src/ZF/Constructible/DPow_absolute.thy
author paulson
Wed, 11 Sep 2002 16:55:37 +0200
changeset 13566 52a419210d5c
parent 13505 52a16cb7fefb
child 13634 99a593b49b04
permissions -rw-r--r--
Streamlined proofs of instances of Separation
paulson@13503
     1
(*  Title:      ZF/Constructible/DPow_absolute.thy
paulson@13503
     2
    ID:         $Id$
paulson@13503
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@13503
     4
    Copyright   2002  University of Cambridge
paulson@13503
     5
*)
paulson@13503
     6
paulson@13503
     7
header {*Absoluteness for the Definable Powerset Function*}
paulson@13503
     8
paulson@13503
     9
paulson@13503
    10
theory DPow_absolute = Satisfies_absolute:
paulson@13503
    11
paulson@13503
    12
paulson@13503
    13
subsection{*Preliminary Internalizations*}
paulson@13503
    14
paulson@13503
    15
subsubsection{*The Operator @{term is_formula_rec}*}
paulson@13503
    16
paulson@13503
    17
text{*The three arguments of @{term p} are always 2, 1, 0.  It is buried
paulson@13503
    18
   within 11 quantifiers!!*}
paulson@13503
    19
paulson@13503
    20
(* is_formula_rec :: "[i=>o, [i,i,i]=>o, i, i] => o"
paulson@13503
    21
   "is_formula_rec(M,MH,p,z)  ==
paulson@13503
    22
      \<exists>dp[M]. \<exists>i[M]. \<exists>f[M]. finite_ordinal(M,dp) & is_depth(M,p,dp) & 
paulson@13503
    23
       2       1      0
paulson@13503
    24
             successor(M,dp,i) & fun_apply(M,f,p,z) & is_transrec(M,MH,i,f)"
paulson@13503
    25
*)
paulson@13503
    26
paulson@13503
    27
constdefs formula_rec_fm :: "[i, i, i]=>i"
paulson@13503
    28
 "formula_rec_fm(mh,p,z) == 
paulson@13503
    29
    Exists(Exists(Exists(
paulson@13503
    30
      And(finite_ordinal_fm(2),
paulson@13503
    31
       And(depth_fm(p#+3,2),
paulson@13503
    32
        And(succ_fm(2,1), 
paulson@13503
    33
          And(fun_apply_fm(0,p#+3,z#+3), is_transrec_fm(mh,1,0))))))))"
paulson@13503
    34
paulson@13503
    35
lemma is_formula_rec_type [TC]:
paulson@13503
    36
     "[| p \<in> formula; x \<in> nat; z \<in> nat |] 
paulson@13503
    37
      ==> formula_rec_fm(p,x,z) \<in> formula"
paulson@13503
    38
by (simp add: formula_rec_fm_def) 
paulson@13503
    39
paulson@13503
    40
lemma sats_formula_rec_fm:
paulson@13503
    41
  assumes MH_iff_sats: 
paulson@13503
    42
      "!!a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10. 
paulson@13503
    43
        [|a0\<in>A; a1\<in>A; a2\<in>A; a3\<in>A; a4\<in>A; a5\<in>A; a6\<in>A; a7\<in>A; a8\<in>A; a9\<in>A; a10\<in>A|]
paulson@13503
    44
        ==> MH(a2, a1, a0) <-> 
paulson@13503
    45
            sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
paulson@13503
    46
                          Cons(a4,Cons(a5,Cons(a6,Cons(a7,
paulson@13503
    47
                                  Cons(a8,Cons(a9,Cons(a10,env))))))))))))"
paulson@13503
    48
  shows 
paulson@13503
    49
      "[|x \<in> nat; z \<in> nat; env \<in> list(A)|]
paulson@13503
    50
       ==> sats(A, formula_rec_fm(p,x,z), env) <-> 
paulson@13503
    51
           is_formula_rec(**A, MH, nth(x,env), nth(z,env))"
paulson@13503
    52
by (simp add: formula_rec_fm_def sats_is_transrec_fm is_formula_rec_def 
paulson@13503
    53
              MH_iff_sats [THEN iff_sym])
paulson@13503
    54
paulson@13503
    55
lemma formula_rec_iff_sats:
paulson@13503
    56
  assumes MH_iff_sats: 
paulson@13503
    57
      "!!a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10. 
