Union>pfn ` iset} = \<Union>iset" . 
himmelma@35172
   755
  fix x k assume xk:"(x,k)\<in>\<Union>pfn ` iset" then obtain i where i:"i \<in> iset" "(x, k) \<in> pfn i" by auto
himmelma@35172
   756
  show "x\<in>k" "\<exists>a b. k = {a..b}" "k \<subseteq> \<Union>iset" using assm(2-4)[OF i] using i(1) by auto
himmelma@35172
   757
  fix x' k' assume xk':"(x',k')\<in>\<Union>pfn ` iset" "(x, k) \<noteq> (x', k')" then obtain i' where i':"i' \<in> iset" "(x', k') \<in> pfn i'" by auto
himmelma@35172
   758
  have *:"\<And>a b. i\<noteq>i' \<Longrightarrow> a\<subseteq> i \<Longrightarrow> b\<subseteq> i' \<Longrightarrow> interior a \<inter> interior b = {}" using i(1) i'(1)
himmelma@35172
   759
    using assms(3)[rule_format] subset_interior by blast
himmelma@35172
   760
  show "interior k \<inter> interior k' = {}" apply(cases "i=i'")
himmelma@35172
   761
    using assm(5)[OF i _ xk'(2)]  i'(2) using assm(3)[OF i] assm(3)[OF i'] defer apply-apply(rule *) by auto
himmelma@35172
   762
qed
himmelma@35172
   763
himmelma@35172
   764
lemma tagged_partial_division_of_union_self:
himmelma@35172
   765
  assumes "p tagged_partial_division_of s" shows "p tagged_division_of (\<Union>(snd ` p))"
himmelma@35172
   766
  apply(rule tagged_division_ofI) using tagged_partial_division_ofD[OF assms] by auto
himmelma@35172
   767
himmelma@35172
   768
lemma tagged_division_of_union_self: assumes "p tagged_division_of s"
himmelma@35172
   769
  shows "p tagged_division_of (\<Union>(snd ` p))"
himmelma@35172
   770
  apply(rule tagged_division_ofI) using tagged_division_ofD[OF assms] by auto
himmelma@35172
   771
himmelma@35172
   772
subsection {* Fine-ness of a partition w.r.t. a gauge. *}
himmelma@35172
   773
himmelma@35172
   774
definition fine (infixr "fine" 46) where
himmelma@35172
   775
  "d fine s \<longleftrightarrow> (\<forall>(x,k) \<in> s. k \<subseteq> d(x))"
himmelma@35172
   776
himmelma@35172
   777
lemma fineI: assumes "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x"
himmelma@35172
   778
  shows "d fine s" using assms unfolding fine_def by auto
himmelma@35172
   779
himmelma@35172
   780
lemma fineD[dest]: assumes "d fine s"
himmelma@35172
   781
  shows "\<And>x k. (x,k) \<in> s \<Longrightarrow> k \<subseteq> d x" using assms unfolding fine_def by auto
himmelma@35172
   782
himmelma@35172
   783
lemma fine_inter: "(\<lambda>x. d1 x \<inter> d2 x) fine p \<longleftrightarrow> d1 fine p \<and> d2 fine p"
himmelma@35172
   784
  unfolding fine_def by auto
himmelma@35172
   785
himmelma@35172
   786
lemma fine_inters:
himmelma@35172
   787
 "(\<lambda>x. \<Inter> {f d x | d.  d \<in> s}) fine p \<longleftrightarrow> (\<forall>d\<in>s. (f d) fine p)"
himmelma@35172
   788
  unfolding fine_def by blast
himmelma@35172
   789
himmelma@35172
   790
lemma fine_union:
himmelma@35172
   791
  "d fine p1 \<Longrightarrow> d fine p2 \<Longrightarrow> d fine (p1 \<union> p2)"
himmelma@35172
   792
  unfolding fine_def by blast
himmelma@35172
   793
himmelma@35172
   794
lemma fine_unions:"(\<And>p. p \<in> ps \<Longrightarrow> d fine p) \<Longrightarrow> d fine (\<Union>ps)"
himmelma@35172
   795
  unfolding fine_def by auto
himmelma@35172
   796
himmelma@35172
   797
lemma fine_subset:  "p \<subseteq> q \<Longrightarrow> d fine q \<Longrightarrow> d fine p"
himmelma@35172
   798
  unfolding fine_def by blast
himmelma@35172
   799
himmelma@35172
   800
subsection {* Gauge integral. Define on compact intervals first, then use a limit. *}
himmelma@35172
   801
himmelma@35172
   802
definition has_integral_compact_interval (infixr "has'_integral'_compact'_interval" 46) where
himmelma@35172
   803
  "(f has_integral_compact_interval y) i \<equiv>
himmelma@35172
   804
        (\<forall>e>0. \<exists>d. gauge d \<and>
himmelma@35172
   805
          (\<forall>p. p tagged_division_of i \<and> d fine p
himmelma@35172
   806
                        \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - y) < e))"
himmelma@35172
   807
himmelma@35172
   808
definition has_integral (infixr "has'_integral" 46) where 
himmelma@35172
   809
"((f::(real^'n \<Rightarrow> 'b::real_normed_vector)) has_integral y) i \<equiv>
himmelma@35172
   810
        if (\<exists>a b. i = {a..b}) then (f has_integral_compact_interval y) i
himmelma@35172
   811
        else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
himmelma@35172
   812
              \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f x else 0) has_integral_compact_interval z) {a..b} \<and>
himmelma@35172
   813
                                       norm(z - y) < e))"
himmelma@35172
   814
himmelma@35172
   815
lemma has_integral:
himmelma@35172
   816
 "(f has_integral y) ({a..b}) \<longleftrightarrow>
himmelma@35172
   817
        (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
himmelma@35172
   818
                        \<longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f x) p - y) < e))"
himmelma@35172
   819
  unfolding has_integral_def has_integral_compact_interval_def by auto
himmelma@35172
   820
himmelma@35172
   821
lemma has_integralD[dest]: assumes
himmelma@35172
   822
 "(f has_integral y) ({a..b})" "e>0"
himmelma@35172
   823
  obtains d where "gauge d" "\<And>p. p tagged_division_of {a..b} \<Longrightarrow> d fine p
himmelma@35172
   824
                        \<Longrightarrow> norm(setsum (\<lambda>(x,k). content(k) *\<^sub>R f(x)) p - y) < e"
himmelma@35172
   825
  using assms unfolding has_integral by auto
himmelma@35172
   826
himmelma@35172
   827
lemma has_integral_alt:
himmelma@35172
   828
 "(f has_integral y) i \<longleftrightarrow>
himmelma@35172
   829
      (if (\<exists>a b. i = {a..b}) then (f has_integral y) i
himmelma@35172
   830
       else (\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b}
himmelma@35172
   831
                               \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0)
himmelma@35172
   832
                                        has_integral z) ({a..b}) \<and>
himmelma@35172
   833
                                       norm(z - y) < e)))"
himmelma@35172
   834
  unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto
himmelma@35172
   835
himmelma@35172
   836
lemma has_integral_altD:
himmelma@35172
   837
  assumes "(f has_integral y) i" "\<not> (\<exists>a b. i = {a..b})" "e>0"
himmelma@35172
   838
  obtains B where "B>0" "\<forall>a b. ball 0 B \<subseteq> {a..b}\<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> i then f(x) else 0) has_integral z) ({a..b}) \<and> norm(z - y) < e)"
himmelma@35172
   839
  using assms unfolding has_integral unfolding has_integral_compact_interval_def has_integral_def by auto
himmelma@35172
   840
himmelma@35172
   841
definition integrable_on (infixr "integrable'_on" 46) where
himmelma@35172
   842
  "(f integrable_on i) \<equiv> \<exists>y. (f has_integral y) i"
himmelma@35172
   843
himmelma@35172
   844
definition "integral i f \<equiv> SOME y. (f has_integral y) i"
himmelma@35172
   845
himmelma@35172
   846
lemma integrable_integral[dest]:
himmelma@35172
   847
 "f integrable_on i \<Longrightarrow> (f has_integral (integral i f)) i"
himmelma@35172
   848
  unfolding integrable_on_def integral_def by(rule someI_ex)
himmelma@35172
   849
himmelma@35172
   850
lemma has_integral_integrable[intro]: "(f has_integral i) s \<Longrightarrow> f integrable_on s"
himmelma@35172
   851
  unfolding integrable_on_def by auto
himmelma@35172
   852
himmelma@35172
   853
lemma has_integral_integral:"f integrable_on s \<longleftrightarrow> (f has_integral (integral s f)) s"
himmelma@35172
   854
  by auto
himmelma@35172
   855
himmelma@35172
   856
lemma setsum_content_null:
himmelma@35172
   857
  assumes "content({a..b}) = 0" "p tagged_division_of {a..b}"
himmelma@35172
   858
  shows "setsum (\<lambda>(x,k). content k *\<^sub>R f x) p = (0::'a::real_normed_vector)"
himmelma@35172
   859
proof(rule setsum_0',rule) fix y assume y:"y\<in>p"
himmelma@35172
   860
  obtain x k where xk:"y = (x,k)" using surj_pair[of y] by blast
himmelma@35172
   861
  note assm = tagged_division_ofD(3-4)[OF assms(2) y[unfolded xk]]
himmelma@35172
   862
  from this(2) guess c .. then guess d .. note c_d=this
himmelma@35172
   863
  have "(\<lambda>(x, k). content k *\<^sub>R f x) y = content k *\<^sub>R f x" unfolding xk by auto
himmelma@35172
   864
  also have "\<dots> = 0" using content_subset[OF assm(1)[unfolded c_d]] content_pos_le[of c d]
himmelma@35172
   865
    unfolding assms(1) c_d by auto
himmelma@35172
   866
  finally show "(\<lambda>(x, k). content k *\<^sub>R f x) y = 0" .
himmelma@35172
   867
qed
himmelma@35172
   868
himmelma@35172
   869
subsection {* Some basic combining lemmas. *}
himmelma@35172
   870
himmelma@35172
   871
lemma tagged_division_unions_exists:
himmelma@35172
   872
  assumes "finite iset" "\<forall>i \<in> iset. \<exists>p. p tagged_division_of i \<and> d fine p"
himmelma@35172
   873
  "\<forall>i1\<in>iset. \<forall>i2\<in>iset. ~(i1 = i2) \<longrightarrow> (interior(i1) \<inter> interior(i2) = {})" "(\<Union>iset = i)"
himmelma@35172
   874
   obtains p where "p tagged_division_of i" "d fine p"
himmelma@35172
   875
proof- guess pfn using bchoice[OF assms(2)] .. note pfn = conjunctD2[OF this[rule_format]]
himmelma@35172
   876
  show thesis apply(rule_tac p="\<Union>(pfn ` iset)" in that) unfolding assms(4)[THEN sym]
himmelma@35172
   877
    apply(rule tagged_division_unions[OF assms(1) _ assms(3)]) defer 
himmelma@35172
   878
    apply(rule fine_unions) using pfn by auto
himmelma@35172
   879
qed
himmelma@35172
   880
himmelma@35172
   881
subsection {* The set we're concerned with must be closed. *}
himmelma@35172
   882
himmelma@35172
   883
lemma division_of_closed: "s division_of i \<Longrightarrow> closed (i::(real^'n) set)"
himmelma@35172
   884
  unfolding division_of_def by(fastsimp intro!: closed_Union closed_interval)
himmelma@35172
   885
himmelma@35172
   886
subsection {* General bisection principle for intervals; might be useful elsewhere. *}
himmelma@35172
   887
himmelma@35172
   888
lemma interval_bisection_step:
himmelma@35172
   889
  assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "~(P {a..b::real^'n})"
himmelma@35172
   890
  obtains c d where "~(P{c..d})"
himmelma@35172
   891
  "\<forall>i. a$i \<le> c$i \<and> c$i \<le> d$i \<and> d$i \<le> b$i \<and> 2 * (d$i - c$i) \<le> b$i - a$i"
himmelma@35172
   892
proof- have "{a..b} \<noteq> {}" using assms(1,3) by auto
himmelma@35172
   893
  note ab=this[unfolded interval_eq_empty not_ex not_less]
himmelma@35172
   894
  { fix f have "finite f \<Longrightarrow>
himmelma@35172
   895
        (\<forall>s\<in>f. P s) \<Longrightarrow>
himmelma@35172
   896
        (\<forall>s\<in>f. \<exists>a b. s = {a..b}) \<Longrightarrow>
himmelma@35172
   897
        (\<forall>s\<in>f.\<forall>t\<in>f. ~(s = t) \<longrightarrow> interior(s) \<inter> interior(t) = {}) \<Longrightarrow> P(\<Union>f)"
himmelma@35172
   898
    proof(induct f rule:finite_induct)
himmelma@35172
   899
      case empty show ?case using assms(1) by auto
himmelma@35172
   900
    next case (insert x f) show ?case unfolding Union_insert apply(rule assms(2)[rule_format])
himmelma@35172
   901
        apply rule defer apply rule defer apply(rule inter_interior_unions_intervals)
himmelma@35172
   902
        using insert by auto
himmelma@35172
   903
    qed } note * = this
himmelma@35172
   904
  let ?A = "{{c..d} | c d. \<forall>i. (c$i = a$i) \<and> (d$i = (a$i + b$i) / 2) \<or> (c$i = (a$i + b$i) / 2) \<and> (d$i = b$i)}"
himmelma@35172
   905
  let ?PP = "\<lambda>c d. \<forall>i. a$i \<le> c$i \<and> c$i \<le> d$i \<and> d$i \<le> b$i \<and> 2 * (d$i - c$i) \<le> b$i - a$i"
himmelma@35172
   906
  { presume "\<forall>c d. ?PP c d \<longrightarrow> P {c..d} \<Longrightarrow> False"
himmelma@35172
   907
    thus thesis unfolding atomize_not not_all apply-apply(erule exE)+ apply(rule_tac c=x and d=xa in that) by auto }
himmelma@35172
   908
  assume as:"\<forall>c d. ?PP c d \<longrightarrow> P {c..d}"
himmelma@35172
   909
  have "P (\<Union> ?A)" proof(rule *, rule_tac[2-] ballI, rule_tac[4] ballI, rule_tac[4] impI) 
himmelma@35172
   910
    let ?B = "(\<lambda>s.{(\<chi> i. if i \<in> s then a$i else (a$i + b$i) / 2) ..
himmelma@35172
   911
      (\<chi> i. if i \<in> s then (a$i + b$i) / 2 else b$i)}) ` {s. s \<subseteq> UNIV}"
himmelma@35172
   912
    have "?A \<subseteq> ?B" proof case goal1
himmelma@35172
   913
      then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+) note c_d=this[rule_format]
himmelma@35172
   914
      have *:"\<And>a b c d. a = c \<Longrightarrow> b = d \<Longrightarrow> {a..b} = {c..d}" by auto
himmelma@35172
   915
      show "x\<in>?B" unfolding image_iff apply(rule_tac x="{i. c$i = a$i}" in bexI)
himmelma@35172
   916
        unfolding c_d apply(rule * ) unfolding Cart_eq cond_component Cart_lambda_beta
himmelma@35172
   917
      proof(rule_tac[1-2] allI) fix i show "c $ i = (if i \<in> {i. c $ i = a $ i} then a $ i else (a $ i + b $ i) / 2)"
himmelma@35172
   918
          "d $ i = (if i \<in> {i. c $ i = a $ i} then (a $ i + b $ i) / 2 else b $ i)"
himmelma@35172
   919
          using c_d(2)[of i] ab[THEN spec[where x=i]] by(auto simp add:field_simps)
himmelma@35172
   920
      qed auto qed
himmelma@35172
   921
    thus "finite ?A" apply(rule finite_subset[of _ ?B]) by auto
himmelma@35172
   922
    fix s assume "s\<in>?A" then guess c unfolding mem_Collect_eq .. then guess d apply- by(erule exE,(erule conjE)+)
himmelma@35172
   923
    note c_d=this[rule_format]
himmelma@35172
   924
    show "P s" unfolding c_d apply(rule as[rule_format]) proof- case goal1 show ?case 
himmelma@35172
   925
        using c_d(2)[of i] using ab[THEN spec[where x=i]] by auto qed
himmelma@35172
   926
    show "\<exists>a b. s = {a..b}" unfolding c_d by auto
himmelma@35172
   927
    fix t assume "t\<in>?A" then guess e unfolding mem_Collect_eq .. then guess f apply- by(erule exE,(erule conjE)+)
himmelma@35172
   928
    note e_f=this[rule_format]
himmelma@35172
   929
    assume "s \<noteq> t" hence "\<not> (c = e \<and> d = f)" unfolding c_d e_f by auto
himmelma@35172
   930
    then obtain i where "c$i \<noteq> e$i \<or> d$i \<noteq> f$i" unfolding de_Morgan_conj Cart_eq by auto
himmelma@35172
   931
    hence i:"c$i \<noteq> e$i" "d$i \<noteq> f$i" apply- apply(erule_tac[!] disjE)
himmelma@35172
   932
    proof- assume "c$i \<noteq> e$i" thus "d$i \<noteq> f$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp
himmelma@35172
   933
    next   assume "d$i \<noteq> f$i" thus "c$i \<noteq> e$i" using c_d(2)[of i] e_f(2)[of i] by fastsimp
himmelma@35172
   934
    qed have *:"\<And>s t. (\<And>a. a\<in>s \<Longrightarrow> a\<in>t \<Longrightarrow> False) \<Longrightarrow> s \<inter> t = {}" by auto
himmelma@35172
   935
    show "interior s \<inter> interior t = {}" unfolding e_f c_d interior_closed_interval proof(rule *)
himmelma@35172
   936
      fix x assume "x\<in>{c<..<d}" "x\<in>{e<..<f}"
himmelma@35172
   937
      hence x:"c$i < d$i" "e$i < f$i" "c$i < f$i" "e$i < d$i" unfolding mem_interval apply-apply(erule_tac[!] x=i in allE)+ by auto
himmelma@35172
   938
      show False using c_d(2)[of i] apply- apply(erule_tac disjE)
himmelma@35172
   939
      proof(erule_tac[!] conjE) assume as:"c $ i = a $ i" "d $ i = (a $ i + b $ i) / 2"
himmelma@35172
   940
        show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps)
himmelma@35172
   941
      next assume as:"c $ i = (a $ i + b $ i) / 2" "d $ i = b $ i"
himmelma@35172
   942
        show False using e_f(2)[of i] and i x unfolding as by(fastsimp simp add:field_simps)
himmelma@35172
   943
      qed qed qed
himmelma@35172
   944
  also have "\<Union> ?A = {a..b}" proof(rule set_ext,rule)
himmelma@35172
   945
    fix x assume "x\<in>\<Union>?A" then guess Y unfolding Union_iff ..
himmelma@35172
   946
    from this(1) guess c unfolding mem_Collect_eq .. then guess d ..
himmelma@35172
   947
    note c_d = this[THEN conjunct2,rule_format] `x\<in>Y`[unfolded this[THEN conjunct1]]
himmelma@35172
   948
    show "x\<in>{a..b}" unfolding mem_interval proof 
himmelma@35172
   949
      fix i show "a $ i \<le> x $ i \<and> x $ i \<le> b $ i"
himmelma@35172
   950
        using c_d(1)[of i] c_d(2)[unfolded mem_interval,THEN spec[where x=i]] by auto qed
himmelma@35172
   951
  next fix x assume x:"x\<in>{a..b}"
himmelma@35172
   952
    have "\<forall>i. \<exists>c d. (c = a$i \<and> d = (a$i + b$i) / 2 \<or> c = (a$i + b$i) / 2 \<and> d = b$i) \<and> c\<le>x$i \<and> x$i \<le> d"
himmelma@35172
   953
      (is "\<forall>i. \<exists>c d. ?P i c d") unfolding mem_interval proof fix i
himmelma@35172
   954
      have "?P i (a$i) ((a $ i + b $ i) / 2) \<or> ?P i ((a $ i + b $ i) / 2) (b$i)"
himmelma@35172
   955
        using x[unfolded mem_interval,THEN spec[where x=i]] by auto thus "\<exists>c d. ?P i c d" by blast
himmelma@35172
   956
    qed thus "x\<in>\<Union>?A" unfolding Union_iff lambda_skolem unfolding Bex_def mem_Collect_eq
himmelma@35172
   957
      apply-apply(erule exE)+ apply(rule_tac x="{xa..xaa}" in exI) unfolding mem_interval by auto
himmelma@35172
   958
  qed finally show False using assms by auto qed
himmelma@35172
   959
himmelma@35172
   960
lemma interval_bisection:
himmelma@35172
   961
  assumes "P {}" "(\<forall>s t. P s \<and> P t \<and> interior(s) \<inter> interior(t) = {} \<longrightarrow> P(s \<union> t))" "\<not> P {a..b::real^'n}"
himmelma@35172
   962
  obtains x where "x \<in> {a..b}" "\<forall>e>0. \<exists>c d. x \<in> {c..d} \<and> {c..d} \<subseteq> ball x e \<and> {c..d} \<subseteq> {a..b} \<and> ~P({c..d})"
himmelma@35172
   963
proof-
himmelma@35172
   964
  have "\<forall>x. \<exists>y. \<not> P {fst x..snd x} \<longrightarrow> (\<not> P {fst y..snd y} \<and> (\<forall>i. fst x$i \<le> fst y$i \<and> fst y$i \<le> snd y$i \<and> snd y$i \<le> snd x$i \<and>
himmelma@35172
   965
                           2 * (snd y$i - fst y$i) \<le> snd x$i - fst x$i))" proof case goal1 thus ?case proof-
himmelma@35172
   966
      presume "\<not> P {fst x..snd x} \<Longrightarrow> ?thesis"
himmelma@35172
   967
      thus ?thesis apply(cases "P {fst x..snd x}") by auto
himmelma@35172
   968
    next assume as:"\<not> P {fst x..snd x}" from interval_bisection_step[of P, OF assms(1-2) as] guess c d . 
himmelma@35172
   969
      thus ?thesis apply- apply(rule_tac x="(c,d)" in exI) by auto
himmelma@35172
   970
    qed qed then guess f apply-apply(drule choice) by(erule exE) note f=this
himmelma@35172
   971
  def AB \<equiv> "\<lambda>n. (f ^^ n) (a,b)" def A \<equiv> "\<lambda>n. fst(AB n)" and B \<equiv> "\<lambda>n. snd(AB n)" note ab_def = this AB_def
himmelma@35172
   972
  have "A 0 = a" "B 0 = b" "\<And>n. \<not> P {A(Suc n)..B(Suc n)} \<and>
himmelma@35172
   973
    (\<forall>i. A(n)$i \<le> A(Suc n)$i \<and> A(Suc n)$i \<le> B(Suc n)$i \<and> B(Suc n)$i \<le> B(n)$i \<and> 
himmelma@35172
   974
    2 * (B(Suc n)$i - A(Suc n)$i) \<le> B(n)$i - A(n)$i)" (is "\<And>n. ?P n")
himmelma@35172
   975
  proof- show "A 0 = a" "B 0 = b" unfolding ab_def by auto
himmelma@35172
   976
    case goal3 note S = ab_def funpow.simps o_def id_apply show ?case
himmelma@35172
   977
    proof(induct n) case 0 thus ?case unfolding S apply(rule f[rule_format]) using assms(3) by auto
himmelma@35172
   978
    next case (Suc n) show ?case unfolding S apply(rule f[rule_format]) using Suc unfolding S by auto
himmelma@35172
   979
    qed qed note AB = this(1-2) conjunctD2[OF this(3),rule_format]
himmelma@35172
   980
himmelma@35172
   981
  have interv:"\<And>e. 0 < e \<Longrightarrow> \<exists>n. \<forall>x\<in>{A n..B n}. \<forall>y\<in>{A n..B n}. dist x y < e"
himmelma@35172
   982
  proof- case goal1 guess n using real_arch_pow2[of "(setsum (\<lambda>i. b$i - a$i) UNIV) / e"] .. note n=this
himmelma@35172
   983
    show ?case apply(rule_tac x=n in exI) proof(rule,rule)
himmelma@35172
   984
      fix x y assume xy:"x\<in>{A n..B n}" "y\<in>{A n..B n}"
himmelma@35172
   985
      have "dist x y \<le> setsum (\<lambda>i. abs((x - y)$i)) UNIV" unfolding vector_dist_norm by(rule norm_le_l1)
himmelma@35172
   986
      also have "\<dots> \<le> setsum (\<lambda>i. B n$i - A n$i) UNIV"
himmelma@35172
   987
      proof(rule setsum_mono) fix i show "\<bar>(x - y) $ i\<bar> \<le> B n $ i - A n $ i"
himmelma@35172
   988
          using xy[unfolded mem_interval,THEN spec[where x=i]]
himmelma@35172
   989
          unfolding vector_minus_component by auto qed
himmelma@35172
   990
      also have "\<dots> \<le> setsum (\<lambda>i. b$i - a$i) UNIV / 2^n" unfolding setsum_divide_distrib
himmelma@35172
   991
      proof(rule setsum_mono) case goal1 thus ?case
himmelma@35172
   992
        proof(induct n) case 0 thus ?case unfolding AB by auto
himmelma@35172
   993
        next case (Suc n) have "B (Suc n) $ i - A (Suc n) $ i \<le> (B n $ i - A n $ i) / 2" using AB(4)[of n i] by auto
himmelma@35172
   994
          also have "\<dots> \<le> (b $ i - a $ i) / 2 ^ Suc n" using Suc by(auto simp add:field_simps) finally show ?case .
himmelma@35172
   995
        qed qed
himmelma@35172
   996
      also have "\<dots> < e" using n using goal1 by(auto simp add:field_simps) finally show "dist x y < e" .
himmelma@35172
   997
    qed qed
himmelma@35172
   998
  { fix n m ::nat assume "m \<le> n" then guess d unfolding le_Suc_ex_iff .. note d=this
himmelma@35172
   999
    have "{A n..B n} \<subseteq> {A m..B m}" unfolding d 
himmelma@35172
  1000
    proof(induct d) case 0 thus ?case by auto
himmelma@35172
  1001
    next case (Suc d) show ?case apply(rule subset_trans[OF _ Suc])
himmelma@35172
  1002
        apply(rule) unfolding mem_interval apply(rule,erule_tac x=i in allE)
himmelma@35172
  1003
      proof- case goal1 thus ?case using AB(4)[of "m + d" i] by(auto simp add:field_simps)
himmelma@35172
  1004
      qed qed } note ABsubset = this 
himmelma@35172
  1005
  have "\<exists>a. \<forall>n. a\<in>{A n..B n}" apply(rule decreasing_closed_nest[rule_format,OF closed_interval _ ABsubset interv])
himmelma@35172
  1006
  proof- fix n show "{A n..B n} \<noteq> {}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(1,3) AB(1-2) by auto qed auto
himmelma@35172
  1007
  then guess x0 .. note x0=this[rule_format]
himmelma@35172
  1008
  show thesis proof(rule that[rule_format,of x0])
himmelma@35172
  1009
    show "x0\<in>{a..b}" using x0[of 0] unfolding AB .
himmelma@35172
  1010
    fix e assume "0 < (e::real)" from interv[OF this] guess n .. note n=this
himmelma@35172
  1011
    show "\<exists>c d. x0 \<in> {c..d} \<and> {c..d} \<subseteq> ball x0 e \<and> {c..d} \<subseteq> {a..b} \<and> \<not> P {c..d}"
himmelma@35172
  1012
      apply(rule_tac x="A n" in exI,rule_tac x="B n" in exI) apply(rule,rule x0) apply rule defer 
himmelma@35172
  1013
    proof show "\<not> P {A n..B n}" apply(cases "0<n") using AB(3)[of "n - 1"] assms(3) AB(1-2) by auto
himmelma@35172
  1014
      show "{A n..B n} \<subseteq> ball x0 e" using n using x0[of n] by auto
himmelma@35172
  1015
      show "{A n..B n} \<subseteq> {a..b}" unfolding AB(1-2)[symmetric] apply(rule ABsubset) by auto
himmelma@35172
  1016
    qed qed qed 
himmelma@35172
  1017
himmelma@35172
  1018
subsection {* Cousin's lemma. *}
himmelma@35172
  1019
himmelma@35172
  1020
lemma fine_division_exists: assumes "gauge g" 
himmelma@35172
  1021
  obtains p where "p tagged_division_of {a..b::real^'n}" "g fine p"
himmelma@35172
  1022
proof- presume "\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p) \<Longrightarrow> False"
himmelma@35172
  1023
  then guess p unfolding atomize_not not_not .. thus thesis apply-apply(rule that[of p]) by auto
himmelma@35172
  1024
next assume as:"\<not> (\<exists>p. p tagged_division_of {a..b} \<and> g fine p)"
himmelma@35172
  1025
  guess x apply(rule interval_bisection[of "\<lambda>s. \<exists>p. p tagged_division_of s \<and> g fine p",rule_format,OF _ _ as])
himmelma@35172
  1026
    apply(rule_tac x="{}" in exI) defer apply(erule conjE exE)+
himmelma@35172
  1027
  proof- show "{} tagged_division_of {} \<and> g fine {}" unfolding fine_def by auto
himmelma@35172
  1028
    fix s t p p' assume "p tagged_division_of s" "g fine p" "p' tagged_division_of t" "g fine p'" "interior s \<inter> interior t = {}"
himmelma@35172
  1029
    thus "\<exists>p. p tagged_division_of s \<union> t \<and> g fine p" apply-apply(rule_tac x="p \<union> p'" in exI) apply rule
himmelma@35172
  1030
      apply(rule tagged_division_union) prefer 4 apply(rule fine_union) by auto
himmelma@35172
  1031
  qed note x=this
himmelma@35172
  1032
  obtain e where e:"e>0" "ball x e \<subseteq> g x" using gaugeD[OF assms, of x] unfolding open_contains_ball by auto
himmelma@35172
  1033
  from x(2)[OF e(1)] guess c d apply-apply(erule exE conjE)+ . note c_d = this
himmelma@35172
  1034
  have "g fine {(x, {c..d})}" unfolding fine_def using e using c_d(2) by auto
himmelma@35172
  1035
  thus False using tagged_division_of_self[OF c_d(1)] using c_d by auto qed
himmelma@35172
  1036
himmelma@35172
  1037
subsection {* Basic theorems about integrals. *}
himmelma@35172
  1038
himmelma@35172
  1039
lemma has_integral_unique: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  1040
  assumes "(f has_integral k1) i" "(f has_integral k2) i" shows "k1 = k2"
himmelma@35172
  1041
proof(rule ccontr) let ?e = "norm(k1 - k2) / 2" assume as:"k1 \<noteq> k2" hence e:"?e > 0" by auto
himmelma@35172
  1042
  have lem:"\<And>f::real^'n \<Rightarrow> 'a.  \<And> a b k1 k2.
himmelma@35172
  1043
    (f has_integral k1) ({a..b}) \<Longrightarrow> (f has_integral k2) ({a..b}) \<Longrightarrow> k1 \<noteq> k2 \<Longrightarrow> False"
himmelma@35172
  1044
  proof- case goal1 let ?e = "norm(k1 - k2) / 2" from goal1(3) have e:"?e > 0" by auto
himmelma@35172
  1045
    guess d1 by(rule has_integralD[OF goal1(1) e]) note d1=this
himmelma@35172
  1046
    guess d2 by(rule has_integralD[OF goal1(2) e]) note d2=this
himmelma@35172
  1047
    guess p by(rule fine_division_exists[OF gauge_inter[OF d1(1) d2(1)],of a b]) note p=this
himmelma@35172
  1048
    let ?c = "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" have "norm (k1 - k2) \<le> norm (?c - k2) + norm (?c - k1)"
himmelma@35172
  1049
      using norm_triangle_ineq4[of "k1 - ?c" "k2 - ?c"] by(auto simp add:group_simps norm_minus_commute)
himmelma@35172
  1050
    also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2"
himmelma@35172
  1051
      apply(rule add_strict_mono) apply(rule_tac[!] d2(2) d1(2)) using p unfolding fine_def by auto
himmelma@35172
  1052
    finally show False by auto
himmelma@35172
  1053
  qed { presume "\<not> (\<exists>a b. i = {a..b}) \<Longrightarrow> False"
himmelma@35172
  1054
    thus False apply-apply(cases "\<exists>a b. i = {a..b}")
himmelma@35172
  1055
      using assms by(auto simp add:has_integral intro:lem[OF _ _ as]) }
himmelma@35172
  1056
  assume as:"\<not> (\<exists>a b. i = {a..b})"
himmelma@35172
  1057
  guess B1 by(rule has_integral_altD[OF assms(1) as,OF e]) note B1=this[rule_format]
himmelma@35172
  1058
  guess B2 by(rule has_integral_altD[OF assms(2) as,OF e]) note B2=this[rule_format]
himmelma@35172
  1059
  have "\<exists>a b::real^'n. ball 0 B1 \<union> ball 0 B2 \<subseteq> {a..b}" apply(rule bounded_subset_closed_interval)
himmelma@35172
  1060
    using bounded_Un bounded_ball by auto then guess a b apply-by(erule exE)+
himmelma@35172
  1061
  note ab=conjunctD2[OF this[unfolded Un_subset_iff]]
himmelma@35172
  1062
  guess w using B1(2)[OF ab(1)] .. note w=conjunctD2[OF this]
himmelma@35172
  1063
  guess z using B2(2)[OF ab(2)] .. note z=conjunctD2[OF this]
himmelma@35172
  1064
  have "z = w" using lem[OF w(1) z(1)] by auto
himmelma@35172
  1065
  hence "norm (k1 - k2) \<le> norm (z - k2) + norm (w - k1)"
himmelma@35172
  1066
    using norm_triangle_ineq4[of "k1 - w" "k2 - z"] by(auto simp add: norm_minus_commute) 
himmelma@35172
  1067
  also have "\<dots> < norm (k1 - k2) / 2 + norm (k1 - k2) / 2" apply(rule add_strict_mono) by(rule_tac[!] z(2) w(2))
himmelma@35172
  1068
  finally show False by auto qed
himmelma@35172
  1069
himmelma@35172
  1070
lemma integral_unique[intro]:
himmelma@35172
  1071
  "(f has_integral y) k \<Longrightarrow> integral k f = y"
himmelma@35172
  1072
  unfolding integral_def apply(rule some_equality) by(auto intro: has_integral_unique) 
himmelma@35172
  1073
himmelma@35172
  1074
lemma has_integral_is_0: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" 
himmelma@35172
  1075
  assumes "\<forall>x\<in>s. f x = 0" shows "(f has_integral 0) s"
himmelma@35172
  1076
proof- have lem:"\<And>a b. \<And>f::real^'n \<Rightarrow> 'a.
himmelma@35172
  1077
    (\<forall>x\<in>{a..b}. f(x) = 0) \<Longrightarrow> (f has_integral 0) ({a..b})" unfolding has_integral
himmelma@35172
  1078
  proof(rule,rule) fix a b e and f::"real^'n \<Rightarrow> 'a"
himmelma@35172
  1079
    assume as:"\<forall>x\<in>{a..b}. f x = 0" "0 < (e::real)"
himmelma@35172
  1080
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e)"
himmelma@35172
  1081
      apply(rule_tac x="\<lambda>x. ball x 1" in exI)  apply(rule,rule gaugeI) unfolding centre_in_ball defer apply(rule open_ball)
himmelma@35172
  1082
    proof(rule,rule,erule conjE) case goal1
himmelma@35172
  1083
      have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) = 0" proof(rule setsum_0',rule)
himmelma@35172
  1084
        fix x assume x:"x\<in>p" have "f (fst x) = 0" using tagged_division_ofD(2-3)[OF goal1(1), of "fst x" "snd x"] using as x by auto
himmelma@35172
  1085
        thus "(\<lambda>(x, k). content k *\<^sub>R f x) x = 0" apply(subst surjective_pairing[of x]) unfolding split_conv by auto
himmelma@35172
  1086
      qed thus ?case using as by auto
himmelma@35172
  1087
    qed auto qed  { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
himmelma@35172
  1088
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}")
himmelma@35172
  1089
      using assms by(auto simp add:has_integral intro:lem) }
himmelma@35172
  1090
  have *:"(\<lambda>x. if x \<in> s then f x else 0) = (\<lambda>x. 0)" apply(rule ext) using assms by auto
himmelma@35172
  1091
  assume "\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P *
himmelma@35172
  1092
  apply(rule,rule,rule_tac x=1 in exI,rule) defer apply(rule,rule,rule)
himmelma@35172
  1093
  proof- fix e::real and a b assume "e>0"
himmelma@35172
  1094
    thus "\<exists>z. ((\<lambda>x::real^'n. 0::'a) has_integral z) {a..b} \<and> norm (z - 0) < e"
himmelma@35172
  1095
      apply(rule_tac x=0 in exI) apply(rule,rule lem) by auto
himmelma@35172
  1096
  qed auto qed
himmelma@35172
  1097
himmelma@35172
  1098
lemma has_integral_0[simp]: "((\<lambda>x::real^'n. 0) has_integral 0) s"
himmelma@35172
  1099
  apply(rule has_integral_is_0) by auto 
himmelma@35172
  1100
himmelma@35172
  1101
lemma has_integral_0_eq[simp]: "((\<lambda>x. 0) has_integral i) s \<longleftrightarrow> i = 0"
himmelma@35172
  1102
  using has_integral_unique[OF has_integral_0] by auto
himmelma@35172
  1103
himmelma@35172
  1104
lemma has_integral_linear: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  1105
  assumes "(f has_integral y) s" "bounded_linear h" shows "((h o f) has_integral ((h y))) s"
himmelma@35172
  1106
proof- interpret bounded_linear h using assms(2) . from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]
himmelma@35172
  1107
  have lem:"\<And>f::real^'n \<Rightarrow> 'a. \<And> y a b.
himmelma@35172
  1108
    (f has_integral y) ({a..b}) \<Longrightarrow> ((h o f) has_integral h(y)) ({a..b})"
himmelma@35172
  1109
  proof(subst has_integral,rule,rule) case goal1
himmelma@35172
  1110
    from pos_bounded guess B .. note B=conjunctD2[OF this,rule_format]
himmelma@35172
  1111
    have *:"e / B > 0" apply(rule divide_pos_pos) using goal1(2) B by auto
himmelma@35172
  1112
    guess g using has_integralD[OF goal1(1) *] . note g=this
himmelma@35172
  1113
    show ?case apply(rule_tac x=g in exI) apply(rule,rule g(1))
himmelma@35172
  1114
    proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "g fine p" 
himmelma@35172
  1115
      have *:"\<And>x k. h ((\<lambda>(x, k). content k *\<^sub>R f x) x) = (\<lambda>(x, k). h (content k *\<^sub>R f x)) x" by auto
himmelma@35172
  1116
      have "(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = setsum (h \<circ> (\<lambda>(x, k). content k *\<^sub>R f x)) p"
himmelma@35172
  1117
        unfolding o_def unfolding scaleR[THEN sym] * by simp
himmelma@35172
  1118
      also have "\<dots> = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" using setsum[of "\<lambda>(x,k). content k *\<^sub>R f x" p] using as by auto
himmelma@35172
  1119
      finally have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) = h (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x)" .
himmelma@35172
  1120
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (h \<circ> f) x) - h y) < e" unfolding * diff[THEN sym]
himmelma@35172
  1121
        apply(rule le_less_trans[OF B(2)]) using g(2)[OF as] B(1) by(auto simp add:field_simps)
himmelma@35172
  1122
    qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
himmelma@35172
  1123
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
himmelma@35172
  1124
  assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
himmelma@35172
  1125
  proof(rule,rule) fix e::real  assume e:"0<e"
himmelma@35172
  1126
    have *:"0 < e/B" by(rule divide_pos_pos,rule e,rule B(1))
himmelma@35172
  1127
    guess M using has_integral_altD[OF assms(1) as *,rule_format] . note M=this
himmelma@35172
  1128
    show "\<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) has_integral z) {a..b} \<and> norm (z - h y) < e)"
himmelma@35172
  1129
      apply(rule_tac x=M in exI) apply(rule,rule M(1))
himmelma@35172
  1130
    proof(rule,rule,rule) case goal1 guess z using M(2)[OF goal1(1)] .. note z=conjunctD2[OF this]
himmelma@35172
  1131
      have *:"(\<lambda>x. if x \<in> s then (h \<circ> f) x else 0) = h \<circ> (\<lambda>x. if x \<in> s then f x else 0)"
himmelma@35172
  1132
        unfolding o_def apply(rule ext) using zero by auto
himmelma@35172
  1133
      show ?case apply(rule_tac x="h z" in exI,rule) unfolding * apply(rule lem[OF z(1)]) unfolding diff[THEN sym]
himmelma@35172
  1134
        apply(rule le_less_trans[OF B(2)]) using B(1) z(2) by(auto simp add:field_simps)
himmelma@35172
  1135
    qed qed qed
himmelma@35172
  1136
himmelma@35172
  1137
lemma has_integral_cmul:
himmelma@35172
  1138
  shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R k)) s"
himmelma@35172
  1139
  unfolding o_def[THEN sym] apply(rule has_integral_linear,assumption)
himmelma@35172
  1140
  by(rule scaleR.bounded_linear_right)
himmelma@35172
  1141
himmelma@35172
  1142
lemma has_integral_neg:
himmelma@35172
  1143
  shows "(f has_integral k) s \<Longrightarrow> ((\<lambda>x. -(f x)) has_integral (-k)) s"
himmelma@35172
  1144
  apply(drule_tac c="-1" in has_integral_cmul) by auto
himmelma@35172
  1145
himmelma@35172
  1146
lemma has_integral_add: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector" 
himmelma@35172
  1147
  assumes "(f has_integral k) s" "(g has_integral l) s"
himmelma@35172
  1148
  shows "((\<lambda>x. f x + g x) has_integral (k + l)) s"
himmelma@35172
  1149
proof- have lem:"\<And>f g::real^'n \<Rightarrow> 'a. \<And>a b k l.
himmelma@35172
  1150
    (f has_integral k) ({a..b}) \<Longrightarrow> (g has_integral l) ({a..b}) \<Longrightarrow>
himmelma@35172
  1151
     ((\<lambda>x. f(x) + g(x)) has_integral (k + l)) ({a..b})" proof- case goal1
himmelma@35172
  1152
    show ?case unfolding has_integral proof(rule,rule) fix e::real assume e:"e>0" hence *:"e/2>0" by auto
himmelma@35172
  1153
      guess d1 using has_integralD[OF goal1(1) *] . note d1=this
himmelma@35172
  1154
      guess d2 using has_integralD[OF goal1(2) *] . note d2=this
himmelma@35172
  1155
      show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e)"
himmelma@35172
  1156
        apply(rule_tac x="\<lambda>x. (d1 x) \<inter> (d2 x)" in exI) apply(rule,rule gauge_inter[OF d1(1) d2(1)])
himmelma@35172
  1157
      proof(rule,rule,erule conjE) fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d1 x \<inter> d2 x) fine p"
himmelma@35172
  1158
        have *:"(\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) = (\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p. content k *\<^sub>R g x)"
himmelma@35172
  1159
          unfolding scaleR_right_distrib setsum_addf[of "\<lambda>(x,k). content k *\<^sub>R f x" "\<lambda>(x,k). content k *\<^sub>R g x" p,THEN sym]
himmelma@35172
  1160
          by(rule setsum_cong2,auto)
himmelma@35172
  1161
        have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) = norm (((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - k) + ((\<Sum>(x, k)\<in>p. content k *\<^sub>R g x) - l))"
himmelma@35172
  1162
          unfolding * by(auto simp add:group_simps) also let ?res = "\<dots>"
himmelma@35172
  1163
        from as have *:"d1 fine p" "d2 fine p" unfolding fine_inter by auto
himmelma@35172
  1164
        have "?res < e/2 + e/2" apply(rule le_less_trans[OF norm_triangle_ineq])
himmelma@35172
  1165
          apply(rule add_strict_mono) using d1(2)[OF as(1) *(1)] and d2(2)[OF as(1) *(2)] by auto
himmelma@35172
  1166
        finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f x + g x)) - (k + l)) < e" by auto
himmelma@35172
  1167
      qed qed qed { presume "\<not> (\<exists>a b. s = {a..b}) \<Longrightarrow> ?thesis"
himmelma@35172
  1168
    thus ?thesis apply-apply(cases "\<exists>a b. s = {a..b}") using assms by(auto simp add:has_integral intro!:lem) }
himmelma@35172
  1169
  assume as:"\<not> (\<exists>a b. s = {a..b})" thus ?thesis apply(subst has_integral_alt) unfolding if_not_P
himmelma@35172
  1170
  proof(rule,rule) case goal1 hence *:"e/2 > 0" by auto
himmelma@35172
  1171
    from has_integral_altD[OF assms(1) as *] guess B1 . note B1=this[rule_format]
himmelma@35172
  1172
    from has_integral_altD[OF assms(2) as *] guess B2 . note B2=this[rule_format]
himmelma@35172
  1173
    show ?case apply(rule_tac x="max B1 B2" in exI) apply(rule,rule min_max.less_supI1,rule B1)
himmelma@35172
  1174
    proof(rule,rule,rule) fix a b assume "ball 0 (max B1 B2) \<subseteq> {a..b::real^'n}"
himmelma@35172
  1175
      hence *:"ball 0 B1 \<subseteq> {a..b::real^'n}" "ball 0 B2 \<subseteq> {a..b::real^'n}" by auto
himmelma@35172
  1176
      guess w using B1(2)[OF *(1)] .. note w=conjunctD2[OF this]
himmelma@35172
  1177
      guess z using B2(2)[OF *(2)] .. note z=conjunctD2[OF this]
himmelma@35172
  1178
      have *:"\<And>x. (if x \<in> s then f x + g x else 0) = (if x \<in> s then f x else 0) + (if x \<in> s then g x else 0)" by auto
himmelma@35172
  1179
      show "\<exists>z. ((\<lambda>x. if x \<in> s then f x + g x else 0) has_integral z) {a..b} \<and> norm (z - (k + l)) < e"
himmelma@35172
  1180
        apply(rule_tac x="w + z" in exI) apply(rule,rule lem[OF w(1) z(1), unfolded *[THEN sym]])
himmelma@35172
  1181
        using norm_triangle_ineq[of "w - k" "z - l"] w(2) z(2) by(auto simp add:field_simps)
himmelma@35172
  1182
    qed qed qed
himmelma@35172
  1183
himmelma@35172
  1184
lemma has_integral_sub:
himmelma@35172
  1185
  shows "(f has_integral k) s \<Longrightarrow> (g has_integral l) s \<Longrightarrow> ((\<lambda>x. f(x) - g(x)) has_integral (k - l)) s"
himmelma@35172
  1186
  using has_integral_add[OF _ has_integral_neg,of f k s g l] unfolding group_simps by auto
himmelma@35172
  1187
himmelma@35172
  1188
lemma integral_0: "integral s (\<lambda>x::real^'n. 0::real^'m) = 0"
himmelma@35172
  1189
  by(rule integral_unique has_integral_0)+
himmelma@35172
  1190
himmelma@35172
  1191
lemma integral_add:
himmelma@35172
  1192
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow>
himmelma@35172
  1193
   integral s (\<lambda>x. f x + g x) = integral s f + integral s g"
himmelma@35172
  1194
  apply(rule integral_unique) apply(drule integrable_integral)+
himmelma@35172
  1195
  apply(rule has_integral_add) by assumption+
himmelma@35172
  1196
himmelma@35172
  1197
lemma integral_cmul:
himmelma@35172
  1198
  shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. c *\<^sub>R f x) = c *\<^sub>R integral s f"
himmelma@35172
  1199
  apply(rule integral_unique) apply(drule integrable_integral)+
himmelma@35172
  1200
  apply(rule has_integral_cmul) by assumption+
himmelma@35172
  1201
himmelma@35172
  1202
lemma integral_neg:
himmelma@35172
  1203
  shows "f integrable_on s \<Longrightarrow> integral s (\<lambda>x. - f x) = - integral s f"
himmelma@35172
  1204
  apply(rule integral_unique) apply(drule integrable_integral)+
himmelma@35172
  1205
  apply(rule has_integral_neg) by assumption+
himmelma@35172
  1206
himmelma@35172
  1207
lemma integral_sub:
himmelma@35172
  1208
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> integral s (\<lambda>x. f x - g x) = integral s f - integral s g"
himmelma@35172
  1209
  apply(rule integral_unique) apply(drule integrable_integral)+
himmelma@35172
  1210
  apply(rule has_integral_sub) by assumption+
himmelma@35172
  1211
himmelma@35172
  1212
lemma integrable_0: "(\<lambda>x. 0) integrable_on s"
himmelma@35172
  1213
  unfolding integrable_on_def using has_integral_0 by auto
himmelma@35172
  1214
himmelma@35172
  1215
lemma integrable_add:
himmelma@35172
  1216
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x + g x) integrable_on s"
himmelma@35172
  1217
  unfolding integrable_on_def by(auto intro: has_integral_add)
himmelma@35172
  1218
himmelma@35172
  1219
lemma integrable_cmul:
himmelma@35172
  1220
  shows "f integrable_on s \<Longrightarrow> (\<lambda>x. c *\<^sub>R f(x)) integrable_on s"
himmelma@35172
  1221
  unfolding integrable_on_def by(auto intro: has_integral_cmul)
himmelma@35172
  1222
himmelma@35172
  1223
lemma integrable_neg:
himmelma@35172
  1224
  shows "f integrable_on s \<Longrightarrow> (\<lambda>x. -f(x)) integrable_on s"
himmelma@35172
  1225
  unfolding integrable_on_def by(auto intro: has_integral_neg)
himmelma@35172
  1226
himmelma@35172
  1227
lemma integrable_sub:
himmelma@35172
  1228
  shows "f integrable_on s \<Longrightarrow> g integrable_on s \<Longrightarrow> (\<lambda>x. f x - g x) integrable_on s"
himmelma@35172
  1229
  unfolding integrable_on_def by(auto intro: has_integral_sub)
himmelma@35172
  1230
himmelma@35172
  1231
lemma integrable_linear:
himmelma@35172
  1232
  shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> (h o f) integrable_on s"
himmelma@35172
  1233
  unfolding integrable_on_def by(auto intro: has_integral_linear)
himmelma@35172
  1234
himmelma@35172
  1235
lemma integral_linear:
himmelma@35172
  1236
  shows "f integrable_on s \<Longrightarrow> bounded_linear h \<Longrightarrow> integral s (h o f) = h(integral s f)"
himmelma@35172
  1237
  apply(rule has_integral_unique) defer unfolding has_integral_integral 
himmelma@35172
  1238
  apply(drule has_integral_linear,assumption,assumption) unfolding has_integral_integral[THEN sym]
himmelma@35172
  1239
  apply(rule integrable_linear) by assumption+
himmelma@35172
  1240
himmelma@35172
  1241
lemma has_integral_setsum:
himmelma@35172
  1242
  assumes "finite t" "\<forall>a\<in>t. ((f a) has_integral (i a)) s"
himmelma@35172
  1243
  shows "((\<lambda>x. setsum (\<lambda>a. f a x) t) has_integral (setsum i t)) s"
himmelma@35172
  1244
proof(insert assms(1) subset_refl[of t],induct rule:finite_subset_induct)
himmelma@35172
  1245
  case (insert x F) show ?case unfolding setsum_insert[OF insert(1,3)]
himmelma@35172
  1246
    apply(rule has_integral_add) using insert assms by auto
himmelma@35172
  1247
qed auto
himmelma@35172
  1248
himmelma@35172
  1249
lemma integral_setsum:
himmelma@35172
  1250
  shows "finite t \<Longrightarrow> \<forall>a\<in>t. (f a) integrable_on s \<Longrightarrow>
himmelma@35172
  1251
  integral s (\<lambda>x. setsum (\<lambda>a. f a x) t) = setsum (\<lambda>a. integral s (f a)) t"
himmelma@35172
  1252
  apply(rule integral_unique) apply(rule has_integral_setsum)
himmelma@35172
  1253
  using integrable_integral by auto
himmelma@35172
  1254
himmelma@35172
  1255
lemma integrable_setsum:
himmelma@35172
  1256
  shows "finite t \<Longrightarrow> \<forall>a \<in> t.(f a) integrable_on s \<Longrightarrow> (\<lambda>x. setsum (\<lambda>a. f a x) t) integrable_on s"
himmelma@35172
  1257
  unfolding integrable_on_def apply(drule bchoice) using has_integral_setsum[of t] by auto
himmelma@35172
  1258
himmelma@35172
  1259
lemma has_integral_eq:
himmelma@35172
  1260
  assumes "\<forall>x\<in>s. f x = g x" "(f has_integral k) s" shows "(g has_integral k) s"
himmelma@35172
  1261
  using has_integral_sub[OF assms(2), of "\<lambda>x. f x - g x" 0]
himmelma@35172
  1262
  using has_integral_is_0[of s "\<lambda>x. f x - g x"] using assms(1) by auto
himmelma@35172
  1263
himmelma@35172
  1264
lemma integrable_eq:
himmelma@35172
  1265
  shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> f integrable_on s \<Longrightarrow> g integrable_on s"
himmelma@35172
  1266
  unfolding integrable_on_def using has_integral_eq[of s f g] by auto
himmelma@35172
  1267
himmelma@35172
  1268
lemma has_integral_eq_eq:
himmelma@35172
  1269
  shows "\<forall>x\<in>s. f x = g x \<Longrightarrow> ((f has_integral k) s \<longleftrightarrow> (g has_integral k) s)"
himmelma@35172
  1270
  using has_integral_eq[of s f g] has_integral_eq[of s g f] by auto 
himmelma@35172
  1271
himmelma@35172
  1272
lemma has_integral_null[dest]:
himmelma@35172
  1273
  assumes "content({a..b}) = 0" shows  "(f has_integral 0) ({a..b})"
himmelma@35172
  1274
  unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI,rule) defer
himmelma@35172
  1275
proof(rule,rule,erule conjE) fix e::real assume e:"e>0" thus "gauge (\<lambda>x. ball x 1)" by auto
himmelma@35172
  1276
  fix p assume p:"p tagged_division_of {a..b}" (*"(\<lambda>x. ball x 1) fine p"*)
himmelma@35172
  1277
  have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) = 0" unfolding norm_eq_zero diff_0_right
himmelma@35172
  1278
    using setsum_content_null[OF assms(1) p, of f] . 
himmelma@35172
  1279
  thus "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e" using e by auto qed
himmelma@35172
  1280
himmelma@35172
  1281
lemma has_integral_null_eq[simp]:
himmelma@35172
  1282
  shows "content({a..b}) = 0 \<Longrightarrow> ((f has_integral i) ({a..b}) \<longleftrightarrow> i = 0)"
himmelma@35172
  1283
  apply rule apply(rule has_integral_unique,assumption) 
himmelma@35172
  1284
  apply(drule has_integral_null,assumption)
himmelma@35172
  1285
  apply(drule has_integral_null) by auto
himmelma@35172
  1286
himmelma@35172
  1287
lemma integral_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> integral({a..b}) f = 0"
himmelma@35172
  1288
  by(rule integral_unique,drule has_integral_null)
himmelma@35172
  1289
himmelma@35172
  1290
lemma integrable_on_null[dest]: shows "content({a..b}) = 0 \<Longrightarrow> f integrable_on {a..b}"
himmelma@35172
  1291
  unfolding integrable_on_def apply(drule has_integral_null) by auto
himmelma@35172
  1292
himmelma@35172
  1293
lemma has_integral_empty[intro]: shows "(f has_integral 0) {}"
himmelma@35172
  1294
  unfolding empty_as_interval apply(rule has_integral_null) 
himmelma@35172
  1295
  using content_empty unfolding empty_as_interval .
himmelma@35172
  1296
himmelma@35172
  1297
lemma has_integral_empty_eq[simp]: shows "(f has_integral i) {} \<longleftrightarrow> i = 0"
himmelma@35172
  1298
  apply(rule,rule has_integral_unique,assumption) by auto
himmelma@35172
  1299
himmelma@35172
  1300
lemma integrable_on_empty[intro]: shows "f integrable_on {}" unfolding integrable_on_def by auto
himmelma@35172
  1301
himmelma@35172
  1302
lemma integral_empty[simp]: shows "integral {} f = 0"
himmelma@35172
  1303
  apply(rule integral_unique) using has_integral_empty .
himmelma@35172
  1304
himmelma@35172
  1305
lemma has_integral_refl[intro]: shows "(f has_integral 0) {a..a}"
himmelma@35172
  1306
  apply(rule has_integral_null) unfolding content_eq_0_interior
himmelma@35172
  1307
  unfolding interior_closed_interval using interval_sing by auto
himmelma@35172
  1308
himmelma@35172
  1309
lemma integrable_on_refl[intro]: shows "f integrable_on {a..a}" unfolding integrable_on_def by auto
himmelma@35172
  1310
himmelma@35172
  1311
lemma integral_refl: shows "integral {a..a} f = 0" apply(rule integral_unique) by auto
himmelma@35172
  1312
himmelma@35172
  1313
subsection {* Cauchy-type criterion for integrability. *}
himmelma@35172
  1314
himmelma@35172
  1315
lemma integrable_cauchy: fixes f::"real^'n \<Rightarrow> 'a::{real_normed_vector,complete_space}" 
himmelma@35172
  1316
  shows "f integrable_on {a..b} \<longleftrightarrow>
himmelma@35172
  1317
  (\<forall>e>0.\<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<and> d fine p1 \<and>
himmelma@35172
  1318
                            p2 tagged_division_of {a..b} \<and> d fine p2
himmelma@35172
  1319
                            \<longrightarrow> norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 -
himmelma@35172
  1320
                                     setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) < e))" (is "?l = (\<forall>e>0. \<exists>d. ?P e d)")
himmelma@35172
  1321
proof assume ?l
himmelma@35172
  1322
  then guess y unfolding integrable_on_def has_integral .. note y=this
himmelma@35172
  1323
  show "\<forall>e>0. \<exists>d. ?P e d" proof(rule,rule) case goal1 hence "e/2 > 0" by auto
himmelma@35172
  1324
    then guess d apply- apply(drule y[rule_format]) by(erule exE,erule conjE) note d=this[rule_format]
himmelma@35172
  1325
    show ?case apply(rule_tac x=d in exI,rule,rule d) apply(rule,rule,rule,(erule conjE)+)
himmelma@35172
  1326
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b}" "d fine p1" "p2 tagged_division_of {a..b}" "d fine p2"
himmelma@35172
  1327
      show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
himmelma@35172
  1328
        apply(rule dist_triangle_half_l[where y=y,unfolded vector_dist_norm])
himmelma@35172
  1329
        using d(2)[OF conjI[OF as(1-2)]] d(2)[OF conjI[OF as(3-4)]] .
himmelma@35172
  1330
    qed qed
himmelma@35172
  1331
next assume "\<forall>e>0. \<exists>d. ?P e d" hence "\<forall>n::nat. \<exists>d. ?P (inverse(real (n + 1))) d" by auto
himmelma@35172
  1332
  from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format],rule_format]
himmelma@35172
  1333
  have "\<And>n. gauge (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}})" apply(rule gauge_inters) using d(1) by auto
himmelma@35172
  1334
  hence "\<forall>n. \<exists>p. p tagged_division_of {a..b} \<and> (\<lambda>x. \<Inter>{d i x |i. i \<in> {0..n}}) fine p" apply-
himmelma@35172
  1335
  proof case goal1 from this[of n] show ?case apply(drule_tac fine_division_exists) by auto qed
himmelma@35172
  1336
  from choice[OF this] guess p .. note p = conjunctD2[OF this[rule_format]]
himmelma@35172
  1337
  have dp:"\<And>i n. i\<le>n \<Longrightarrow> d i fine p n" using p(2) unfolding fine_inters by auto
himmelma@35172
  1338
  have "Cauchy (\<lambda>n. setsum (\<lambda>(x,k). content k *\<^sub>R (f x)) (p n))"
himmelma@35172
  1339
  proof(rule CauchyI) case goal1 then guess N unfolding real_arch_inv[of e] .. note N=this
himmelma@35172
  1340
    show ?case apply(rule_tac x=N in exI)
himmelma@35172
  1341
    proof(rule,rule,rule,rule) fix m n assume mn:"N \<le> m" "N \<le> n" have *:"N = (N - 1) + 1" using N by auto
himmelma@35172
  1342
      show "norm ((\<Sum>(x, k)\<in>p m. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p n. content k *\<^sub>R f x)) < e"
himmelma@35172
  1343
        apply(rule less_trans[OF _ N[THEN conjunct2,THEN conjunct2]]) apply(subst *) apply(rule d(2))
himmelma@35172
  1344
        using dp p(1) using mn by auto 
himmelma@35172
  1345
    qed qed
himmelma@35172
  1346
  then guess y unfolding convergent_eq_cauchy[THEN sym] .. note y=this[unfolded Lim_sequentially,rule_format]
himmelma@35172
  1347
  show ?l unfolding integrable_on_def has_integral apply(rule_tac x=y in exI)
himmelma@35172
  1348
  proof(rule,rule) fix e::real assume "e>0" hence *:"e/2 > 0" by auto
himmelma@35172
  1349
    then guess N1 unfolding real_arch_inv[of "e/2"] .. note N1=this hence N1':"N1 = N1 - 1 + 1" by auto
himmelma@35172
  1350
    guess N2 using y[OF *] .. note N2=this
himmelma@35172
  1351
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - y) < e)"
himmelma@35172
  1352
      apply(rule_tac x="d (N1 + N2)" in exI) apply rule defer 
himmelma@35172
  1353
    proof(rule,rule,erule conjE) show "gauge (d (N1 + N2))" using d by auto
himmelma@35172
  1354
      fix q assume as:"q tagged_division_of {a..b}" "d (N1 + N2) fine q"
himmelma@35172
  1355
      have *:"inverse (real (N1 + N2 + 1)) < e / 2" apply(rule less_trans) using N1 by auto
himmelma@35172
  1356
      show "norm ((\<Sum>(x, k)\<in>q. content k *\<^sub>R f x) - y) < e" apply(rule norm_triangle_half_r)
himmelma@35172
  1357
        apply(rule less_trans[OF _ *]) apply(subst N1', rule d(2)[of "p (N1+N2)"]) defer
himmelma@35172
  1358
        using N2[rule_format,unfolded vector_dist_norm,of "N1+N2"]
himmelma@35172
  1359
        using as dp[of "N1 - 1 + 1 + N2" "N1 + N2"] using p(1)[of "N1 + N2"] using N1 by auto qed qed qed
himmelma@35172
  1360
himmelma@35172
  1361
subsection {* Additivity of integral on abutting intervals. *}
himmelma@35172
  1362
himmelma@35172
  1363
lemma interval_split:
himmelma@35172
  1364
  "{a..b::real^'n} \<inter> {x. x$k \<le> c} = {a .. (\<chi> i. if i = k then min (b$k) c else b$i)}"
himmelma@35172
  1365
  "{a..b} \<inter> {x. x$k \<ge> c} = {(\<chi> i. if i = k then max (a$k) c else a$i) .. b}"
himmelma@35172
  1366
  apply(rule_tac[!] set_ext) unfolding Int_iff mem_interval mem_Collect_eq
himmelma@35172
  1367
  unfolding Cart_lambda_beta by auto
himmelma@35172
  1368
himmelma@35172
  1369
lemma content_split:
himmelma@35172
  1370
  "content {a..b::real^'n} = content({a..b} \<inter> {x. x$k \<le> c}) + content({a..b} \<inter> {x. x$k >= c})"
himmelma@35172
  1371
proof- note simps = interval_split content_closed_interval_cases Cart_lambda_beta vector_le_def
himmelma@35172
  1372
  { presume "a\<le>b \<Longrightarrow> ?thesis" thus ?thesis apply(cases "a\<le>b") unfolding simps by auto }
himmelma@35172
  1373
  have *:"UNIV = insert k (UNIV - {k})" "\<And>x. finite (UNIV-{x::'n})" "\<And>x. x\<notin>UNIV-{x}" by auto
himmelma@35172
  1374
  have *:"\<And>X Y Z. (\<Prod>i\<in>UNIV. Z i (if i = k then X else Y i)) = Z k X * (\<Prod>i\<in>UNIV-{k}. Z i (Y i))"
himmelma@35172
  1375
    "(\<Prod>i\<in>UNIV. b$i - a$i) = (\<Prod>i\<in>UNIV-{k}. b$i - a$i) * (b$k - a$k)" 
himmelma@35172
  1376
    apply(subst *(1)) defer apply(subst *(1)) unfolding setprod_insert[OF *(2-)] by auto
himmelma@35172
  1377
  assume as:"a\<le>b" moreover have "\<And>x. min (b $ k) c = max (a $ k) c
himmelma@35172
  1378
    \<Longrightarrow> x* (b$k - a$k) = x*(max (a $ k) c - a $ k) + x*(b $ k - max (a $ k) c)"
himmelma@35172
  1379
    by  (auto simp add:field_simps)
himmelma@35172
  1380
  moreover have "\<not> a $ k \<le> c \<Longrightarrow> \<not> c \<le> b $ k \<Longrightarrow> False"
himmelma@35172
  1381
    unfolding not_le using as[unfolded vector_le_def,rule_format,of k] by auto
himmelma@35172
  1382
  ultimately show ?thesis 
himmelma@35172
  1383
    unfolding simps unfolding *(1)[of "\<lambda>i x. b$i - x"] *(1)[of "\<lambda>i x. x - a$i"] *(2) by(auto)
himmelma@35172
  1384
qed
himmelma@35172
  1385
himmelma@35172
  1386
lemma division_split_left_inj:
himmelma@35172
  1387
  assumes "d division_of i" "k1 \<in> d" "k2 \<in> d"  "k1 \<noteq> k2"
himmelma@35172
  1388
  "k1 \<inter> {x::real^'n. x$k \<le> c} = k2 \<inter> {x. x$k \<le> c}"
himmelma@35172
  1389
  shows "content(k1 \<inter> {x. x$k \<le> c}) = 0"
himmelma@35172
  1390
proof- note d=division_ofD[OF assms(1)]
himmelma@35172
  1391
  have *:"\<And>a b::real^'n. \<And> c k. (content({a..b} \<inter> {x. x$k \<le> c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$k \<le> c}) = {})"
himmelma@35172
  1392
    unfolding interval_split content_eq_0_interior by auto
himmelma@35172
  1393
  guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this
himmelma@35172
  1394
  guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this
himmelma@35172
  1395
  have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
himmelma@35172
  1396
  show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])
himmelma@35172
  1397
    defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed
himmelma@35172
  1398
himmelma@35172
  1399
lemma division_split_right_inj:
himmelma@35172
  1400
  assumes "d division_of i" "k1 \<in> d" "k2 \<in> d"  "k1 \<noteq> k2"
himmelma@35172
  1401
  "k1 \<inter> {x::real^'n. x$k \<ge> c} = k2 \<inter> {x. x$k \<ge> c}"
himmelma@35172
  1402
  shows "content(k1 \<inter> {x. x$k \<ge> c}) = 0"
himmelma@35172
  1403
proof- note d=division_ofD[OF assms(1)]
himmelma@35172
  1404
  have *:"\<And>a b::real^'n. \<And> c k. (content({a..b} \<inter> {x. x$k >= c}) = 0 \<longleftrightarrow> interior({a..b} \<inter> {x. x$k >= c}) = {})"
himmelma@35172
  1405
    unfolding interval_split content_eq_0_interior by auto
himmelma@35172
  1406
  guess u1 v1 using d(4)[OF assms(2)] apply-by(erule exE)+ note uv1=this
himmelma@35172
  1407
  guess u2 v2 using d(4)[OF assms(3)] apply-by(erule exE)+ note uv2=this
himmelma@35172
  1408
  have **:"\<And>s t u. s \<inter> t = {} \<Longrightarrow> u \<subseteq> s \<Longrightarrow> u \<subseteq> t \<Longrightarrow> u = {}" by auto
himmelma@35172
  1409
  show ?thesis unfolding uv1 uv2 * apply(rule **[OF d(5)[OF assms(2-4)]])
himmelma@35172
  1410
    defer apply(subst assms(5)[unfolded uv1 uv2]) unfolding uv1 uv2 by auto qed
himmelma@35172
  1411
himmelma@35172
  1412
lemma tagged_division_split_left_inj:
himmelma@35172
  1413
  assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$k \<le> c} = k2 \<inter> {x. x$k \<le> c}" 
himmelma@35172
  1414
  shows "content(k1 \<inter> {x. x$k \<le> c}) = 0"
himmelma@35172
  1415
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto
himmelma@35172
  1416
  show ?thesis apply(rule division_split_left_inj[OF division_of_tagged_division[OF assms(1)]])
himmelma@35172
  1417
    apply(rule_tac[1-2] *) using assms(2-) by auto qed
himmelma@35172
  1418
himmelma@35172
  1419
lemma tagged_division_split_right_inj:
himmelma@35172
  1420
  assumes "d tagged_division_of i" "(x1,k1) \<in> d" "(x2,k2) \<in> d" "k1 \<noteq> k2"  "k1 \<inter> {x. x$k \<ge> c} = k2 \<inter> {x. x$k \<ge> c}" 
himmelma@35172
  1421
  shows "content(k1 \<inter> {x. x$k \<ge> c}) = 0"
himmelma@35172
  1422
proof- have *:"\<And>a b c. (a,b) \<in> c \<Longrightarrow> b \<in> snd ` c" unfolding image_iff apply(rule_tac x="(a,b)" in bexI) by auto
himmelma@35172
  1423
  show ?thesis apply(rule division_split_right_inj[OF division_of_tagged_division[OF assms(1)]])
himmelma@35172
  1424
    apply(rule_tac[1-2] *) using assms(2-) by auto qed
himmelma@35172
  1425
himmelma@35172
  1426
lemma division_split:
himmelma@35172
  1427
  assumes "p division_of {a..b::real^'n}"
himmelma@35172
  1428
  shows "{l \<inter> {x. x$k \<le> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$k \<le> c} = {})} division_of ({a..b} \<inter> {x. x$k \<le> c})" (is "?p1 division_of ?I1") and 
himmelma@35172
  1429
        "{l \<inter> {x. x$k \<ge> c} | l. l \<in> p \<and> ~(l \<inter> {x. x$k \<ge> c} = {})} division_of ({a..b} \<inter> {x. x$k \<ge> c})" (is "?p2 division_of ?I2")
himmelma@35172
  1430
proof(rule_tac[!] division_ofI) note p=division_ofD[OF assms]
himmelma@35172
  1431
  show "finite ?p1" "finite ?p2" using p(1) by auto show "\<Union>?p1 = ?I1" "\<Union>?p2 = ?I2" unfolding p(6)[THEN sym] by auto
himmelma@35172
  1432
  { fix k assume "k\<in>?p1" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
himmelma@35172
  1433
    guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this
himmelma@35172
  1434
    show "k\<subseteq>?I1" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
himmelma@35172
  1435
      using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split) by auto
himmelma@35172
  1436
    fix k' assume "k'\<in>?p1" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this
himmelma@35172
  1437
    assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
himmelma@35172
  1438
  { fix k assume "k\<in>?p2" then guess l unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l=this
himmelma@35172
  1439
    guess u v using p(4)[OF l(2)] apply-by(erule exE)+ note uv=this
himmelma@35172
  1440
    show "k\<subseteq>?I2" "k \<noteq> {}" "\<exists>a b. k = {a..b}" unfolding l
himmelma@35172
  1441
      using p(2-3)[OF l(2)] l(3) unfolding uv apply- prefer 3 apply(subst interval_split) by auto
himmelma@35172
  1442
    fix k' assume "k'\<in>?p2" then guess l' unfolding mem_Collect_eq apply-by(erule exE,(erule conjE)+) note l'=this
himmelma@35172
  1443
    assume "k\<noteq>k'" thus "interior k \<inter> interior k' = {}" unfolding l l' using p(5)[OF l(2) l'(2)] by auto }
himmelma@35172
  1444
qed
himmelma@35172
  1445
himmelma@35172
  1446
lemma has_integral_split: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  1447
  assumes "(f has_integral i) ({a..b} \<inter> {x. x$k \<le> c})"  "(f has_integral j) ({a..b} \<inter> {x. x$k \<ge> c})"
himmelma@35172
  1448
  shows "(f has_integral (i + j)) ({a..b})"
himmelma@35172
  1449
proof(unfold has_integral,rule,rule) case goal1 hence e:"e/2>0" by auto
himmelma@35172
  1450
  guess d1 using has_integralD[OF assms(1)[unfolded interval_split] e] . note d1=this[unfolded interval_split[THEN sym]]
himmelma@35172
  1451
  guess d2 using has_integralD[OF assms(2)[unfolded interval_split] e] . note d2=this[unfolded interval_split[THEN sym]]
himmelma@35172
  1452
  let ?d = "\<lambda>x. if x$k = c then (d1 x \<inter> d2 x) else ball x (abs(x$k - c)) \<inter> d1 x \<inter> d2 x"
himmelma@35172
  1453
  show ?case apply(rule_tac x="?d" in exI,rule) defer apply(rule,rule,(erule conjE)+)
himmelma@35172
  1454
  proof- show "gauge ?d" using d1(1) d2(1) unfolding gauge_def by auto
himmelma@35172
  1455
    fix p assume "p tagged_division_of {a..b}" "?d fine p" note p = this tagged_division_ofD[OF this(1)]
himmelma@35172
  1456
    have lem0:"\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$k \<le> c} = {}) \<Longrightarrow> x$k \<le> c"
himmelma@35172
  1457
         "\<And>x kk. (x,kk) \<in> p \<Longrightarrow> ~(kk \<inter> {x. x$k \<ge> c} = {}) \<Longrightarrow> x$k \<ge> c"
himmelma@35172
  1458
    proof- fix x kk assume as:"(x,kk)\<in>p"
himmelma@35172
  1459
      show "~(kk \<inter> {x. x$k \<le> c} = {}) \<Longrightarrow> x$k \<le> c"
himmelma@35172
  1460
      proof(rule ccontr) case goal1
himmelma@35172
  1461
        from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $ k - c\<bar>"
himmelma@35172
  1462
          using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto
himmelma@35172
  1463
        hence "\<exists>y. y \<in> ball x \<bar>x $ k - c\<bar> \<inter> {x. x $ k \<le> c}" using goal1(1) by blast 
himmelma@35172
  1464
        then guess y .. hence "\<bar>x $ k - y $ k\<bar> < \<bar>x $ k - c\<bar>" "y$k \<le> c" apply-apply(rule le_less_trans)
himmelma@35172
  1465
          using component_le_norm[of "x - y" k,unfolded vector_minus_component] by(auto simp add:vector_dist_norm)
himmelma@35172
  1466
        thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)
himmelma@35172
  1467
      qed
himmelma@35172
  1468
      show "~(kk \<inter> {x. x$k \<ge> c} = {}) \<Longrightarrow> x$k \<ge> c"
himmelma@35172
  1469
      proof(rule ccontr) case goal1
himmelma@35172
  1470
        from this(2)[unfolded not_le] have "kk \<subseteq> ball x \<bar>x $ k - c\<bar>"
himmelma@35172
  1471
          using p(2)[unfolded fine_def,rule_format,OF as,unfolded split_conv] by auto
himmelma@35172
  1472
        hence "\<exists>y. y \<in> ball x \<bar>x $ k - c\<bar> \<inter> {x. x $ k \<ge> c}" using goal1(1) by blast 
himmelma@35172
  1473
        then guess y .. hence "\<bar>x $ k - y $ k\<bar> < \<bar>x $ k - c\<bar>" "y$k \<ge> c" apply-apply(rule le_less_trans)
himmelma@35172
  1474
          using component_le_norm[of "x - y" k,unfolded vector_minus_component] by(auto simp add:vector_dist_norm)
himmelma@35172
  1475
        thus False using goal1(2)[unfolded not_le] by(auto simp add:field_simps)