paulson@13503
    58
        [|a0\<in>A; a1\<in>A; a2\<in>A; a3\<in>A; a4\<in>A; a5\<in>A; a6\<in>A; a7\<in>A; a8\<in>A; a9\<in>A; a10\<in>A|]
paulson@13503
    59
        ==> MH(a2, a1, a0) <-> 
paulson@13503
    60
            sats(A, p, Cons(a0,Cons(a1,Cons(a2,Cons(a3,
paulson@13503
    61
                          Cons(a4,Cons(a5,Cons(a6,Cons(a7,
paulson@13503
    62
                                  Cons(a8,Cons(a9,Cons(a10,env))))))))))))"
paulson@13503
    63
  shows
paulson@13503
    64
  "[|nth(i,env) = x; nth(k,env) = z; 
paulson@13503
    65
      i \<in> nat; k \<in> nat; env \<in> list(A)|]
paulson@13503
    66
   ==> is_formula_rec(**A, MH, x, z) <-> sats(A, formula_rec_fm(p,i,k), env)" 
paulson@13503
    67
by (simp add: sats_formula_rec_fm [OF MH_iff_sats])
paulson@13503
    68
paulson@13503
    69
theorem formula_rec_reflection:
paulson@13503
    70
  assumes MH_reflection:
paulson@13503
    71
    "!!f' f g h. REFLECTS[\<lambda>x. MH(L, f'(x), f(x), g(x), h(x)), 
paulson@13503
    72
                     \<lambda>i x. MH(**Lset(i), f'(x), f(x), g(x), h(x))]"
paulson@13503
    73
  shows "REFLECTS[\<lambda>x. is_formula_rec(L, MH(L,x), f(x), h(x)), 
paulson@13503
    74
               \<lambda>i x. is_formula_rec(**Lset(i), MH(**Lset(i),x), f(x), h(x))]"
paulson@13503
    75
apply (simp (no_asm_use) only: is_formula_rec_def setclass_simps)
paulson@13503
    76
apply (intro FOL_reflections function_reflections fun_plus_reflections
paulson@13503
    77
             depth_reflection is_transrec_reflection MH_reflection)
paulson@13503
    78
done
paulson@13503
    79
paulson@13503
    80
paulson@13503
    81
subsubsection{*The Operator @{term is_satisfies}*}
paulson@13503
    82
paulson@13503
    83
(* is_satisfies(M,A,p,z) == is_formula_rec (M, satisfies_MH(M,A), p, z) *)
paulson@13503
    84
constdefs satisfies_fm :: "[i,i,i]=>i"
paulson@13503
    85
    "satisfies_fm(x) == formula_rec_fm (satisfies_MH_fm(x#+5#+6, 2, 1, 0))"
paulson@13503
    86
paulson@13503
    87
lemma is_satisfies_type [TC]:
paulson@13503
    88
     "[| x \<in> nat; y \<in> nat; z \<in> nat |] ==> satisfies_fm(x,y,z) \<in> formula"
paulson@13503
    89
by (simp add: satisfies_fm_def)
paulson@13503
    90
paulson@13503
    91
lemma sats_satisfies_fm [simp]:
paulson@13503
    92
   "[| x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
paulson@13503
    93
    ==> sats(A, satisfies_fm(x,y,z), env) <->
paulson@13503
    94
        is_satisfies(**A, nth(x,env), nth(y,env), nth(z,env))"
paulson@13503
    95
by (simp add: satisfies_fm_def is_satisfies_def sats_satisfies_MH_fm
paulson@13503
    96
              sats_formula_rec_fm)
paulson@13503
    97
paulson@13503
    98
lemma satisfies_iff_sats:
paulson@13503
    99
      "[| nth(i,env) = x; nth(j,env) = y; nth(k,env) = z;
paulson@13503
   100
          i \<in> nat; j \<in> nat; k \<in> nat; env \<in> list(A)|]
paulson@13503
   101
       ==> is_satisfies(**A, x, y, z) <-> sats(A, satisfies_fm(i,j,k), env)"
paulson@13503
   102
by (simp add: sats_satisfies_fm)
paulson@13503
   103
paulson@13503
   104
theorem satisfies_reflection:
paulson@13503
   105
     "REFLECTS[\<lambda>x. is_satisfies(L,f(x),g(x),h(x)),
paulson@13503
   106
               \<lambda>i x. is_satisfies(**Lset(i),f(x),g(x),h(x))]"
paulson@13503
   107
apply (simp only: is_satisfies_def setclass_simps)
paulson@13503
   108
apply (intro formula_rec_reflection satisfies_MH_reflection)
paulson@13503
   109
done
paulson@13503
   110
paulson@13503
   111
paulson@13503
   112
subsection {*Relativization of the Operator @{term DPow'}*}
paulson@13503
   113
paulson@13503
   114
lemma DPow'_eq: 
paulson@13503
   115
  "DPow'(A) = Replace(list(A) * formula,
paulson@13503
   116
              %ep z. \<exists>env \<in> list(A). \<exists>p \<in> formula. 
paulson@13503
   117
                     ep = <env,p> & z = {x\<in>A. sats(A, p, Cons(x,env))})"
paulson@13503
   118
apply (simp add: DPow'_def, blast) 
paulson@13503
   119
done
paulson@13503
   120
paulson@13503
   121
paulson@13503
   122
constdefs
paulson@13503
   123
  is_DPow_body :: "[i=>o,i,i,i,i] => o"
paulson@13503
   124
   "is_DPow_body(M,A,env,p,x) ==
paulson@13503
   125
      \<forall>n1[M]. \<forall>e[M]. \<forall>sp[M]. 
paulson@13503
   126
             is_satisfies(M,A,p,sp) --> is_Cons(M,x,env,e) --> 
paulson@13503
   127
             fun_apply(M, sp, e, n1) --> number1(M, n1)"
paulson@13503
   128
paulson@13503
   129
lemma (in M_satisfies) DPow_body_abs:
paulson@13503
   130
    "[| M(A); env \<in> list(A); p \<in> formula; M(x) |]
paulson@13503
   131
    ==> is_DPow_body(M,A,env,p,x) <-> sats(A, p, Cons(x,env))"
paulson@13503
   132
apply (subgoal_tac "M(env)") 
paulson@13503
   133
 apply (simp add: is_DPow_body_def satisfies_closed satisfies_abs) 
paulson@13503
   134
apply (blast dest: transM) 
paulson@13503
   135
done
paulson@13503
   136
paulson@13503
   137
lemma (in M_satisfies) Collect_DPow_body_abs:
paulson@13503
   138
    "[| M(A); env \<in> list(A); p \<in> formula |]
paulson@13503
   139
    ==> Collect(A, is_DPow_body(M,A,env,p)) = 
paulson@13503
   140
        {x \<in> A. sats(A, p, Cons(x,env))}"
paulson@13503
   141
by (simp add: DPow_body_abs transM [of _ A])
paulson@13503
   142
paulson@13503
   143
paulson@13503
   144
subsubsection{*The Operator @{term is_DPow_body}, Internalized*}
paulson@13503
   145
paulson@13503
   146
(* is_DPow_body(M,A,env,p,x) ==
paulson@13503
   147
      \<forall>n1[M]. \<forall>e[M]. \<forall>sp[M]. 