himmelma@35172
  1476
      qed
himmelma@35172
  1477
    qed
himmelma@35172
  1478
himmelma@35172
  1479
    have lem1: "\<And>f P Q. (\<forall>x k. (x,k) \<in> {(x,f k) | x k. P x k} \<longrightarrow> Q x k) \<longleftrightarrow> (\<forall>x k. P x k \<longrightarrow> Q x (f k))" by auto
himmelma@35172
  1480
    have lem2: "\<And>f s P f. finite s \<Longrightarrow> finite {(x,f k) | x k. (x,k) \<in> s \<and> P x k}"
himmelma@35172
  1481
    proof- case goal1 thus ?case apply-apply(rule finite_subset[of _ "(\<lambda>(x,k). (x,f k)) ` s"]) by auto qed
himmelma@35172
  1482
    have lem3: "\<And>g::(real ^ 'n \<Rightarrow> bool) \<Rightarrow> real ^ 'n \<Rightarrow> bool. finite p \<Longrightarrow>
himmelma@35172
  1483
      setsum (\<lambda>(x,k). content k *\<^sub>R f x) {(x,g k) |x k. (x,k) \<in> p \<and> ~(g k = {})}
himmelma@35172
  1484
               = setsum (\<lambda>(x,k). content k *\<^sub>R f x) ((\<lambda>(x,k). (x,g k)) ` p)"
himmelma@35172
  1485
      apply(rule setsum_mono_zero_left) prefer 3
himmelma@35172
  1486
    proof fix g::"(real ^ 'n \<Rightarrow> bool) \<Rightarrow> real ^ 'n \<Rightarrow> bool" and i::"(real^'n) \<times> ((real^'n) set)"
himmelma@35172
  1487
      assume "i \<in> (\<lambda>(x, k). (x, g k)) ` p - {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}"
himmelma@35172
  1488
      then obtain x k where xk:"i=(x,g k)" "(x,k)\<in>p" "(x,g k) \<notin> {(x, g k) |x k. (x, k) \<in> p \<and> g k \<noteq> {}}" by auto
himmelma@35172
  1489
      have "content (g k) = 0" using xk using content_empty by auto
himmelma@35172
  1490
      thus "(\<lambda>(x, k). content k *\<^sub>R f x) i = 0" unfolding xk split_conv by auto
himmelma@35172
  1491
    qed auto
himmelma@35172
  1492
    have lem4:"\<And>g. (\<lambda>(x,l). content (g l) *\<^sub>R f x) = (\<lambda>(x,l). content l *\<^sub>R f x) o (\<lambda>(x,l). (x,g l))" apply(rule ext) by auto
himmelma@35172
  1493
himmelma@35172
  1494
    let ?M1 = "{(x,kk \<inter> {x. x$k \<le> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$k \<le> c} \<noteq> {}}"
himmelma@35172
  1495
    have "norm ((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) < e/2" apply(rule d1(2),rule tagged_division_ofI)
himmelma@35172
  1496
      apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)
himmelma@35172
  1497
    proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M1} = {a..b} \<inter> {x. x$k \<le> c}" unfolding p(8)[THEN sym] by auto
himmelma@35172
  1498
      fix x l assume xl:"(x,l)\<in>?M1"
himmelma@35172
  1499
      then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note xl'=this
himmelma@35172
  1500
      have "l' \<subseteq> d1 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto
himmelma@35172
  1501
      thus "l \<subseteq> d1 x" unfolding xl' by auto
himmelma@35172
  1502
      show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $ k \<le> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
himmelma@35172
  1503
        using lem0(1)[OF xl'(3-4)] by auto
himmelma@35172
  1504
      show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[where c=c and k=k])
himmelma@35172
  1505
      fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M1"
himmelma@35172
  1506
      then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note yr'=this
himmelma@35172
  1507
      assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
himmelma@35172
  1508
      proof(cases "l' = r' \<longrightarrow> x' = y'")
himmelma@35172
  1509
        case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
himmelma@35172
  1510
      next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto
himmelma@35172
  1511
        thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
himmelma@35172
  1512
      qed qed moreover
himmelma@35172
  1513
himmelma@35172
  1514
    let ?M2 = "{(x,kk \<inter> {x. x$k \<ge> c}) |x kk. (x,kk) \<in> p \<and> kk \<inter> {x. x$k \<ge> c} \<noteq> {}}" 
himmelma@35172
  1515
    have "norm ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j) < e/2" apply(rule d2(2),rule tagged_division_ofI)
himmelma@35172
  1516
      apply(rule lem2 p(3))+ prefer 6 apply(rule fineI)
himmelma@35172
  1517
    proof- show "\<Union>{k. \<exists>x. (x, k) \<in> ?M2} = {a..b} \<inter> {x. x$k \<ge> c}" unfolding p(8)[THEN sym] by auto
himmelma@35172
  1518
      fix x l assume xl:"(x,l)\<in>?M2"
himmelma@35172
  1519
      then guess x' l' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note xl'=this
himmelma@35172
  1520
      have "l' \<subseteq> d2 x'" apply(rule order_trans[OF fineD[OF p(2) xl'(3)]]) by auto
himmelma@35172
  1521
      thus "l \<subseteq> d2 x" unfolding xl' by auto
himmelma@35172
  1522
      show "x\<in>l" "l \<subseteq> {a..b} \<inter> {x. x $ k \<ge> c}" unfolding xl' using p(4-6)[OF xl'(3)] using xl'(4)
himmelma@35172
  1523
        using lem0(2)[OF xl'(3-4)] by auto
himmelma@35172
  1524
      show  "\<exists>a b. l = {a..b}" unfolding xl' using p(6)[OF xl'(3)] by(fastsimp simp add: interval_split[where c=c and k=k])
himmelma@35172
  1525
      fix y r let ?goal = "interior l \<inter> interior r = {}" assume yr:"(y,r)\<in>?M2"
himmelma@35172
  1526
      then guess y' r' unfolding mem_Collect_eq apply- unfolding Pair_eq apply((erule exE)+,(erule conjE)+) .  note yr'=this
himmelma@35172
  1527
      assume as:"(x,l) \<noteq> (y,r)" show "interior l \<inter> interior r = {}"
himmelma@35172
  1528
      proof(cases "l' = r' \<longrightarrow> x' = y'")
himmelma@35172
  1529
        case False thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
himmelma@35172
  1530
      next case True hence "l' \<noteq> r'" using as unfolding xl' yr' by auto
himmelma@35172
  1531
        thus ?thesis using p(7)[OF xl'(3) yr'(3)] using as unfolding xl' yr' by auto
himmelma@35172
  1532
      qed qed ultimately
himmelma@35172
  1533
himmelma@35172
  1534
    have "norm (((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)) < e/2 + e/2"
himmelma@35172
  1535
      apply- apply(rule norm_triangle_lt) by auto
himmelma@35172
  1536
    also { have *:"\<And>x y. x = (0::real) \<Longrightarrow> x *\<^sub>R (y::'a) = 0" using scaleR_zero_left by auto
himmelma@35172
  1537
      have "((\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) - i) + ((\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - j)
himmelma@35172
  1538
       = (\<Sum>(x, k)\<in>?M1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>?M2. content k *\<^sub>R f x) - (i + j)" by auto
himmelma@35172
  1539
      also have "\<dots> = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. x $ k \<le> c}) *\<^sub>R f x) + (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. c \<le> x $ k}) *\<^sub>R f x) - (i + j)"
himmelma@35172
  1540
        unfolding lem3[OF p(3)] apply(subst setsum_reindex_nonzero[OF p(3)]) defer apply(subst setsum_reindex_nonzero[OF p(3)])
himmelma@35172
  1541
        defer unfolding lem4[THEN sym] apply(rule refl) unfolding split_paired_all split_conv apply(rule_tac[!] *)
himmelma@35172
  1542
      proof- case goal1 thus ?case apply- apply(rule tagged_division_split_left_inj [OF p(1), of a b aa ba]) by auto
himmelma@35172
  1543
      next case   goal2 thus ?case apply- apply(rule tagged_division_split_right_inj[OF p(1), of a b aa ba]) by auto
himmelma@35172
  1544
      qed also note setsum_addf[THEN sym]
himmelma@35172
  1545
      also have *:"\<And>x. x\<in>p \<Longrightarrow> (\<lambda>(x, ka). content (ka \<inter> {x. x $ k \<le> c}) *\<^sub>R f x) x + (\<lambda>(x, ka). content (ka \<inter> {x. c \<le> x $ k}) *\<^sub>R f x) x
himmelma@35172
  1546
        = (\<lambda>(x,ka). content ka *\<^sub>R f x) x" unfolding split_paired_all split_conv
himmelma@35172
  1547
      proof- fix a b assume "(a,b) \<in> p" from p(6)[OF this] guess u v apply-by(erule exE)+ note uv=this
himmelma@35172
  1548
        thus "content (b \<inter> {x. x $ k \<le> c}) *\<^sub>R f a + content (b \<inter> {x. c \<le> x $ k}) *\<^sub>R f a = content b *\<^sub>R f a"
himmelma@35172
  1549
          unfolding scaleR_left_distrib[THEN sym] unfolding uv content_split[of u v k c] by auto
himmelma@35172
  1550
      qed note setsum_cong2[OF this]
himmelma@35172
  1551
      finally have "(\<Sum>(x, k)\<in>{(x, kk \<inter> {x. x $ k \<le> c}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. x $ k \<le> c} \<noteq> {}}. content k *\<^sub>R f x) - i +
himmelma@35172
  1552
        ((\<Sum>(x, k)\<in>{(x, kk \<inter> {x. c \<le> x $ k}) |x kk. (x, kk) \<in> p \<and> kk \<inter> {x. c \<le> x $ k} \<noteq> {}}. content k *\<^sub>R f x) - j) =
himmelma@35172
  1553
        (\<Sum>(x, ka)\<in>p. content ka *\<^sub>R f x) - (i + j)" by auto }
himmelma@35172
  1554
    finally show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - (i + j)) < e" by auto qed qed
himmelma@35172
  1555
himmelma@35172
  1556
subsection {* A sort of converse, integrability on subintervals. *}
himmelma@35172
  1557
himmelma@35172
  1558
lemma tagged_division_union_interval:
himmelma@35172
  1559
  assumes "p1 tagged_division_of ({a..b} \<inter> {x::real^'n. x$k \<le> (c::real)})"  "p2 tagged_division_of ({a..b} \<inter> {x. x$k \<ge> c})"
himmelma@35172
  1560
  shows "(p1 \<union> p2) tagged_division_of ({a..b})"
himmelma@35172
  1561
proof- have *:"{a..b} = ({a..b} \<inter> {x. x$k \<le> c}) \<union> ({a..b} \<inter> {x. x$k \<ge> c})" by auto
himmelma@35172
  1562
  show ?thesis apply(subst *) apply(rule tagged_division_union[OF assms])
himmelma@35172
  1563
    unfolding interval_split interior_closed_interval
himmelma@35172
  1564
    by(auto simp add: vector_less_def Cart_lambda_beta elim!:allE[where x=k]) qed
himmelma@35172
  1565
himmelma@35172
  1566
lemma has_integral_separate_sides: fixes f::"real^'m \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  1567
  assumes "(f has_integral i) ({a..b})" "e>0"
himmelma@35172
  1568
  obtains d where "gauge d" "(\<forall>p1 p2. p1 tagged_division_of ({a..b} \<inter> {x. x$k \<le> c}) \<and> d fine p1 \<and>
himmelma@35172
  1569
                                p2 tagged_division_of ({a..b} \<inter> {x. x$k \<ge> c}) \<and> d fine p2
himmelma@35172
  1570
                                \<longrightarrow> norm((setsum (\<lambda>(x,k). content k *\<^sub>R f x) p1 +
himmelma@35172
  1571
                                          setsum (\<lambda>(x,k). content k *\<^sub>R f x) p2) - i) < e)"
himmelma@35172
  1572
proof- guess d using has_integralD[OF assms] . note d=this
himmelma@35172
  1573
  show ?thesis apply(rule that[of d]) apply(rule d) apply(rule,rule,rule,(erule conjE)+)
himmelma@35172
  1574
  proof- fix p1 p2 assume "p1 tagged_division_of {a..b} \<inter> {x. x $ k \<le> c}" "d fine p1" note p1=tagged_division_ofD[OF this(1)] this
himmelma@35172
  1575
                   assume "p2 tagged_division_of {a..b} \<inter> {x. c \<le> x $ k}" "d fine p2" note p2=tagged_division_ofD[OF this(1)] this
himmelma@35172
  1576
    note tagged_division_union_interval[OF p1(7) p2(7)] note p12 = tagged_division_ofD[OF this] this
himmelma@35172
  1577
    have "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) = norm ((\<Sum>(x, k)\<in>p1 \<union> p2. content k *\<^sub>R f x) - i)"
himmelma@35172
  1578
      apply(subst setsum_Un_zero) apply(rule p1 p2)+ apply(rule) unfolding split_paired_all split_conv
himmelma@35172
  1579
    proof- fix a b assume ab:"(a,b) \<in> p1 \<inter> p2"
himmelma@35172
  1580
      have "(a,b) \<in> p1" using ab by auto from p1(4)[OF this] guess u v apply-by(erule exE)+ note uv =this
himmelma@35172
  1581
      have "b \<subseteq> {x. x$k = c}" using ab p1(3)[of a b] p2(3)[of a b] by fastsimp
himmelma@35172
  1582
      moreover have "interior {x. x $ k = c} = {}" 
himmelma@35172
  1583
      proof(rule ccontr) case goal1 then obtain x where x:"x\<in>interior {x. x$k = c}" by auto
himmelma@35172
  1584
        then guess e unfolding mem_interior .. note e=this
himmelma@35172
  1585
        have x:"x$k = c" using x interior_subset by fastsimp
himmelma@35172
  1586
        have *:"\<And>i. \<bar>(x - (x + (\<chi> i. if i = k then e / 2 else 0))) $ i\<bar> = (if i = k then e/2 else 0)" using e by auto
himmelma@35172
  1587
        have "x + (\<chi> i. if i = k then e/2 else 0) \<in> ball x e" unfolding mem_ball vector_dist_norm 
himmelma@35172
  1588
          apply(rule le_less_trans[OF norm_le_l1]) unfolding * 
himmelma@35172
  1589
          unfolding setsum_delta[OF finite_UNIV] using e by auto 
himmelma@35172
  1590
        hence "x + (\<chi> i. if i = k then e/2 else 0) \<in> {x. x$k = c}" using e by auto
himmelma@35172
  1591
        thus False unfolding mem_Collect_eq using e x by auto
himmelma@35172
  1592
      qed ultimately have "content b = 0" unfolding uv content_eq_0_interior apply-apply(drule subset_interior) by auto
himmelma@35172
  1593
      thus "content b *\<^sub>R f a = 0" by auto
himmelma@35172
  1594
    qed auto
himmelma@35172
  1595
    also have "\<dots> < e" by(rule d(2) p12 fine_union p1 p2)+
himmelma@35172
  1596
    finally show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) + (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x) - i) < e" . qed qed
himmelma@35172
  1597
himmelma@35172
  1598
lemma integrable_split[intro]: fixes f::"real^'n \<Rightarrow> 'a::{real_normed_vector,complete_space}" assumes "f integrable_on {a..b}"
himmelma@35172
  1599
  shows "f integrable_on ({a..b} \<inter> {x. x$k \<le> c})" (is ?t1) and "f integrable_on ({a..b} \<inter> {x. x$k \<ge> c})" (is ?t2) 
himmelma@35172
  1600
proof- guess y using assms unfolding integrable_on_def .. note y=this
himmelma@35172
  1601
  def b' \<equiv> "(\<chi> i. if i = k then min (b$k) c else b$i)::real^'n"
himmelma@35172
  1602
  and a' \<equiv> "(\<chi> i. if i = k then max (a$k) c else a$i)::real^'n"
himmelma@35172
  1603
  show ?t1 ?t2 unfolding interval_split integrable_cauchy unfolding interval_split[THEN sym]
himmelma@35172
  1604
  proof(rule_tac[!] allI impI)+ fix e::real assume "e>0" hence "e/2>0" by auto
himmelma@35172
  1605
    from has_integral_separate_sides[OF y this,of k c] guess d . note d=this[rule_format]
himmelma@35172
  1606
    let ?P = "\<lambda>A. \<exists>d. gauge d \<and> (\<forall>p1 p2. p1 tagged_division_of {a..b} \<inter> A \<and> d fine p1 \<and> p2 tagged_division_of {a..b} \<inter> A \<and> d fine p2 \<longrightarrow>
himmelma@35172
  1607
                              norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e)"
himmelma@35172
  1608
    show "?P {x. x $ k \<le> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
himmelma@35172
  1609
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $ k \<le> c} \<and> d fine p1 \<and> p2 tagged_division_of {a..b} \<inter> {x. x $ k \<le> c} \<and> d fine p2"
himmelma@35172
  1610
      show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
himmelma@35172
  1611
      proof- guess p using fine_division_exists[OF d(1), of a' b] . note p=this
himmelma@35172
  1612
        show ?thesis using norm_triangle_half_l[OF d(2)[of p1 p] d(2)[of p2 p]]
himmelma@35172
  1613
          using as unfolding interval_split b'_def[symmetric] a'_def[symmetric]
himmelma@35172
  1614
          using p using assms by(auto simp add:group_simps)
himmelma@35172
  1615
      qed qed  
himmelma@35172
  1616
    show "?P {x. x $ k \<ge> c}" apply(rule_tac x=d in exI) apply(rule,rule d) apply(rule,rule,rule)
himmelma@35172
  1617
    proof- fix p1 p2 assume as:"p1 tagged_division_of {a..b} \<inter> {x. x $ k \<ge> c} \<and> d fine p1 \<and> p2 tagged_division_of {a..b} \<inter> {x. x $ k \<ge> c} \<and> d fine p2"
himmelma@35172
  1618
      show "norm ((\<Sum>(x, k)\<in>p1. content k *\<^sub>R f x) - (\<Sum>(x, k)\<in>p2. content k *\<^sub>R f x)) < e"
himmelma@35172
  1619
      proof- guess p using fine_division_exists[OF d(1), of a b'] . note p=this
himmelma@35172
  1620
        show ?thesis using norm_triangle_half_l[OF d(2)[of p p1] d(2)[of p p2]]
himmelma@35172
  1621
          using as unfolding interval_split b'_def[symmetric] a'_def[symmetric]
himmelma@35172
  1622
          using p using assms by(auto simp add:group_simps) qed qed qed qed
himmelma@35172
  1623
himmelma@35172
  1624
subsection {* Generalized notion of additivity. *}
himmelma@35172
  1625
himmelma@35172
  1626
definition "neutral opp = (SOME x. \<forall>y. opp x y = y \<and> opp y x = y)"
himmelma@35172
  1627
himmelma@35172
  1628
definition operative :: "('a \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> ((real^'n) set \<Rightarrow> 'a) \<Rightarrow> bool" where
himmelma@35172
  1629
  "operative opp f \<equiv> 
himmelma@35172
  1630
    (\<forall>a b. content {a..b} = 0 \<longrightarrow> f {a..b} = neutral(opp)) \<and>
himmelma@35172
  1631
    (\<forall>a b c k. f({a..b}) =
himmelma@35172
  1632
                   opp (f({a..b} \<inter> {x. x$k \<le> c}))
himmelma@35172
  1633
                       (f({a..b} \<inter> {x. x$k \<ge> c})))"
himmelma@35172
  1634
himmelma@35172
  1635
lemma operativeD[dest]: assumes "operative opp f"
himmelma@35172
  1636
  shows "\<And>a b. content {a..b} = 0 \<Longrightarrow> f {a..b} = neutral(opp)"
himmelma@35172
  1637
  "\<And>a b c k. f({a..b}) = opp (f({a..b} \<inter> {x. x$k \<le> c})) (f({a..b} \<inter> {x. x$k \<ge> c}))"
himmelma@35172
  1638
  using assms unfolding operative_def by auto
himmelma@35172
  1639
himmelma@35172
  1640
lemma operative_trivial:
himmelma@35172
  1641
 "operative opp f \<Longrightarrow> content({a..b}) = 0 \<Longrightarrow> f({a..b}) = neutral opp"
himmelma@35172
  1642
  unfolding operative_def by auto
himmelma@35172
  1643
himmelma@35172
  1644
lemma property_empty_interval:
himmelma@35172
  1645
 "(\<forall>a b. content({a..b}) = 0 \<longrightarrow> P({a..b})) \<Longrightarrow> P {}" 
himmelma@35172
  1646
  using content_empty unfolding empty_as_interval by auto
himmelma@35172
  1647
himmelma@35172
  1648
lemma operative_empty: "operative opp f \<Longrightarrow> f {} = neutral opp"
himmelma@35172
  1649
  unfolding operative_def apply(rule property_empty_interval) by auto
himmelma@35172
  1650
himmelma@35172
  1651
subsection {* Using additivity of lifted function to encode definedness. *}
himmelma@35172
  1652
himmelma@35172
  1653
lemma forall_option: "(\<forall>x. P x) \<longleftrightarrow> P None \<and> (\<forall>x. P(Some x))"
himmelma@35172
  1654
  by (metis map_of.simps option.nchotomy)
himmelma@35172
  1655
himmelma@35172
  1656
lemma exists_option:
himmelma@35172
  1657
 "(\<exists>x. P x) \<longleftrightarrow> P None \<or> (\<exists>x. P(Some x))" 
himmelma@35172
  1658
  by (metis map_of.simps option.nchotomy)
himmelma@35172
  1659
himmelma@35172
  1660
fun lifted where 
himmelma@35172
  1661
  "lifted (opp::'a\<Rightarrow>'a\<Rightarrow>'b) (Some x) (Some y) = Some(opp x y)" |
himmelma@35172
  1662
  "lifted opp None _ = (None::'b option)" |
himmelma@35172
  1663
  "lifted opp _ None = None"
himmelma@35172
  1664
himmelma@35172
  1665
lemma lifted_simp_1[simp]: "lifted opp v None = None"
himmelma@35172
  1666
  apply(induct v) by auto
himmelma@35172
  1667
himmelma@35172
  1668
definition "monoidal opp \<equiv>  (\<forall>x y. opp x y = opp y x) \<and>
himmelma@35172
  1669
                   (\<forall>x y z. opp x (opp y z) = opp (opp x y) z) \<and>
himmelma@35172
  1670
                   (\<forall>x. opp (neutral opp) x = x)"
himmelma@35172
  1671
himmelma@35172
  1672
lemma monoidalI: assumes "\<And>x y. opp x y = opp y x"
himmelma@35172
  1673
  "\<And>x y z. opp x (opp y z) = opp (opp x y) z"
himmelma@35172
  1674
  "\<And>x. opp (neutral opp) x = x" shows "monoidal opp"
himmelma@35172
  1675
  unfolding monoidal_def using assms by fastsimp
himmelma@35172
  1676
himmelma@35172
  1677
lemma monoidal_ac: assumes "monoidal opp"
himmelma@35172
  1678
  shows "opp (neutral opp) a = a" "opp a (neutral opp) = a" "opp a b = opp b a"
himmelma@35172
  1679
  "opp (opp a b) c = opp a (opp b c)"  "opp a (opp b c) = opp b (opp a c)"
himmelma@35172
  1680
  using assms unfolding monoidal_def apply- by metis+
himmelma@35172
  1681
himmelma@35172
  1682
lemma monoidal_simps[simp]: assumes "monoidal opp"
himmelma@35172
  1683
  shows "opp (neutral opp) a = a" "opp a (neutral opp) = a"
himmelma@35172
  1684
  using monoidal_ac[OF assms] by auto
himmelma@35172
  1685
himmelma@35172
  1686
lemma neutral_lifted[cong]: assumes "monoidal opp"
himmelma@35172
  1687
  shows "neutral (lifted opp) = Some(neutral opp)"
himmelma@35172
  1688
  apply(subst neutral_def) apply(rule some_equality) apply(rule,induct_tac y) prefer 3
himmelma@35172
  1689
proof- fix x assume "\<forall>y. lifted opp x y = y \<and> lifted opp y x = y"
himmelma@35172
  1690
  thus "x = Some (neutral opp)" apply(induct x) defer
himmelma@35172
  1691
    apply rule apply(subst neutral_def) apply(subst eq_commute,rule some_equality)
himmelma@35172
  1692
    apply(rule,erule_tac x="Some y" in allE) defer apply(erule_tac x="Some x" in allE) by auto
himmelma@35172
  1693
qed(auto simp add:monoidal_ac[OF assms])
himmelma@35172
  1694
himmelma@35172
  1695
lemma monoidal_lifted[intro]: assumes "monoidal opp" shows "monoidal(lifted opp)"
himmelma@35172
  1696
  unfolding monoidal_def forall_option neutral_lifted[OF assms] using monoidal_ac[OF assms] by auto
himmelma@35172
  1697
himmelma@35172
  1698
definition "support opp f s = {x. x\<in>s \<and> f x \<noteq> neutral opp}"
himmelma@35172
  1699
definition "fold' opp e s \<equiv> (if finite s then fold opp e s else e)"
himmelma@35172
  1700
definition "iterate opp s f \<equiv> fold' (\<lambda>x a. opp (f x) a) (neutral opp) (support opp f s)"
himmelma@35172
  1701
himmelma@35172
  1702
lemma support_subset[intro]:"support opp f s \<subseteq> s" unfolding support_def by auto
himmelma@35172
  1703
lemma support_empty[simp]:"support opp f {} = {}" using support_subset[of opp f "{}"] by auto
himmelma@35172
  1704
himmelma@35172
  1705
lemma fun_left_comm_monoidal[intro]: assumes "monoidal opp" shows "fun_left_comm opp"
himmelma@35172
  1706
  unfolding fun_left_comm_def using monoidal_ac[OF assms] by auto
himmelma@35172
  1707
himmelma@35172
  1708
lemma support_clauses:
himmelma@35172
  1709
  "\<And>f g s. support opp f {} = {}"
himmelma@35172
  1710
  "\<And>f g s. support opp f (insert x s) = (if f(x) = neutral opp then support opp f s else insert x (support opp f s))"
himmelma@35172
  1711
  "\<And>f g s. support opp f (s - {x}) = (support opp f s) - {x}"
himmelma@35172
  1712
  "\<And>f g s. support opp f (s \<union> t) = (support opp f s) \<union> (support opp f t)"
himmelma@35172
  1713
  "\<And>f g s. support opp f (s \<inter> t) = (support opp f s) \<inter> (support opp f t)"
himmelma@35172
  1714
  "\<And>f g s. support opp f (s - t) = (support opp f s) - (support opp f t)"
himmelma@35172
  1715
  "\<And>f g s. support opp g (f ` s) = f ` (support opp (g o f) s)"
himmelma@35172
  1716
unfolding support_def by auto
himmelma@35172
  1717
himmelma@35172
  1718
lemma finite_support[intro]:"finite s \<Longrightarrow> finite (support opp f s)"
himmelma@35172
  1719
  unfolding support_def by auto
himmelma@35172
  1720
himmelma@35172
  1721
lemma iterate_empty[simp]:"iterate opp {} f = neutral opp"
himmelma@35172
  1722
  unfolding iterate_def fold'_def by auto 
himmelma@35172
  1723
himmelma@35172
  1724
lemma iterate_insert[simp]: assumes "monoidal opp" "finite s"
himmelma@35172
  1725
  shows "iterate opp (insert x s) f = (if x \<in> s then iterate opp s f else opp (f x) (iterate opp s f))" 
himmelma@35172
  1726
proof(cases "x\<in>s") case True hence *:"insert x s = s" by auto
himmelma@35172
  1727
  show ?thesis unfolding iterate_def if_P[OF True] * by auto
himmelma@35172
  1728
next case False note x=this
himmelma@35172
  1729
  note * = fun_left_comm.fun_left_comm_apply[OF fun_left_comm_monoidal[OF assms(1)]]
himmelma@35172
  1730
  show ?thesis proof(cases "f x = neutral opp")
himmelma@35172
  1731
    case True show ?thesis unfolding iterate_def if_not_P[OF x] support_clauses if_P[OF True]
himmelma@35172
  1732
      unfolding True monoidal_simps[OF assms(1)] by auto
himmelma@35172
  1733
  next case False show ?thesis unfolding iterate_def fold'_def  if_not_P[OF x] support_clauses if_not_P[OF False]
himmelma@35172
  1734
      apply(subst fun_left_comm.fold_insert[OF * finite_support])
himmelma@35172
  1735
      using `finite s` unfolding support_def using False x by auto qed qed 
himmelma@35172
  1736
himmelma@35172
  1737
lemma iterate_some:
himmelma@35172
  1738
  assumes "monoidal opp"  "finite s"
himmelma@35172
  1739
  shows "iterate (lifted opp) s (\<lambda>x. Some(f x)) = Some (iterate opp s f)" using assms(2)
himmelma@35172
  1740
proof(induct s) case empty thus ?case using assms by auto
himmelma@35172
  1741
next case (insert x F) show ?case apply(subst iterate_insert) prefer 3 apply(subst if_not_P)
himmelma@35172
  1742
    defer unfolding insert(3) lifted.simps apply rule using assms insert by auto qed
himmelma@35172
  1743
himmelma@35172
  1744
subsection {* Two key instances of additivity. *}
himmelma@35172
  1745
himmelma@35172
  1746
lemma neutral_add[simp]:
himmelma@35172
  1747
  "neutral op + = (0::_::comm_monoid_add)" unfolding neutral_def 
himmelma@35172
  1748
  apply(rule some_equality) defer apply(erule_tac x=0 in allE) by auto
himmelma@35172
  1749
himmelma@35172
  1750
lemma operative_content[intro]: "operative (op +) content"
himmelma@35172
  1751
  unfolding operative_def content_split[THEN sym] neutral_add by auto
himmelma@35172
  1752
himmelma@35172
  1753
lemma neutral_monoid[simp]: "neutral ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a) = 0"
himmelma@35172
  1754
  unfolding neutral_def apply(rule some_equality) defer
himmelma@35172
  1755
  apply(erule_tac x=0 in allE) by auto
himmelma@35172
  1756
himmelma@35172
  1757
lemma monoidal_monoid[intro]:
himmelma@35172
  1758
  shows "monoidal ((op +)::('a::comm_monoid_add) \<Rightarrow> 'a \<Rightarrow> 'a)"
himmelma@35172
  1759
  unfolding monoidal_def neutral_monoid by(auto simp add: group_simps) 
himmelma@35172
  1760
himmelma@35172
  1761
lemma operative_integral: fixes f::"real^'n \<Rightarrow> 'a::banach"
himmelma@35172
  1762
  shows "operative (lifted(op +)) (\<lambda>i. if f integrable_on i then Some(integral i f) else None)"
himmelma@35172
  1763
  unfolding operative_def unfolding neutral_lifted[OF monoidal_monoid] neutral_add
himmelma@35172
  1764
  apply(rule,rule,rule,rule) defer apply(rule allI)+
himmelma@35172
  1765
proof- fix a b c k show "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) =
himmelma@35172
  1766
              lifted op + (if f integrable_on {a..b} \<inter> {x. x $ k \<le> c} then Some (integral ({a..b} \<inter> {x. x $ k \<le> c}) f) else None)
himmelma@35172
  1767
               (if f integrable_on {a..b} \<inter> {x. c \<le> x $ k} then Some (integral ({a..b} \<inter> {x. c \<le> x $ k}) f) else None)"
himmelma@35172
  1768
  proof(cases "f integrable_on {a..b}") 
himmelma@35172
  1769
    case True show ?thesis unfolding if_P[OF True]
himmelma@35172
  1770
      unfolding if_P[OF integrable_split(1)[OF True]] if_P[OF integrable_split(2)[OF True]]
himmelma@35172
  1771
      unfolding lifted.simps option.inject apply(rule integral_unique) apply(rule has_integral_split) 
himmelma@35172
  1772
      apply(rule_tac[!] integrable_integral integrable_split)+ using True by assumption+
himmelma@35172
  1773
  next case False have "(\<not> (f integrable_on {a..b} \<inter> {x. x $ k \<le> c})) \<or> (\<not> ( f integrable_on {a..b} \<inter> {x. c \<le> x $ k}))"
himmelma@35172
  1774
    proof(rule ccontr) case goal1 hence "f integrable_on {a..b}" apply- unfolding integrable_on_def
himmelma@35172
  1775
        apply(rule_tac x="integral ({a..b} \<inter> {x. x $ k \<le> c}) f + integral ({a..b} \<inter> {x. x $ k \<ge> c}) f" in exI)
himmelma@35172
  1776
        apply(rule has_integral_split) apply(rule_tac[!] integrable_integral) by auto
himmelma@35172
  1777
      thus False using False by auto
himmelma@35172
  1778
    qed thus ?thesis using False by auto 
himmelma@35172
  1779
  qed next 
himmelma@35172
  1780
  fix a b assume as:"content {a..b::real^'n} = 0"
himmelma@35172
  1781
  thus "(if f integrable_on {a..b} then Some (integral {a..b} f) else None) = Some 0"
himmelma@35172
  1782
    unfolding if_P[OF integrable_on_null[OF as]] using has_integral_null_eq[OF as] by auto qed
himmelma@35172
  1783
himmelma@35172
  1784
subsection {* Points of division of a partition. *}
himmelma@35172
  1785
himmelma@35172
  1786
definition "division_points (k::(real^'n) set) d = 
himmelma@35172
  1787
    {(j,x). (interval_lowerbound k)$j < x \<and> x < (interval_upperbound k)$j \<and>
himmelma@35172
  1788
           (\<exists>i\<in>d. (interval_lowerbound i)$j = x \<or> (interval_upperbound i)$j = x)}"
himmelma@35172
  1789
himmelma@35172
  1790
lemma division_points_finite: assumes "d division_of i"
himmelma@35172
  1791
  shows "finite (division_points i d)"
himmelma@35172
  1792
proof- note assm = division_ofD[OF assms]
himmelma@35172
  1793
  let ?M = "\<lambda>j. {(j,x)|x. (interval_lowerbound i)$j < x \<and> x < (interval_upperbound i)$j \<and>
himmelma@35172
  1794
           (\<exists>i\<in>d. (interval_lowerbound i)$j = x \<or> (interval_upperbound i)$j = x)}"
himmelma@35172
  1795
  have *:"division_points i d = \<Union>(?M ` UNIV)"
himmelma@35172
  1796
    unfolding division_points_def by auto
himmelma@35172
  1797
  show ?thesis unfolding * using assm by auto qed
himmelma@35172
  1798
himmelma@35172
  1799
lemma division_points_subset:
himmelma@35172
  1800
  assumes "d division_of {a..b}" "\<forall>i. a$i < b$i"  "a$k < c" "c < b$k"
himmelma@35172
  1801
  shows "division_points ({a..b} \<inter> {x. x$k \<le> c}) {l \<inter> {x. x$k \<le> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$k \<le> c} = {})}
himmelma@35172
  1802
                  \<subseteq> division_points ({a..b}) d" (is ?t1) and
himmelma@35172
  1803
        "division_points ({a..b} \<inter> {x. x$k \<ge> c}) {l \<inter> {x. x$k \<ge> c} | l . l \<in> d \<and> ~(l \<inter> {x. x$k \<ge> c} = {})}
himmelma@35172
  1804
                  \<subseteq> division_points ({a..b}) d" (is ?t2)
himmelma@35172
  1805
proof- note assm = division_ofD[OF assms(1)]
himmelma@35172
  1806
  have *:"\<forall>i. a$i \<le> b$i"   "\<forall>i. a$i \<le> (\<chi> i. if i = k then min (b $ k) c else b $ i) $ i"
himmelma@35172
  1807
    "\<forall>i. (\<chi> i. if i = k then max (a $ k) c else a $ i) $ i \<le> b$i"  "min (b $ k) c = c" "max (a $ k) c = c"
himmelma@35172
  1808
    using assms using less_imp_le by auto
himmelma@35172
  1809
  show ?t1 unfolding division_points_def interval_split[of a b]
himmelma@35172
  1810
    unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] Cart_lambda_beta unfolding *
himmelma@35172
  1811
    unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+ unfolding mem_Collect_eq apply(erule exE conjE)+
himmelma@35172
  1812
  proof- fix i l x assume as:"a $ fst x < snd x" "snd x < (if fst x = k then c else b $ fst x)"
himmelma@35172
  1813
      "interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x"  "i = l \<inter> {x. x $ k \<le> c}" "l \<in> d" "l \<inter> {x. x $ k \<le> c} \<noteq> {}"
himmelma@35172
  1814
    from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this
himmelma@35172
  1815
    have *:"\<forall>i. u $ i \<le> (\<chi> i. if i = k then min (v $ k) c else v $ i) $ i" using as(6) unfolding l interval_split interval_ne_empty as .
himmelma@35172
  1816
    have **:"\<forall>i. u$i \<le> v$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
himmelma@35172
  1817
    show "a $ fst x < snd x \<and> snd x < b $ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x)"
himmelma@35172
  1818
      using as(1-3,5) unfolding l interval_split interval_ne_empty as interval_bounds[OF *] Cart_lambda_beta apply-
himmelma@35172
  1819
      apply(rule,assumption,rule) defer apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
himmelma@35172
  1820
      apply(case_tac[!] "fst x = k") using assms by auto
himmelma@35172
  1821
  qed
himmelma@35172
  1822
  show ?t2 unfolding division_points_def interval_split[of a b]
himmelma@35172
  1823
    unfolding interval_bounds[OF *(1)] interval_bounds[OF *(2)] interval_bounds[OF *(3)] Cart_lambda_beta unfolding *
himmelma@35172
  1824
    unfolding subset_eq apply(rule) unfolding mem_Collect_eq split_beta apply(erule bexE conjE)+ unfolding mem_Collect_eq apply(erule exE conjE)+
himmelma@35172
  1825
  proof- fix i l x assume as:"(if fst x = k then c else a $ fst x) < snd x" "snd x < b $ fst x" "interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x"
himmelma@35172
  1826
      "i = l \<inter> {x. c \<le> x $ k}" "l \<in> d" "l \<inter> {x. c \<le> x $ k} \<noteq> {}"
himmelma@35172
  1827
    from assm(4)[OF this(5)] guess u v apply-by(erule exE)+ note l=this
himmelma@35172
  1828
    have *:"\<forall>i. (\<chi> i. if i = k then max (u $ k) c else u $ i) $ i \<le> v $ i" using as(6) unfolding l interval_split interval_ne_empty as .
himmelma@35172
  1829
    have **:"\<forall>i. u$i \<le> v$i" using l using as(6) unfolding interval_ne_empty[THEN sym] by auto
himmelma@35172
  1830
    show "a $ fst x < snd x \<and> snd x < b $ fst x \<and> (\<exists>i\<in>d. interval_lowerbound i $ fst x = snd x \<or> interval_upperbound i $ fst x = snd x)"
himmelma@35172
  1831
      using as(1-3,5) unfolding l interval_split interval_ne_empty as interval_bounds[OF *] Cart_lambda_beta apply-
himmelma@35172
  1832
      apply rule defer apply(rule,assumption) apply(rule_tac x="{u..v}" in bexI) unfolding interval_bounds[OF **]
himmelma@35172
  1833
      apply(case_tac[!] "fst x = k") using assms by auto qed qed
himmelma@35172
  1834
himmelma@35172
  1835
lemma division_points_psubset:
himmelma@35172
  1836
  assumes "d division_of {a..b}"  "\<forall>i. a$i < b$i"  "a$k < c" "c < b$k"
himmelma@35172
  1837
  "l \<in> d" "interval_lowerbound l$k = c \<or> interval_upperbound l$k = c"
himmelma@35172
  1838
  shows "division_points ({a..b} \<inter> {x. x$k \<le> c}) {l \<inter> {x. x$k \<le> c} | l. l\<in>d \<and> l \<inter> {x. x$k \<le> c} \<noteq> {}} \<subset> division_points ({a..b}) d" (is "?D1 \<subset> ?D") 
himmelma@35172
  1839
        "division_points ({a..b} \<inter> {x. x$k \<ge> c}) {l \<inter> {x. x$k \<ge> c} | l. l\<in>d \<and> l \<inter> {x. x$k \<ge> c} \<noteq> {}} \<subset> division_points ({a..b}) d" (is "?D2 \<subset> ?D") 
himmelma@35172
  1840
proof- have ab:"\<forall>i. a$i \<le> b$i" using assms(2) by(auto intro!:less_imp_le)
himmelma@35172
  1841
  guess u v using division_ofD(4)[OF assms(1,5)] apply-by(erule exE)+ note l=this
himmelma@35172
  1842
  have uv:"\<forall>i. u$i \<le> v$i" "\<forall>i. a$i \<le> u$i \<and> v$i \<le> b$i" using division_ofD(2,2,3)[OF assms(1,5)] unfolding l interval_ne_empty
himmelma@35172
  1843
    unfolding subset_eq apply- defer apply(erule_tac x=u in ballE, erule_tac x=v in ballE) unfolding mem_interval by auto
himmelma@35172
  1844
  have *:"interval_upperbound ({a..b} \<inter> {x. x $ k \<le> interval_upperbound l $ k}) $ k = interval_upperbound l $ k"
himmelma@35172
  1845
         "interval_upperbound ({a..b} \<inter> {x. x $ k \<le> interval_lowerbound l $ k}) $ k = interval_lowerbound l $ k"
himmelma@35172
  1846
    unfolding interval_split apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)
himmelma@35172
  1847
    unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab by auto
himmelma@35172
  1848
  have "\<exists>x. x \<in> ?D - ?D1" using assms(2-) apply-apply(erule disjE)
himmelma@35172
  1849
    apply(rule_tac x="(k,(interval_lowerbound l)$k)" in exI) defer
himmelma@35172
  1850
    apply(rule_tac x="(k,(interval_upperbound l)$k)" in exI)
himmelma@35172
  1851
    unfolding division_points_def unfolding interval_bounds[OF ab]
himmelma@35172
  1852
    apply (auto simp add:interval_bounds) unfolding * by auto
himmelma@35172
  1853
  thus "?D1 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) by auto
himmelma@35172
  1854
himmelma@35172
  1855
  have *:"interval_lowerbound ({a..b} \<inter> {x. x $ k \<ge> interval_lowerbound l $ k}) $ k = interval_lowerbound l $ k"
himmelma@35172
  1856
         "interval_lowerbound ({a..b} \<inter> {x. x $ k \<ge> interval_upperbound l $ k}) $ k = interval_upperbound l $ k"
himmelma@35172
  1857
    unfolding interval_split apply(subst interval_bounds) prefer 3 apply(subst interval_bounds)
himmelma@35172
  1858
    unfolding l interval_bounds[OF uv(1)] using uv[rule_format,of k] ab by auto
himmelma@35172
  1859
  have "\<exists>x. x \<in> ?D - ?D2" using assms(2-) apply-apply(erule disjE)
himmelma@35172
  1860
    apply(rule_tac x="(k,(interval_lowerbound l)$k)" in exI) defer
himmelma@35172
  1861
    apply(rule_tac x="(k,(interval_upperbound l)$k)" in exI)
himmelma@35172
  1862
    unfolding division_points_def unfolding interval_bounds[OF ab]
himmelma@35172
  1863
    apply (auto simp add:interval_bounds) unfolding * by auto
himmelma@35172
  1864
  thus "?D2 \<subset> ?D" apply-apply(rule,rule division_points_subset[OF assms(1-4)]) by auto qed
himmelma@35172
  1865
himmelma@35172
  1866
subsection {* Preservation by divisions and tagged divisions. *}
himmelma@35172
  1867
himmelma@35172
  1868
lemma support_support[simp]:"support opp f (support opp f s) = support opp f s"
himmelma@35172
  1869
  unfolding support_def by auto
himmelma@35172
  1870
himmelma@35172
  1871
lemma iterate_support[simp]: "iterate opp (support opp f s) f = iterate opp s f"
himmelma@35172
  1872
  unfolding iterate_def support_support by auto
himmelma@35172
  1873
himmelma@35172
  1874
lemma iterate_expand_cases:
himmelma@35172
  1875
  "iterate opp s f = (if finite(support opp f s) then iterate opp (support opp f s) f else neutral opp)"
himmelma@35172
  1876
  apply(cases) apply(subst if_P,assumption) unfolding iterate_def support_support fold'_def by auto 
himmelma@35172
  1877
himmelma@35172
  1878
lemma iterate_image: assumes "monoidal opp"  "inj_on f s"
himmelma@35172
  1879
  shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)"
himmelma@35172
  1880
proof- have *:"\<And>s. finite s \<Longrightarrow>  \<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<longrightarrow> x = y \<Longrightarrow>
himmelma@35172
  1881
     iterate opp (f ` s) g = iterate opp s (g \<circ> f)"
himmelma@35172
  1882
  proof- case goal1 show ?case using goal1
himmelma@35172
  1883
    proof(induct s) case empty thus ?case using assms(1) by auto
himmelma@35172
  1884
    next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)]
himmelma@35172
  1885
        unfolding if_not_P[OF insert(2)] apply(subst insert(3)[THEN sym])
himmelma@35172
  1886
        unfolding image_insert defer apply(subst iterate_insert[OF assms(1)])
himmelma@35172
  1887
        apply(rule finite_imageI insert)+ apply(subst if_not_P)
himmelma@35172
  1888
        unfolding image_iff o_def using insert(2,4) by auto
himmelma@35172
  1889
    qed qed
himmelma@35172
  1890
  show ?thesis 
himmelma@35172
  1891
    apply(cases "finite (support opp g (f ` s))")
himmelma@35172
  1892
    apply(subst (1) iterate_support[THEN sym],subst (2) iterate_support[THEN sym])
himmelma@35172
  1893
    unfolding support_clauses apply(rule *)apply(rule finite_imageD,assumption) unfolding inj_on_def[symmetric]
himmelma@35172
  1894
    apply(rule subset_inj_on[OF assms(2) support_subset])+
himmelma@35172
  1895
    apply(subst iterate_expand_cases) unfolding support_clauses apply(simp only: if_False)
himmelma@35172
  1896
    apply(subst iterate_expand_cases) apply(subst if_not_P) by auto qed
himmelma@35172
  1897
himmelma@35172
  1898
himmelma@35172
  1899
(* This lemma about iterations comes up in a few places.                     *)
himmelma@35172
  1900
lemma iterate_nonzero_image_lemma:
himmelma@35172
  1901
  assumes "monoidal opp" "finite s" "g(a) = neutral opp"
himmelma@35172
  1902
  "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = neutral opp"
himmelma@35172
  1903
  shows "iterate opp {f x | x. x \<in> s \<and> f x \<noteq> a} g = iterate opp s (g \<circ> f)"
himmelma@35172
  1904
proof- have *:"{f x |x. x \<in> s \<and> ~(f x = a)} = f ` {x. x \<in> s \<and> ~(f x = a)}" by auto
himmelma@35172
  1905
  have **:"support opp (g \<circ> f) {x \<in> s. f x \<noteq> a} = support opp (g \<circ> f) s"
himmelma@35172
  1906
    unfolding support_def using assms(3) by auto
himmelma@35172
  1907
  show ?thesis unfolding *
himmelma@35172
  1908
    apply(subst iterate_support[THEN sym]) unfolding support_clauses
himmelma@35172
  1909
    apply(subst iterate_image[OF assms(1)]) defer
himmelma@35172
  1910
    apply(subst(2) iterate_support[THEN sym]) apply(subst **)
himmelma@35172
  1911
    unfolding inj_on_def using assms(3,4) unfolding support_def by auto qed
himmelma@35172
  1912
himmelma@35172
  1913
lemma iterate_eq_neutral:
himmelma@35172
  1914
  assumes "monoidal opp"  "\<forall>x \<in> s. (f(x) = neutral opp)"
himmelma@35172
  1915
  shows "(iterate opp s f = neutral opp)"
himmelma@35172
  1916
proof- have *:"support opp f s = {}" unfolding support_def using assms(2) by auto
himmelma@35172
  1917
  show ?thesis apply(subst iterate_support[THEN sym]) 
himmelma@35172
  1918
    unfolding * using assms(1) by auto qed
himmelma@35172
  1919
himmelma@35172
  1920
lemma iterate_op: assumes "monoidal opp" "finite s"
himmelma@35172
  1921
  shows "iterate opp s (\<lambda>x. opp (f x) (g x)) = opp (iterate opp s f) (iterate opp s g)" using assms(2)
himmelma@35172
  1922
proof(induct s) case empty thus ?case unfolding iterate_insert[OF assms(1)] using assms(1) by auto
himmelma@35172
  1923
next case (insert x F) show ?case unfolding iterate_insert[OF assms(1) insert(1)] if_not_P[OF insert(2)] insert(3)
himmelma@35172
  1924
    unfolding monoidal_ac[OF assms(1)] by(rule refl) qed
himmelma@35172
  1925
himmelma@35172
  1926
lemma iterate_eq: assumes "monoidal opp" "\<And>x. x \<in> s \<Longrightarrow> f x = g x"
himmelma@35172
  1927
  shows "iterate opp s f = iterate opp s g"
himmelma@35172
  1928
proof- have *:"support opp g s = support opp f s"
himmelma@35172
  1929
    unfolding support_def using assms(2) by auto
himmelma@35172
  1930
  show ?thesis
himmelma@35172
  1931
  proof(cases "finite (support opp f s)")
himmelma@35172
  1932
    case False thus ?thesis apply(subst iterate_expand_cases,subst(2) iterate_expand_cases)
himmelma@35172
  1933
      unfolding * by auto
himmelma@35172
  1934
  next def su \<equiv> "support opp f s"
himmelma@35172
  1935
    case True note support_subset[of opp f s] 
himmelma@35172
  1936
    thus ?thesis apply- apply(subst iterate_support[THEN sym],subst(2) iterate_support[THEN sym]) unfolding * using True
himmelma@35172
  1937
      unfolding su_def[symmetric]
himmelma@35172
  1938
    proof(induct su) case empty show ?case by auto
himmelma@35172
  1939
    next case (insert x s) show ?case unfolding iterate_insert[OF assms(1) insert(1)] 
himmelma@35172
  1940
        unfolding if_not_P[OF insert(2)] apply(subst insert(3))
himmelma@35172
  1941
        defer apply(subst assms(2)[of x]) using insert by auto qed qed qed
himmelma@35172
  1942
himmelma@35172
  1943
lemma nonempty_witness: assumes "s \<noteq> {}" obtains x where "x \<in> s" using assms by auto
himmelma@35172
  1944
himmelma@35172
  1945
lemma operative_division: fixes f::"(real^'n) set \<Rightarrow> 'a"
himmelma@35172
  1946
  assumes "monoidal opp" "operative opp f" "d division_of {a..b}"
himmelma@35172
  1947
  shows "iterate opp d f = f {a..b}"
himmelma@35172
  1948
proof- def C \<equiv> "card (division_points {a..b} d)" thus ?thesis using assms
himmelma@35172
  1949
  proof(induct C arbitrary:a b d rule:full_nat_induct)
himmelma@35172
  1950
    case goal1
himmelma@35172
  1951
    { presume *:"content {a..b} \<noteq> 0 \<Longrightarrow> ?case"
himmelma@35172
  1952
      thus ?case apply-apply(cases) defer apply assumption
himmelma@35172
  1953
      proof- assume as:"content {a..b} = 0"
himmelma@35172
  1954
        show ?case unfolding operativeD(1)[OF assms(2) as] apply(rule iterate_eq_neutral[OF goal1(2)])
himmelma@35172
  1955
        proof fix x assume x:"x\<in>d"
himmelma@35172
  1956
          then guess u v apply(drule_tac division_ofD(4)[OF goal1(4)]) by(erule exE)+
himmelma@35172
  1957
          thus "f x = neutral opp" using division_of_content_0[OF as goal1(4)] 
himmelma@35172
  1958
            using operativeD(1)[OF assms(2)] x by auto
himmelma@35172
  1959
        qed qed }
himmelma@35172
  1960
    assume "content {a..b} \<noteq> 0" note ab = this[unfolded content_lt_nz[THEN sym] content_pos_lt_eq]
himmelma@35172
  1961
    hence ab':"\<forall>i. a$i \<le> b$i" by (auto intro!: less_imp_le) show ?case 
himmelma@35172
  1962
    proof(cases "division_points {a..b} d = {}")
himmelma@35172
  1963
      case True have d':"\<forall>i\<in>d. \<exists>u v. i = {u..v} \<and>
himmelma@35172
  1964
        (\<forall>j. u$j = a$j \<and> v$j = a$j \<or> u$j = b$j \<and> v$j = b$j \<or> u$j = a$j \<and> v$j = b$j)"
himmelma@35172
  1965
        unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule)
himmelma@35172
  1966
        apply(rule_tac x=a in exI,rule_tac x=b in exI) apply(rule,rule refl) apply(rule)
himmelma@35172
  1967
      proof- fix u v j assume as:"{u..v} \<in> d" note division_ofD(3)[OF goal1(4) this]
himmelma@35172
  1968
        hence uv:"\<forall>i. u$i \<le> v$i" "u$j \<le> v$j" unfolding interval_ne_empty by auto
himmelma@35172
  1969
        have *:"\<And>p r Q. p \<or> r \<or> (\<forall>x\<in>d. Q x) \<Longrightarrow> p \<or> r \<or> (Q {u..v})" using as by auto
himmelma@35172
  1970
        have "(j, u$j) \<notin> division_points {a..b} d"
himmelma@35172
  1971
          "(j, v$j) \<notin> division_points {a..b} d" using True by auto
himmelma@35172
  1972
        note this[unfolded de_Morgan_conj division_points_def mem_Collect_eq split_conv interval_bounds[OF ab'] bex_simps]
himmelma@35172
  1973
        note *[OF this(1)] *[OF this(2)] note this[unfolded interval_bounds[OF uv(1)]]
himmelma@35172
  1974
        moreover have "a$j \<le> u$j" "v$j \<le> b$j" using division_ofD(2,2,3)[OF goal1(4) as] 
himmelma@35172
  1975
          unfolding subset_eq apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE)
himmelma@35172
  1976
          unfolding interval_ne_empty mem_interval by auto
himmelma@35172
  1977
        ultimately show "u$j = a$j \<and> v$j = a$j \<or> u$j = b$j \<and> v$j = b$j \<or> u$j = a$j \<and> v$j = b$j"
himmelma@35172
  1978
          unfolding not_less de_Morgan_disj using ab[rule_format,of j] uv(2) by auto
himmelma@35172
  1979
      qed have "(1/2) *\<^sub>R (a+b) \<in> {a..b}" unfolding mem_interval using ab by(auto intro!:less_imp_le)
himmelma@35172
  1980
      note this[unfolded division_ofD(6)[OF goal1(4),THEN sym] Union_iff]
himmelma@35172
  1981
      then guess i .. note i=this guess u v using d'[rule_format,OF i(1)] apply-by(erule exE conjE)+ note uv=this
himmelma@35172
  1982
      have "{a..b} \<in> d"
himmelma@35172
  1983
      proof- { presume "i = {a..b}" thus ?thesis using i by auto }
himmelma@35172
  1984
        { presume "u = a" "v = b" thus "i = {a..b}" using uv by auto }
himmelma@35172
  1985
        show "u = a" "v = b" unfolding Cart_eq
himmelma@35172
  1986
        proof(rule_tac[!] allI) fix j note i(2)[unfolded uv mem_interval,rule_format,of j]
himmelma@35172
  1987
          thus "u $ j = a $ j" "v $ j = b $ j" using uv(2)[rule_format,of j] by auto
himmelma@35172
  1988
        qed qed
himmelma@35172
  1989
      hence *:"d = insert {a..b} (d - {{a..b}})" by auto
himmelma@35172
  1990
      have "iterate opp (d - {{a..b}}) f = neutral opp" apply(rule iterate_eq_neutral[OF goal1(2)])
himmelma@35172
  1991
      proof fix x assume x:"x \<in> d - {{a..b}}" hence "x\<in>d" by auto note d'[rule_format,OF this]
himmelma@35172
  1992
        then guess u v apply-by(erule exE conjE)+ note uv=this
himmelma@35172
  1993
        have "u\<noteq>a \<or> v\<noteq>b" using x[unfolded uv] by auto  
himmelma@35172
  1994
        then obtain j where "u$j \<noteq> a$j \<or> v$j \<noteq> b$j" unfolding Cart_eq by auto
himmelma@35172
  1995
        hence "u$j = v$j" using uv(2)[rule_format,of j] by auto
himmelma@35172
  1996
        hence "content {u..v} = 0"  unfolding content_eq_0 apply(rule_tac x=j in exI) by auto
himmelma@35172
  1997
        thus "f x = neutral opp" unfolding uv(1) by(rule operativeD(1)[OF goal1(3)])
himmelma@35172
  1998
      qed thus "iterate opp d f = f {a..b}" apply-apply(subst *) 
himmelma@35172
  1999
        apply(subst iterate_insert[OF goal1(2)]) using goal1(2,4) by auto
himmelma@35172
  2000
    next case False hence "\<exists>x. x\<in>division_points {a..b} d" by auto
himmelma@35172
  2001
      then guess k c unfolding split_paired_Ex apply- unfolding division_points_def mem_Collect_eq split_conv
himmelma@35172
  2002
        by(erule exE conjE)+ note kc=this[unfolded interval_bounds[OF ab']]
himmelma@35172
  2003
      from this(3) guess j .. note j=this
himmelma@35172
  2004
      def d1 \<equiv> "{l \<inter> {x. x$k \<le> c} | l. l \<in> d \<and> l \<inter> {x. x$k \<le> c} \<noteq> {}}"
himmelma@35172
  2005
      def d2 \<equiv> "{l \<inter> {x. x$k \<ge> c} | l. l \<in> d \<and> l \<inter> {x. x$k \<ge> c} \<noteq> {}}"
himmelma@35172
  2006
      def cb \<equiv> "(\<chi> i. if i = k then c else b$i)" and ca \<equiv> "(\<chi> i. if i = k then c else a$i)"
himmelma@35172
  2007
      note division_points_psubset[OF goal1(4) ab kc(1-2) j]
himmelma@35172
  2008
      note psubset_card_mono[OF _ this(1)] psubset_card_mono[OF _ this(2)]
himmelma@35172
  2009
      hence *:"(iterate opp d1 f) = f ({a..b} \<inter> {x. x$k \<le> c})" "(iterate opp d2 f) = f ({a..b} \<inter> {x. x$k \<ge> c})"
himmelma@35172
  2010
        apply- unfolding interval_split apply(rule_tac[!] goal1(1)[rule_format])
himmelma@35172
  2011
        using division_split[OF goal1(4), where k=k and c=c]
himmelma@35172
  2012
        unfolding interval_split d1_def[symmetric] d2_def[symmetric] unfolding goal1(2) Suc_le_mono
himmelma@35172
  2013
        using goal1(2-3) using division_points_finite[OF goal1(4)] by auto
himmelma@35172
  2014
      have "f {a..b} = opp (iterate opp d1 f) (iterate opp d2 f)" (is "_ = ?prev")
himmelma@35172
  2015
        unfolding * apply(rule operativeD(2)) using goal1(3) .
himmelma@35172
  2016
      also have "iterate opp d1 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$k \<le> c}))"
himmelma@35172
  2017
        unfolding d1_def apply(rule iterate_nonzero_image_lemma[unfolded o_def])
himmelma@35172
  2018
        unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+
himmelma@35172
  2019
        unfolding empty_as_interval[THEN sym] apply(rule content_empty)
himmelma@35172
  2020
      proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. x $ k \<le> c} = y \<inter> {x. x $ k \<le> c}" "l \<noteq> y" 
himmelma@35172
  2021
        from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this
himmelma@35172
  2022
        show "f (l \<inter> {x. x $ k \<le> c}) = neutral opp" unfolding l interval_split
himmelma@35172
  2023
          apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym] apply(rule division_split_left_inj)
himmelma@35172
  2024
          apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as)+
himmelma@35172
  2025
      qed also have "iterate opp d2 f = iterate opp d (\<lambda>l. f(l \<inter> {x. x$k \<ge> c}))"
himmelma@35172
  2026
        unfolding d2_def apply(rule iterate_nonzero_image_lemma[unfolded o_def])
himmelma@35172
  2027
        unfolding empty_as_interval apply(rule goal1 division_of_finite operativeD[OF goal1(3)])+
himmelma@35172
  2028
        unfolding empty_as_interval[THEN sym] apply(rule content_empty)
himmelma@35172
  2029
      proof(rule,rule,rule,erule conjE) fix l y assume as:"l \<in> d" "y \<in> d" "l \<inter> {x. c \<le> x $ k} = y \<inter> {x. c \<le> x $ k}" "l \<noteq> y" 
himmelma@35172
  2030
        from division_ofD(4)[OF goal1(4) this(1)] guess u v apply-by(erule exE)+ note l=this
himmelma@35172
  2031
        show "f (l \<inter> {x. x $ k \<ge> c}) = neutral opp" unfolding l interval_split
himmelma@35172
  2032
          apply(rule operativeD(1) goal1)+ unfolding interval_split[THEN sym] apply(rule division_split_right_inj)
himmelma@35172
  2033
          apply(rule goal1) unfolding l[THEN sym] apply(rule as(1),rule as(2)) by(rule as)+
himmelma@35172
  2034
      qed also have *:"\<forall>x\<in>d. f x = opp (f (x \<inter> {x. x $ k \<le> c})) (f (x \<inter> {x. c \<le> x $ k}))"
himmelma@35172
  2035
        unfolding forall_in_division[OF goal1(4)] apply(rule,rule,rule,rule operativeD(2)) using goal1(3) .
himmelma@35172
  2036
      have "opp (iterate opp d (\<lambda>l. f (l \<inter> {x. x $ k \<le> c}))) (iterate opp d (\<lambda>l. f (l \<inter> {x. c \<le> x $ k})))
himmelma@35172
  2037
        = iterate opp d f" apply(subst(3) iterate_eq[OF _ *[rule_format]]) prefer 3
himmelma@35172
  2038
        apply(rule iterate_op[THEN sym]) using goal1 by auto
himmelma@35172
  2039
      finally show ?thesis by auto
himmelma@35172
  2040
    qed qed qed 
himmelma@35172
  2041
himmelma@35172
  2042
lemma iterate_image_nonzero: assumes "monoidal opp"
himmelma@35172
  2043
  "finite s" "\<forall>x\<in>s. \<forall>y\<in>s. ~(x = y) \<and> f x = f y \<longrightarrow> g(f x) = neutral opp"
himmelma@35172
  2044
  shows "iterate opp (f ` s) g = iterate opp s (g \<circ> f)" using assms
himmelma@35172
  2045
proof(induct rule:finite_subset_induct[OF assms(2) subset_refl])
himmelma@35172
  2046
  case goal1 show ?case using assms(1) by auto
himmelma@35172
  2047
next case goal2 have *:"\<And>x y. y = neutral opp \<Longrightarrow> x = opp y x" using assms(1) by auto
himmelma@35172
  2048
  show ?case unfolding image_insert apply(subst iterate_insert[OF assms(1)])
himmelma@35172
  2049
    apply(rule finite_imageI goal2)+
himmelma@35172
  2050
    apply(cases "f a \<in> f ` F") unfolding if_P if_not_P apply(subst goal2(4)[OF assms(1) goal2(1)]) defer
himmelma@35172
  2051
    apply(subst iterate_insert[OF assms(1) goal2(1)]) defer
himmelma@35172
  2052
    apply(subst iterate_insert[OF assms(1) goal2(1)])
himmelma@35172
  2053
    unfolding if_not_P[OF goal2(3)] defer unfolding image_iff defer apply(erule bexE)
himmelma@35172
  2054
    apply(rule *) unfolding o_def apply(rule_tac y=x in goal2(7)[rule_format])
himmelma@35172
  2055
    using goal2 unfolding o_def by auto qed 
himmelma@35172
  2056
himmelma@35172
  2057
lemma operative_tagged_division: assumes "monoidal opp" "operative opp f" "d tagged_division_of {a..b}"
himmelma@35172
  2058
  shows "iterate(opp) d (\<lambda>(x,l). f l) = f {a..b}"
himmelma@35172
  2059
proof- have *:"(\<lambda>(x,l). f l) = (f o snd)" unfolding o_def by(rule,auto) note assm = tagged_division_ofD[OF assms(3)]
himmelma@35172
  2060
  have "iterate(opp) d (\<lambda>(x,l). f l) = iterate opp (snd ` d) f" unfolding *
himmelma@35172
  2061
    apply(rule iterate_image_nonzero[THEN sym,OF assms(1)]) apply(rule tagged_division_of_finite assms)+ 
himmelma@35172
  2062
    unfolding Ball_def split_paired_All snd_conv apply(rule,rule,rule,rule,rule,rule,rule,erule conjE)
himmelma@35172
  2063
  proof- fix a b aa ba assume as:"(a, b) \<in> d" "(aa, ba) \<in> d" "(a, b) \<noteq> (aa, ba)" "b = ba"
himmelma@35172
  2064
    guess u v using assm(4)[OF as(1)] apply-by(erule exE)+ note uv=this
himmelma@35172
  2065
    show "f b = neutral opp" unfolding uv apply(rule operativeD(1)[OF assms(2)])
himmelma@35172
  2066
      unfolding content_eq_0_interior using tagged_division_ofD(5)[OF assms(3) as(1-3)]
himmelma@35172
  2067
      unfolding as(4)[THEN sym] uv by auto
himmelma@35172
  2068
  qed also have "\<dots> = f {a..b}" 
himmelma@35172
  2069
    using operative_division[OF assms(1-2) division_of_tagged_division[OF assms(3)]] .
himmelma@35172
  2070
  finally show ?thesis . qed
himmelma@35172
  2071
himmelma@35172
  2072
subsection {* Additivity of content. *}
himmelma@35172
  2073
himmelma@35172
  2074
lemma setsum_iterate:assumes "finite s" shows "setsum f s = iterate op + s f"
himmelma@35172
  2075
proof- have *:"setsum f s = setsum f (support op + f s)"
himmelma@35172
  2076
    apply(rule setsum_mono_zero_right)
himmelma@35172
  2077
    unfolding support_def neutral_monoid using assms by auto
himmelma@35172
  2078
  thus ?thesis unfolding * setsum_def iterate_def fold_image_def fold'_def
himmelma@35172
  2079
    unfolding neutral_monoid . qed
himmelma@35172
  2080
himmelma@35172
  2081
lemma additive_content_division: assumes "d division_of {a..b}"
himmelma@35172
  2082
  shows "setsum content d = content({a..b})"
himmelma@35172
  2083
  unfolding operative_division[OF monoidal_monoid operative_content assms,THEN sym]
himmelma@35172
  2084
  apply(subst setsum_iterate) using assms by auto
himmelma@35172
  2085
himmelma@35172
  2086
lemma additive_content_tagged_division:
himmelma@35172
  2087
  assumes "d tagged_division_of {a..b}"
himmelma@35172
  2088
  shows "setsum (\<lambda>(x,l). content l) d = content({a..b})"
himmelma@35172
  2089
  unfolding operative_tagged_division[OF monoidal_monoid operative_content assms,THEN sym]
himmelma@35172
  2090
  apply(subst setsum_iterate) using assms by auto
himmelma@35172
  2091
himmelma@35172
  2092
subsection {* Finally, the integral of a constant\<forall> *}
himmelma@35172
  2093
himmelma@35172
  2094
lemma has_integral_const[intro]:
himmelma@35172
  2095
  "((\<lambda>x. c) has_integral (content({a..b::real^'n}) *\<^sub>R c)) ({a..b})"
himmelma@35172
  2096
  unfolding has_integral apply(rule,rule,rule_tac x="\<lambda>x. ball x 1" in exI)
himmelma@35172
  2097
  apply(rule,rule gauge_trivial)apply(rule,rule,erule conjE)
himmelma@35172
  2098
  unfolding split_def apply(subst scaleR_left.setsum[THEN sym, unfolded o_def])
himmelma@35172
  2099
  defer apply(subst additive_content_tagged_division[unfolded split_def]) apply assumption by auto
himmelma@35172
  2100
himmelma@35172
  2101
subsection {* Bounds on the norm of Riemann sums and the integral itself. *}
himmelma@35172
  2102
himmelma@35172
  2103
lemma dsum_bound: assumes "p division_of {a..b}" "norm(c) \<le> e"
himmelma@35172
  2104
  shows "norm(setsum (\<lambda>l. content l *\<^sub>R c) p) \<le> e * content({a..b})" (is "?l \<le> ?r")
himmelma@35172
  2105
  apply(rule order_trans,rule setsum_norm) defer unfolding norm_scaleR setsum_left_distrib[THEN sym]
himmelma@35172
  2106
  apply(rule order_trans[OF mult_left_mono],rule assms,rule setsum_abs_ge_zero)
himmelma@35172
  2107
  apply(subst real_mult_commute) apply(rule mult_left_mono)
himmelma@35172
  2108
  apply(rule order_trans[of _ "setsum content p"]) apply(rule eq_refl,rule setsum_cong2)
himmelma@35172
  2109
  apply(subst abs_of_nonneg) unfolding additive_content_division[OF assms(1)]
himmelma@35172
  2110
proof- from order_trans[OF norm_ge_zero[of c] assms(2)] show "0 \<le> e" .
himmelma@35172
  2111
  fix x assume "x\<in>p" from division_ofD(4)[OF assms(1) this] guess u v apply-by(erule exE)+
himmelma@35172
  2112
  thus "0 \<le> content x" using content_pos_le by auto
himmelma@35172
  2113
qed(insert assms,auto)
himmelma@35172
  2114
himmelma@35172
  2115
lemma rsum_bound: assumes "p tagged_division_of {a..b}" "\<forall>x\<in>{a..b}. norm(f x) \<le> e"
himmelma@35172
  2116
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p) \<le> e * content({a..b})"
himmelma@35172
  2117
proof(cases "{a..b} = {}") case True
himmelma@35172
  2118
  show ?thesis using assms(1) unfolding True tagged_division_of_trivial by auto
himmelma@35172
  2119
next case False show ?thesis
himmelma@35172
  2120
    apply(rule order_trans,rule setsum_norm) defer unfolding split_def norm_scaleR
himmelma@35172
  2121
    apply(rule order_trans[OF setsum_mono]) apply(rule mult_left_mono[OF _ abs_ge_zero, of _ e]) defer
himmelma@35172
  2122
    unfolding setsum_left_distrib[THEN sym] apply(subst real_mult_commute) apply(rule mult_left_mono)
himmelma@35172
  2123
    apply(rule order_trans[of _ "setsum (content \<circ> snd) p"]) apply(rule eq_refl,rule setsum_cong2)
himmelma@35172
  2124
    apply(subst o_def, rule abs_of_nonneg)
himmelma@35172
  2125
  proof- show "setsum (content \<circ> snd) p \<le> content {a..b}" apply(rule eq_refl)
himmelma@35172
  2126
      unfolding additive_content_tagged_division[OF assms(1),THEN sym] split_def by auto
himmelma@35172
  2127
    guess w using nonempty_witness[OF False] .
himmelma@35172
  2128
    thus "e\<ge>0" apply-apply(rule order_trans) defer apply(rule assms(2)[rule_format],assumption) by auto
himmelma@35172
  2129
    fix xk assume *:"xk\<in>p" guess x k  using surj_pair[of xk] apply-by(erule exE)+ note xk = this *[unfolded this]
himmelma@35172
  2130
    from tagged_division_ofD(4)[OF assms(1) xk(2)] guess u v apply-by(erule exE)+ note uv=this
himmelma@35172
  2131
    show "0\<le> content (snd xk)" unfolding xk snd_conv uv by(rule content_pos_le)
himmelma@35172
  2132
    show "norm (f (fst xk)) \<le> e" unfolding xk fst_conv using tagged_division_ofD(2,3)[OF assms(1) xk(2)] assms(2) by auto
himmelma@35172
  2133
  qed(insert assms,auto) qed
himmelma@35172
  2134
himmelma@35172
  2135
lemma rsum_diff_bound:
himmelma@35172
  2136
  assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e"
himmelma@35172
  2137
  shows "norm(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - setsum (\<lambda>(x,k). content k *\<^sub>R g x) p) \<le> e * content({a..b})"
himmelma@35172
  2138
  apply(rule order_trans[OF _ rsum_bound[OF assms]]) apply(rule eq_refl) apply(rule arg_cong[where f=norm])
himmelma@35172
  2139
  unfolding setsum_subtractf[THEN sym] apply(rule setsum_cong2) unfolding scaleR.diff_right by auto
himmelma@35172
  2140
himmelma@35172
  2141
lemma has_integral_bound: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  2142
  assumes "0 \<le> B" "(f has_integral i) ({a..b})" "\<forall>x\<in>{a..b}. norm(f x) \<le> B"
himmelma@35172
  2143
  shows "norm i \<le> B * content {a..b}"
himmelma@35172
  2144
proof- let ?P = "content {a..b} > 0" { presume "?P \<Longrightarrow> ?thesis"
himmelma@35172
  2145
    thus ?thesis proof(cases ?P) case False
himmelma@35172
  2146
      hence *:"content {a..b} = 0" using content_lt_nz by auto
himmelma@35172
  2147
      hence **:"i = 0" using assms(2) apply(subst has_integral_null_eq[THEN sym]) by auto
himmelma@35172
  2148
      show ?thesis unfolding * ** using assms(1) by auto
himmelma@35172
  2149
    qed auto } assume ab:?P
himmelma@35172
  2150
  { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
himmelma@35172
  2151
  assume "\<not> ?thesis" hence *:"norm i - B * content {a..b} > 0" by auto
himmelma@35172
  2152
  from assms(2)[unfolded has_integral,rule_format,OF *] guess d apply-by(erule exE conjE)+ note d=this[rule_format]
himmelma@35172
  2153
  from fine_division_exists[OF this(1), of a b] guess p . note p=this
himmelma@35172
  2154
  have *:"\<And>s B. norm s \<le> B \<Longrightarrow> \<not> (norm (s - i) < norm i - B)"
himmelma@35172
  2155
  proof- case goal1 thus ?case unfolding not_less
himmelma@35172
  2156
    using norm_triangle_sub[of i s] unfolding norm_minus_commute by auto
himmelma@35172
  2157
  qed show False using d(2)[OF conjI[OF p]] *[OF rsum_bound[OF p(1) assms(3)]] by auto qed
himmelma@35172
  2158
himmelma@35172
  2159
subsection {* Similar theorems about relationship among components. *}
himmelma@35172
  2160
himmelma@35172
  2161
lemma rsum_component_le: fixes f::"real^'n \<Rightarrow> real^'m"
himmelma@35172
  2162
  assumes "p tagged_division_of {a..b}"  "\<forall>x\<in>{a..b}. (f x)$i \<le> (g x)$i"
himmelma@35172
  2163
  shows "(setsum (\<lambda>(x,k). content k *\<^sub>R f x) p)$i \<le> (setsum (\<lambda>(x,k). content k *\<^sub>R g x) p)$i"
himmelma@35172
  2164
  unfolding setsum_component apply(rule setsum_mono)
himmelma@35172
  2165
  apply(rule mp) defer apply assumption apply(induct_tac x,rule) unfolding split_conv
himmelma@35172
  2166
proof- fix a b assume ab:"(a,b) \<in> p" note assm = tagged_division_ofD(2-4)[OF assms(1) ab]
himmelma@35172
  2167
  from this(3) guess u v apply-by(erule exE)+ note b=this
himmelma@35172
  2168
  show "(content b *\<^sub>R f a) $ i \<le> (content b *\<^sub>R g a) $ i" unfolding b
himmelma@35172
  2169
    unfolding Cart_nth.scaleR real_scaleR_def apply(rule mult_left_mono)
himmelma@35172
  2170
    defer apply(rule content_pos_le,rule assms(2)[rule_format]) using assm by auto qed
himmelma@35172
  2171
himmelma@35172
  2172
lemma has_integral_component_le: fixes f::"real^'n \<Rightarrow> real^'m"
himmelma@35172
  2173
  assumes "(f has_integral i) s" "(g has_integral j) s"  "\<forall>x\<in>s. (f x)$k \<le> (g x)$k"
himmelma@35172
  2174
  shows "i$k \<le> j$k"
himmelma@35172
  2175
proof- have lem:"\<And>a b g i j. \<And>f::real^'n \<Rightarrow> real^'m. (f has_integral i) ({a..b}) \<Longrightarrow> 
himmelma@35172
  2176
    (g has_integral j) ({a..b}) \<Longrightarrow> \<forall>x\<in>{a..b}. (f x)$k \<le> (g x)$k \<Longrightarrow> i$k \<le> j$k"
himmelma@35172
  2177
  proof(rule ccontr) case goal1 hence *:"0 < (i$k - j$k) / 3" by auto
himmelma@35172
  2178
    guess d1 using goal1(1)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d1=this[rule_format]
himmelma@35172
  2179
    guess d2 using goal1(2)[unfolded has_integral,rule_format,OF *] apply-by(erule exE conjE)+ note d2=this[rule_format]
himmelma@35172
  2180
    guess p using fine_division_exists[OF gauge_inter[OF d1(1) d2(1)], of a b] unfolding fine_inter .