paulson@13503
   148
             is_satisfies(M,A,p,sp) --> is_Cons(M,x,env,e) --> 
paulson@13503
   149
             fun_apply(M, sp, e, n1) --> number1(M, n1) *)
paulson@13503
   150
paulson@13503
   151
constdefs DPow_body_fm :: "[i,i,i,i]=>i"
paulson@13503
   152
 "DPow_body_fm(A,env,p,x) ==
paulson@13503
   153
   Forall(Forall(Forall(
paulson@13503
   154
     Implies(satisfies_fm(A#+3,p#+3,0), 
paulson@13503
   155
       Implies(Cons_fm(x#+3,env#+3,1), 
paulson@13503
   156
         Implies(fun_apply_fm(0,1,2), number1_fm(2)))))))"
paulson@13503
   157
paulson@13503
   158
lemma is_DPow_body_type [TC]:
paulson@13503
   159
     "[| A \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat |]
paulson@13503
   160
      ==> DPow_body_fm(A,x,y,z) \<in> formula"
paulson@13503
   161
by (simp add: DPow_body_fm_def)
paulson@13503
   162
paulson@13503
   163
lemma sats_DPow_body_fm [simp]:
paulson@13503
   164
   "[| u \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
paulson@13503
   165
    ==> sats(A, DPow_body_fm(u,x,y,z), env) <->
paulson@13503
   166
        is_DPow_body(**A, nth(u,env), nth(x,env), nth(y,env), nth(z,env))"
paulson@13503
   167
by (simp add: DPow_body_fm_def is_DPow_body_def)
paulson@13503
   168
paulson@13503
   169
lemma DPow_body_iff_sats:
paulson@13503
   170
  "[| nth(u,env) = nu; nth(x,env) = nx; nth(y,env) = ny; nth(z,env) = nz;
paulson@13503
   171
      u \<in> nat; x \<in> nat; y \<in> nat; z \<in> nat; env \<in> list(A)|]
paulson@13503
   172
   ==> is_DPow_body(**A,nu,nx,ny,nz) <->
paulson@13503
   173
       sats(A, DPow_body_fm(u,x,y,z), env)"
paulson@13503
   174
by simp
paulson@13503
   175
paulson@13503
   176
theorem DPow_body_reflection:
paulson@13503
   177
     "REFLECTS[\<lambda>x. is_DPow_body(L,f(x),g(x),h(x),g'(x)),
paulson@13503
   178
               \<lambda>i x. is_DPow_body(**Lset(i),f(x),g(x),h(x),g'(x))]"
paulson@13503
   179
apply (unfold is_DPow_body_def) 
paulson@13503
   180
apply (intro FOL_reflections function_reflections extra_reflections
paulson@13503
   181
             satisfies_reflection)
paulson@13503
   182
done
paulson@13503
   183
paulson@13503
   184
paulson@13503
   185
subsection{*Additional Constraints on the Class Model @{term M}*}
paulson@13503
   186
paulson@13503
   187
locale M_DPow = M_satisfies +
paulson@13503
   188
 assumes sep:
paulson@13503
   189
   "[| M(A); env \<in> list(A); p \<in> formula |]
paulson@13503
   190
    ==> separation(M, \<lambda>x. is_DPow_body(M,A,env,p,x))"
paulson@13503
   191
 and rep: 
paulson@13503
   192
    "M(A)
paulson@13503
   193
    ==> strong_replacement (M, 
paulson@13503
   194
         \<lambda>ep z. \<exists>env[M]. \<exists>p[M]. mem_formula(M,p) & mem_list(M,A,env) &
paulson@13503
   195
                  pair(M,env,p,ep) & 
paulson@13503
   196
                  is_Collect(M, A, \<lambda>x. is_DPow_body(M,A,env,p,x), z))"
paulson@13503
   197
paulson@13503
   198
lemma (in M_DPow) sep':
paulson@13503
   199
   "[| M(A); env \<in> list(A); p \<in> formula |]
paulson@13503
   200
    ==> separation(M, \<lambda>x. sats(A, p, Cons(x,env)))"
paulson@13503
   201
by (insert sep [of A env p], simp add: DPow_body_abs)
paulson@13503
   202
paulson@13503
   203
lemma (in M_DPow) rep':
paulson@13503
   204
   "M(A)
paulson@13503
   205
    ==> strong_replacement (M, 
paulson@13503
   206
         \<lambda>ep z. \<exists>env\<in>list(A). \<exists>p\<in>formula.
paulson@13504
   207
                  ep = <env,p> & z = {x \<in> A . sats(A, p, Cons(x, env))})" 
paulson@13503
   208
by (insert rep [of A], simp add: Collect_DPow_body_abs) 
paulson@13503
   209
paulson@13503
   210
paulson@13503
   211
lemma univalent_pair_eq:
paulson@13503
   212
     "univalent (M, A, \<lambda>xy z. \<exists>x\<in>B. \<exists>y\<in>C. xy = \<langle>x,y\<rangle> \<and> z = f(x,y))"
paulson@13503
   213
by (simp add: univalent_def, blast) 
paulson@13503
   214
paulson@13503
   215
lemma (in M_DPow) DPow'_closed: "M(A) ==> M(DPow'(A))"
paulson@13503
   216
apply (simp add: DPow'_eq)
paulson@13503
   217
apply (fast intro: rep' sep' univalent_pair_eq)  
paulson@13503
   218
done
paulson@13503
   219
paulson@13503
   220
text{*Relativization of the Operator @{term DPow'}*}
paulson@13503
   221
constdefs 
paulson@13503
   222
  is_DPow' :: "[i=>o,i,i] => o"
paulson@13503
   223
    "is_DPow'(M,A,Z) == 
paulson@13503
   224
       \<forall>X[M]. X \<in> Z <-> 
paulson@13503
   225
         subset(M,X,A) & 
paulson@13503
   226
           (\<exists>env[M]. \<exists>p[M]. mem_formula(M,p) & mem_list(M,A,env) &
paulson@13503
   227
                    is_Collect(M, A, is_DPow_body(M,A,env,p), X))"
paulson@13503
   228
paulson@13503
   229
lemma (in M_DPow) DPow'_abs:
paulson@13503
   230
    "[|M(A); M(Z)|] ==> is_DPow'(M,A,Z) <-> Z = DPow'(A)"
paulson@13503
   231
apply (rule iffI)
paulson@13503
   232
 prefer 2 apply (simp add: is_DPow'_def DPow'_def Collect_DPow_body_abs) 
paulson@13503
   233
apply (rule M_equalityI) 
paulson@13503
   234
apply (simp add: is_DPow'_def DPow'_def Collect_DPow_body_abs, assumption)
paulson@13503
   235
apply (erule DPow'_closed)
paulson@13503
   236
done
paulson@13503
   237
paulson@13503
   238
paulson@13503
   239
subsection{*Instantiating the Locale @{text M_DPow}*}
paulson@13503
   240
paulson@13503
   241
subsubsection{*The Instance of Separation*}
paulson@13503
   242
paulson@13503
   243
lemma DPow_separation:
paulson@13503
   244
    "[| L(A); env \<in> list(A); p \<in> formula |]
paulson@13503
   245
     ==> separation(L, \<lambda>x. is_DPow_body(L,A,env,p,x))"
paulson@13566
   246
apply (rule gen_separation [OF DPow_body_reflection, of "{A,env,p}"], 
paulson@13566
   247
       blast intro: transL)
paulson@13566
   248
apply (drule mem_Lset_imp_subset_Lset, clarsimp)
paulson@13503
   249
apply (rule DPow_LsetI)
paulson@13503
   250
apply (rule_tac env = "[x,A,env,p]" in DPow_body_iff_sats)
paulson@13503
   251
apply (rule sep_rules | simp)+
paulson@13503
   252
done
paulson@13503
   253
paulson@13503
   254
paulson@13503
   255
paulson@13503
   256
subsubsection{*The Instance of Replacement*}
paulson@13503
   257
paulson@13503
   258
lemma DPow_replacement_Reflects:
paulson@13503
   259
 "REFLECTS [\<lambda>x. \<exists>u[L]. u \<in> B &
paulson@13503
   260
             (\<exists>env[L]. \<exists>p[L].
paulson@13503
   261
               mem_formula(L,p) & mem_list(L,A,env) & pair(L,env,p,u) &
paulson@13503
   262
               is_Collect (L, A, is_DPow_body(L,A,env,p), x)),
paulson@13503
   263
    \<lambda>i x. \<exists>u \<in> Lset(i). u \<in> B &
paulson@13503
   264
             (\<exists>env \<in> Lset(i). \<exists>p \<in> Lset(i).
paulson@13503
   265
               mem_formula(**Lset(i),p) & mem_list(**Lset(i),A,env) & 
paulson@13503
   266
               pair(**Lset(i),env,p,u) &
paulson@13503
   267
               is_Collect (**Lset(i), A, is_DPow_body(**Lset(i),A,env,p), x))]"
paulson@13503
   268
apply (unfold is_Collect_def) 
paulson@13503
   269
apply (intro FOL_reflections function_reflections mem_formula_reflection
paulson@13503
   270
          mem_list_reflection DPow_body_reflection)
paulson@13503
   271
done
paulson@13503
   272
paulson@13503
   273
lemma DPow_replacement:
paulson@13503
   274
    "L(A)
paulson@13503
   275
    ==> strong_replacement (L, 
paulson@13503
   276
         \<lambda>ep z. \<exists>env[L]. \<exists>p[L]. mem_formula(L,p) & mem_list(L,A,env) &
paulson@13503
   277
                  pair(L,env,p,ep) & 
paulson@13503
   278
                  is_Collect(L, A, \<lambda>x. is_DPow_body(L,A,env,p,x), z))"
paulson@13503
   279
apply (rule strong_replacementI)
paulson@13503
   280
apply (rename_tac B)
paulson@13566
   281
apply (rule_tac u="{A,B}" in gen_separation [OF DPow_replacement_Reflects], 
paulson@13566
   282
       simp)
paulson@13566
   283
apply (drule mem_Lset_imp_subset_Lset, clarsimp)
paulson@13566
   284
apply (unfold is_Collect_def) 
paulson@13503
   285
apply (rule DPow_LsetI)
paulson@13503
   286
apply (rule bex_iff_sats conj_iff_sats)+
paulson@13566
   287
apply (rule_tac env = "[u,x,A,B]" in mem_iff_sats)
paulson@13503
   288
apply (rule sep_rules mem_formula_iff_sats mem_list_iff_sats 
paulson@13503
   289
            DPow_body_iff_sats | simp)+
paulson@13503
   290
done
paulson@13503
   291
paulson@13503
   292
paulson@13503
   293
subsubsection{*Actually Instantiating the Locale*}
paulson@13503
   294
paulson@13503
   295
lemma M_DPow_axioms_L: "M_DPow_axioms(L)"
paulson@13503
   296
  apply (rule M_DPow_axioms.intro)
paulson@13503
   297
   apply (assumption | rule DPow_separation DPow_replacement)+
paulson@13503
   298
  done
paulson@13503
   299
paulson@13503
   300
theorem M_DPow_L: "PROP M_DPow(L)"
paulson@13503
   301
  apply (rule M_DPow.intro)
paulson@13503
   302
       apply (rule M_satisfies.axioms [OF M_satisfies_L])+
paulson@13503
   303
  apply (rule M_DPow_axioms_L)
paulson@13503
   304
  done
paulson@13503
   305
paulson@13503
   306
lemmas DPow'_closed [intro, simp] = M_DPow.DPow'_closed [OF M_DPow_L]
paulson@13503
   307
  and DPow'_abs [intro, simp] = M_DPow.DPow'_abs [OF M_DPow_L]
paulson@13503
   308
paulson@13505
   309
paulson@13505
   310
subsubsection{*The Operator @{term is_Collect}*}
paulson@13505
   311
paulson@13505
   312
text{*The formula @{term is_P} has one free variable, 0, and it is
paulson@13505
   313