himmelma@35172
  2181
    note p = this(1) conjunctD2[OF this(2)]  note le_less_trans[OF component_le_norm, of _ _ k]
himmelma@35172
  2182
    note this[OF d1(2)[OF conjI[OF p(1,2)]]] this[OF d2(2)[OF conjI[OF p(1,3)]]]
himmelma@35172
  2183
    thus False unfolding Cart_nth.diff using rsum_component_le[OF p(1) goal1(3)] by smt
himmelma@35172
  2184
  qed let ?P = "\<exists>a b. s = {a..b}"
himmelma@35172
  2185
  { presume "\<not> ?P \<Longrightarrow> ?thesis" thus ?thesis proof(cases ?P)
himmelma@35172
  2186
      case True then guess a b apply-by(erule exE)+ note s=this
himmelma@35172
  2187
      show ?thesis apply(rule lem) using assms[unfolded s] by auto
himmelma@35172
  2188
    qed auto } assume as:"\<not> ?P"
himmelma@35172
  2189
  { presume "\<not> ?thesis \<Longrightarrow> False" thus ?thesis by auto }
himmelma@35172
  2190
  assume "\<not> i$k \<le> j$k" hence ij:"(i$k - j$k) / 3 > 0" by auto
himmelma@35172
  2191
  note has_integral_altD[OF _ as this] from this[OF assms(1)] this[OF assms(2)] guess B1 B2 . note B=this[rule_format]
himmelma@35172
  2192
  have "bounded (ball 0 B1 \<union> ball (0::real^'n) B2)" unfolding bounded_Un by(rule conjI bounded_ball)+
himmelma@35172
  2193
  from bounded_subset_closed_interval[OF this] guess a b apply- by(erule exE)+
himmelma@35172
  2194
  note ab = conjunctD2[OF this[unfolded Un_subset_iff]]
himmelma@35172
  2195
  guess w1 using B(2)[OF ab(1)] .. note w1=conjunctD2[OF this]
himmelma@35172
  2196
  guess w2 using B(4)[OF ab(2)] .. note w2=conjunctD2[OF this]
himmelma@35172
  2197
  have *:"\<And>w1 w2 j i::real .\<bar>w1 - i\<bar> < (i - j) / 3 \<Longrightarrow> \<bar>w2 - j\<bar> < (i - j) / 3 \<Longrightarrow> w1 \<le> w2 \<Longrightarrow> False" by smt(*SMTSMT*)
himmelma@35172
  2198
  note le_less_trans[OF component_le_norm[of _ k]] note this[OF w1(2)] this[OF w2(2)] moreover
himmelma@35172
  2199
  have "w1$k \<le> w2$k" apply(rule lem[OF w1(1) w2(1)]) using assms by auto ultimately
himmelma@35172
  2200
  show False unfolding Cart_nth.diff by(rule *) qed
himmelma@35172
  2201
himmelma@35172
  2202
lemma integral_component_le: fixes f::"real^'n \<Rightarrow> real^'m"
himmelma@35172
  2203
  assumes "f integrable_on s" "g integrable_on s"  "\<forall>x\<in>s. (f x)$k \<le> (g x)$k"
himmelma@35172
  2204
  shows "(integral s f)$k \<le> (integral s g)$k"
himmelma@35172
  2205
  apply(rule has_integral_component_le) using integrable_integral assms by auto
himmelma@35172
  2206
himmelma@35172
  2207
lemma has_integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1"
himmelma@35172
  2208
  assumes "(f has_integral i) s"  "(g has_integral j) s" "\<forall>x\<in>s. f x \<le> g x"
himmelma@35172
  2209
  shows "dest_vec1 i \<le> dest_vec1 j" apply(rule has_integral_component_le[OF assms(1-2)])
himmelma@35172
  2210
  using assms(3) unfolding vector_le_def by auto
himmelma@35172
  2211
himmelma@35172
  2212
lemma integral_dest_vec1_le: fixes f::"real^'n \<Rightarrow> real^1"
himmelma@35172
  2213
  assumes "f integrable_on s" "g integrable_on s" "\<forall>x\<in>s. f x \<le> g x"
himmelma@35172
  2214
  shows "dest_vec1(integral s f) \<le> dest_vec1(integral s g)"
himmelma@35172
  2215
  apply(rule has_integral_dest_vec1_le) apply(rule_tac[1-2] integrable_integral) using assms by auto
himmelma@35172
  2216
himmelma@35172
  2217
lemma has_integral_component_pos: fixes f::"real^'n \<Rightarrow> real^'m"
himmelma@35172
  2218
  assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> (f x)$k" shows "0 \<le> i$k"
himmelma@35172
  2219
  using has_integral_component_le[OF has_integral_0 assms(1)] using assms(2) by auto
himmelma@35172
  2220
himmelma@35172
  2221
lemma integral_component_pos: fixes f::"real^'n \<Rightarrow> real^'m"
himmelma@35172
  2222
  assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> (f x)$k" shows "0 \<le> (integral s f)$k"
himmelma@35172
  2223
  apply(rule has_integral_component_pos) using assms by auto
himmelma@35172
  2224
himmelma@35172
  2225
lemma has_integral_dest_vec1_pos: fixes f::"real^'n \<Rightarrow> real^1"
himmelma@35172
  2226
  assumes "(f has_integral i) s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> i"
himmelma@35172
  2227
  using has_integral_component_pos[OF assms(1), of 1]
himmelma@35172
  2228
  using assms(2) unfolding vector_le_def by auto
himmelma@35172
  2229
himmelma@35172
  2230
lemma integral_dest_vec1_pos: fixes f::"real^'n \<Rightarrow> real^1"
himmelma@35172
  2231
  assumes "f integrable_on s" "\<forall>x\<in>s. 0 \<le> f x" shows "0 \<le> integral s f"
himmelma@35172
  2232
  apply(rule has_integral_dest_vec1_pos) using assms by auto
himmelma@35172
  2233
himmelma@35172
  2234
lemma has_integral_component_neg: fixes f::"real^'n \<Rightarrow> real^'m"
himmelma@35172
  2235
  assumes "(f has_integral i) s" "\<forall>x\<in>s. (f x)$k \<le> 0" shows "i$k \<le> 0"
himmelma@35172
  2236
  using has_integral_component_le[OF assms(1) has_integral_0] assms(2) by auto
himmelma@35172
  2237
himmelma@35172
  2238
lemma has_integral_dest_vec1_neg: fixes f::"real^'n \<Rightarrow> real^1"
himmelma@35172
  2239
  assumes "(f has_integral i) s" "\<forall>x\<in>s. f x \<le> 0" shows "i \<le> 0"
himmelma@35172
  2240
  using has_integral_component_neg[OF assms(1),of 1] using assms(2) by auto
himmelma@35172
  2241
himmelma@35172
  2242
lemma has_integral_component_lbound:
himmelma@35172
  2243
  assumes "(f has_integral i) {a..b}"  "\<forall>x\<in>{a..b}. B \<le> f(x)$k" shows "B * content {a..b} \<le> i$k"
himmelma@35172
  2244
  using has_integral_component_le[OF has_integral_const assms(1),of "(\<chi> i. B)" k] assms(2)
himmelma@35172
  2245
  unfolding Cart_lambda_beta vector_scaleR_component by(auto simp add:field_simps)
himmelma@35172
  2246
himmelma@35172
  2247
lemma has_integral_component_ubound: 
himmelma@35172
  2248
  assumes "(f has_integral i) {a..b}" "\<forall>x\<in>{a..b}. f x$k \<le> B"
himmelma@35172
  2249
  shows "i$k \<le> B * content({a..b})"
himmelma@35172
  2250
  using has_integral_component_le[OF assms(1) has_integral_const, of k "vec B"]
himmelma@35172
  2251
  unfolding vec_component Cart_nth.scaleR using assms(2) by(auto simp add:field_simps)
himmelma@35172
  2252
himmelma@35172
  2253
lemma integral_component_lbound:
himmelma@35172
  2254
  assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. B \<le> f(x)$k"
himmelma@35172
  2255
  shows "B * content({a..b}) \<le> (integral({a..b}) f)$k"
himmelma@35172
  2256
  apply(rule has_integral_component_lbound) using assms unfolding has_integral_integral by auto
himmelma@35172
  2257
himmelma@35172
  2258
lemma integral_component_ubound:
himmelma@35172
  2259
  assumes "f integrable_on {a..b}" "\<forall>x\<in>{a..b}. f(x)$k \<le> B"
himmelma@35172
  2260
  shows "(integral({a..b}) f)$k \<le> B * content({a..b})"
himmelma@35172
  2261
  apply(rule has_integral_component_ubound) using assms unfolding has_integral_integral by auto
himmelma@35172
  2262
himmelma@35172
  2263
subsection {* Uniform limit of integrable functions is integrable. *}
himmelma@35172
  2264
himmelma@35172
  2265
lemma real_arch_invD:
himmelma@35172
  2266
  "0 < (e::real) \<Longrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)"
himmelma@35172
  2267
  by(subst(asm) real_arch_inv)
himmelma@35172
  2268
himmelma@35172
  2269
lemma integrable_uniform_limit: fixes f::"real^'n \<Rightarrow> 'a::banach"
himmelma@35172
  2270
  assumes "\<forall>e>0. \<exists>g. (\<forall>x\<in>{a..b}. norm(f x - g x) \<le> e) \<and> g integrable_on {a..b}"
himmelma@35172
  2271
  shows "f integrable_on {a..b}"
himmelma@35172
  2272
proof- { presume *:"content {a..b} > 0 \<Longrightarrow> ?thesis"
himmelma@35172
  2273
    show ?thesis apply cases apply(rule *,assumption)
himmelma@35172
  2274
      unfolding content_lt_nz integrable_on_def using has_integral_null by auto }
himmelma@35172
  2275
  assume as:"content {a..b} > 0"
himmelma@35172
  2276
  have *:"\<And>P. \<forall>e>(0::real). P e \<Longrightarrow> \<forall>n::nat. P (inverse (real n+1))" by auto
himmelma@35172
  2277
  from choice[OF *[OF assms]] guess g .. note g=conjunctD2[OF this[rule_format],rule_format]
himmelma@35172
  2278
  from choice[OF allI[OF g(2)[unfolded integrable_on_def], of "\<lambda>x. x"]] guess i .. note i=this[rule_format]
himmelma@35172
  2279
  
himmelma@35172
  2280
  have "Cauchy i" unfolding Cauchy_def
himmelma@35172
  2281
  proof(rule,rule) fix e::real assume "e>0"
himmelma@35172
  2282
    hence "e / 4 / content {a..b} > 0" using as by(auto simp add:field_simps)
himmelma@35172
  2283
    then guess M apply-apply(subst(asm) real_arch_inv) by(erule exE conjE)+ note M=this
himmelma@35172
  2284
    show "\<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. dist (i m) (i n) < e" apply(rule_tac x=M in exI,rule,rule,rule,rule)
himmelma@35172
  2285
    proof- case goal1 have "e/4>0" using `e>0` by auto note * = i[unfolded has_integral,rule_format,OF this]
himmelma@35172
  2286
      from *[of m] guess gm apply-by(erule conjE exE)+ note gm=this[rule_format]
himmelma@35172
  2287
      from *[of n] guess gn apply-by(erule conjE exE)+ note gn=this[rule_format]
himmelma@35172
  2288
      from fine_division_exists[OF gauge_inter[OF gm(1) gn(1)], of a b] guess p . note p=this
himmelma@35172
  2289
      have lem2:"\<And>s1 s2 i1 i2. norm(s2 - s1) \<le> e/2 \<Longrightarrow> norm(s1 - i1) < e / 4 \<Longrightarrow> norm(s2 - i2) < e / 4 \<Longrightarrow>norm(i1 - i2) < e"
himmelma@35172
  2290
      proof- case goal1 have "norm (i1 - i2) \<le> norm (i1 - s1) + norm (s1 - s2) + norm (s2 - i2)"
himmelma@35172
  2291
          using norm_triangle_ineq[of "i1 - s1" "s1 - i2"]
himmelma@35172
  2292
          using norm_triangle_ineq[of "s1 - s2" "s2 - i2"] by(auto simp add:group_simps)
himmelma@35172
  2293
        also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:group_simps)
himmelma@35172
  2294
        finally show ?case .
himmelma@35172
  2295
      qed
himmelma@35172
  2296
      show ?case unfolding vector_dist_norm apply(rule lem2) defer
himmelma@35172
  2297
        apply(rule gm(2)[OF conjI[OF p(1)]],rule_tac[2] gn(2)[OF conjI[OF p(1)]])
himmelma@35172
  2298
        using conjunctD2[OF p(2)[unfolded fine_inter]] apply- apply assumption+ apply(rule order_trans)
himmelma@35172
  2299
        apply(rule rsum_diff_bound[OF p(1), where e="2 / real M"])
himmelma@35172
  2300
      proof show "2 / real M * content {a..b} \<le> e / 2" unfolding divide_inverse 
himmelma@35172
  2301
          using M as by(auto simp add:field_simps)
himmelma@35172
  2302
        fix x assume x:"x \<in> {a..b}"
himmelma@35172
  2303
        have "norm (f x - g n x) + norm (f x - g m x) \<le> inverse (real n + 1) + inverse (real m + 1)" 
himmelma@35172
  2304
            using g(1)[OF x, of n] g(1)[OF x, of m] by auto
himmelma@35172
  2305
        also have "\<dots> \<le> inverse (real M) + inverse (real M)" apply(rule add_mono)
himmelma@35172
  2306
          apply(rule_tac[!] le_imp_inverse_le) using goal1 M by auto
himmelma@35172
  2307
        also have "\<dots> = 2 / real M" unfolding real_divide_def by auto
himmelma@35172
  2308
        finally show "norm (g n x - g m x) \<le> 2 / real M"
himmelma@35172
  2309
          using norm_triangle_le[of "g n x - f x" "f x - g m x" "2 / real M"]
himmelma@35172
  2310
          by(auto simp add:group_simps simp add:norm_minus_commute)
himmelma@35172
  2311
      qed qed qed
himmelma@35172
  2312
  from this[unfolded convergent_eq_cauchy[THEN sym]] guess s .. note s=this
himmelma@35172
  2313
himmelma@35172
  2314
  show ?thesis unfolding integrable_on_def apply(rule_tac x=s in exI) unfolding has_integral
himmelma@35172
  2315
  proof(rule,rule)  
himmelma@35172
  2316
    case goal1 hence *:"e/3 > 0" by auto
himmelma@35172
  2317
    from s[unfolded Lim_sequentially,rule_format,OF this] guess N1 .. note N1=this
himmelma@35172
  2318
    from goal1 as have "e / 3 / content {a..b} > 0" by(auto simp add:field_simps)
himmelma@35172
  2319
    from real_arch_invD[OF this] guess N2 apply-by(erule exE conjE)+ note N2=this
himmelma@35172
  2320
    from i[of "N1 + N2",unfolded has_integral,rule_format,OF *] guess g' .. note g'=conjunctD2[OF this,rule_format]
himmelma@35172
  2321
    have lem:"\<And>sf sg i. norm(sf - sg) \<le> e / 3 \<Longrightarrow> norm(i - s) < e / 3 \<Longrightarrow> norm(sg - i) < e / 3 \<Longrightarrow> norm(sf - s) < e"
himmelma@35172
  2322
    proof- case goal1 have "norm (sf - s) \<le> norm (sf - sg) + norm (sg - i) + norm (i - s)"
himmelma@35172
  2323
        using norm_triangle_ineq[of "sf - sg" "sg - s"]
himmelma@35172
  2324
        using norm_triangle_ineq[of "sg -  i" " i - s"] by(auto simp add:group_simps)
himmelma@35172
  2325
      also have "\<dots> < e" using goal1 unfolding norm_minus_commute by(auto simp add:group_simps)
himmelma@35172
  2326
      finally show ?case .
himmelma@35172
  2327
    qed
himmelma@35172
  2328
    show ?case apply(rule_tac x=g' in exI) apply(rule,rule g')
himmelma@35172
  2329
    proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> g' fine p" note * = g'(2)[OF this]
himmelma@35172
  2330
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - s) < e" apply-apply(rule lem[OF _ _ *])
himmelma@35172
  2331
        apply(rule order_trans,rule rsum_diff_bound[OF p[THEN conjunct1]]) apply(rule,rule g,assumption)
himmelma@35172
  2332
      proof- have "content {a..b} < e / 3 * (real N2)"
himmelma@35172
  2333
          using N2 unfolding inverse_eq_divide using as by(auto simp add:field_simps)
himmelma@35172
  2334
        hence "content {a..b} < e / 3 * (real (N1 + N2) + 1)"
himmelma@35172
  2335
          apply-apply(rule less_le_trans,assumption) using `e>0` by auto 
himmelma@35172
  2336
        thus "inverse (real (N1 + N2) + 1) * content {a..b} \<le> e / 3"
himmelma@35172
  2337
          unfolding inverse_eq_divide by(auto simp add:field_simps)
himmelma@35172
  2338
        show "norm (i (N1 + N2) - s) < e / 3" by(rule N1[rule_format,unfolded vector_dist_norm],auto)
himmelma@35172
  2339
      qed qed qed qed
himmelma@35172
  2340
himmelma@35172
  2341
subsection {* Negligible sets. *}
himmelma@35172
  2342
himmelma@35172
  2343
definition "indicator s \<equiv> (\<lambda>x. if x \<in> s then 1 else (0::real))"
himmelma@35172
  2344
himmelma@35172
  2345
lemma dest_vec1_indicator:
himmelma@35172
  2346
 "indicator s x = (if x \<in> s then 1 else 0)" unfolding indicator_def by auto
himmelma@35172
  2347
himmelma@35172
  2348
lemma indicator_pos_le[intro]: "0 \<le> (indicator s x)" unfolding indicator_def by auto
himmelma@35172
  2349
himmelma@35172
  2350
lemma indicator_le_1[intro]: "(indicator s x) \<le> 1" unfolding indicator_def by auto
himmelma@35172
  2351
himmelma@35172
  2352
lemma dest_vec1_indicator_abs_le_1: "abs(indicator s x) \<le> 1"
himmelma@35172
  2353
  unfolding indicator_def by auto
himmelma@35172
  2354
himmelma@35172
  2355
definition "negligible (s::(real^'n) set) \<equiv> (\<forall>a b. ((indicator s) has_integral 0) {a..b})"
himmelma@35172
  2356
himmelma@35172
  2357
lemma indicator_simps[simp]:"x\<in>s \<Longrightarrow> indicator s x = 1" "x\<notin>s \<Longrightarrow> indicator s x = 0"
himmelma@35172
  2358
  unfolding indicator_def by auto
himmelma@35172
  2359
himmelma@35172
  2360
subsection {* Negligibility of hyperplane. *}
himmelma@35172
  2361
himmelma@35172
  2362
lemma vsum_nonzero_image_lemma: 
himmelma@35172
  2363
  assumes "finite s" "g(a) = 0"
himmelma@35172
  2364
  "\<forall>x\<in>s. \<forall>y\<in>s. f x = f y \<and> x \<noteq> y \<longrightarrow> g(f x) = 0"
himmelma@35172
  2365
  shows "setsum g {f x |x. x \<in> s \<and> f x \<noteq> a} = setsum (g o f) s"
himmelma@35172
  2366
  unfolding setsum_iterate[OF assms(1)] apply(subst setsum_iterate) defer
himmelma@35172
  2367
  apply(rule iterate_nonzero_image_lemma) apply(rule assms monoidal_monoid)+
himmelma@35172
  2368
  unfolding assms using neutral_add unfolding neutral_add using assms by auto 
himmelma@35172
  2369
himmelma@35172
  2370
lemma interval_doublesplit: shows "{a..b} \<inter> {x . abs(x$k - c) \<le> (e::real)} =
himmelma@35172
  2371
  {(\<chi> i. if i = k then max (a$k) (c - e) else a$i) .. (\<chi> i. if i = k then min (b$k) (c + e) else b$i)}"
himmelma@35172
  2372
proof- have *:"\<And>x c e::real. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto
himmelma@35172
  2373
  have **:"\<And>s P Q. s \<inter> {x. P x \<and> Q x} = (s \<inter> {x. Q x}) \<inter> {x. P x}" by blast
himmelma@35172
  2374
  show ?thesis unfolding * ** interval_split by(rule refl) qed
himmelma@35172
  2375
himmelma@35172
  2376
lemma division_doublesplit: assumes "p division_of {a..b::real^'n}" 
himmelma@35172
  2377
  shows "{l \<inter> {x. abs(x$k - c) \<le> e} |l. l \<in> p \<and> l \<inter> {x. abs(x$k - c) \<le> e} \<noteq> {}} division_of ({a..b} \<inter> {x. abs(x$k - c) \<le> e})"
himmelma@35172
  2378
proof- have *:"\<And>x c. abs(x - c) \<le> e \<longleftrightarrow> x \<ge> c - e \<and> x \<le> c + e" by auto
himmelma@35172
  2379
  have **:"\<And>p q p' q'. p division_of q \<Longrightarrow> p = p' \<Longrightarrow> q = q' \<Longrightarrow> p' division_of q'" by auto
himmelma@35172
  2380
  note division_split(1)[OF assms, where c="c+e" and k=k,unfolded interval_split]
himmelma@35172
  2381
  note division_split(2)[OF this, where c="c-e" and k=k] 
himmelma@35172
  2382
  thus ?thesis apply(rule **) unfolding interval_doublesplit unfolding * unfolding interval_split interval_doublesplit
himmelma@35172
  2383
    apply(rule set_ext) unfolding mem_Collect_eq apply rule apply(erule conjE exE)+ apply(rule_tac x=la in exI) defer
himmelma@35172
  2384
    apply(erule conjE exE)+ apply(rule_tac x="l \<inter> {x. c + e \<ge> x $ k}" in exI) apply rule defer apply rule
himmelma@35172
  2385
    apply(rule_tac x=l in exI) by blast+ qed
himmelma@35172
  2386
himmelma@35172
  2387
lemma content_doublesplit: assumes "0 < e"
himmelma@35172
  2388
  obtains d where "0 < d" "content({a..b} \<inter> {x. abs(x$k - c) \<le> d}) < e"
himmelma@35172
  2389
proof(cases "content {a..b} = 0")
himmelma@35172
  2390
  case True show ?thesis apply(rule that[of 1]) defer unfolding interval_doublesplit
himmelma@35172
  2391
    apply(rule le_less_trans[OF content_subset]) defer apply(subst True)
himmelma@35172
  2392
    unfolding interval_doublesplit[THEN sym] using assms by auto 
himmelma@35172
  2393
next case False def d \<equiv> "e / 3 / setprod (\<lambda>i. b$i - a$i) (UNIV - {k})"
himmelma@35172
  2394
  note False[unfolded content_eq_0 not_ex not_le, rule_format]
himmelma@35172
  2395
  hence prod0:"0 < setprod (\<lambda>i. b$i - a$i) (UNIV - {k})" apply-apply(rule setprod_pos) by smt
himmelma@35172
  2396
  hence "d > 0" unfolding d_def using assms by(auto simp add:field_simps) thus ?thesis
himmelma@35172
  2397
  proof(rule that[of d]) have *:"UNIV = insert k (UNIV - {k})" by auto
himmelma@35172
  2398
    have **:"{a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} \<noteq> {} \<Longrightarrow> 
himmelma@35172
  2399
      (\<Prod>i\<in>UNIV - {k}. interval_upperbound ({a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) $ i - interval_lowerbound ({a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) $ i)
himmelma@35172
  2400
      = (\<Prod>i\<in>UNIV - {k}. b$i - a$i)" apply(rule setprod_cong,rule refl)
himmelma@35172
  2401
      unfolding interval_doublesplit interval_eq_empty not_ex not_less unfolding interval_bounds by auto
himmelma@35172
  2402
    show "content ({a..b} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) < e" apply(cases) unfolding content_def apply(subst if_P,assumption,rule assms)
himmelma@35172
  2403
      unfolding if_not_P apply(subst *) apply(subst setprod_insert) unfolding **
himmelma@35172
  2404
      unfolding interval_doublesplit interval_eq_empty not_ex not_less unfolding interval_bounds unfolding Cart_lambda_beta if_P[OF refl]
himmelma@35172
  2405
    proof- have "(min (b $ k) (c + d) - max (a $ k) (c - d)) \<le> 2 * d" by auto
himmelma@35172
  2406
      also have "... < e / (\<Prod>i\<in>UNIV - {k}. b $ i - a $ i)" unfolding d_def using assms prod0 by(auto simp add:field_simps)
himmelma@35172
  2407
      finally show "(min (b $ k) (c + d) - max (a $ k) (c - d)) * (\<Prod>i\<in>UNIV - {k}. b $ i - a $ i) < e"
himmelma@35172
  2408
        unfolding pos_less_divide_eq[OF prod0] . qed auto qed qed
himmelma@35172
  2409
himmelma@35172
  2410
lemma negligible_standard_hyperplane[intro]: "negligible {x. x$k = (c::real)}" 
himmelma@35172
  2411
  unfolding negligible_def has_integral apply(rule,rule,rule,rule)
himmelma@35172
  2412
proof- case goal1 from content_doublesplit[OF this,of a b k c] guess d . note d=this let ?i = "indicator {x. x$k = c}"
himmelma@35172
  2413
  show ?case apply(rule_tac x="\<lambda>x. ball x d" in exI) apply(rule,rule gauge_ball,rule d)
himmelma@35172
  2414
  proof(rule,rule) fix p assume p:"p tagged_division_of {a..b} \<and> (\<lambda>x. ball x d) fine p"
himmelma@35172
  2415
    have *:"(\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) = (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. abs(x$k - c) \<le> d}) *\<^sub>R ?i x)"
himmelma@35172
  2416
      apply(rule setsum_cong2) unfolding split_paired_all real_scaleR_def mult_cancel_right split_conv
himmelma@35172
  2417
      apply(cases,rule disjI1,assumption,rule disjI2)
himmelma@35172
  2418
    proof- fix x l assume as:"(x,l)\<in>p" "?i x \<noteq> 0" hence xk:"x$k = c" unfolding indicator_def apply-by(rule ccontr,auto)
himmelma@35172
  2419
      show "content l = content (l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d})" apply(rule arg_cong[where f=content])
himmelma@35172
  2420
        apply(rule set_ext,rule,rule) unfolding mem_Collect_eq
himmelma@35172
  2421
      proof- fix y assume y:"y\<in>l" note p[THEN conjunct2,unfolded fine_def,rule_format,OF as(1),unfolded split_conv]
himmelma@35172
  2422
        note this[unfolded subset_eq mem_ball vector_dist_norm,rule_format,OF y] note le_less_trans[OF component_le_norm[of _ k] this]
himmelma@35172
  2423
        thus "\<bar>y $ k - c\<bar> \<le> d" unfolding Cart_nth.diff xk by auto
himmelma@35172
  2424
      qed auto qed
himmelma@35172
  2425
    note p'= tagged_division_ofD[OF p[THEN conjunct1]] and p''=division_of_tagged_division[OF p[THEN conjunct1]]
himmelma@35172
  2426
    show "norm ((\<Sum>(x, ka)\<in>p. content ka *\<^sub>R ?i x) - 0) < e" unfolding diff_0_right * unfolding real_scaleR_def real_norm_def
himmelma@35172
  2427
      apply(subst abs_of_nonneg) apply(rule setsum_nonneg,rule) unfolding split_paired_all split_conv
himmelma@35172
  2428
      apply(rule mult_nonneg_nonneg) apply(drule p'(4)) apply(erule exE)+ apply(rule_tac b=b in back_subst)
himmelma@35172
  2429
      prefer 2 apply(subst(asm) eq_commute) apply assumption
himmelma@35172
  2430
      apply(subst interval_doublesplit) apply(rule content_pos_le) apply(rule indicator_pos_le)
himmelma@35172
  2431
    proof- have "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) * ?i x) \<le> (\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}))"
himmelma@35172
  2432
        apply(rule setsum_mono) unfolding split_paired_all split_conv 
himmelma@35172
  2433
        apply(rule mult_right_le_one_le) apply(drule p'(4)) by(auto simp add:interval_doublesplit intro!:content_pos_le)
himmelma@35172
  2434
      also have "... < e" apply(subst setsum_over_tagged_division_lemma[OF p[THEN conjunct1]])
himmelma@35172
  2435
      proof- case goal1 have "content ({u..v} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) \<le> content {u..v}"
himmelma@35172
  2436
          unfolding interval_doublesplit apply(rule content_subset) unfolding interval_doublesplit[THEN sym] by auto
himmelma@35172
  2437
        thus ?case unfolding goal1 unfolding interval_doublesplit using content_pos_le by smt
himmelma@35172
  2438
      next have *:"setsum content {l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} |l. l \<in> snd ` p \<and> l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} \<noteq> {}} \<ge> 0"
himmelma@35172
  2439
          apply(rule setsum_nonneg,rule) unfolding mem_Collect_eq image_iff apply(erule exE bexE conjE)+ unfolding split_paired_all 
himmelma@35172
  2440
        proof- fix x l a b assume as:"x = l \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}" "(a, b) \<in> p" "l = snd (a, b)"
himmelma@35172
  2441
          guess u v using p'(4)[OF as(2)] apply-by(erule exE)+ note * = this
himmelma@35172
  2442
          show "content x \<ge> 0" unfolding as snd_conv * interval_doublesplit by(rule content_pos_le)
himmelma@35172
  2443
        qed have **:"norm (1::real) \<le> 1" by auto note division_doublesplit[OF p'',unfolded interval_doublesplit]
himmelma@35172
  2444
        note dsum_bound[OF this **,unfolded interval_doublesplit[THEN sym]]
himmelma@35172
  2445
        note this[unfolded real_scaleR_def real_norm_def class_semiring.semiring_rules, of k c d] note le_less_trans[OF this d(2)]
himmelma@35172
  2446
        from this[unfolded abs_of_nonneg[OF *]] show "(\<Sum>ka\<in>snd ` p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d})) < e"
himmelma@35172
  2447
          apply(subst vsum_nonzero_image_lemma[of "snd ` p" content "{}", unfolded o_def,THEN sym])
himmelma@35172
  2448
          apply(rule finite_imageI p' content_empty)+ unfolding forall_in_division[OF p'']
himmelma@35172
  2449
        proof(rule,rule,rule,rule,rule,rule,rule,erule conjE) fix m n u v
himmelma@35172
  2450
          assume as:"{m..n} \<in> snd ` p" "{u..v} \<in> snd ` p" "{m..n} \<noteq> {u..v}"  "{m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d} = {u..v} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}"
himmelma@35172
  2451
          have "({m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) \<inter> ({u..v} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) \<subseteq> {m..n} \<inter> {u..v}" by blast
himmelma@35172
  2452
          note subset_interior[OF this, unfolded division_ofD(5)[OF p'' as(1-3)] interior_inter[of "{m..n}"]]
himmelma@35172
  2453
          hence "interior ({m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) = {}" unfolding as Int_absorb by auto
himmelma@35172
  2454
          thus "content ({m..n} \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) = 0" unfolding interval_doublesplit content_eq_0_interior[THEN sym] .
himmelma@35172
  2455
        qed qed
himmelma@35172
  2456
      finally show "(\<Sum>(x, ka)\<in>p. content (ka \<inter> {x. \<bar>x $ k - c\<bar> \<le> d}) * ?i x) < e" .
himmelma@35172
  2457
    qed qed qed
himmelma@35172
  2458
himmelma@35172
  2459
subsection {* A technical lemma about "refinement" of division. *}
himmelma@35172
  2460
himmelma@35172
  2461
lemma tagged_division_finer: fixes p::"((real^'n) \<times> ((real^'n) set)) set"
himmelma@35172
  2462
  assumes "p tagged_division_of {a..b}" "gauge d"
himmelma@35172
  2463
  obtains q where "q tagged_division_of {a..b}" "d fine q" "\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q"
himmelma@35172
  2464
proof-
himmelma@35172
  2465
  let ?P = "\<lambda>p. p tagged_partial_division_of {a..b} \<longrightarrow> gauge d \<longrightarrow>
himmelma@35172
  2466
    (\<exists>q. q tagged_division_of (\<Union>{k. \<exists>x. (x,k) \<in> p}) \<and> d fine q \<and>
himmelma@35172
  2467
                   (\<forall>(x,k) \<in> p. k \<subseteq> d(x) \<longrightarrow> (x,k) \<in> q))"
himmelma@35172
  2468
  { have *:"finite p" "p tagged_partial_division_of {a..b}" using assms(1) unfolding tagged_division_of_def by auto
himmelma@35172
  2469
    presume "\<And>p. finite p \<Longrightarrow> ?P p" from this[rule_format,OF * assms(2)] guess q .. note q=this
himmelma@35172
  2470
    thus ?thesis apply-apply(rule that[of q]) unfolding tagged_division_ofD[OF assms(1)] by auto
himmelma@35172
  2471
  } fix p::"((real^'n) \<times> ((real^'n) set)) set" assume as:"finite p"
himmelma@35172
  2472
  show "?P p" apply(rule,rule) using as proof(induct p) 
himmelma@35172
  2473
    case empty show ?case apply(rule_tac x="{}" in exI) unfolding fine_def by auto
himmelma@35172
  2474
  next case (insert xk p) guess x k using surj_pair[of xk] apply- by(erule exE)+ note xk=this
himmelma@35172
  2475
    note tagged_partial_division_subset[OF insert(4) subset_insertI]
himmelma@35172
  2476
    from insert(3)[OF this insert(5)] guess q1 .. note q1 = conjunctD3[OF this]
himmelma@35172
  2477
    have *:"\<Union>{l. \<exists>y. (y,l) \<in> insert xk p} = k \<union> \<Union>{l. \<exists>y. (y,l) \<in> p}" unfolding xk by auto
himmelma@35172
  2478
    note p = tagged_partial_division_ofD[OF insert(4)]
himmelma@35172
  2479
    from p(4)[unfolded xk, OF insertI1] guess u v apply-by(erule exE)+ note uv=this
himmelma@35172
  2480
himmelma@35172
  2481
    have "finite {k. \<exists>x. (x, k) \<in> p}" 
himmelma@35172
  2482
      apply(rule finite_subset[of _ "snd ` p"],rule) unfolding subset_eq image_iff mem_Collect_eq
himmelma@35172
  2483
      apply(erule exE,rule_tac x="(xa,x)" in bexI) using p by auto
himmelma@35172
  2484
    hence int:"interior {u..v} \<inter> interior (\<Union>{k. \<exists>x. (x, k) \<in> p}) = {}"
himmelma@35172
  2485
      apply(rule inter_interior_unions_intervals) apply(rule open_interior) apply(rule_tac[!] ballI)
himmelma@35172
  2486
      unfolding mem_Collect_eq apply(erule_tac[!] exE) apply(drule p(4)[OF insertI2],assumption)      
himmelma@35172
  2487
      apply(rule p(5))  unfolding uv xk apply(rule insertI1,rule insertI2) apply assumption
himmelma@35172
  2488
      using insert(2) unfolding uv xk by auto
himmelma@35172
  2489
himmelma@35172
  2490
    show ?case proof(cases "{u..v} \<subseteq> d x")
himmelma@35172
  2491
      case True thus ?thesis apply(rule_tac x="{(x,{u..v})} \<union> q1" in exI) apply rule
himmelma@35172
  2492
        unfolding * uv apply(rule tagged_division_union,rule tagged_division_of_self)
himmelma@35172
  2493
        apply(rule p[unfolded xk uv] insertI1)+  apply(rule q1,rule int) 
himmelma@35172
  2494
        apply(rule,rule fine_union,subst fine_def) defer apply(rule q1)
himmelma@35172
  2495
        unfolding Ball_def split_paired_All split_conv apply(rule,rule,rule,rule)
himmelma@35172
  2496
        apply(erule insertE) defer apply(rule UnI2) apply(drule q1(3)[rule_format]) unfolding xk uv by auto
himmelma@35172
  2497
    next case False from fine_division_exists[OF assms(2), of u v] guess q2 . note q2=this
himmelma@35172
  2498
      show ?thesis apply(rule_tac x="q2 \<union> q1" in exI)
himmelma@35172
  2499
        apply rule unfolding * uv apply(rule tagged_division_union q2 q1 int fine_union)+
himmelma@35172
  2500
        unfolding Ball_def split_paired_All split_conv apply rule apply(rule fine_union)
himmelma@35172
  2501
        apply(rule q1 q2)+ apply(rule,rule,rule,rule) apply(erule insertE)
himmelma@35172
  2502
        apply(rule UnI2) defer apply(drule q1(3)[rule_format])using False unfolding xk uv by auto
himmelma@35172
  2503
    qed qed qed
himmelma@35172
  2504
himmelma@35172
  2505
subsection {* Hence the main theorem about negligible sets. *}
himmelma@35172
  2506
himmelma@35172
  2507
lemma finite_product_dependent: assumes "finite s" "\<And>x. x\<in>s\<Longrightarrow> finite (t x)"
himmelma@35172
  2508
  shows "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" using assms
himmelma@35172
  2509
proof(induct) case (insert x s) 
himmelma@35172
  2510
  have *:"{(i, j) |i j. i \<in> insert x s \<and> j \<in> t i} = (\<lambda>y. (x,y)) ` (t x) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
himmelma@35172
  2511
  show ?case unfolding * apply(rule finite_UnI) using insert by auto qed auto
himmelma@35172
  2512
himmelma@35172
  2513
lemma sum_sum_product: assumes "finite s" "\<forall>i\<in>s. finite (t i)"
himmelma@35172
  2514
  shows "setsum (\<lambda>i. setsum (x i) (t i)::real) s = setsum (\<lambda>(i,j). x i j) {(i,j) | i j. i \<in> s \<and> j \<in> t i}" using assms
himmelma@35172
  2515
proof(induct) case (insert a s)
himmelma@35172
  2516
  have *:"{(i, j) |i j. i \<in> insert a s \<and> j \<in> t i} = (\<lambda>y. (a,y)) ` (t a) \<union> {(i, j) |i j. i \<in> s \<and> j \<in> t i}" by auto
himmelma@35172
  2517
  show ?case unfolding * apply(subst setsum_Un_disjoint) unfolding setsum_insert[OF insert(1-2)]
himmelma@35172
  2518
    prefer 4 apply(subst insert(3)) unfolding add_right_cancel
himmelma@35172
  2519
  proof- show "setsum (x a) (t a) = (\<Sum>(xa, y)\<in>Pair a ` t a. x xa y)" apply(subst setsum_reindex) unfolding inj_on_def by auto
himmelma@35172
  2520
    show "finite {(i, j) |i j. i \<in> s \<and> j \<in> t i}" apply(rule finite_product_dependent) using insert by auto
himmelma@35172
  2521
  qed(insert insert, auto) qed auto
himmelma@35172
  2522
himmelma@35172
  2523
lemma has_integral_negligible: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  2524
  assumes "negligible s" "\<forall>x\<in>(t - s). f x = 0"
himmelma@35172
  2525
  shows "(f has_integral 0) t"
himmelma@35172
  2526
proof- presume P:"\<And>f::real^'n \<Rightarrow> 'a. \<And>a b. (\<forall>x. ~(x \<in> s) \<longrightarrow> f x = 0) \<Longrightarrow> (f has_integral 0) ({a..b})"
himmelma@35172
  2527
  let ?f = "(\<lambda>x. if x \<in> t then f x else 0)"
himmelma@35172
  2528
  show ?thesis apply(rule_tac f="?f" in has_integral_eq) apply(rule) unfolding if_P apply(rule refl)
himmelma@35172
  2529
    apply(subst has_integral_alt) apply(cases,subst if_P,assumption) unfolding if_not_P
himmelma@35172
  2530
  proof- assume "\<exists>a b. t = {a..b}" then guess a b apply-by(erule exE)+ note t = this
himmelma@35172
  2531
    show "(?f has_integral 0) t" unfolding t apply(rule P) using assms(2) unfolding t by auto
himmelma@35172
  2532
  next show "\<forall>e>0. \<exists>B>0. \<forall>a b. ball 0 B \<subseteq> {a..b} \<longrightarrow> (\<exists>z. ((\<lambda>x. if x \<in> t then ?f x else 0) has_integral z) {a..b} \<and> norm (z - 0) < e)"
himmelma@35172
  2533
      apply(safe,rule_tac x=1 in exI,rule) apply(rule zero_less_one,safe) apply(rule_tac x=0 in exI)
himmelma@35172
  2534
      apply(rule,rule P) using assms(2) by auto
himmelma@35172
  2535
  qed
himmelma@35172
  2536
next fix f::"real^'n \<Rightarrow> 'a" and a b::"real^'n" assume assm:"\<forall>x. x \<notin> s \<longrightarrow> f x = 0" 
himmelma@35172
  2537
  show "(f has_integral 0) {a..b}" unfolding has_integral
himmelma@35172
  2538
  proof(safe) case goal1
himmelma@35172
  2539
    hence "\<And>n. e / 2 / ((real n+1) * (2 ^ n)) > 0" 
himmelma@35172
  2540
      apply-apply(rule divide_pos_pos) defer apply(rule mult_pos_pos) by(auto simp add:field_simps)
himmelma@35172
  2541
    note assms(1)[unfolded negligible_def has_integral,rule_format,OF this,of a b] note allI[OF this,of "\<lambda>x. x"] 
himmelma@35172
  2542
    from choice[OF this] guess d .. note d=conjunctD2[OF this[rule_format]]
himmelma@35172
  2543
    show ?case apply(rule_tac x="\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x" in exI) 
himmelma@35172
  2544
    proof safe show "gauge (\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x)" using d(1) unfolding gauge_def by auto
himmelma@35172
  2545
      fix p assume as:"p tagged_division_of {a..b}" "(\<lambda>x. d (nat \<lfloor>norm (f x)\<rfloor>) x) fine p" 
himmelma@35172
  2546
      let ?goal = "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) < e"
himmelma@35172
  2547
      { presume "p\<noteq>{} \<Longrightarrow> ?goal" thus ?goal apply(cases "p={}") using goal1 by auto  }
himmelma@35172
  2548
      assume as':"p \<noteq> {}" from real_arch_simple[of "Sup((\<lambda>(x,k). norm(f x)) ` p)"] guess N ..