enclosed within a single quantifier.*}
paulson@13505
   314
paulson@13505
   315
(* is_Collect :: "[i=>o,i,i=>o,i] => o"
paulson@13505
   316
    "is_Collect(M,A,P,z) == \<forall>x[M]. x \<in> z <-> x \<in> A & P(x)" *)
paulson@13505
   317
paulson@13505
   318
constdefs Collect_fm :: "[i, i, i]=>i"
paulson@13505
   319
 "Collect_fm(A,is_P,z) == 
paulson@13505
   320
        Forall(Iff(Member(0,succ(z)),
paulson@13505
   321
                   And(Member(0,succ(A)), is_P)))"
paulson@13505
   322
paulson@13505
   323
lemma is_Collect_type [TC]:
paulson@13505
   324
     "[| is_P \<in> formula; x \<in> nat; y \<in> nat |] 
paulson@13505
   325
      ==> Collect_fm(x,is_P,y) \<in> formula"
paulson@13505
   326
by (simp add: Collect_fm_def)
paulson@13505
   327
paulson@13505
   328
lemma sats_Collect_fm:
paulson@13505
   329
  assumes is_P_iff_sats: 
paulson@13505
   330
      "!!a. a \<in> A ==> is_P(a) <-> sats(A, p, Cons(a, env))"
paulson@13505
   331
  shows 
paulson@13505
   332
      "[|x \<in> nat; y \<in> nat; env \<in> list(A)|]
paulson@13505
   333
       ==> sats(A, Collect_fm(x,p,y), env) <->
paulson@13505
   334
           is_Collect(**A, nth(x,env), is_P, nth(y,env))"
paulson@13505
   335
by (simp add: Collect_fm_def is_Collect_def is_P_iff_sats [THEN iff_sym])
paulson@13505
   336
paulson@13505
   337
lemma Collect_iff_sats:
paulson@13505
   338
  assumes is_P_iff_sats: 
paulson@13505
   339
      "!!a. a \<in> A ==> is_P(a) <-> sats(A, p, Cons(a, env))"
paulson@13505
   340
  shows 
paulson@13505
   341
  "[| nth(i,env) = x; nth(j,env) = y;
paulson@13505
   342
      i \<in> nat; j \<in> nat; env \<in> list(A)|]
paulson@13505
   343
   ==> is_Collect(**A, x, is_P, y) <-> sats(A, Collect_fm(i,p,j), env)"
paulson@13505
   344
by (simp add: sats_Collect_fm [OF is_P_iff_sats])
paulson@13505
   345
paulson@13505
   346
paulson@13505
   347
text{*The second argument of @{term is_P} gives it direct access to @{term x},
paulson@13505
   348
  which is essential for handling free variable references.*}
paulson@13505
   349
theorem Collect_reflection:
paulson@13505
   350
  assumes is_P_reflection:
paulson@13505
   351
    "!!h f g. REFLECTS[\<lambda>x. is_P(L, f(x), g(x)),
paulson@13505
   352
                     \<lambda>i x. is_P(**Lset(i), f(x), g(x))]"
paulson@13505
   353
  shows "REFLECTS[\<lambda>x. is_Collect(L, f(x), is_P(L,x), g(x)),
paulson@13505
   354
               \<lambda>i x. is_Collect(**Lset(i), f(x), is_P(**Lset(i), x), g(x))]"
paulson@13505
   355
apply (simp (no_asm_use) only: is_Collect_def setclass_simps)
paulson@13505
   356
apply (intro FOL_reflections is_P_reflection)
paulson@13505
   357
done
paulson@13505
   358
paulson@13505
   359
paulson@13505
   360
subsubsection{*The Operator @{term is_Replace}*}
paulson@13505
   361
paulson@13505
   362
text{*BEWARE!  The formula @{term is_P} has free variables 0, 1
paulson@13505
   363
 and not the usual 1, 0!  It is enclosed within two quantifiers.*}
paulson@13505
   364
paulson@13505
   365
(*  is_Replace :: "[i=>o,i,[i,i]=>o,i] => o"
paulson@13505
   366
    "is_Replace(M,A,P,z) == \<forall>u[M]. u \<in> z <-> (\<exists>x[M]. x\<in>A & P(x,u))" *)
paulson@13505
   367
paulson@13505
   368
constdefs Replace_fm :: "[i, i, i]=>i"
paulson@13505
   369
 "Replace_fm(A,is_P,z) == 
paulson@13505
   370
        Forall(Iff(Member(0,succ(z)),
paulson@13505
   371
                   Exists(And(Member(0,A#+2), is_P))))"
paulson@13505
   372
paulson@13505
   373
lemma is_Replace_type [TC]:
paulson@13505
   374
     "[| is_P \<in> formula; x \<in> nat; y \<in> nat |] 
paulson@13505
   375
      ==> Replace_fm(x,is_P,y) \<in> formula"
paulson@13505
   376
by (simp add: Replace_fm_def)
paulson@13505
   377
paulson@13505
   378
lemma sats_Replace_fm:
paulson@13505
   379
  assumes is_P_iff_sats: 
paulson@13505
   380
      "!!a b. [|a \<in> A; b \<in> A|] 
paulson@13505
   381
              ==> is_P(a,b) <-> sats(A, p, Cons(a,Cons(b,env)))"
paulson@13505
   382
  shows 
paulson@13505
   383
      "[|x \<in> nat; y \<in> nat; env \<in> list(A)|]
paulson@13505
   384
       ==> sats(A, Replace_fm(x,p,y), env) <->
paulson@13505
   385
           is_Replace(**A, nth(x,env), is_P, nth(y,env))"
paulson@13505
   386
by (simp add: Replace_fm_def is_Replace_def is_P_iff_sats [THEN iff_sym])
paulson@13505
   387
paulson@13505
   388
lemma Replace_iff_sats:
paulson@13505
   389
  assumes is_P_iff_sats: 
paulson@13505
   390
      "!!a b. [|a \<in> A; b \<in> A|] 
paulson@13505
   391
              ==> is_P(a,b) <-> sats(A, p, Cons(a,Cons(b,env)))"
paulson@13505
   392
  shows 
paulson@13505
   393
  "[| nth(i,env) = x; nth(j,env) = y;
paulson@13505
   394
      i \<in> nat; j \<in> nat; env \<in> list(A)|]
paulson@13505
   395
   ==> is_Replace(**A, x, is_P, y) <-> sats(A, Replace_fm(i,p,j), env)"
paulson@13505
   396
by (simp add: sats_Replace_fm [OF is_P_iff_sats])
paulson@13505
   397
paulson@13505
   398
paulson@13505
   399
text{*The second argument of @{term is_P} gives it direct access to @{term x},
paulson@13505
   400
  which is essential for handling free variable references.*}
paulson@13505
   401
theorem Replace_reflection:
paulson@13505
   402
  assumes is_P_reflection:
paulson@13505
   403
    "!!h f g. REFLECTS[\<lambda>x. is_P(L, f(x), g(x), h(x)),
paulson@13505
   404
                     \<lambda>i x. is_P(**Lset(i), f(x), g(x), h(x))]"
paulson@13505
   405
  shows "REFLECTS[\<lambda>x. is_Replace(L, f(x), is_P(L,x), g(x)),
paulson@13505
   406
               \<lambda>i x. is_Replace(**Lset(i), f(x), is_P(**Lset(i), x), g(x))]"
paulson@13505
   407
apply (simp (no_asm_use) only: is_Replace_def setclass_simps)
paulson@13505
   408
apply (intro FOL_reflections is_P_reflection)
paulson@13505
   409
done
paulson@13505
   410
paulson@13505
   411
paulson@13505
   412
paulson@13505
   413
subsubsection{*The Operator @{term is_DPow'}, Internalized*}
paulson@13505
   414
paulson@13505
   415
(*  "is_DPow'(M,A,Z) == 
paulson@13505
   416
       \<forall>X[M]. X \<in> Z <-> 
paulson@13505
   417
         subset(M,X,A) & 
paulson@13505
   418
           (\<exists>env[M]. \<exists>p[M]. mem_formula(M,p) & mem_list(M,A,env) &
paulson@13505
   419
                    is_Collect(M, A, is_DPow_body(M,A,env,p), X))" *)
paulson@13505
   420
paulson@13505
   421
constdefs DPow'_fm :: "[i,i]=>i"
paulson@13505
   422
    "DPow'_fm(A,Z) == 
paulson@13505
   423
      Forall(
paulson@13505
   424
       Iff(Member(0,succ(Z)),
paulson@13505
   425
        And(subset_fm(0,succ(A)),
paulson@13505
   426
         Exists(Exists(
paulson@13505
   427
          And(mem_formula_fm(0),
paulson@13505
   428
           And(mem_list_fm(A#+3,1),
paulson@13505
   429
            Collect_fm(A#+3, 
paulson@13505
   430
                       DPow_body_fm(A#+4, 2, 1, 0), 2))))))))"
paulson@13505
   431
paulson@13505
   432
lemma is_DPow'_type [TC]:
paulson@13505
   433
     "[| x \<in> nat; y \<in> nat |] ==> DPow'_fm(x,y) \<in> formula"
paulson@13505
   434
by (simp add: DPow'_fm_def)
paulson@13505
   435
paulson@13505
   436
lemma sats_DPow'_fm [simp]:
paulson@13505
   437
   "[| x \<in> nat; y \<in> nat; env \<in> list(A)|]
paulson@13505
   438
    ==> sats(A, DPow'_fm(x,y), env) <->
paulson@13505
   439
        is_DPow'(**A, nth(x,env), nth(y,env))"
paulson@13505
   440
by (simp add: DPow'_fm_def is_DPow'_def sats_subset_fm' sats_Collect_fm)
paulson@13505
   441
paulson@13505
   442
lemma DPow'_iff_sats:
paulson@13505
   443
      "[| nth(i,env) = x; nth(j,env) = y; 
paulson@13505
   444
          i \<in> nat; j \<in> nat; env \<in> list(A)|]
paulson@13505
   445
       ==> is_DPow'(**A, x, y) <-> sats(A, DPow'_fm(i,j), env)"
paulson@13505
   446
by (simp add: sats_DPow'_fm)
paulson@13505
   447
paulson@13505
   448
theorem DPow'_reflection:
paulson@13505
   449
     "REFLECTS[\<lambda>x. is_DPow'(L,f(x),g(x)),
paulson@13505
   450
               \<lambda>i x. is_DPow'(**Lset(i),f(x),g(x))]"
paulson@13505
   451
apply (simp only: is_DPow'_def setclass_simps)
paulson@13505
   452
apply (intro FOL_reflections function_reflections mem_formula_reflection
paulson@13505
   453
             mem_list_reflection Collect_reflection DPow_body_reflection)
paulson@13505
   454
done
paulson@13505
   455
paulson@13505
   456
(*????????????????move up*)
paulson@13505
   457
paulson@13505
   458
paulson@13505
   459
paulson@13505
   460
paulson@13505
   461
paulson@13505
   462
subsection{*Additional Constraints on the Class Model @{term M}*}
paulson@13505
   463
paulson@13505
   464
constdefs
paulson@13505
   465
  transrec_body :: "[i=>o,i,i,i,i] => o"
paulson@13505
   466
    "transrec_body(M,g,x) ==
paulson@13505
   467
      \<lambda>y z. \<exists>gy[M]. y \<in> x & fun_apply(M,g,y,gy) & is_DPow'(M,gy,z)"
paulson@13505
   468
paulson@13505
   469
lemma (in M_DPow) transrec_body_abs:
paulson@13505
   470
     "[|M(x); M(g); M(z)|]
paulson@13505
   471
    ==> transrec_body(M,g,x,y,z) <-> y \<in> x & z = DPow'(g`y)"
paulson@13505
   472
by (simp add: transrec_body_def DPow'_abs transM [of _ x])
paulson@13505
   473
paulson@13505
   474
locale M_Lset = M_DPow +
paulson@13505
   475
 assumes strong_rep:
paulson@13505
   476
   "[|M(x); M(g)|] ==> strong_replacement(M, \<lambda>y z. transrec_body(M,g,x,y,z))"
paulson@13505
   477
 and transrec_rep: 
paulson@13505
   478
    "M(i) ==> transrec_replacement(M, \<lambda>x f u. 