himmelma@35172
  2549
      hence N:"\<forall>x\<in>(\<lambda>(x, k). norm (f x)) ` p. x \<le> real N" apply(subst(asm) Sup_finite_le_iff) using as as' by auto
himmelma@35172
  2550
      have "\<forall>i. \<exists>q. q tagged_division_of {a..b} \<and> (d i) fine q \<and> (\<forall>(x, k)\<in>p. k \<subseteq> (d i) x \<longrightarrow> (x, k) \<in> q)"
himmelma@35172
  2551
        apply(rule,rule tagged_division_finer[OF as(1) d(1)]) by auto
himmelma@35172
  2552
      from choice[OF this] guess q .. note q=conjunctD3[OF this[rule_format]]
himmelma@35172
  2553
      have *:"\<And>i. (\<Sum>(x, k)\<in>q i. content k *\<^sub>R indicator s x) \<ge> 0" apply(rule setsum_nonneg,safe) 
himmelma@35172
  2554
        unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) apply(drule tagged_division_ofD(4)[OF q(1)]) by auto
himmelma@35172
  2555
      have **:"\<And>f g s t. finite s \<Longrightarrow> finite t \<Longrightarrow> (\<forall>(x,y) \<in> t. (0::real) \<le> g(x,y)) \<Longrightarrow> (\<forall>y\<in>s. \<exists>x. (x,y) \<in> t \<and> f(y) \<le> g(x,y)) \<Longrightarrow> setsum f s \<le> setsum g t"
himmelma@35172
  2556
      proof- case goal1 thus ?case apply-apply(rule setsum_le_included[of s t g snd f]) prefer 4
himmelma@35172
  2557
          apply safe apply(erule_tac x=x in ballE) apply(erule exE) apply(rule_tac x="(xa,x)" in bexI) by auto qed
himmelma@35172
  2558
      have "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - 0) \<le> setsum (\<lambda>i. (real i + 1) *
himmelma@35172
  2559
                     norm(setsum (\<lambda>(x,k). content k *\<^sub>R indicator s x) (q i))) {0..N+1}"
himmelma@35172
  2560
        unfolding real_norm_def setsum_right_distrib abs_of_nonneg[OF *] diff_0_right
himmelma@35172
  2561
        apply(rule order_trans,rule setsum_norm) defer apply(subst sum_sum_product) prefer 3 
himmelma@35172
  2562
      proof(rule **,safe) show "finite {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i}" apply(rule finite_product_dependent) using q by auto
himmelma@35172
  2563
        fix i a b assume as'':"(a,b) \<in> q i" show "0 \<le> (real i + 1) * (content b *\<^sub>R indicator s a)"
himmelma@35172
  2564
          unfolding real_scaleR_def apply(rule mult_nonneg_nonneg) defer apply(rule mult_nonneg_nonneg)
himmelma@35172
  2565
          using tagged_division_ofD(4)[OF q(1) as''] by auto
himmelma@35172
  2566
      next fix i::nat show "finite (q i)" using q by auto
himmelma@35172
  2567
      next fix x k assume xk:"(x,k) \<in> p" def n \<equiv> "nat \<lfloor>norm (f x)\<rfloor>"
himmelma@35172
  2568
        have *:"norm (f x) \<in> (\<lambda>(x, k). norm (f x)) ` p" using xk by auto
himmelma@35172
  2569
        have nfx:"real n \<le> norm(f x)" "norm(f x) \<le> real n + 1" unfolding n_def by auto
himmelma@35172
  2570
        hence "n \<in> {0..N + 1}" using N[rule_format,OF *] by auto
himmelma@35172
  2571
        moreover  note as(2)[unfolded fine_def,rule_format,OF xk,unfolded split_conv]
himmelma@35172
  2572
        note q(3)[rule_format,OF xk,unfolded split_conv,rule_format,OF this] note this[unfolded n_def[symmetric]]
himmelma@35172
  2573
        moreover have "norm (content k *\<^sub>R f x) \<le> (real n + 1) * (content k * indicator s x)"
himmelma@35172
  2574
        proof(cases "x\<in>s") case False thus ?thesis using assm by auto
himmelma@35172
  2575
        next case True have *:"content k \<ge> 0" using tagged_division_ofD(4)[OF as(1) xk] by auto
himmelma@35172
  2576
          moreover have "content k * norm (f x) \<le> content k * (real n + 1)" apply(rule mult_mono) using nfx * by auto
himmelma@35172
  2577
          ultimately show ?thesis unfolding abs_mult using nfx True by(auto simp add:field_simps)
himmelma@35172
  2578
        qed ultimately show "\<exists>y. (y, x, k) \<in> {(i, j) |i j. i \<in> {0..N + 1} \<and> j \<in> q i} \<and> norm (content k *\<^sub>R f x) \<le> (real y + 1) * (content k *\<^sub>R indicator s x)"
himmelma@35172
  2579
          apply(rule_tac x=n in exI,safe) apply(rule_tac x=n in exI,rule_tac x="(x,k)" in exI,safe) by auto
himmelma@35172
  2580
      qed(insert as, auto)
himmelma@35172
  2581
      also have "... \<le> setsum (\<lambda>i. e / 2 / 2 ^ i) {0..N+1}" apply(rule setsum_mono) 
himmelma@35172
  2582
      proof- case goal1 thus ?case apply(subst mult_commute, subst pos_le_divide_eq[THEN sym])
himmelma@35172
  2583
          using d(2)[rule_format,of "q i" i] using q[rule_format] by(auto simp add:field_simps)
himmelma@35172
  2584
      qed also have "... < e * inverse 2 * 2" unfolding real_divide_def setsum_right_distrib[THEN sym]
himmelma@35172
  2585
        apply(rule mult_strict_left_mono) unfolding power_inverse atLeastLessThanSuc_atLeastAtMost[THEN sym]
himmelma@35172
  2586
        apply(subst sumr_geometric) using goal1 by auto
himmelma@35172
  2587
      finally show "?goal" by auto qed qed qed
himmelma@35172
  2588
himmelma@35172
  2589
lemma has_integral_spike: fixes f::"real^'n \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  2590
  assumes "negligible s" "(\<forall>x\<in>(t - s). g x = f x)" "(f has_integral y) t"
himmelma@35172
  2591
  shows "(g has_integral y) t"
himmelma@35172
  2592
proof- { fix a b::"real^'n" and f g ::"real^'n \<Rightarrow> 'a" and y::'a
himmelma@35172
  2593
    assume as:"\<forall>x \<in> {a..b} - s. g x = f x" "(f has_integral y) {a..b}"
himmelma@35172
  2594
    have "((\<lambda>x. f x + (g x - f x)) has_integral (y + 0)) {a..b}" apply(rule has_integral_add[OF as(2)])
himmelma@35172
  2595
      apply(rule has_integral_negligible[OF assms(1)]) using as by auto
himmelma@35172
  2596
    hence "(g has_integral y) {a..b}" by auto } note * = this
himmelma@35172
  2597
  show ?thesis apply(subst has_integral_alt) using assms(2-) apply-apply(rule cond_cases,safe)
himmelma@35172
  2598
    apply(rule *, assumption+) apply(subst(asm) has_integral_alt) unfolding if_not_P
himmelma@35172
  2599
    apply(erule_tac x=e in allE,safe,rule_tac x=B in exI,safe) apply(erule_tac x=a in allE,erule_tac x=b in allE,safe)
himmelma@35172
  2600
    apply(rule_tac x=z in exI,safe) apply(rule *[where fa2="\<lambda>x. if x\<in>t then f x else 0"]) by auto qed
himmelma@35172
  2601
himmelma@35172
  2602
lemma has_integral_spike_eq:
himmelma@35172
  2603
  assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x"
himmelma@35172
  2604
  shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)"
himmelma@35172
  2605
  apply rule apply(rule_tac[!] has_integral_spike[OF assms(1)]) using assms(2) by auto
himmelma@35172
  2606
himmelma@35172
  2607
lemma integrable_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x" "f integrable_on t"
himmelma@35172
  2608
  shows "g integrable_on  t"
himmelma@35172
  2609
  using assms unfolding integrable_on_def apply-apply(erule exE)
himmelma@35172
  2610
  apply(rule,rule has_integral_spike) by fastsimp+
himmelma@35172
  2611
himmelma@35172
  2612
lemma integral_spike: assumes "negligible s" "\<forall>x\<in>(t - s). g x = f x"
himmelma@35172
  2613
  shows "integral t f = integral t g"
himmelma@35172
  2614
  unfolding integral_def using has_integral_spike_eq[OF assms] by auto
himmelma@35172
  2615
himmelma@35172
  2616
subsection {* Some other trivialities about negligible sets. *}
himmelma@35172
  2617
himmelma@35172
  2618
lemma negligible_subset[intro]: assumes "negligible s" "t \<subseteq> s" shows "negligible t" unfolding negligible_def 
himmelma@35172
  2619
proof(safe) case goal1 show ?case using assms(1)[unfolded negligible_def,rule_format,of a b]
himmelma@35172
  2620
    apply-apply(rule has_integral_spike[OF assms(1)]) defer apply assumption
himmelma@35172
  2621
    using assms(2) unfolding indicator_def by auto qed
himmelma@35172
  2622
himmelma@35172
  2623
lemma negligible_diff[intro?]: assumes "negligible s" shows "negligible(s - t)" using assms by auto
himmelma@35172
  2624
himmelma@35172
  2625
lemma negligible_inter: assumes "negligible s \<or> negligible t" shows "negligible(s \<inter> t)" using assms by auto
himmelma@35172
  2626
himmelma@35172
  2627
lemma negligible_union: assumes "negligible s" "negligible t" shows "negligible (s \<union> t)" unfolding negligible_def 
himmelma@35172
  2628
proof safe case goal1 note assm = assms[unfolded negligible_def,rule_format,of a b]
himmelma@35172
  2629
  thus ?case apply(subst has_integral_spike_eq[OF assms(2)])
himmelma@35172
  2630
    defer apply assumption unfolding indicator_def by auto qed
himmelma@35172
  2631
himmelma@35172
  2632
lemma negligible_union_eq[simp]: "negligible (s \<union> t) \<longleftrightarrow> (negligible s \<and> negligible t)"
himmelma@35172
  2633
  using negligible_union by auto
himmelma@35172
  2634
himmelma@35172
  2635
lemma negligible_sing[intro]: "negligible {a::real^'n}" 
himmelma@35172
  2636
proof- guess x using UNIV_witness[where 'a='n] ..
himmelma@35172
  2637
  show ?thesis using negligible_standard_hyperplane[of x "a$x"] by auto qed
himmelma@35172
  2638
himmelma@35172
  2639
lemma negligible_insert[simp]: "negligible(insert a s) \<longleftrightarrow> negligible s"
himmelma@35172
  2640
  apply(subst insert_is_Un) unfolding negligible_union_eq by auto
himmelma@35172
  2641
himmelma@35172
  2642
lemma negligible_empty[intro]: "negligible {}" by auto
himmelma@35172
  2643
himmelma@35172
  2644
lemma negligible_finite[intro]: assumes "finite s" shows "negligible s"
himmelma@35172
  2645
  using assms apply(induct s) by auto
himmelma@35172
  2646
himmelma@35172
  2647
lemma negligible_unions[intro]: assumes "finite s" "\<forall>t\<in>s. negligible t" shows "negligible(\<Union>s)"
himmelma@35172
  2648
  using assms by(induct,auto) 
himmelma@35172
  2649
himmelma@35172
  2650
lemma negligible:  "negligible s \<longleftrightarrow> (\<forall>t::(real^'n) set. (indicator s has_integral 0) t)"
himmelma@35172
  2651
  apply safe defer apply(subst negligible_def)
himmelma@35172
  2652
proof- fix t::"(real^'n) set" assume as:"negligible s"
himmelma@35172
  2653
  have *:"(\<lambda>x. if x \<in> s \<inter> t then 1 else 0) = (\<lambda>x. if x\<in>t then if x\<in>s then 1 else 0 else 0)" by(rule ext,auto)  
himmelma@35172
  2654
  show "(indicator s has_integral 0) t" apply(subst has_integral_alt)
himmelma@35172
  2655
    apply(cases,subst if_P,assumption) unfolding if_not_P apply(safe,rule as[unfolded negligible_def,rule_format])
himmelma@35172
  2656
    apply(rule_tac x=1 in exI) apply(safe,rule zero_less_one) apply(rule_tac x=0 in exI)
himmelma@35172
  2657
    using negligible_subset[OF as,of "s \<inter> t"] unfolding negligible_def indicator_def unfolding * by auto qed auto
himmelma@35172
  2658
himmelma@35172
  2659
subsection {* Finite case of the spike theorem is quite commonly needed. *}
himmelma@35172
  2660
himmelma@35172
  2661
lemma has_integral_spike_finite: assumes "finite s" "\<forall>x\<in>t-s. g x = f x" 
himmelma@35172
  2662
  "(f has_integral y) t" shows "(g has_integral y) t"
himmelma@35172
  2663
  apply(rule has_integral_spike) using assms by auto
himmelma@35172
  2664
himmelma@35172
  2665
lemma has_integral_spike_finite_eq: assumes "finite s" "\<forall>x\<in>t-s. g x = f x"
himmelma@35172
  2666
  shows "((f has_integral y) t \<longleftrightarrow> (g has_integral y) t)"
himmelma@35172
  2667
  apply rule apply(rule_tac[!] has_integral_spike_finite) using assms by auto
himmelma@35172
  2668
himmelma@35172
  2669
lemma integrable_spike_finite:
himmelma@35172
  2670
  assumes "finite s" "\<forall>x\<in>t-s. g x = f x" "f integrable_on t" shows "g integrable_on  t"
himmelma@35172
  2671
  using assms unfolding integrable_on_def apply safe apply(rule_tac x=y in exI)
himmelma@35172
  2672
  apply(rule has_integral_spike_finite) by auto
himmelma@35172
  2673
himmelma@35172
  2674
subsection {* In particular, the boundary of an interval is negligible. *}
himmelma@35172
  2675
himmelma@35172
  2676
lemma negligible_frontier_interval: "negligible({a..b} - {a<..<b})"
himmelma@35172
  2677
proof- let ?A = "\<Union>((\<lambda>k. {x. x$k = a$k} \<union> {x. x$k = b$k}) ` UNIV)"
himmelma@35172
  2678
  have "{a..b} - {a<..<b} \<subseteq> ?A" apply rule unfolding Diff_iff mem_interval not_all
himmelma@35172
  2679
    apply(erule conjE exE)+ apply(rule_tac X="{x. x $ xa = a $ xa} \<union> {x. x $ xa = b $ xa}" in UnionI)
himmelma@35172
  2680
    apply(erule_tac[!] x=xa in allE) by auto
himmelma@35172
  2681
  thus ?thesis apply-apply(rule negligible_subset[of ?A]) apply(rule negligible_unions[OF finite_imageI]) by auto qed
himmelma@35172
  2682
himmelma@35172
  2683
lemma has_integral_spike_interior:
himmelma@35172
  2684
  assumes "\<forall>x\<in>{a<..<b}. g x = f x" "(f has_integral y) ({a..b})" shows "(g has_integral y) ({a..b})"
himmelma@35172
  2685
  apply(rule has_integral_spike[OF negligible_frontier_interval _ assms(2)]) using assms(1) by auto
himmelma@35172
  2686
himmelma@35172
  2687
lemma has_integral_spike_interior_eq:
himmelma@35172
  2688
  assumes "\<forall>x\<in>{a<..<b}. g x = f x" shows "((f has_integral y) ({a..b}) \<longleftrightarrow> (g has_integral y) ({a..b}))"
himmelma@35172
  2689
  apply rule apply(rule_tac[!] has_integral_spike_interior) using assms by auto
himmelma@35172
  2690
himmelma@35172
  2691
lemma integrable_spike_interior: assumes "\<forall>x\<in>{a<..<b}. g x = f x" "f integrable_on {a..b}" shows "g integrable_on {a..b}"
himmelma@35172
  2692
  using  assms unfolding integrable_on_def using has_integral_spike_interior[OF assms(1)] by auto
himmelma@35172
  2693
himmelma@35172
  2694
subsection {* Integrability of continuous functions. *}
himmelma@35172
  2695
himmelma@35172
  2696
lemma neutral_and[simp]: "neutral op \<and> = True"
himmelma@35172
  2697
  unfolding neutral_def apply(rule some_equality) by auto
himmelma@35172
  2698
himmelma@35172
  2699
lemma monoidal_and[intro]: "monoidal op \<and>" unfolding monoidal_def by auto
himmelma@35172
  2700
himmelma@35172
  2701
lemma iterate_and[simp]: assumes "finite s" shows "(iterate op \<and>) s p \<longleftrightarrow> (\<forall>x\<in>s. p x)" using assms
himmelma@35172
  2702
apply induct unfolding iterate_insert[OF monoidal_and] by auto
himmelma@35172
  2703
himmelma@35172
  2704
lemma operative_division_and: assumes "operative op \<and> P" "d division_of {a..b}"
himmelma@35172
  2705
  shows "(\<forall>i\<in>d. P i) \<longleftrightarrow> P {a..b}"
himmelma@35172
  2706
  using operative_division[OF monoidal_and assms] division_of_finite[OF assms(2)] by auto
himmelma@35172
  2707
himmelma@35172
  2708
lemma operative_approximable: assumes "0 \<le> e" fixes f::"real^'n \<Rightarrow> 'a::banach"
himmelma@35172
  2709
  shows "operative op \<and> (\<lambda>i. \<exists>g. (\<forall>x\<in>i. norm (f x - g (x::real^'n)) \<le> e) \<and> g integrable_on i)" unfolding operative_def neutral_and
himmelma@35172
  2710
proof safe fix a b::"real^'n" { assume "content {a..b} = 0"
himmelma@35172
  2711
    thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" 
himmelma@35172
  2712
      apply(rule_tac x=f in exI) using assms by(auto intro!:integrable_on_null) }
himmelma@35172
  2713
  { fix c k g assume as:"\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
himmelma@35172
  2714
    show "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. x $ k \<le> c}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. x $ k \<le> c}"
himmelma@35172
  2715
      "\<exists>g. (\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $ k}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b} \<inter> {x. c \<le> x $ k}"
himmelma@35172
  2716
      apply(rule_tac[!] x=g in exI) using as(1) integrable_split[OF as(2)] by auto }
himmelma@35172
  2717
  fix c k g1 g2 assume as:"\<forall>x\<in>{a..b} \<inter> {x. x $ k \<le> c}. norm (f x - g1 x) \<le> e" "g1 integrable_on {a..b} \<inter> {x. x $ k \<le> c}"
himmelma@35172
  2718
                          "\<forall>x\<in>{a..b} \<inter> {x. c \<le> x $ k}. norm (f x - g2 x) \<le> e" "g2 integrable_on {a..b} \<inter> {x. c \<le> x $ k}"
himmelma@35172
  2719
  let ?g = "\<lambda>x. if x$k = c then f x else if x$k \<le> c then g1 x else g2 x"
himmelma@35172
  2720
  show "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" apply(rule_tac x="?g" in exI)
himmelma@35172
  2721
  proof safe case goal1 thus ?case apply- apply(cases "x$k=c", case_tac "x$k < c") using as assms by auto
himmelma@35172
  2722
  next case goal2 presume "?g integrable_on {a..b} \<inter> {x. x $ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $ k \<ge> c}"
himmelma@35172
  2723
    then guess h1 h2 unfolding integrable_on_def by auto from has_integral_split[OF this]
himmelma@35172
  2724
    show ?case unfolding integrable_on_def by auto
himmelma@35172
  2725
  next show "?g integrable_on {a..b} \<inter> {x. x $ k \<le> c}" "?g integrable_on {a..b} \<inter> {x. x $ k \<ge> c}"
himmelma@35172
  2726
      apply(rule_tac[!] integrable_spike[OF negligible_standard_hyperplane[of k c]]) using as(2,4) by auto qed qed
himmelma@35172
  2727
himmelma@35172
  2728
lemma approximable_on_division: fixes f::"real^'n \<Rightarrow> 'a::banach"
himmelma@35172
  2729
  assumes "0 \<le> e" "d division_of {a..b}" "\<forall>i\<in>d. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
himmelma@35172
  2730
  obtains g where "\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e" "g integrable_on {a..b}"
himmelma@35172
  2731
proof- note * = operative_division[OF monoidal_and operative_approximable[OF assms(1)] assms(2)]
himmelma@35172
  2732
  note this[unfolded iterate_and[OF division_of_finite[OF assms(2)]]] from assms(3)[unfolded this[of f]]
himmelma@35172
  2733
  guess g .. thus thesis apply-apply(rule that[of g]) by auto qed
himmelma@35172
  2734
himmelma@35172
  2735
lemma integrable_continuous: fixes f::"real^'n \<Rightarrow> 'a::banach"
himmelma@35172
  2736
  assumes "continuous_on {a..b} f" shows "f integrable_on {a..b}"
himmelma@35172
  2737
proof(rule integrable_uniform_limit,safe) fix e::real assume e:"0 < e"
himmelma@35172
  2738
  from compact_uniformly_continuous[OF assms compact_interval,unfolded uniformly_continuous_on_def,rule_format,OF e] guess d ..
himmelma@35172
  2739
  note d=conjunctD2[OF this,rule_format]
himmelma@35172
  2740
  from fine_division_exists[OF gauge_ball[OF d(1)], of a b] guess p . note p=this
himmelma@35172
  2741
  note p' = tagged_division_ofD[OF p(1)]
himmelma@35172
  2742
  have *:"\<forall>i\<in>snd ` p. \<exists>g. (\<forall>x\<in>i. norm (f x - g x) \<le> e) \<and> g integrable_on i"
himmelma@35172
  2743
  proof(safe,unfold snd_conv) fix x l assume as:"(x,l) \<in> p" 
himmelma@35172
  2744
    from p'(4)[OF this] guess a b apply-by(erule exE)+ note l=this
himmelma@35172
  2745
    show "\<exists>g. (\<forall>x\<in>l. norm (f x - g x) \<le> e) \<and> g integrable_on l" apply(rule_tac x="\<lambda>y. f x" in exI)
himmelma@35172
  2746
    proof safe show "(\<lambda>y. f x) integrable_on l" unfolding integrable_on_def l by(rule,rule has_integral_const)
himmelma@35172
  2747
      fix y assume y:"y\<in>l" note fineD[OF p(2) as,unfolded subset_eq,rule_format,OF this]
himmelma@35172
  2748
      note d(2)[OF _ _ this[unfolded mem_ball]]
himmelma@35172
  2749
      thus "norm (f y - f x) \<le> e" using y p'(2-3)[OF as] unfolding vector_dist_norm l norm_minus_commute by fastsimp qed qed
himmelma@35172
  2750
  from e have "0 \<le> e" by auto from approximable_on_division[OF this division_of_tagged_division[OF p(1)] *] guess g .
himmelma@35172
  2751
  thus "\<exists>g. (\<forall>x\<in>{a..b}. norm (f x - g x) \<le> e) \<and> g integrable_on {a..b}" by auto qed 
himmelma@35172
  2752
himmelma@35172
  2753
subsection {* Specialization of additivity to one dimension. *}
himmelma@35172
  2754
himmelma@35172
  2755
lemma operative_1_lt: assumes "monoidal opp"
himmelma@35172
  2756
  shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real^1} = neutral opp) \<and>
himmelma@35172
  2757
                (\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
himmelma@35172
  2758
  unfolding operative_def content_eq_0_1 forall_1 vector_le_def vector_less_def
himmelma@35172
  2759
proof safe fix a b c::"real^1" assume as:"\<forall>a b c. f {a..b} = opp (f ({a..b} \<inter> {x. x $ 1 \<le> c})) (f ({a..b} \<inter> {x. c \<le> x $ 1}))" "a $ 1 < c $ 1" "c $ 1 < b $ 1"
himmelma@35172
  2760
    from this(2-) have "{a..b} \<inter> {x. x $ 1 \<le> c $ 1} = {a..c}" "{a..b} \<inter> {x. x $ 1 \<ge> c $ 1} = {c..b}" by auto
himmelma@35172
  2761
    thus "opp (f {a..c}) (f {c..b}) = f {a..b}" unfolding as(1)[rule_format,of a b "c$1"] by auto
himmelma@35172
  2762
next fix a b::"real^1" and c::real
himmelma@35172
  2763
  assume as:"\<forall>a b. b $ 1 \<le> a $ 1 \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a $ 1 < c $ 1 \<and> c $ 1 < b $ 1 \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}"
himmelma@35172
  2764
  show "f {a..b} = opp (f ({a..b} \<inter> {x. x $ 1 \<le> c})) (f ({a..b} \<inter> {x. c \<le> x $ 1}))"
himmelma@35172
  2765
  proof(cases "c \<in> {a$1 .. b$1}")
himmelma@35172
  2766
    case False hence "c<a$1 \<or> c>b$1" by auto
himmelma@35172
  2767
    thus ?thesis apply-apply(erule disjE)
himmelma@35172
  2768
    proof- assume "c<a$1" hence *:"{a..b} \<inter> {x. x $ 1 \<le> c} = {1..0}"  "{a..b} \<inter> {x. c \<le> x $ 1} = {a..b}" by auto
himmelma@35172
  2769
      show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto
himmelma@35172
  2770
    next   assume "b$1<c" hence *:"{a..b} \<inter> {x. x $ 1 \<le> c} = {a..b}"  "{a..b} \<inter> {x. c \<le> x $ 1} = {1..0}" by auto
himmelma@35172
  2771
      show ?thesis unfolding * apply(subst as(1)[rule_format,of 0 1]) using assms by auto
himmelma@35172
  2772
    qed
himmelma@35172
  2773
  next case True hence *:"min (b $ 1) c = c" "max (a $ 1) c = c" by auto
himmelma@35172
  2774
    show ?thesis unfolding interval_split num1_eq_iff if_True * vec_def[THEN sym]
himmelma@35172
  2775
    proof(cases "c = a$1 \<or> c = b$1")
himmelma@35172
  2776
      case False thus "f {a..b} = opp (f {a..vec1 c}) (f {vec1 c..b})"
himmelma@35172
  2777
        apply-apply(subst as(2)[rule_format]) using True by auto
himmelma@35172
  2778
    next case True thus "f {a..b} = opp (f {a..vec1 c}) (f {vec1 c..b})" apply-
himmelma@35172
  2779
      proof(erule disjE) assume "c=a$1" hence *:"a = vec1 c" unfolding Cart_eq by auto 
himmelma@35172
  2780
        hence "f {a..vec1 c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
himmelma@35172
  2781
        thus ?thesis using assms unfolding * by auto
himmelma@35172
  2782
      next assume "c=b$1" hence *:"b = vec1 c" unfolding Cart_eq by auto 
himmelma@35172
  2783
        hence "f {vec1 c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
himmelma@35172
  2784
        thus ?thesis using assms unfolding * by auto qed qed qed qed
himmelma@35172
  2785
himmelma@35172
  2786
lemma operative_1_le: assumes "monoidal opp"
himmelma@35172
  2787
  shows "operative opp f \<longleftrightarrow> ((\<forall>a b. b \<le> a \<longrightarrow> f {a..b::real^1} = neutral opp) \<and>
himmelma@35172
  2788
                (\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f{a..c})(f{c..b}) = f {a..b}))"
himmelma@35172
  2789
unfolding operative_1_lt[OF assms]
himmelma@35172
  2790
proof safe fix a b c::"real^1" assume as:"\<forall>a b c. a \<le> c \<and> c \<le> b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a < c" "c < b"
himmelma@35172
  2791
  show "opp (f {a..c}) (f {c..b}) = f {a..b}" apply(rule as(1)[rule_format]) using as(2-) unfolding vector_le_def vector_less_def by auto
himmelma@35172
  2792
next fix a b c ::"real^1"
himmelma@35172
  2793
  assume "\<forall>a b. b \<le> a \<longrightarrow> f {a..b} = neutral opp" "\<forall>a b c. a < c \<and> c < b \<longrightarrow> opp (f {a..c}) (f {c..b}) = f {a..b}" "a \<le> c" "c \<le> b"
himmelma@35172
  2794
  note as = this[rule_format]
himmelma@35172
  2795
  show "opp (f {a..c}) (f {c..b}) = f {a..b}"
himmelma@35172
  2796
  proof(cases "c = a \<or> c = b")
himmelma@35172
  2797
    case False thus ?thesis apply-apply(subst as(2)) using as(3-) unfolding vector_le_def vector_less_def Cart_eq by(auto simp del:dest_vec1_eq)
himmelma@35172
  2798
    next case True thus ?thesis apply-
himmelma@35172
  2799
      proof(erule disjE) assume *:"c=a" hence "f {a..c} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
himmelma@35172
  2800
        thus ?thesis using assms unfolding * by auto
himmelma@35172
  2801
      next               assume *:"c=b" hence "f {c..b} = neutral opp" apply-apply(rule as(1)[rule_format]) by auto
himmelma@35172
  2802
        thus ?thesis using assms unfolding * by auto qed qed qed 
himmelma@35172
  2803
himmelma@35172
  2804
subsection {* Special case of additivity we need for the FCT. *}
himmelma@35172
  2805
himmelma@35172
  2806
lemma additive_tagged_division_1: fixes f::"real^1 \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  2807
  assumes "dest_vec1 a \<le> dest_vec1 b" "p tagged_division_of {a..b}"
himmelma@35172
  2808
  shows "setsum (\<lambda>(x,k). f(interval_upperbound k) - f(interval_lowerbound k)) p = f b - f a"
himmelma@35172
  2809
proof- let ?f = "(\<lambda>k::(real^1) set. if k = {} then 0 else f(interval_upperbound k) - f(interval_lowerbound k))"
himmelma@35172
  2810
  have *:"operative op + ?f" unfolding operative_1_lt[OF monoidal_monoid] interval_eq_empty_1
himmelma@35172
  2811
    by(auto simp add:not_less interval_bound_1 vector_less_def)
himmelma@35172
  2812
  have **:"{a..b} \<noteq> {}" using assms(1) by auto note operative_tagged_division[OF monoidal_monoid * assms(2)]
himmelma@35172
  2813
  note * = this[unfolded if_not_P[OF **] interval_bound_1[OF assms(1)],THEN sym ]
himmelma@35172
  2814
  show ?thesis unfolding * apply(subst setsum_iterate[THEN sym]) defer
himmelma@35172
  2815
    apply(rule setsum_cong2) unfolding split_paired_all split_conv using assms(2) by auto qed
himmelma@35172
  2816
himmelma@35172
  2817
subsection {* A useful lemma allowing us to factor out the content size. *}
himmelma@35172
  2818
himmelma@35172
  2819
lemma has_integral_factor_content:
himmelma@35172
  2820
  "(f has_integral i) {a..b} \<longleftrightarrow> (\<forall>e>0. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p
himmelma@35172
  2821
    \<longrightarrow> norm (setsum (\<lambda>(x,k). content k *\<^sub>R f x) p - i) \<le> e * content {a..b}))"
himmelma@35172
  2822
proof(cases "content {a..b} = 0")
himmelma@35172
  2823
  case True show ?thesis unfolding has_integral_null_eq[OF True] apply safe
himmelma@35172
  2824
    apply(rule,rule,rule gauge_trivial,safe) unfolding setsum_content_null[OF True] True defer 
himmelma@35172
  2825
    apply(erule_tac x=1 in allE,safe) defer apply(rule fine_division_exists[of _ a b],assumption)
himmelma@35172
  2826
    apply(erule_tac x=p in allE) unfolding setsum_content_null[OF True] by auto
himmelma@35172
  2827
next case False note F = this[unfolded content_lt_nz[THEN sym]]
himmelma@35172
  2828
  let ?P = "\<lambda>e opp. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {a..b} \<and> d fine p \<longrightarrow> opp (norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f x) - i)) e)"
himmelma@35172
  2829
  show ?thesis apply(subst has_integral)
himmelma@35172
  2830
  proof safe fix e::real assume e:"e>0"
himmelma@35172
  2831
    { assume "\<forall>e>0. ?P e op <" thus "?P (e * content {a..b}) op \<le>" apply(erule_tac x="e * content {a..b}" in allE)
himmelma@35172
  2832
        apply(erule impE) defer apply(erule exE,rule_tac x=d in exI)
himmelma@35172
  2833
        using F e by(auto simp add:field_simps intro:mult_pos_pos) }
himmelma@35172
  2834
    {  assume "\<forall>e>0. ?P (e * content {a..b}) op \<le>" thus "?P e op <" apply(erule_tac x="e / 2 / content {a..b}" in allE)
himmelma@35172
  2835
        apply(erule impE) defer apply(erule exE,rule_tac x=d in exI)
himmelma@35172
  2836
        using F e by(auto simp add:field_simps intro:mult_pos_pos) } qed qed
himmelma@35172
  2837
himmelma@35172
  2838
subsection {* Fundamental theorem of calculus. *}
himmelma@35172
  2839
himmelma@35172
  2840
lemma fundamental_theorem_of_calculus: fixes f::"real^1 \<Rightarrow> 'a::banach"
himmelma@35172
  2841
  assumes "a \<le> b"  "\<forall>x\<in>{a..b}. ((f o vec1) has_vector_derivative f'(vec1 x)) (at x within {a..b})"
himmelma@35172
  2842
  shows "(f' has_integral (f(vec1 b) - f(vec1 a))) ({vec1 a..vec1 b})"
himmelma@35172
  2843
unfolding has_integral_factor_content
himmelma@35172
  2844
proof safe fix e::real assume e:"e>0" have ab:"dest_vec1 (vec1 a) \<le> dest_vec1 (vec1 b)" using assms(1) by auto
himmelma@35172
  2845
  note assm = assms(2)[unfolded has_vector_derivative_def has_derivative_within_alt]
himmelma@35172
  2846
  have *:"\<And>P Q. \<forall>x\<in>{a..b}. P x \<and> (\<forall>e>0. \<exists>d>0. Q x e d) \<Longrightarrow> \<forall>x. \<exists>(d::real)>0. x\<in>{a..b} \<longrightarrow> Q x e d" using e by blast
himmelma@35172
  2847
  note this[OF assm,unfolded gauge_existence_lemma] from choice[OF this,unfolded Ball_def[symmetric]]
himmelma@35172
  2848
  guess d .. note d=conjunctD2[OF this[rule_format],rule_format]
himmelma@35172
  2849
  show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {vec1 a..vec1 b} \<and> d fine p \<longrightarrow>
himmelma@35172
  2850
                 norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f (vec1 b) - f (vec1 a))) \<le> e * content {vec1 a..vec1 b})"
himmelma@35172
  2851
    apply(rule_tac x="\<lambda>x. ball x (d (dest_vec1 x))" in exI,safe)
himmelma@35172
  2852
    apply(rule gauge_ball_dependent,rule,rule d(1))
himmelma@35172
  2853
  proof- fix p assume as:"p tagged_division_of {vec1 a..vec1 b}" "(\<lambda>x. ball x (d (dest_vec1 x))) fine p"
himmelma@35172
  2854
    show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f' x) - (f (vec1 b) - f (vec1 a))) \<le> e * content {vec1 a..vec1 b}" 
himmelma@35172
  2855
      unfolding content_1[OF ab] additive_tagged_division_1[OF ab as(1),of f,THEN sym]
himmelma@35172
  2856
      unfolding vector_minus_component[THEN sym] additive_tagged_division_1[OF ab as(1),of "\<lambda>x. x",THEN sym]
himmelma@35172
  2857
      apply(subst dest_vec1_setsum) unfolding setsum_right_distrib defer unfolding setsum_subtractf[THEN sym] 
himmelma@35172
  2858
    proof(rule setsum_norm_le,safe) fix x k assume "(x,k)\<in>p"
himmelma@35172
  2859
      note xk = tagged_division_ofD(2-4)[OF as(1) this] from this(3) guess u v apply-by(erule exE)+ note k=this
himmelma@35172
  2860
      have *:"dest_vec1 u \<le> dest_vec1 v" using xk unfolding k by auto
himmelma@35172
  2861
      have ball:"\<forall>xa\<in>k. xa \<in> ball x (d (dest_vec1 x))" using as(2)[unfolded fine_def,rule_format,OF `(x,k)\<in>p`,unfolded split_conv subset_eq] .