paulson@13505
   479
              \<exists>r[M]. is_Replace(M, x, transrec_body(M,f,x), r) & 
paulson@13505
   480
                     big_union(M, r, u), i)"
paulson@13505
   481
paulson@13505
   482
paulson@13505
   483
lemma (in M_Lset) strong_rep':
paulson@13505
   484
   "[|M(x); M(g)|]
paulson@13505
   485
    ==> strong_replacement(M, \<lambda>y z. y \<in> x & z = DPow'(g`y))"
paulson@13505
   486
by (insert strong_rep [of x g], simp add: transrec_body_abs)
paulson@13505
   487
paulson@13505
   488
lemma (in M_Lset) DPow_apply_closed:
paulson@13505
   489
   "[|M(f); M(x); y\<in>x|] ==> M(DPow'(f`y))"
paulson@13505
   490
by (blast intro: DPow'_closed dest: transM) 
paulson@13505
   491
paulson@13505
   492
lemma (in M_Lset) RepFun_DPow_apply_closed:
paulson@13505
   493
   "[|M(f); M(x)|] ==> M({DPow'(f`y). y\<in>x})"
paulson@13505
   494
by (blast intro: DPow_apply_closed RepFun_closed2 strong_rep') 
paulson@13505
   495
paulson@13505
   496
lemma (in M_Lset) RepFun_DPow_abs:
paulson@13505
   497
     "[|M(x); M(f); M(r) |]
paulson@13505
   498
      ==> is_Replace(M, x, \<lambda>y z. transrec_body(M,f,x,y,z), r) <->
paulson@13505
   499
          r =  {DPow'(f`y). y\<in>x}"
paulson@13505
   500
apply (simp add: transrec_body_abs RepFun_def) 
paulson@13505
   501
apply (rule iff_trans) 
paulson@13505
   502
apply (rule Replace_abs) 
paulson@13505
   503
apply (simp_all add: DPow_apply_closed strong_rep') 
paulson@13505
   504
done
paulson@13505
   505
paulson@13505
   506
lemma (in M_Lset) transrec_rep':
paulson@13505
   507
   "M(i) ==> transrec_replacement(M, \<lambda>x f u. u = (\<Union>y\<in>x. DPow'(f ` y)), i)"
paulson@13505
   508
apply (insert transrec_rep [of i]) 
paulson@13505
   509
apply (simp add: RepFun_DPow_apply_closed RepFun_DPow_abs 
paulson@13505
   510
       transrec_replacement_def) 
paulson@13505
   511
done
paulson@13505
   512
paulson@13505
   513
paulson@13505
   514
paulson@13505
   515
constdefs
paulson@13505
   516
paulson@13505
   517
  is_Lset :: "[i=>o, i, i] => o"
paulson@13505
   518
   "is_Lset(M,a,z) == is_transrec(M, %x f u. u = (\<Union>y\<in>x. DPow'(f`y)), a, z)"
paulson@13505
   519
paulson@13505
   520
lemma (in M_Lset) Lset_abs:
paulson@13505
   521
  "[|Ord(i);  M(i);  M(z)|] 
paulson@13505
   522
   ==> is_Lset(M,i,z) <-> z = Lset(i)"
paulson@13505
   523
apply (simp add: is_Lset_def Lset_eq_transrec_DPow') 
paulson@13505
   524
apply (rule transrec_abs)  
paulson@13505
   525
apply (simp_all add: transrec_rep' relativize2_def RepFun_DPow_apply_closed)
paulson@13505
   526
done
paulson@13505
   527
paulson@13505
   528
lemma (in M_Lset) Lset_closed:
paulson@13505
   529
  "[|Ord(i);  M(i)|] ==> M(Lset(i))"
paulson@13505
   530
apply (simp add: Lset_eq_transrec_DPow') 
paulson@13505
   531
apply (rule transrec_closed [OF transrec_rep']) 
paulson@13505
   532
apply (simp_all add: relativize2_def RepFun_DPow_apply_closed)
paulson@13505
   533
done
paulson@13505
   534
paulson@13505
   535
paulson@13505
   536
subsection{*Instantiating the Locale @{text M_Lset}*}
paulson@13505
   537
paulson@13505
   538
paulson@13505
   539
subsubsection{*The First Instance of Replacement*}
paulson@13505
   540
paulson@13505
   541
lemma strong_rep_Reflects:
paulson@13505
   542
 "REFLECTS [\<lambda>u. \<exists>v[L]. v \<in> B & (\<exists>gy[L].
paulson@13505
   543
                          v \<in> x & fun_apply(L,g,v,gy) & is_DPow'(L,gy,u)),
paulson@13505
   544
   \<lambda>i u. \<exists>v \<in> Lset(i). v \<in> B & (\<exists>gy \<in> Lset(i).
paulson@13505
   545
            v \<in> x & fun_apply(**Lset(i),g,v,gy) & is_DPow'(**Lset(i),gy,u))]"
paulson@13505
   546
by (intro FOL_reflections function_reflections DPow'_reflection)
paulson@13505
   547
paulson@13505
   548
lemma strong_rep:
paulson@13505
   549
   "[|L(x); L(g)|] ==> strong_replacement(L, \<lambda>y z. transrec_body(L,g,x,y,z))"
paulson@13505
   550
apply (unfold transrec_body_def)  
paulson@13505
   551
apply (rule strong_replacementI) 
paulson@13505
   552
apply (rename_tac B)  
paulson@13566
   553
apply (rule_tac u="{x,g,B}" in gen_separation [OF strong_rep_Reflects], simp)
paulson@13566
   554
apply (drule mem_Lset_imp_subset_Lset, clarsimp)
paulson@13505
   555
apply (rule DPow_LsetI)
paulson@13505
   556
apply (rule bex_iff_sats conj_iff_sats conj_iff_sats)+
paulson@13566
   557
apply (rule_tac env = "[v,u,x,g,B]" in mem_iff_sats) 
paulson@13505
   558
apply (rule sep_rules DPow'_iff_sats | simp)+
paulson@13505
   559
done
paulson@13505
   560
paulson@13505
   561
paulson@13505
   562
subsubsection{*The Second Instance of Replacement*}
paulson@13505
   563
paulson@13505
   564
lemma transrec_rep_Reflects:
paulson@13505
   565
 "REFLECTS [\<lambda>x. \<exists>v[L]. v \<in> B &
paulson@13505
   566
              (\<exists>y[L]. pair(L,v,y,x) &
paulson@13505
   567
             is_wfrec (L, \<lambda>x f u. \<exists>r[L].
paulson@13505
   568
                is_Replace (L, x, \<lambda>y z. 
paulson@13505
   569
                     \<exists>gy[L]. y \<in> x & fun_apply(L,f,y,gy) & 
paulson@13505
   570
                      is_DPow'(L,gy,z), r) & big_union(L,r,u), mr, v, y)),
paulson@13505
   571
    \<lambda>i x. \<exists>v \<in> Lset(i). v \<in> B &
paulson@13505
   572
              (\<exists>y \<in> Lset(i). pair(**Lset(i),v,y,x) &
paulson@13505
   573
             is_wfrec (**Lset(i), \<lambda>x f u. \<exists>r \<in> Lset(i).
paulson@13505
   574
                is_Replace (**Lset(i), x, \<lambda>y z. 
paulson@13505
   575
                     \<exists>gy \<in> Lset(i). y \<in> x & fun_apply(**Lset(i),f,y,gy) & 
paulson@13505
   576
                      is_DPow'(**Lset(i),gy,z), r) & 
paulson@13505
   577
                      big_union(**Lset(i),r,u), mr, v, y))]" 
paulson@13505
   578
apply (simp only: setclass_simps [symmetric])
paulson@13505
   579
  --{*Convert @{text "\<exists>y\<in>Lset(i)"} to @{text "\<exists>y[**Lset(i)]"} within the body
paulson@13505
   580
       of the @{term is_wfrec} application. *}
paulson@13505
   581
apply (intro FOL_reflections function_reflections 
paulson@13505
   582
          is_wfrec_reflection Replace_reflection DPow'_reflection) 
paulson@13505
   583
done
paulson@13505
   584
paulson@13505
   585
paulson@13505
   586
lemma transrec_rep: 
paulson@13505
   587
    "[|L(j)|]
paulson@13505
   588
    ==> transrec_replacement(L, \<lambda>x f u. 
paulson@13505
   589
              \<exists>r[L]. is_Replace(L, x, transrec_body(L,f,x), r) & 
paulson@13505
   590
                     big_union(L, r, u), j)"
paulson@13505
   591
apply (rule transrec_replacementI, assumption)
paulson@13566
   592
apply (unfold transrec_body_def)  
paulson@13505
   593
apply (rule strong_replacementI)
paulson@13505
   594
apply (rename_tac B)
paulson@13566
   595
apply (rule_tac u="{j,B,Memrel(eclose({j}))}" 
paulson@13566
   596
         in gen_separation [OF transrec_rep_Reflects], simp)
paulson@13566
   597
apply (drule mem_Lset_imp_subset_Lset, clarsimp)
paulson@13505
   598
apply (rule DPow_LsetI)
paulson@13505
   599
apply (rule bex_iff_sats conj_iff_sats)+
paulson@13566
   600
apply (rule_tac env = "[v,x,j,B,Memrel(eclose({j}))]" in mem_iff_sats)
paulson@13505
   601
apply (rule sep_rules is_wfrec_iff_sats Replace_iff_sats DPow'_iff_sats | 
paulson@13505
   602
       simp)+
paulson@13505
   603
done
paulson@13505
   604
paulson@13505
   605
paulson@13505
   606
subsubsection{*Actually Instantiating @{text M_Lset}*}
paulson@13505
   607
paulson@13505
   608
lemma M_Lset_axioms_L: "M_Lset_axioms(L)"
paulson@13505
   609
  apply (rule M_Lset_axioms.intro)
paulson@13505
   610
       apply (assumption | rule strong_rep transrec_rep)+
paulson@13505
   611
  done
paulson@13505
   612
paulson@13505
   613
theorem M_Lset_L: "PROP M_Lset(L)"
paulson@13505
   614
apply (rule M_Lset.intro) 
paulson@13505
   615
     apply (rule M_DPow.axioms [OF M_DPow_L])+
paulson@13505
   616
apply (rule M_Lset_axioms_L) 
paulson@13505
   617
done
paulson@13505
   618
paulson@13505
   619
text{*Finally: the point of the whole theory!*}
paulson@13505
   620
lemmas Lset_closed = M_Lset.Lset_closed [OF M_Lset_L]
paulson@13505
   621
   and Lset_abs = M_Lset.Lset_abs [OF M_Lset_L]
paulson@13505
   622
paulson@13505
   623
paulson@13505
   624
subsection{*The Notion of Constructible Set*}
paulson@13505
   625
paulson@13505
   626
paulson@13505
   627
constdefs
paulson@13505
   628
  constructible :: "[i=>o,i] => o"
paulson@13505
   629
    "constructible(M,x) ==
paulson@13505
   630
       \<exists>i[M]. \<exists>Li[M]. ordinal(M,i) & is_Lset(M,i,Li) & x \<in> Li"
paulson@13505
   631
paulson@13505
   632
paulson@13505
   633
theorem V_equals_L_in_L:
paulson@13505
   634
  "L(x) ==> constructible(L,x)"
paulson@13505
   635
apply (simp add: constructible_def Lset_abs Lset_closed) 
paulson@13505
   636
apply (simp add: L_def)
paulson@13505
   637
apply (blast intro: Ord_in_L) 
paulson@13505
   638
done
paulson@13505
   639
paulson@13505
   640
paulson@13503
   641
end