himmelma@35172
  2862
      have "norm ((v$1 - u$1) *\<^sub>R f' x - (f v - f u)) \<le> norm (f u - f x - (u$1 - x$1) *\<^sub>R f' x) + norm (f v - f x - (v$1 - x$1) *\<^sub>R f' x)"
himmelma@35172
  2863
        apply(rule order_trans[OF _ norm_triangle_ineq4]) apply(rule eq_refl) apply(rule arg_cong[where f=norm])
himmelma@35172
  2864
        unfolding scaleR.diff_left by(auto simp add:group_simps)
himmelma@35172
  2865
      also have "... \<le> e * norm (dest_vec1 u - dest_vec1 x) + e * norm (dest_vec1 v - dest_vec1 x)"
himmelma@35172
  2866
        apply(rule add_mono) apply(rule d(2)[of "x$1" "u$1",unfolded o_def vec1_dest_vec1]) prefer 4
himmelma@35172
  2867
        apply(rule d(2)[of "x$1" "v$1",unfolded o_def vec1_dest_vec1])
himmelma@35172
  2868
        using ball[rule_format,of u] ball[rule_format,of v] 
himmelma@35172
  2869
        using xk(1-2) unfolding k subset_eq by(auto simp add:vector_dist_norm norm_real)
himmelma@35172
  2870
      also have "... \<le> e * dest_vec1 (interval_upperbound k - interval_lowerbound k)"
himmelma@35172
  2871
        unfolding k interval_bound_1[OF *] using xk(1) unfolding k by(auto simp add:vector_dist_norm norm_real field_simps)
himmelma@35172
  2872
      finally show "norm (content k *\<^sub>R f' x - (f (interval_upperbound k) - f (interval_lowerbound k))) \<le>
himmelma@35172
  2873
        e * dest_vec1 (interval_upperbound k - interval_lowerbound k)" unfolding k interval_bound_1[OF *] content_1[OF *] .
himmelma@35172
  2874
    qed(insert as, auto) qed qed
himmelma@35172
  2875
himmelma@35172
  2876
subsection {* Attempt a systematic general set of "offset" results for components. *}
himmelma@35172
  2877
himmelma@35172
  2878
lemma gauge_modify:
himmelma@35172
  2879
  assumes "(\<forall>s. open s \<longrightarrow> open {x. f(x) \<in> s})" "gauge d"
himmelma@35172
  2880
  shows "gauge (\<lambda>x y. d (f x) (f y))"
himmelma@35172
  2881
  using assms unfolding gauge_def apply safe defer apply(erule_tac x="f x" in allE)
himmelma@35172
  2882
  apply(erule_tac x="d (f x)" in allE) unfolding mem_def Collect_def by auto
himmelma@35172
  2883
himmelma@35172
  2884
subsection {* Only need trivial subintervals if the interval itself is trivial. *}
himmelma@35172
  2885
himmelma@35172
  2886
lemma division_of_nontrivial: fixes s::"(real^'n) set set"
himmelma@35172
  2887
  assumes "s division_of {a..b}" "content({a..b}) \<noteq> 0"
himmelma@35172
  2888
  shows "{k. k \<in> s \<and> content k \<noteq> 0} division_of {a..b}" using assms(1) apply-
himmelma@35172
  2889
proof(induct "card s" arbitrary:s rule:nat_less_induct)
himmelma@35172
  2890
  fix s::"(real^'n) set set" assume assm:"s division_of {a..b}"
himmelma@35172
  2891
    "\<forall>m<card s. \<forall>x. m = card x \<longrightarrow> x division_of {a..b} \<longrightarrow> {k \<in> x. content k \<noteq> 0} division_of {a..b}" 
himmelma@35172
  2892
  note s = division_ofD[OF assm(1)] let ?thesis = "{k \<in> s. content k \<noteq> 0} division_of {a..b}"
himmelma@35172
  2893
  { presume *:"{k \<in> s. content k \<noteq> 0} \<noteq> s \<Longrightarrow> ?thesis"
himmelma@35172
  2894
    show ?thesis apply cases defer apply(rule *,assumption) using assm(1) by auto }
himmelma@35172
  2895
  assume noteq:"{k \<in> s. content k \<noteq> 0} \<noteq> s"
himmelma@35172
  2896
  then obtain k where k:"k\<in>s" "content k = 0" by auto
himmelma@35172
  2897
  from s(4)[OF k(1)] guess c d apply-by(erule exE)+ note k=k this
himmelma@35172
  2898
  from k have "card s > 0" unfolding card_gt_0_iff using assm(1) by auto
himmelma@35172
  2899
  hence card:"card (s - {k}) < card s" using assm(1) k(1) apply(subst card_Diff_singleton_if) by auto
himmelma@35172
  2900
  have *:"closed (\<Union>(s - {k}))" apply(rule closed_Union) defer apply rule apply(drule DiffD1,drule s(4))
himmelma@35172
  2901
    apply safe apply(rule closed_interval) using assm(1) by auto
himmelma@35172
  2902
  have "k \<subseteq> \<Union>(s - {k})" apply safe apply(rule *[unfolded closed_limpt,rule_format]) unfolding islimpt_approachable
himmelma@35172
  2903
  proof safe fix x and e::real assume as:"x\<in>k" "e>0"
himmelma@35172
  2904
    from k(2)[unfolded k content_eq_0] guess i .. 
himmelma@35172
  2905
    hence i:"c$i = d$i" using s(3)[OF k(1),unfolded k] unfolding interval_ne_empty by smt
himmelma@35172
  2906
    hence xi:"x$i = d$i" using as unfolding k mem_interval by smt
himmelma@35172
  2907
    def y \<equiv> "(\<chi> j. if j = i then if c$i \<le> (a$i + b$i) / 2 then c$i + min e (b$i - c$i) / 2 else c$i - min e (c$i - a$i) / 2 else x$j)"
himmelma@35172
  2908
    show "\<exists>x'\<in>\<Union>(s - {k}). x' \<noteq> x \<and> dist x' x < e" apply(rule_tac x=y in bexI) 
himmelma@35172
  2909
    proof have "d \<in> {c..d}" using s(3)[OF k(1)] unfolding k interval_eq_empty mem_interval by(fastsimp simp add: not_less)
himmelma@35172
  2910
      hence "d \<in> {a..b}" using s(2)[OF k(1)] unfolding k by auto note di = this[unfolded mem_interval,THEN spec[where x=i]]
himmelma@35172
  2911
      hence xyi:"y$i \<noteq> x$i" unfolding y_def unfolding i xi Cart_lambda_beta if_P[OF refl]
himmelma@35172
  2912
        apply(cases) apply(subst if_P,assumption) unfolding if_not_P not_le using as(2) using assms(2)[unfolded content_eq_0] by smt+ 
himmelma@35172
  2913
      thus "y \<noteq> x" unfolding Cart_eq by auto
himmelma@35172
  2914
      have *:"UNIV = insert i (UNIV - {i})" by auto
himmelma@35172
  2915
      have "norm (y - x) < e + setsum (\<lambda>i. 0) (UNIV::'n set)" apply(rule le_less_trans[OF norm_le_l1])
himmelma@35172
  2916
        apply(subst *,subst setsum_insert) prefer 3 apply(rule add_less_le_mono)
himmelma@35172
  2917
      proof- show "\<bar>(y - x) $ i\<bar> < e" unfolding y_def Cart_lambda_beta vector_minus_component if_P[OF refl]
himmelma@35172
  2918
          apply(cases) apply(subst if_P,assumption) unfolding if_not_P unfolding i xi using di as(2) by auto
himmelma@35172
  2919
        show "(\<Sum>i\<in>UNIV - {i}. \<bar>(y - x) $ i\<bar>) \<le> (\<Sum>i\<in>UNIV. 0)" unfolding y_def by auto 
himmelma@35172
  2920
      qed auto thus "dist y x < e" unfolding vector_dist_norm by auto
himmelma@35172
  2921
      have "y\<notin>k" unfolding k mem_interval apply rule apply(erule_tac x=i in allE) using xyi unfolding k i xi by auto
himmelma@35172
  2922
      moreover have "y \<in> \<Union>s" unfolding s mem_interval
himmelma@35172
  2923
      proof note simps = y_def Cart_lambda_beta if_not_P
himmelma@35172
  2924
        fix j::'n show "a $ j \<le> y $ j \<and> y $ j \<le> b $ j" 
himmelma@35172
  2925
        proof(cases "j = i") case False have "x \<in> {a..b}" using s(2)[OF k(1)] as(1) by auto
himmelma@35172
  2926
          thus ?thesis unfolding simps if_not_P[OF False] unfolding mem_interval by auto
himmelma@35172
  2927
        next case True note T = this show ?thesis
himmelma@35172
  2928
          proof(cases "c $ i \<le> (a $ i + b $ i) / 2")
himmelma@35172
  2929
            case True show ?thesis unfolding simps if_P[OF T] if_P[OF True] unfolding i
himmelma@35172
  2930
              using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps) 
himmelma@35172
  2931
          next case False thus ?thesis unfolding simps if_P[OF T] if_not_P[OF False] unfolding i
himmelma@35172
  2932
              using True as(2) di apply-apply rule unfolding T by (auto simp add:field_simps)
himmelma@35172
  2933
          qed qed qed
himmelma@35172
  2934
      ultimately show "y \<in> \<Union>(s - {k})" by auto
himmelma@35172
  2935
    qed qed hence "\<Union>(s - {k}) = {a..b}" unfolding s(6)[THEN sym] by auto
himmelma@35172
  2936
  hence  "{ka \<in> s - {k}. content ka \<noteq> 0} division_of {a..b}" apply-apply(rule assm(2)[rule_format,OF card refl])
himmelma@35172
  2937
    apply(rule division_ofI) defer apply(rule_tac[1-4] s) using assm(1) by auto
himmelma@35172
  2938
  moreover have "{ka \<in> s - {k}. content ka \<noteq> 0} = {k \<in> s. content k \<noteq> 0}" using k by auto ultimately show ?thesis by auto qed
himmelma@35172
  2939
himmelma@35172
  2940
subsection {* Integrabibility on subintervals. *}
himmelma@35172
  2941
himmelma@35172
  2942
lemma operative_integrable: fixes f::"real^'n \<Rightarrow> 'a::banach" shows
himmelma@35172
  2943
  "operative op \<and> (\<lambda>i. f integrable_on i)"
himmelma@35172
  2944
  unfolding operative_def neutral_and apply safe apply(subst integrable_on_def)
himmelma@35172
  2945
  unfolding has_integral_null_eq apply(rule,rule refl) apply(rule,assumption)+
himmelma@35172
  2946
  unfolding integrable_on_def by(auto intro: has_integral_split)
himmelma@35172
  2947
himmelma@35172
  2948
lemma integrable_subinterval: fixes f::"real^'n \<Rightarrow> 'a::banach" 
himmelma@35172
  2949
  assumes "f integrable_on {a..b}" "{c..d} \<subseteq> {a..b}" shows "f integrable_on {c..d}" 
himmelma@35172
  2950
  apply(cases "{c..d} = {}") defer apply(rule partial_division_extend_1[OF assms(2)],assumption)
himmelma@35172
  2951
  using operative_division_and[OF operative_integrable,THEN sym,of _ _ _ f] assms(1) by auto
himmelma@35172
  2952
himmelma@35172
  2953
subsection {* Combining adjacent intervals in 1 dimension. *}
himmelma@35172
  2954
himmelma@35172
  2955
lemma has_integral_combine: assumes "(a::real^1) \<le> c" "c \<le> b"
himmelma@35172
  2956
  "(f has_integral i) {a..c}" "(f has_integral (j::'a::banach)) {c..b}"
himmelma@35172
  2957
  shows "(f has_integral (i + j)) {a..b}"
himmelma@35172
  2958
proof- note operative_integral[of f, unfolded operative_1_le[OF monoidal_lifted[OF monoidal_monoid]]]
himmelma@35172
  2959
  note conjunctD2[OF this,rule_format] note * = this(2)[OF conjI[OF assms(1-2)],unfolded if_P[OF assms(3)]]
himmelma@35172
  2960
  hence "f integrable_on {a..b}" apply- apply(rule ccontr) apply(subst(asm) if_P) defer
himmelma@35172
  2961
    apply(subst(asm) if_P) using assms(3-) by auto
himmelma@35172
  2962
  with * show ?thesis apply-apply(subst(asm) if_P) defer apply(subst(asm) if_P) defer apply(subst(asm) if_P)
himmelma@35172
  2963
    unfolding lifted.simps using assms(3-) by(auto simp add: integrable_on_def integral_unique) qed
himmelma@35172
  2964
himmelma@35172
  2965
lemma integral_combine: fixes f::"real^1 \<Rightarrow> 'a::banach"
himmelma@35172
  2966
  assumes "a \<le> c" "c \<le> b" "f integrable_on ({a..b})"
himmelma@35172
  2967
  shows "integral {a..c} f + integral {c..b} f = integral({a..b}) f"
himmelma@35172
  2968
  apply(rule integral_unique[THEN sym]) apply(rule has_integral_combine[OF assms(1-2)])
himmelma@35172
  2969
  apply(rule_tac[!] integrable_integral integrable_subinterval[OF assms(3)])+ using assms(1-2) by auto
himmelma@35172
  2970
himmelma@35172
  2971
lemma integrable_combine: fixes f::"real^1 \<Rightarrow> 'a::banach"
himmelma@35172
  2972
  assumes "a \<le> c" "c \<le> b" "f integrable_on {a..c}" "f integrable_on {c..b}"
himmelma@35172
  2973
  shows "f integrable_on {a..b}" using assms unfolding integrable_on_def by(fastsimp intro!:has_integral_combine)
himmelma@35172
  2974
himmelma@35172
  2975
subsection {* Reduce integrability to "local" integrability. *}
himmelma@35172
  2976
himmelma@35172
  2977
lemma integrable_on_little_subintervals: fixes f::"real^'n \<Rightarrow> 'a::banach"
himmelma@35172
  2978
  assumes "\<forall>x\<in>{a..b}. \<exists>d>0. \<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v}"
himmelma@35172
  2979
  shows "f integrable_on {a..b}"
himmelma@35172
  2980
proof- have "\<forall>x. \<exists>d. x\<in>{a..b} \<longrightarrow> d>0 \<and> (\<forall>u v. x \<in> {u..v} \<and> {u..v} \<subseteq> ball x d \<and> {u..v} \<subseteq> {a..b} \<longrightarrow> f integrable_on {u..v})"
himmelma@35172
  2981
    using assms by auto note this[unfolded gauge_existence_lemma] from choice[OF this] guess d .. note d=this[rule_format]
himmelma@35172
  2982
  guess p apply(rule fine_division_exists[OF gauge_ball_dependent,of d a b]) using d by auto note p=this(1-2)
himmelma@35172
  2983
  note division_of_tagged_division[OF this(1)] note * = operative_division_and[OF operative_integrable,OF this,THEN sym,of f]
himmelma@35172
  2984
  show ?thesis unfolding * apply safe unfolding snd_conv
himmelma@35172
  2985
  proof- fix x k assume "(x,k) \<in> p" note tagged_division_ofD(2-4)[OF p(1) this] fineD[OF p(2) this]
himmelma@35172
  2986
    thus "f integrable_on k" apply safe apply(rule d[THEN conjunct2,rule_format,of x]) by auto qed qed
himmelma@35172
  2987
himmelma@35172
  2988
subsection {* Second FCT or existence of antiderivative. *}
himmelma@35172
  2989
himmelma@35172
  2990
lemma integrable_const[intro]:"(\<lambda>x. c) integrable_on {a..b}"
himmelma@35172
  2991
  unfolding integrable_on_def by(rule,rule has_integral_const)
himmelma@35172
  2992
himmelma@35172
  2993
lemma integral_has_vector_derivative: fixes f::"real \<Rightarrow> 'a::banach"
himmelma@35172
  2994
  assumes "continuous_on {a..b} f" "x \<in> {a..b}"
himmelma@35172
  2995
  shows "((\<lambda>u. integral {vec a..vec u} (f o dest_vec1)) has_vector_derivative f(x)) (at x within {a..b})"
himmelma@35172
  2996
  unfolding has_vector_derivative_def has_derivative_within_alt
himmelma@35172
  2997
apply safe apply(rule scaleR.bounded_linear_left)
himmelma@35172
  2998
proof- fix e::real assume e:"e>0"
himmelma@35172
  2999
  note compact_uniformly_continuous[OF assms(1) compact_real_interval,unfolded uniformly_continuous_on_def]
himmelma@35172
  3000
  from this[rule_format,OF e] guess d apply-by(erule conjE exE)+ note d=this[rule_format]
himmelma@35172
  3001
  let ?I = "\<lambda>a b. integral {vec1 a..vec1 b} (f \<circ> dest_vec1)"
himmelma@35172
  3002
  show "\<exists>d>0. \<forall>y\<in>{a..b}. norm (y - x) < d \<longrightarrow> norm (?I a y - ?I a x - (y - x) *\<^sub>R f x) \<le> e * norm (y - x)"
himmelma@35172
  3003
  proof(rule,rule,rule d,safe) case goal1 show ?case proof(cases "y < x")
himmelma@35172
  3004
      case False have "f \<circ> dest_vec1 integrable_on {vec1 a..vec1 y}" apply(rule integrable_subinterval,rule integrable_continuous)
himmelma@35172
  3005
        apply(rule continuous_on_o_dest_vec1 assms)+  unfolding not_less using assms(2) goal1 by auto
himmelma@35172
  3006
      hence *:"?I a y - ?I a x = ?I x y" unfolding group_simps apply(subst eq_commute) apply(rule integral_combine)
himmelma@35172
  3007
        using False unfolding not_less using assms(2) goal1 by auto
himmelma@35172
  3008
      have **:"norm (y - x) = content {vec1 x..vec1 y}" apply(subst content_1) using False unfolding not_less by auto
himmelma@35172
  3009
      show ?thesis unfolding ** apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x) o dest_vec1"]) unfolding * unfolding o_def
himmelma@35172
  3010
        defer apply(rule has_integral_sub) apply(rule integrable_integral)
himmelma@35172
  3011
        apply(rule integrable_subinterval,rule integrable_continuous) apply(rule continuous_on_o_dest_vec1[unfolded o_def] assms)+
himmelma@35172
  3012
      proof- show "{vec1 x..vec1 y} \<subseteq> {vec1 a..vec1 b}" using goal1 assms(2) by auto
himmelma@35172
  3013
        have *:"y - x = norm(y - x)" using False by auto
himmelma@35172
  3014
        show "((\<lambda>xa. f x) has_integral (y - x) *\<^sub>R f x) {vec1 x..vec1 y}" apply(subst *) unfolding ** by auto
himmelma@35172
  3015
        show "\<forall>xa\<in>{vec1 x..vec1 y}. norm (f (dest_vec1 xa) - f x) \<le> e" apply safe apply(rule less_imp_le)
himmelma@35172
  3016
          apply(rule d(2)[unfolded vector_dist_norm]) using assms(2) using goal1 by auto
himmelma@35172
  3017
      qed(insert e,auto)
himmelma@35172
  3018
    next case True have "f \<circ> dest_vec1 integrable_on {vec1 a..vec1 x}" apply(rule integrable_subinterval,rule integrable_continuous)
himmelma@35172
  3019
        apply(rule continuous_on_o_dest_vec1 assms)+  unfolding not_less using assms(2) goal1 by auto
himmelma@35172
  3020
      hence *:"?I a x - ?I a y = ?I y x" unfolding group_simps apply(subst eq_commute) apply(rule integral_combine)
himmelma@35172
  3021
        using True using assms(2) goal1 by auto
himmelma@35172
  3022
      have **:"norm (y - x) = content {vec1 y..vec1 x}" apply(subst content_1) using True unfolding not_less by auto
himmelma@35172
  3023
      have ***:"\<And>fy fx c::'a. fx - fy - (y - x) *\<^sub>R c = -(fy - fx - (x - y) *\<^sub>R c)" unfolding scaleR_left.diff by auto 
himmelma@35172
  3024
      show ?thesis apply(subst ***) unfolding norm_minus_cancel **
himmelma@35172
  3025
        apply(rule has_integral_bound[where f="(\<lambda>u. f u - f x) o dest_vec1"]) unfolding * unfolding o_def
himmelma@35172
  3026
        defer apply(rule has_integral_sub) apply(subst minus_minus[THEN sym]) unfolding minus_minus
himmelma@35172
  3027
        apply(rule integrable_integral) apply(rule integrable_subinterval,rule integrable_continuous)
himmelma@35172
  3028
        apply(rule continuous_on_o_dest_vec1[unfolded o_def] assms)+
himmelma@35172
  3029
      proof- show "{vec1 y..vec1 x} \<subseteq> {vec1 a..vec1 b}" using goal1 assms(2) by auto
himmelma@35172
  3030
        have *:"x - y = norm(y - x)" using True by auto
himmelma@35172
  3031
        show "((\<lambda>xa. f x) has_integral (x - y) *\<^sub>R f x) {vec1 y..vec1 x}" apply(subst *) unfolding ** by auto
himmelma@35172
  3032
        show "\<forall>xa\<in>{vec1 y..vec1 x}. norm (f (dest_vec1 xa) - f x) \<le> e" apply safe apply(rule less_imp_le)
himmelma@35172
  3033
          apply(rule d(2)[unfolded vector_dist_norm]) using assms(2) using goal1 by auto
himmelma@35172
  3034
      qed(insert e,auto) qed qed qed
himmelma@35172
  3035
himmelma@35172
  3036
lemma integral_has_vector_derivative': fixes f::"real^1 \<Rightarrow> 'a::banach"
himmelma@35172
  3037
  assumes "continuous_on {a..b} f" "x \<in> {a..b}"
himmelma@35172
  3038
  shows "((\<lambda>u. (integral {a..vec u} f)) has_vector_derivative f x) (at (x$1) within {a$1..b$1})"
himmelma@35172
  3039
  using integral_has_vector_derivative[OF continuous_on_o_vec1[OF assms(1)], of "x$1"]
himmelma@35172
  3040
  unfolding o_def vec1_dest_vec1 using assms(2) by auto
himmelma@35172
  3041
himmelma@35172
  3042
lemma antiderivative_continuous: assumes "continuous_on {a..b::real} f"
himmelma@35172
  3043
  obtains g where "\<forall>x\<in> {a..b}. (g has_vector_derivative (f(x)::_::banach)) (at x within {a..b})"
himmelma@35172
  3044
  apply(rule that,rule) using integral_has_vector_derivative[OF assms] by auto
himmelma@35172
  3045
himmelma@35172
  3046
subsection {* Combined fundamental theorem of calculus. *}
himmelma@35172
  3047
himmelma@35172
  3048
lemma antiderivative_integral_continuous: fixes f::"real \<Rightarrow> 'a::banach" assumes "continuous_on {a..b} f"
himmelma@35172
  3049
  obtains g where "\<forall>u\<in>{a..b}. \<forall>v \<in> {a..b}. u \<le> v \<longrightarrow> ((f o dest_vec1) has_integral (g v - g u)) {vec u..vec v}"
himmelma@35172
  3050
proof- from antiderivative_continuous[OF assms] guess g . note g=this
himmelma@35172
  3051
  show ?thesis apply(rule that[of g])
himmelma@35172
  3052
  proof safe case goal1 have "\<forall>x\<in>{u..v}. (g has_vector_derivative f x) (at x within {u..v})"
himmelma@35172
  3053
      apply(rule,rule has_vector_derivative_within_subset) apply(rule g[rule_format]) using goal1(1-2) by auto
himmelma@35172
  3054
    thus ?case using fundamental_theorem_of_calculus[OF goal1(3),of "g o dest_vec1" "f o dest_vec1"]
himmelma@35172
  3055
      unfolding o_def vec1_dest_vec1 by auto qed qed
himmelma@35172
  3056
himmelma@35172
  3057
subsection {* General "twiddling" for interval-to-interval function image. *}
himmelma@35172
  3058
himmelma@35172
  3059
lemma has_integral_twiddle:
himmelma@35172
  3060
  assumes "0 < r" "\<forall>x. h(g x) = x" "\<forall>x. g(h x) = x" "\<forall>x. continuous (at x) g"
himmelma@35172
  3061
  "\<forall>u v. \<exists>w z. g ` {u..v} = {w..z}"
himmelma@35172
  3062
  "\<forall>u v. \<exists>w z. h ` {u..v} = {w..z}"
himmelma@35172
  3063
  "\<forall>u v. content(g ` {u..v}) = r * content {u..v}"
himmelma@35172
  3064
  "(f has_integral i) {a..b}"
himmelma@35172
  3065
  shows "((\<lambda>x. f(g x)) has_integral (1 / r) *\<^sub>R i) (h ` {a..b})"
himmelma@35172
  3066
proof- { presume *:"{a..b} \<noteq> {} \<Longrightarrow> ?thesis"
himmelma@35172
  3067
    show ?thesis apply cases defer apply(rule *,assumption)
himmelma@35172
  3068
    proof- case goal1 thus ?thesis unfolding goal1 assms(8)[unfolded goal1 has_integral_empty_eq] by auto qed }
himmelma@35172
  3069
  assume "{a..b} \<noteq> {}" from assms(6)[rule_format,of a b] guess w z apply-by(erule exE)+ note wz=this
himmelma@35172
  3070
  have inj:"inj g" "inj h" unfolding inj_on_def apply safe apply(rule_tac[!] ccontr)
himmelma@35172
  3071
    using assms(2) apply(erule_tac x=x in allE) using assms(2) apply(erule_tac x=y in allE) defer
himmelma@35172
  3072
    using assms(3) apply(erule_tac x=x in allE) using assms(3) apply(erule_tac x=y in allE) by auto
himmelma@35172
  3073
  show ?thesis unfolding has_integral_def has_integral_compact_interval_def apply(subst if_P) apply(rule,rule,rule wz)
himmelma@35172
  3074
  proof safe fix e::real assume e:"e>0" hence "e * r > 0" using assms(1) by(rule mult_pos_pos)
himmelma@35172
  3075
    from assms(8)[unfolded has_integral,rule_format,OF this] guess d apply-by(erule exE conjE)+ note d=this[rule_format]
himmelma@35172
  3076
    def d' \<equiv> "\<lambda>x y. d (g x) (g y)" have d':"\<And>x. d' x = {y. g y \<in> (d (g x))}" unfolding d'_def by(auto simp add:mem_def)
himmelma@35172
  3077
    show "\<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of h ` {a..b} \<and> d fine p \<longrightarrow> norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e)"
himmelma@35172
  3078
    proof(rule_tac x=d' in exI,safe) show "gauge d'" using d(1) unfolding gauge_def d' using continuous_open_preimage_univ[OF assms(4)] by auto
himmelma@35172
  3079
      fix p assume as:"p tagged_division_of h ` {a..b}" "d' fine p" note p = tagged_division_ofD[OF as(1)] 
himmelma@35172
  3080
      have "(\<lambda>(x, k). (g x, g ` k)) ` p tagged_division_of {a..b} \<and> d fine (\<lambda>(x, k). (g x, g ` k)) ` p" unfolding tagged_division_of 
himmelma@35172
  3081
      proof safe show "finite ((\<lambda>(x, k). (g x, g ` k)) ` p)" using as by auto
himmelma@35172
  3082
        show "d fine (\<lambda>(x, k). (g x, g ` k)) ` p" using as(2) unfolding fine_def d' by auto
himmelma@35172
  3083
        fix x k assume xk[intro]:"(x,k) \<in> p" show "g x \<in> g ` k" using p(2)[OF xk] by auto
himmelma@35172
  3084
        show "\<exists>u v. g ` k = {u..v}" using p(4)[OF xk] using assms(5-6) by auto
himmelma@35172
  3085
        { fix y assume "y \<in> k" thus "g y \<in> {a..b}" "g y \<in> {a..b}" using p(3)[OF xk,unfolded subset_eq,rule_format,of "h (g y)"]
himmelma@35172
  3086
            using assms(2)[rule_format,of y] unfolding inj_image_mem_iff[OF inj(2)] by auto }
himmelma@35172
  3087
        fix x' k' assume xk':"(x',k') \<in> p" fix z assume "z \<in> interior (g ` k)" "z \<in> interior (g ` k')"
himmelma@35172
  3088
        hence *:"interior (g ` k) \<inter> interior (g ` k') \<noteq> {}" by auto
himmelma@35172
  3089
        have same:"(x, k) = (x', k')" apply-apply(rule ccontr,drule p(5)[OF xk xk'])
himmelma@35172
  3090
        proof- assume as:"interior k \<inter> interior k' = {}" from nonempty_witness[OF *] guess z .
himmelma@35172
  3091
          hence "z \<in> g ` (interior k \<inter> interior k')" using interior_image_subset[OF assms(4) inj(1)]
himmelma@35172
  3092
            unfolding image_Int[OF inj(1)] by auto thus False using as by blast
himmelma@35172
  3093
        qed thus "g x = g x'" by auto
himmelma@35172
  3094
        { fix z assume "z \<in> k"  thus  "g z \<in> g ` k'" using same by auto }
himmelma@35172
  3095
        { fix z assume "z \<in> k'" thus  "g z \<in> g ` k"  using same by auto }
himmelma@35172
  3096
      next fix x assume "x \<in> {a..b}" hence "h x \<in>  \<Union>{k. \<exists>x. (x, k) \<in> p}" using p(6) by auto
himmelma@35172
  3097
        then guess X unfolding Union_iff .. note X=this from this(1) guess y unfolding mem_Collect_eq ..
himmelma@35172
  3098
        thus "x \<in> \<Union>{k. \<exists>x. (x, k) \<in> (\<lambda>(x, k). (g x, g ` k)) ` p}" apply-
himmelma@35172
  3099
          apply(rule_tac X="g ` X" in UnionI) defer apply(rule_tac x="h x" in image_eqI)
himmelma@35172
  3100
          using X(2) assms(3)[rule_format,of x] by auto
himmelma@35172
  3101
      qed note ** = d(2)[OF this] have *:"inj_on (\<lambda>(x, k). (g x, g ` k)) p" using inj(1) unfolding inj_on_def by fastsimp
himmelma@35172
  3102
       have "(\<Sum>(x, k)\<in>(\<lambda>(x, k). (g x, g ` k)) ` p. content k *\<^sub>R f x) - i = r *\<^sub>R (\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - i" (is "?l = _") unfolding group_simps add_left_cancel
himmelma@35172
  3103
        unfolding setsum_reindex[OF *] apply(subst scaleR_right.setsum) defer apply(rule setsum_cong2) unfolding o_def split_paired_all split_conv
himmelma@35172
  3104
        apply(drule p(4)) apply safe unfolding assms(7)[rule_format] using p by auto
himmelma@35172
  3105
      also have "... = r *\<^sub>R ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i)" (is "_ = ?r") unfolding scaleR.diff_right scaleR.scaleR_left[THEN sym]
himmelma@35172
  3106
        unfolding real_scaleR_def using assms(1) by auto finally have *:"?l = ?r" .
himmelma@35172
  3107
      show "norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R f (g x)) - (1 / r) *\<^sub>R i) < e" using ** unfolding * unfolding norm_scaleR
himmelma@35172
  3108
        using assms(1) by(auto simp add:field_simps) qed qed qed
himmelma@35172
  3109
himmelma@35172
  3110
subsection {* Special case of a basic affine transformation. *}
himmelma@35172
  3111
himmelma@35172
  3112
lemma interval_image_affinity_interval: shows "\<exists>u v. (\<lambda>x. m *\<^sub>R (x::real^'n) + c) ` {a..b} = {u..v}"
himmelma@35172
  3113
  unfolding image_affinity_interval by auto
himmelma@35172
  3114
himmelma@35172
  3115
lemmas Cart_simps = Cart_nth.add Cart_nth.minus Cart_nth.zero Cart_nth.diff Cart_nth.scaleR real_scaleR_def Cart_lambda_beta
himmelma@35172
  3116
   Cart_eq vector_le_def vector_less_def
himmelma@35172
  3117
himmelma@35172
  3118
lemma setprod_cong2: assumes "\<And>x. x \<in> A \<Longrightarrow> f x = g x" shows "setprod f A = setprod g A"
himmelma@35172
  3119
  apply(rule setprod_cong) using assms by auto
himmelma@35172
  3120
himmelma@35172
  3121
lemma content_image_affinity_interval: 
himmelma@35172
  3122
 "content((\<lambda>x::real^'n. m *\<^sub>R x + c) ` {a..b}) = (abs m) ^ CARD('n) * content {a..b}" (is "?l = ?r")
himmelma@35172
  3123
proof- { presume *:"{a..b}\<noteq>{} \<Longrightarrow> ?thesis" show ?thesis apply(cases,rule *,assumption)
himmelma@35172
  3124
      unfolding not_not using content_empty by auto }
himmelma@35172
  3125
  assume as:"{a..b}\<noteq>{}" show ?thesis proof(cases "m \<ge> 0")
himmelma@35172
  3126
    case True show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_P[OF True]
himmelma@35172
  3127
      unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') 
himmelma@35172
  3128
      defer apply(subst setprod_constant[THEN sym]) apply(rule finite_UNIV) unfolding setprod_timesf[THEN sym]
himmelma@35172
  3129
      apply(rule setprod_cong2) using True as unfolding interval_ne_empty Cart_simps not_le  
himmelma@35172
  3130
      by(auto simp add:field_simps intro:mult_left_mono)
himmelma@35172
  3131
  next case False show ?thesis unfolding image_affinity_interval if_not_P[OF as] if_not_P[OF False]
himmelma@35172
  3132
      unfolding content_closed_interval'[OF as] apply(subst content_closed_interval') 
himmelma@35172
  3133
      defer apply(subst setprod_constant[THEN sym]) apply(rule finite_UNIV) unfolding setprod_timesf[THEN sym]
himmelma@35172
  3134
      apply(rule setprod_cong2) using False as unfolding interval_ne_empty Cart_simps not_le 
himmelma@35172
  3135
      by(auto simp add:field_simps mult_le_cancel_left_neg) qed qed
himmelma@35172
  3136
himmelma@35172
  3137
lemma has_integral_affinity: assumes "(f has_integral i) {a..b::real^'n}" "m \<noteq> 0"
himmelma@35172
  3138
  shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral ((1 / (abs(m) ^ CARD('n::finite))) *\<^sub>R i)) ((\<lambda>x. (1 / m) *\<^sub>R x + -((1 / m) *\<^sub>R c)) ` {a..b})"
himmelma@35172
  3139
  apply(rule has_integral_twiddle,safe) unfolding Cart_eq Cart_simps apply(rule zero_less_power)
himmelma@35172
  3140
  defer apply(insert assms(2), simp add:field_simps) apply(insert assms(2), simp add:field_simps)
himmelma@35172
  3141
  apply(rule continuous_intros)+ apply(rule interval_image_affinity_interval)+ apply(rule content_image_affinity_interval) using assms by auto
himmelma@35172
  3142
himmelma@35172
  3143
lemma integrable_affinity: assumes "f integrable_on {a..b}" "m \<noteq> 0"
himmelma@35172
  3144
  shows "(\<lambda>x. f(m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x + -((1/m) *\<^sub>R c)) ` {a..b})"
himmelma@35172
  3145
  using assms unfolding integrable_on_def apply safe apply(drule has_integral_affinity) by auto
himmelma@35172
  3146
himmelma@35172
  3147
subsection {* Special case of stretching coordinate axes separately. *}
himmelma@35172
  3148
himmelma@35172
  3149
lemma image_stretch_interval:
himmelma@35172
  3150
  "(\<lambda>x. \<chi> k. m k * x$k) ` {a..b::real^'n} =
himmelma@35172
  3151
  (if {a..b} = {} then {} else {(\<chi> k. min (m(k) * a$k) (m(k) * b$k)) ..  (\<chi> k. max (m(k) * a$k) (m(k) * b$k))})" (is "?l = ?r")
himmelma@35172
  3152
proof(cases "{a..b}={}") case True thus ?thesis unfolding True by auto
himmelma@35172
  3153
next have *:"\<And>P Q. (\<forall>i. P i) \<and> (\<forall>i. Q i) \<longleftrightarrow> (\<forall>i. P i \<and> Q i)" by auto
himmelma@35172
  3154
  case False note ab = this[unfolded interval_ne_empty]
himmelma@35172
  3155
  show ?thesis apply-apply(rule set_ext)
himmelma@35172
  3156
  proof- fix x::"real^'n" have **:"\<And>P Q. (\<forall>i. P i = Q i) \<Longrightarrow> (\<forall>i. P i) = (\<forall>i. Q i)" by auto
himmelma@35172
  3157
    show "x \<in> ?l \<longleftrightarrow> x \<in> ?r" unfolding if_not_P[OF False] 
himmelma@35172
  3158
      unfolding image_iff mem_interval Bex_def Cart_simps Cart_eq *
himmelma@35172
  3159
      unfolding lambda_skolem[THEN sym,of "\<lambda> i xa. (a $ i \<le> xa \<and> xa \<le> b $ i) \<and> x $ i = m i * xa"]
himmelma@35172
  3160
    proof(rule **,rule) fix i::'n show "(\<exists>xa. (a $ i \<le> xa \<and> xa \<le> b $ i) \<and> x $ i = m i * xa) =
himmelma@35172
  3161
        (min (m i * a $ i) (m i * b $ i) \<le> x $ i \<and> x $ i \<le> max (m i * a $ i) (m i * b $ i))"
himmelma@35172
  3162
      proof(cases "m i = 0") case True thus ?thesis using ab by auto
himmelma@35172
  3163
      next case False hence "0 < m i \<or> 0 > m i" by auto thus ?thesis apply-
himmelma@35172
  3164
        proof(erule disjE) assume as:"0 < m i" hence *:"min (m i * a $ i) (m i * b $ i) = m i * a $ i"
himmelma@35172
  3165
            "max (m i * a $ i) (m i * b $ i) = m i * b $ i" using ab unfolding min_def max_def by auto
himmelma@35172
  3166
          show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$i" in exI)
himmelma@35172
  3167
            using as by(auto simp add:field_simps)
himmelma@35172
  3168
        next assume as:"0 > m i" hence *:"max (m i * a $ i) (m i * b $ i) = m i * a $ i"
himmelma@35172
  3169
            "min (m i * a $ i) (m i * b $ i) = m i * b $ i" using ab as unfolding min_def max_def 
himmelma@35172
  3170
            by(auto simp add:field_simps mult_le_cancel_left_neg intro:real_le_antisym)
himmelma@35172
  3171
          show ?thesis unfolding * apply rule defer apply(rule_tac x="1 / m i * x$i" in exI)
himmelma@35172
  3172
            using as by(auto simp add:field_simps) qed qed qed qed qed 
himmelma@35172
  3173
himmelma@35172
  3174
lemma interval_image_stretch_interval: "\<exists>u v. (\<lambda>x. \<chi> k. m k * x$k) ` {a..b::real^'n} = {u..v}"
himmelma@35172
  3175
  unfolding image_stretch_interval by auto 
himmelma@35172
  3176
himmelma@35172
  3177
lemma content_image_stretch_interval:
himmelma@35172
  3178
  "content((\<lambda>x::real^'n. \<chi> k. m k * x$k) ` {a..b}) = abs(setprod m UNIV) * content({a..b})"
himmelma@35172
  3179
proof(cases "{a..b} = {}") case True thus ?thesis
himmelma@35172
  3180
    unfolding content_def image_is_empty image_stretch_interval if_P[OF True] by auto
himmelma@35172
  3181
next case False hence "(\<lambda>x. \<chi> k. m k * x $ k) ` {a..b} \<noteq> {}" by auto
himmelma@35172
  3182
  thus ?thesis using False unfolding content_def image_stretch_interval apply- unfolding interval_bounds' if_not_P
himmelma@35172
  3183
    unfolding abs_setprod setprod_timesf[THEN sym] apply(rule setprod_cong2) unfolding Cart_lambda_beta
himmelma@35172
  3184
  proof- fix i::'n have "(m i < 0 \<or> m i > 0) \<or> m i = 0" by auto
himmelma@35172
  3185
    thus "max (m i * a $ i) (m i * b $ i) - min (m i * a $ i) (m i * b $ i) = \<bar>m i\<bar> * (b $ i - a $ i)"
himmelma@35172
  3186
      apply-apply(erule disjE)+ unfolding min_def max_def using False[unfolded interval_ne_empty,rule_format,of i] 
himmelma@35172
  3187
      by(auto simp add:field_simps not_le mult_le_cancel_left_neg mult_le_cancel_left_pos) qed qed
himmelma@35172
  3188
himmelma@35172
  3189
lemma has_integral_stretch: assumes "(f has_integral i) {a..b}" "\<forall>k. ~(m k = 0)"
himmelma@35172
  3190
  shows "((\<lambda>x. f(\<chi> k. m k * x$k)) has_integral
himmelma@35172
  3191
             ((1/(abs(setprod m UNIV))) *\<^sub>R i)) ((\<lambda>x. \<chi> k. 1/(m k) * x$k) ` {a..b})"
himmelma@35172
  3192
  apply(rule has_integral_twiddle) unfolding zero_less_abs_iff content_image_stretch_interval
himmelma@35172
  3193
  unfolding image_stretch_interval empty_as_interval Cart_eq using assms
himmelma@35172
  3194
proof- show "\<forall>x. continuous (at x) (\<lambda>x. \<chi> k. m k * x $ k)"
himmelma@35172
  3195
   apply(rule,rule linear_continuous_at) unfolding linear_linear
himmelma@35172
  3196
   unfolding linear_def Cart_simps Cart_eq by(auto simp add:field_simps) qed auto
himmelma@35172
  3197
himmelma@35172
  3198
lemma integrable_stretch: 
himmelma@35172
  3199
  assumes "f integrable_on {a..b}" "\<forall>k. ~(m k = 0)"
himmelma@35172
  3200
  shows "(\<lambda>x. f(\<chi> k. m k * x$k)) integrable_on ((\<lambda>x. \<chi> k. 1/(m k) * x$k) ` {a..b})"
himmelma@35172
  3201
  using assms unfolding integrable_on_def apply-apply(erule exE) apply(drule has_integral_stretch) by auto
himmelma@35172
  3202
himmelma@35172
  3203
subsection {* even more special cases. *}
himmelma@35172
  3204
himmelma@35172
  3205
lemma uminus_interval_vector[simp]:"uminus ` {a..b} = {-b .. -a::real^'n}"
himmelma@35172
  3206
  apply(rule set_ext,rule) defer unfolding image_iff
himmelma@35172
  3207
  apply(rule_tac x="-x" in bexI) by(auto simp add:vector_le_def minus_le_iff le_minus_iff)
himmelma@35172
  3208
himmelma@35172
  3209
lemma has_integral_reflect_lemma[intro]: assumes "(f has_integral i) {a..b}"
himmelma@35172
  3210
  shows "((\<lambda>x. f(-x)) has_integral i) {-b .. -a}"
himmelma@35172
  3211
  using has_integral_affinity[OF assms, of "-1" 0] by auto
himmelma@35172
  3212
himmelma@35172
  3213
lemma has_integral_reflect[simp]: "((\<lambda>x. f(-x)) has_integral i) {-b..-a} \<longleftrightarrow> (f has_integral i) ({a..b})"
himmelma@35172
  3214
  apply rule apply(drule_tac[!] has_integral_reflect_lemma) by auto
himmelma@35172
  3215
himmelma@35172
  3216
lemma integrable_reflect[simp]: "(\<lambda>x. f(-x)) integrable_on {-b..-a} \<longleftrightarrow> f integrable_on {a..b}"
himmelma@35172
  3217
  unfolding integrable_on_def by auto
himmelma@35172
  3218
himmelma@35172
  3219
lemma integral_reflect[simp]: "integral {-b..-a} (\<lambda>x. f(-x)) = integral ({a..b}) f"
himmelma@35172
  3220
  unfolding integral_def by auto
himmelma@35172
  3221
himmelma@35172
  3222
subsection {* Stronger form of FCT; quite a tedious proof. *}
himmelma@35172
  3223
himmelma@35172
  3224
(** move this **)
himmelma@35172
  3225
declare norm_triangle_ineq4[intro] 
himmelma@35172
  3226
himmelma@35172
  3227
lemma bgauge_existence_lemma: "(\<forall>x\<in>s. \<exists>d::real. 0 < d \<and> q d x) \<longleftrightarrow> (\<forall>x. \<exists>d>0. x\<in>s \<longrightarrow> q d x)" by(meson zero_less_one)
himmelma@35172
  3228
himmelma@35172
  3229
lemma additive_tagged_division_1': fixes f::"real \<Rightarrow> 'a::real_normed_vector"
himmelma@35172
  3230
  assumes "a \<le> b" "p tagged_division_of {vec1 a..vec1 b}"
himmelma@35172
  3231
  shows "setsum (\<lambda>(x,k). f (dest_vec1 (interval_upperbound k)) - f(dest_vec1 (interval_lowerbound k))) p = f b - f a"
himmelma@35172
  3232
  using additive_tagged_division_1[OF _ assms(2), of "f o dest_vec1"]
himmelma@35172
  3233
  unfolding o_def vec1_dest_vec1 using assms(1) by auto
himmelma@35172
  3234
himmelma@35172
  3235
lemma split_minus[simp]:"(\<lambda>(x, k). ?f x k) x - (\<lambda>(x, k). ?g x k) x = (\<lambda>(x, k). ?f x k - ?g x k) x"
himmelma@35172
  3236
  unfolding split_def by(rule refl)
himmelma@35172
  3237
himmelma@35172
  3238
lemma norm_triangle_le_sub: "norm x + norm y \<le> e \<Longrightarrow> norm (x - y) \<le> e"
himmelma@35172
  3239
  apply(subst(asm)(2) norm_minus_cancel[THEN sym])
himmelma@35172
  3240
  apply(drule norm_triangle_le) by(auto simp add:group_simps)
himmelma@35172
  3241
himmelma@35172
  3242
lemma fundamental_theorem_of_calculus_interior:
himmelma@35172
  3243
  assumes"a \<le> b" "continuous_on {a..b} f" "\<forall>x\<in>{a<..<b}. (f has_vector_derivative f'(x)) (at x)"
himmelma@35172
  3244
  shows "((f' o dest_vec1) has_integral (f b - f a)) {vec a..vec b}"
himmelma@35172
  3245
proof- { presume *:"a < b \<Longrightarrow> ?thesis" 
himmelma@35172
  3246
    show ?thesis proof(cases,rule *,assumption)
himmelma@35172
  3247
      assume "\<not> a < b" hence "a = b" using assms(1) by auto
himmelma@35172
  3248
      hence *:"{vec a .. vec b} = {vec b}" "f b - f a = 0" apply(auto simp add: Cart_simps) by smt
himmelma@35172
  3249
      show ?thesis unfolding *(2) apply(rule has_integral_null) unfolding content_eq_0_1 using * `a=b` by auto
himmelma@35172
  3250
    qed } assume ab:"a < b"
himmelma@35172
  3251
  let ?P = "\<lambda>e. \<exists>d. gauge d \<and> (\<forall>p. p tagged_division_of {vec1 a..vec1 b} \<and> d fine p \<longrightarrow>
himmelma@35172
  3252
                   norm ((\<Sum>(x, k)\<in>p. content k *\<^sub>R (f' \<circ> dest_vec1) x) - (f b - f a)) \<le> e * content {vec1 a..vec1 b})"
himmelma@35172
  3253
  { presume "\<And>e. e>0 \<Longrightarrow> ?P e" thus ?thesis unfolding has_integral_factor_content by auto }
himmelma@35172
  3254
  fix e::real assume e:"e>0"
himmelma@35172
  3255
  note assms(3)[unfolded has_vector_derivative_def has_derivative_at_alt ball_conj_distrib]
himmelma@35172
  3256
  note conjunctD2[OF this] note bounded=this(1) and this(2)
himmelma@35172
  3257
  from this(2) have "\<forall>x\<in>{a<..<b}. \<exists>d>0. \<forall>y. norm (y - x) < d \<longrightarrow> norm (f y - f x - (y - x) *\<^sub>R f' x) \<le> e/2 * norm (y - x)"
himmelma@35172
  3258
    apply-apply safe apply(erule_tac x=x in ballE,erule_tac x="e/2" in allE) using e by auto note this[unfolded bgauge_existence_lemma]
himmelma@35172
  3259
  from choice[OF this] guess d .. note conjunctD2[OF this[rule_format]] note d = this[rule_format]
himmelma@35172
  3260
  have "bounded (f ` {a..b})" apply(rule compact_imp_bounded compact_continuous_image)+ using compact_real_interval assms by auto
himmelma@35172
  3261
  from this[unfolded bounded_pos] guess B .. note B = this[rule_format]
himmelma@35172
  3262
himmelma@35172
  3263
  have "\<exists>da. 0 < da \<and> (\<forall>c. a \<le> c \<and> {a..c} \<subseteq> {a..b} \<and> {a..c} \<subseteq> ball a da
himmelma@35172
  3264
    \<longrightarrow> norm(content {vec1 a..vec1 c} *\<^sub>R f' a - (f c - f a)) \<le> (e * (b - a)) / 4)"
himmelma@35172
  3265
  proof- have "a\<in>{a..b}" using ab by auto
himmelma@35172
  3266
    note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this]
himmelma@35172
  3267
    note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps)
himmelma@35172
  3268
    from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format]
himmelma@35172
  3269
    have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' a) \<le> (e * (b - a)) / 8"
himmelma@35172
  3270
    proof(cases "f' a = 0") case True
himmelma@35172
  3271
      thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) 
himmelma@35172
  3272
    next case False thus ?thesis 
himmelma@35172
  3273
        apply(rule_tac x="(e * (b - a)) / 8 / norm (f' a)" in exI)
himmelma@35172
  3274
        using ab e by(auto simp add:field_simps)
himmelma@35172
  3275
    qed then guess l .. note l = conjunctD2[OF this]
himmelma@35172
  3276
    show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+)
himmelma@35172
  3277
    proof- fix c assume as:"a \<le> c" "{a..c} \<subseteq> {a..b}" "{a..c} \<subseteq> ball a (min k l)" 
himmelma@35172
  3278
      note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval]
himmelma@35172
  3279
      have "norm ((c - a) *\<^sub>R f' a - (f c - f a)) \<le> norm ((c - a) *\<^sub>R f' a) + norm (f c - f a)" by(rule norm_triangle_ineq4)
himmelma@35172
  3280
      also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" 
himmelma@35172
  3281
      proof(rule add_mono) case goal1 have "\<bar>c - a\<bar> \<le> \<bar>l\<bar>" using as' by auto
himmelma@35172
  3282
        thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto
himmelma@35172
  3283
      next case goal2 show ?case apply(rule less_imp_le) apply(cases "a = c") defer
himmelma@35172
  3284
          apply(rule k(2)[unfolded vector_dist_norm]) using as' e ab by(auto simp add:field_simps)
himmelma@35172
  3285
      qed finally show "norm (content {vec1 a..vec1 c} *\<^sub>R f' a - (f c - f a)) \<le> e * (b - a) / 4" unfolding content_1'[OF as(1)] by auto
himmelma@35172
  3286
    qed qed then guess da .. note da=conjunctD2[OF this,rule_format]
himmelma@35172
  3287
himmelma@35172
  3288
  have "\<exists>db>0. \<forall>c\<le>b. {c..b} \<subseteq> {a..b} \<and> {c..b} \<subseteq> ball b db \<longrightarrow> norm(content {vec1 c..vec1 b} *\<^sub>R f' b - (f b - f c)) \<le> (e * (b - a)) / 4"
himmelma@35172
  3289
  proof- have "b\<in>{a..b}" using ab by auto
himmelma@35172
  3290
    note assms(2)[unfolded continuous_on_eq_continuous_within,rule_format,OF this]
himmelma@35172
  3291
    note * = this[unfolded continuous_within Lim_within,rule_format] have "(e * (b - a)) / 8 > 0" using e ab by(auto simp add:field_simps)
himmelma@35172
  3292
    from *[OF this] guess k .. note k = conjunctD2[OF this,rule_format]
himmelma@35172
  3293
    have "\<exists>l. 0 < l \<and> norm(l *\<^sub>R f' b) \<le> (e * (b - a)) / 8"
himmelma@35172
  3294
    proof(cases "f' b = 0") case True
himmelma@35172
  3295
      thus ?thesis apply(rule_tac x=1 in exI) using ab e by(auto intro!:mult_nonneg_nonneg) 
himmelma@35172
  3296
    next case False thus ?thesis 
himmelma@35172
  3297
        apply(rule_tac x="(e * (b - a)) / 8 / norm (f' b)" in exI)
himmelma@35172
  3298
        using ab e by(auto simp add:field_simps)
himmelma@35172
  3299
    qed then guess l .. note l = conjunctD2[OF this]
himmelma@35172
  3300
    show ?thesis apply(rule_tac x="min k l" in exI) apply safe unfolding min_less_iff_conj apply(rule,(rule l k)+)
himmelma@35172
  3301
    proof- fix c assume as:"c \<le> b" "{c..b} \<subseteq> {a..b}" "{c..b} \<subseteq> ball b (min k l)" 
himmelma@35172
  3302
      note as' = this[unfolded subset_eq Ball_def mem_ball dist_real_def mem_interval]
himmelma@35172
  3303
      have "norm ((b - c) *\<^sub>R f' b - (f b - f c)) \<le> norm ((b - c) *\<^sub>R f' b) + norm (f b - f c)" by(rule norm_triangle_ineq4)
himmelma@35172
  3304
      also have "... \<le> e * (b - a) / 8 + e * (b - a) / 8" 
himmelma@35172
  3305
      proof(rule add_mono) case goal1 have "\<bar>c - b\<bar> \<le> \<bar>l\<bar>" using as' by auto
himmelma@35172
  3306
        thus ?case apply-apply(rule order_trans[OF _ l(2)]) unfolding norm_scaleR apply(rule mult_right_mono) by auto
himmelma@35172
  3307
      next case goal2 show ?case apply(rule less_imp_le) apply(cases "b = c") defer apply(subst norm_minus_commute)
himmelma@35172
  3308
          apply(rule k(2)[unfolded vector_dist_norm]) using as' e ab by(auto simp add:field_simps)
himmelma@35172
  3309
      qed finally show "norm (content {vec1 c..vec1 b} *\<^sub>R f' b - (f b - f c)) \<le> e * (b - a) / 4" unfolding content_1'[OF as(1)] by auto
himmelma@35172
  3310
    qed qed then guess db .. note db=conjunctD2[OF this,rule_format]
himmelma@35172
  3311
himmelma@35172
  3312
  let ?d = "(\<lambda>x. ball x (if x=vec1 a then da else if x=vec b then db else d (dest_vec1 x)))"
himmelma@35172
  3313
  show "?P e" apply(rule_tac x="?d" in exI)
himmelma@35172
  3314
  proof safe case goal1 show ?case apply(rule gauge_ball_dependent) using ab db(1) da(1) d(1) by auto
himmelma@35172
  3315
  next case goal2 note as=this let ?A = "{t. fst t \<in> {vec1 a, vec1 b}}" note p = tagged_division_ofD[OF goal2(1)]
himmelma@35172
  3316
    have pA:"p = (p \<inter> ?A) \<union> (p - ?A)" "finite (p \<inter> ?A)" "finite (p - ?A)" "(p \<inter> ?A) \<inter> (p - ?A) = {}"  using goal2 by auto
himmelma@35172
  3317
    note * = additive_tagged_division_1'[OF assms(1) goal2(1), THEN sym]
himmelma@35172
  3318
    have **:"\<And>n1 s1 n2 s2::real. n2 \<le> s2 / 2 \<Longrightarrow> n1 - s1 \<le> s2 / 2 \<Longrightarrow> n1 + n2 \<le> s1 + s2" by arith
himmelma@35172
  3319
    show ?case unfolding content_1'[OF assms(1)] and *[of "\<lambda>x. x"] *[of f] setsum_subtractf[THEN sym] split_minus
himmelma@35172
  3320
      unfolding setsum_right_distrib apply(subst(2) pA,subst pA) unfolding setsum_Un_disjoint[OF pA(2-)]
himmelma@35172
  3321
    proof(rule norm_triangle_le,rule **) 
himmelma@35172
  3322
      case goal1 show ?case apply(rule order_trans,rule setsum_norm_le) apply(rule pA) defer apply(subst divide.setsum)
himmelma@35172
  3323
      proof(rule order_refl,safe,unfold not_le o_def split_conv fst_conv,rule ccontr) fix x k assume as:"(x,k) \<in> p"
himmelma@35172
  3324
          "e * (dest_vec1 (interval_upperbound k) - dest_vec1 (interval_lowerbound k)) / 2
himmelma@35172
  3325
          < norm (content k *\<^sub>R f' (dest_vec1 x) - (f (dest_vec1 (interval_upperbound k)) - f (dest_vec1 (interval_lowerbound k))))"
himmelma@35172
  3326
        from p(4)[OF this(1)] guess u v apply-by(erule exE)+ note k=this
himmelma@35172
  3327
        hence "\<forall>i. u$i \<le> v$i" and uv:"{u,v}\<subseteq>{u..v}" using p(2)[OF as(1)] by auto note this(1) this(1)[unfolded forall_1]
himmelma@35172
  3328
        note result = as(2)[unfolded k interval_bounds[OF this(1)] content_1[OF this(2)]]
himmelma@35172
  3329
himmelma@35172
  3330
        assume as':"x \<noteq> vec1 a" "x \<noteq> vec1 b" hence "x$1 \<in> {a<..<b}" using p(2-3)[OF as(1)] by(auto simp add:Cart_simps) note  * = d(2)[OF this] 
himmelma@35172
  3331
        have "norm ((v$1 - u$1) *\<^sub>R f' (x$1) - (f (v$1) - f (u$1))) =
himmelma@35172
  3332
          norm ((f (u$1) - f (x$1) - (u$1 - x$1) *\<^sub>R f' (x$1)) - (f (v$1) - f (x$1) - (v$1 - x$1) *\<^sub>R f' (x$1)))" 
himmelma@35172
  3333
          apply(rule arg_cong[of _ _ norm]) unfolding scaleR_left.diff by auto 
himmelma@35172
  3334
        also have "... \<le> e / 2 * norm (u$1 - x$1) + e / 2 * norm (v$1 - x$1)" apply(rule norm_triangle_le_sub)
himmelma@35172
  3335
          apply(rule add_mono) apply(rule_tac[!] *) using fineD[OF goal2(2) as(1)] as' unfolding k subset_eq
himmelma@35172
  3336
          apply- apply(erule_tac x=u in ballE,erule_tac[3] x=v in ballE) using uv by(auto simp add:dist_real)
himmelma@35172
  3337
        also have "... \<le> e / 2 * norm (v$1 - u$1)" using p(2)[OF as(1)] unfolding k by(auto simp add:field_simps)
himmelma@35172
  3338
        finally have "e * (dest_vec1 v - dest_vec1 u) / 2 < e * (dest_vec1 v - dest_vec1 u) / 2"
himmelma@35172
  3339
          apply- apply(rule less_le_trans[OF result]) using uv by auto thus False by auto qed
himmelma@35172
  3340
himmelma@35172
  3341
    next have *:"\<And>x s1 s2::real. 0 \<le> s1 \<Longrightarrow> x \<le> (s1 + s2) / 2 \<Longrightarrow> x - s1 \<le> s2 / 2" by auto
himmelma@35172
  3342
      case goal2 show ?case apply(rule *) apply(rule setsum_nonneg) apply(rule,unfold split_paired_all split_conv)
himmelma@35172
  3343
        defer unfolding setsum_Un_disjoint[OF pA(2-),THEN sym] pA(1)[THEN sym] unfolding setsum_right_distrib[THEN sym] 
himmelma@35172
  3344
        apply(subst additive_tagged_division_1[OF _ as(1)]) unfolding vec1_dest_vec1 apply(rule assms)
himmelma@35172
  3345
      proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {vec1 a, vec1 b}}" note xk=IntD1[OF this]
himmelma@35172
  3346
        from p(4)[OF this] guess u v apply-by(erule exE)+ note uv=this
himmelma@35172
  3347
        with p(2)[OF xk] have "{u..v} \<noteq> {}" by auto
himmelma@35172
  3348
        thus "0 \<le> e * ((interval_upperbound k)$1 - (interval_lowerbound k)$1)"
himmelma@35172
  3349
          unfolding uv using e by(auto simp add:field_simps)
himmelma@35172
  3350
      next have *:"\<And>s f t e. setsum f s = setsum f t \<Longrightarrow> norm(setsum f t) \<le> e \<Longrightarrow> norm(setsum f s) \<le> e" by auto
himmelma@35172
  3351
        show "norm (\<Sum>(x, k)\<in>p \<inter> ?A. content k *\<^sub>R (f' \<circ> dest_vec1) x -
himmelma@35172
  3352
          (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1))) \<le> e * (b - a) / 2" 
himmelma@35172
  3353
          apply(rule *[where t="p \<inter> {t. fst t \<in> {vec1 a, vec1 b} \<and> content(snd t) \<noteq> 0}"])
himmelma@35172
  3354
          apply(rule setsum_mono_zero_right[OF pA(2)]) defer apply(rule) unfolding split_paired_all split_conv o_def
himmelma@35172
  3355
        proof- fix x k assume "(x,k) \<in> p \<inter> {t. fst t \<in> {vec1 a, vec1 b}} - p \<inter> {t. fst t \<in> {vec1 a, vec1 b} \<and> content (snd t) \<noteq> 0}"
himmelma@35172
  3356
          hence xk:"(x,k)\<in>p" "content k = 0" by auto from p(4)[OF xk(1)] guess u v apply-by(erule exE)+ note uv=this
himmelma@35172
  3357
          have "k\<noteq>{}" using p(2)[OF xk(1)] by auto hence *:"u = v" using xk unfolding uv content_eq_0_1 interval_eq_empty by auto
himmelma@35172
  3358
          thus "content k *\<^sub>R (f' (x$1)) - (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1)) = 0" using xk unfolding uv by auto
himmelma@35172
  3359
        next have *:"p \<inter> {t. fst t \<in> {vec1 a, vec1 b} \<and> content(snd t) \<noteq> 0} = 
himmelma@35172
  3360
            {t. t\<in>p \<and> fst t = vec1 a \<and> content(snd t) \<noteq> 0} \<union> {t. t\<in>p \<and> fst t = vec1 b \<and> content(snd t) \<noteq> 0}" by blast
himmelma@35172
  3361
          have **:"\<And>s f. \<And>e::real. (\<forall>x y. x \<in> s \<and> y \<in> s \<longrightarrow> x = y) \<Longrightarrow> (\<forall>x. x \<in> s \<longrightarrow> norm(f x) \<le> e) \<Longrightarrow> e>0 \<Longrightarrow> norm(setsum f s) \<le> e"
himmelma@35172
  3362
          proof(case_tac "s={}") case goal2 then obtain x where "x\<in>s" by auto hence *:"s = {x}" using goal2(1) by auto
himmelma@35172
  3363
            thus ?case using `x\<in>s` goal2(2) by auto
himmelma@35172
  3364
          qed auto
himmelma@35172
  3365
          case goal2 show ?case apply(subst *, subst setsum_Un_disjoint) prefer 4 apply(rule order_trans[of _ "e * (b - a)/4 + e * (b - a)/4"]) 
himmelma@35172
  3366
            apply(rule norm_triangle_le,rule add_mono) apply(rule_tac[1-2] **)
himmelma@35172
  3367
          proof- let ?B = "\<lambda>x. {t \<in> p. fst t = vec1 x \<and> content (snd t) \<noteq> 0}"
himmelma@35172
  3368
            have pa:"\<And>k. (vec1 a, k) \<in> p \<Longrightarrow> \<exists>v. k = {vec1 a .. v} \<and> vec1 a \<le> v" 
himmelma@35172
  3369
            proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this
himmelma@35172
  3370
              have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto
himmelma@35172
  3371
              have u:"u = vec1 a" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
himmelma@35172
  3372
                have "u \<ge> vec1 a" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "u\<noteq>vec1 a" ultimately
himmelma@35172
  3373
                have "u > vec1 a" unfolding Cart_simps by auto
himmelma@35172
  3374
                thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:Cart_simps)
himmelma@35172
  3375
              qed thus ?case apply(rule_tac x=v in exI) unfolding uv using * by auto
himmelma@35172
  3376
            qed
himmelma@35172
  3377
            have pb:"\<And>k. (vec1 b, k) \<in> p \<Longrightarrow> \<exists>v. k = {v .. vec1 b} \<and> vec1 b \<ge> v" 
himmelma@35172
  3378
            proof- case goal1 guess u v using p(4)[OF goal1] apply-by(erule exE)+ note uv=this
himmelma@35172
  3379
              have *:"u \<le> v" using p(2)[OF goal1] unfolding uv by auto
himmelma@35172
  3380
              have u:"v = vec1 b" proof(rule ccontr)  have "u \<in> {u..v}" using p(2-3)[OF goal1(1)] unfolding uv by auto 
himmelma@35172
  3381
                have "v \<le> vec1 b" using p(2-3)[OF goal1(1)] unfolding uv subset_eq by auto moreover assume "v\<noteq>vec1 b" ultimately
himmelma@35172
  3382
                have "v < vec1 b" unfolding Cart_simps by auto
himmelma@35172
  3383
                thus False using p(2)[OF goal1(1)] unfolding uv by(auto simp add:Cart_simps)
himmelma@35172
  3384
              qed thus ?case apply(rule_tac x=u in exI) unfolding uv using * by auto
himmelma@35172
  3385
            qed
himmelma@35172
  3386
himmelma@35172
  3387
            show "\<forall>x y. x \<in> ?B a \<and> y \<in> ?B a \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all)
himmelma@35172
  3388
              unfolding mem_Collect_eq fst_conv snd_conv apply safe
himmelma@35172
  3389
            proof- fix x k k' assume k:"(vec1 a, k) \<in> p" "(vec1 a, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0"
himmelma@35172
  3390
              guess v using pa[OF k(1)] .. note v = conjunctD2[OF this]
himmelma@35172
  3391
              guess v' using pa[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = "vec1 (min (v$1) (v'$1))"
himmelma@35172
  3392
              have "{vec1 a <..< ?v} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:Cart_simps) note subset_interior[OF this,unfolded interior_inter]
himmelma@35172
  3393
              moreover have "vec1 ((a + ?v$1)/2) \<in> {vec1 a <..< ?v}" using k(3-) unfolding v v' content_eq_0_1 not_le by(auto simp add:Cart_simps)
himmelma@35172
  3394
              ultimately have "vec1 ((a + ?v$1)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto
himmelma@35172
  3395
              hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto
himmelma@35172
  3396
              { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
himmelma@35172
  3397
            qed 
himmelma@35172
  3398
            show "\<forall>x y. x \<in> ?B b \<and> y \<in> ?B b \<longrightarrow> x = y" apply(rule,rule,rule,unfold split_paired_all)
himmelma@35172
  3399
              unfolding mem_Collect_eq fst_conv snd_conv apply safe
himmelma@35172
  3400
            proof- fix x k k' assume k:"(vec1 b, k) \<in> p" "(vec1 b, k') \<in> p" "content k \<noteq> 0" "content k' \<noteq> 0"
himmelma@35172
  3401
              guess v using pb[OF k(1)] .. note v = conjunctD2[OF this]
himmelma@35172
  3402
              guess v' using pb[OF k(2)] .. note v' = conjunctD2[OF this] let ?v = "vec1 (max (v$1) (v'$1))"
himmelma@35172
  3403
              have "{?v <..< vec1 b} \<subseteq> k \<inter> k'" unfolding v v' by(auto simp add:Cart_simps) note subset_interior[OF this,unfolded interior_inter]
himmelma@35172
  3404
              moreover have "vec1 ((b + ?v$1)/2) \<in> {?v <..< vec1 b}" using k(3-) unfolding v v' content_eq_0_1 not_le by(auto simp add:Cart_simps)
himmelma@35172
  3405
              ultimately have "vec1 ((b + ?v$1)/2) \<in> interior k \<inter> interior k'" unfolding interior_open[OF open_interval] by auto
himmelma@35172
  3406
              hence *:"k = k'" apply- apply(rule ccontr) using p(5)[OF k(1-2)] by auto
himmelma@35172
  3407
              { assume "x\<in>k" thus "x\<in>k'" unfolding * . } { assume "x\<in>k'" thus "x\<in>k" unfolding * . }
himmelma@35172
  3408
            qed
himmelma@35172
  3409
himmelma@35172
  3410
            let ?a = a and ?b = b (* a is something else while proofing the next theorem. *)
himmelma@35172
  3411
            show "\<forall>x. x \<in> ?B a \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x$1) - (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1))) x)
himmelma@35172
  3412
              \<le> e * (b - a) / 4" apply safe unfolding fst_conv snd_conv apply safe unfolding vec1_dest_vec1
himmelma@35172
  3413
            proof- case goal1 guess v using pa[OF goal1(1)] .. note v = conjunctD2[OF this]
himmelma@35172
  3414
              have "vec1 ?a\<in>{vec1 ?a..v}" using v(2) by auto hence "dest_vec1 v \<le> ?b" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
himmelma@35172
  3415
              moreover have "{?a..dest_vec1 v} \<subseteq> ball ?a da" using fineD[OF as(2) goal1(1)]
himmelma@35172
  3416
                apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x="vec1 x" in ballE)
himmelma@35172
  3417
                by(auto simp add:Cart_simps subset_eq dist_real v dist_real_def) ultimately
himmelma@35172
  3418
              show ?case unfolding v unfolding interval_bounds[OF v(2)[unfolded v vector_le_def]] vec1_dest_vec1 apply-
himmelma@35172
  3419
                apply(rule da(2)[of "v$1",unfolded vec1_dest_vec1])
himmelma@35172
  3420
                using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0_1 by auto
himmelma@35172
  3421
            qed
himmelma@35172
  3422
            show "\<forall>x. x \<in> ?B b \<longrightarrow> norm ((\<lambda>(x, k). content k *\<^sub>R f' (x$1) - (f ((interval_upperbound k)$1) - f ((interval_lowerbound k)$1))) x)
himmelma@35172
  3423
              \<le> e * (b - a) / 4" apply safe unfolding fst_conv snd_conv apply safe unfolding vec1_dest_vec1
himmelma@35172
  3424
            proof- case goal1 guess v using pb[OF goal1(1)] .. note v = conjunctD2[OF this]
himmelma@35172
  3425
              have "vec1 ?b\<in>{v..vec1 ?b}" using v(2) by auto hence "dest_vec1 v \<ge> ?a" using p(3)[OF goal1(1)] unfolding subset_eq v by auto
himmelma@35172
  3426
              moreover have "{dest_vec1 v..?b} \<subseteq> ball ?b db" using fineD[OF as(2) goal1(1)]
himmelma@35172
  3427
                apply-apply(subst(asm) if_P,rule refl) unfolding subset_eq apply safe apply(erule_tac x="vec1 x" in ballE) using ab
himmelma@35172
  3428
                by(auto simp add:Cart_simps subset_eq dist_real v dist_real_def) ultimately
himmelma@35172
  3429
              show ?case unfolding v unfolding interval_bounds[OF v(2)[unfolded v vector_le_def]] vec1_dest_vec1 apply-
himmelma@35172
  3430
                apply(rule db(2)[of "v$1",unfolded vec1_dest_vec1])
himmelma@35172
  3431
                using goal1 fineD[OF as(2) goal1(1)] unfolding v content_eq_0_1 by auto
himmelma@35172
  3432
            qed
himmelma@35172
  3433
          qed(insert p(1) ab e, auto simp add:field_simps) qed auto qed qed qed qed
himmelma@35172
  3434
himmelma@35172
  3435
subsection {* Stronger form with finite number of exceptional points. *}
himmelma@35172
  3436
himmelma@35172
  3437
lemma fundamental_theorem_of_calculus_interior_strong: fixes f::"real \<Rightarrow> 'a::banach"
himmelma@35172
  3438
  assumes"finite s" "a \<le> b" "continuous_on {a..b} f"
himmelma@35172
  3439
  "\<forall>x\<in>{a<..<b} - s. (f has_vector_derivative f'(x)) (at x)"
himmelma@35172
  3440
  shows "((f' o dest_vec1) has_integral (f b - f a)) {vec a..vec b}" using assms apply- 
himmelma@35172
  3441
proof(induct "card s" arbitrary:s a b)
himmelma@35172
  3442
  case 0 show ?case apply(rule fundamental_theorem_of_calculus_interior) using 0 by auto
himmelma@35172
  3443
next case (Suc n) from this(2) guess c s' apply-apply(subst(asm) eq_commute) unfolding card_Suc_eq
himmelma@35172
  3444
    apply(subst(asm)(2) eq_commute) by(erule exE conjE)+ note cs = this[rule_format]
himmelma@35172
  3445
  show ?case proof(cases "c\<in>{a<..<b}")
himmelma@35172
  3446
    case False thus ?thesis apply- apply(rule Suc(1)[OF cs(3) _ Suc(4,5)]) apply safe defer
himmelma@35172
  3447
      apply(rule Suc(6)[rule_format]) using Suc(3) unfolding cs by auto
himmelma@35172
  3448
  next have *:"f b - f a = (f c - f a) + (f b - f c)" by auto
himmelma@35172
  3449
    case True hence "vec1 a \<le> vec1 c" "vec1 c \<le> vec1 b" by auto
himmelma@35172
  3450
    thus ?thesis apply(subst *) apply(rule has_integral_combine) apply assumption+
himmelma@35172
  3451
      apply(rule_tac[!] Suc(1)[OF cs(3)]) using Suc(3) unfolding cs
himmelma@35172
  3452
    proof- show "continuous_on {a..c} f" "continuous_on {c..b} f"
himmelma@35172
  3453
        apply(rule_tac[!] continuous_on_subset[OF Suc(5)]) using True by auto
himmelma@35172
  3454
      let ?P = "\<lambda>i j. \<forall>x\<in>{i<..<j} - s'. (f has_vector_derivative f' x) (at x)"
himmelma@35172
  3455
      show "?P a c" "?P c b" apply safe apply(rule_tac[!] Suc(6)[rule_format]) using True unfolding cs by auto
himmelma@35172
  3456
    qed auto qed qed
himmelma@35172
  3457
himmelma@35172
  3458
lemma fundamental_theorem_of_calculus_strong: fixes f::"real \<Rightarrow> 'a::banach"
himmelma@35172
  3459
  assumes "finite s" "a \<le> b" "continuous_on {a..b} f"
himmelma@35172
  3460
  "\<forall>x\<in>{a..b} - s. (f has_vector_derivative f'(x)) (at x)"
himmelma@35172
  3461
  shows "((f' o dest_vec1) has_integral (f(b) - f(a))) {vec1 a..vec1 b}"
himmelma@35172
  3462
  apply(rule fundamental_theorem_of_calculus_interior_strong[OF assms(1-3), of f'])
himmelma@35172
  3463
  using assms(4) by auto
himmelma@35172
  3464
himmelma@35172
  3465
end