src/HOL/Datatype.thy
author haftmann
Fri, 10 Oct 2008 06:45:53 +0200
changeset 28562 4e74209f113e
parent 28524 644b62cf678f
child 28689 2947dc320178
permissions -rw-r--r--
`code func` now just `code`
berghofe@5181
     1
(*  Title:      HOL/Datatype.thy
berghofe@5181
     2
    ID:         $Id$
wenzelm@20819
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
wenzelm@11954
     4
    Author:     Stefan Berghofer and Markus Wenzel, TU Muenchen
wenzelm@20819
     5
wenzelm@20819
     6
Could <*> be generalized to a general summation (Sigma)?
berghofe@5181
     7
*)
berghofe@5181
     8
wenzelm@21669
     9
header {* Analogues of the Cartesian Product and Disjoint Sum for Datatypes *}
wenzelm@11954
    10
nipkow@15131
    11
theory Datatype
haftmann@27981
    12
imports Nat Relation
nipkow@15131
    13
begin
wenzelm@11954
    14
wenzelm@20819
    15
typedef (Node)
wenzelm@20819
    16
  ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
wenzelm@20819
    17
    --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
wenzelm@20819
    18
  by auto
wenzelm@20819
    19
wenzelm@20819
    20
text{*Datatypes will be represented by sets of type @{text node}*}
wenzelm@20819
    21
wenzelm@20819
    22
types 'a item        = "('a, unit) node set"
wenzelm@20819
    23
      ('a, 'b) dtree = "('a, 'b) node set"
wenzelm@20819
    24
wenzelm@20819
    25
consts
wenzelm@20819
    26
  Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
wenzelm@20819
    27
wenzelm@20819
    28
  Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
wenzelm@20819
    29
  ndepth    :: "('a, 'b) node => nat"
wenzelm@20819
    30
wenzelm@20819
    31
  Atom      :: "('a + nat) => ('a, 'b) dtree"
wenzelm@20819
    32
  Leaf      :: "'a => ('a, 'b) dtree"
wenzelm@20819
    33
  Numb      :: "nat => ('a, 'b) dtree"
wenzelm@20819
    34
  Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
wenzelm@20819
    35
  In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
wenzelm@20819
    36
  In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
wenzelm@20819
    37
  Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
wenzelm@20819
    38
wenzelm@20819
    39
  ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
wenzelm@20819
    40
wenzelm@20819
    41
  uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
wenzelm@20819
    42
  usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
wenzelm@20819
    43
wenzelm@20819
    44
  Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
wenzelm@20819
    45
  Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
wenzelm@20819
    46
wenzelm@20819
    47
  dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
wenzelm@20819
    48
                => (('a, 'b) dtree * ('a, 'b) dtree)set"
wenzelm@20819
    49
  dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
wenzelm@20819
    50
                => (('a, 'b) dtree * ('a, 'b) dtree)set"
wenzelm@20819
    51
wenzelm@20819
    52
wenzelm@20819
    53
defs
wenzelm@20819
    54
wenzelm@20819
    55
  Push_Node_def:  "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))"
wenzelm@20819
    56
wenzelm@20819
    57
  (*crude "lists" of nats -- needed for the constructions*)
wenzelm@20819
    58
  Push_def:   "Push == (%b h. nat_case b h)"
wenzelm@20819
    59
wenzelm@20819
    60
  (** operations on S-expressions -- sets of nodes **)
wenzelm@20819
    61
wenzelm@20819
    62
  (*S-expression constructors*)
wenzelm@20819
    63
  Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
wenzelm@20819
    64
  Scons_def:  "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)"
wenzelm@20819
    65
wenzelm@20819
    66
  (*Leaf nodes, with arbitrary or nat labels*)
wenzelm@20819
    67
  Leaf_def:   "Leaf == Atom o Inl"
wenzelm@20819
    68
  Numb_def:   "Numb == Atom o Inr"
wenzelm@20819
    69
wenzelm@20819
    70
  (*Injections of the "disjoint sum"*)
wenzelm@20819
    71
  In0_def:    "In0(M) == Scons (Numb 0) M"
wenzelm@20819
    72
  In1_def:    "In1(M) == Scons (Numb 1) M"
wenzelm@20819
    73
wenzelm@20819
    74
  (*Function spaces*)
wenzelm@20819
    75
  Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
wenzelm@20819
    76
wenzelm@20819
    77
  (*the set of nodes with depth less than k*)
wenzelm@20819
    78
  ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)"
wenzelm@20819
    79
  ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
wenzelm@20819
    80
wenzelm@20819
    81
  (*products and sums for the "universe"*)
wenzelm@20819
    82
  uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
wenzelm@20819
    83
  usum_def:   "usum A B == In0`A Un In1`B"
wenzelm@20819
    84
wenzelm@20819
    85
  (*the corresponding eliminators*)
wenzelm@20819
    86
  Split_def:  "Split c M == THE u. EX x y. M = Scons x y & u = c x y"
wenzelm@20819
    87
wenzelm@20819
    88
  Case_def:   "Case c d M == THE u.  (EX x . M = In0(x) & u = c(x))
wenzelm@20819
    89
                                  | (EX y . M = In1(y) & u = d(y))"
wenzelm@20819
    90
wenzelm@20819
    91
wenzelm@20819
    92
  (** equality for the "universe" **)
wenzelm@20819
    93
wenzelm@20819
    94
  dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
wenzelm@20819
    95
wenzelm@20819
    96
  dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
wenzelm@20819
    97
                          (UN (y,y'):s. {(In1(y),In1(y'))})"
wenzelm@20819
    98
wenzelm@20819
    99
wenzelm@20819
   100
wenzelm@20819
   101
lemma apfst_convE: 
wenzelm@20819
   102
    "[| q = apfst f p;  !!x y. [| p = (x,y);  q = (f(x),y) |] ==> R  
wenzelm@20819
   103
     |] ==> R"
wenzelm@20819
   104
by (force simp add: apfst_def)
wenzelm@20819
   105
wenzelm@20819
   106
(** Push -- an injection, analogous to Cons on lists **)
wenzelm@20819
   107
wenzelm@20819
   108
lemma Push_inject1: "Push i f = Push j g  ==> i=j"
wenzelm@20819
   109
apply (simp add: Push_def expand_fun_eq) 
wenzelm@20819
   110
apply (drule_tac x=0 in spec, simp) 
wenzelm@20819
   111
done
wenzelm@20819
   112
wenzelm@20819
   113
lemma Push_inject2: "Push i f = Push j g  ==> f=g"
wenzelm@20819
   114
apply (auto simp add: Push_def expand_fun_eq) 
wenzelm@20819
   115
apply (drule_tac x="Suc x" in spec, simp) 
wenzelm@20819
   116
done
wenzelm@20819
   117
wenzelm@20819
   118
lemma Push_inject:
wenzelm@20819
   119
    "[| Push i f =Push j g;  [| i=j;  f=g |] ==> P |] ==> P"
wenzelm@20819
   120
by (blast dest: Push_inject1 Push_inject2) 
wenzelm@20819
   121
wenzelm@20819
   122
lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P"
wenzelm@20819
   123
by (auto simp add: Push_def expand_fun_eq split: nat.split_asm)
wenzelm@20819
   124
wenzelm@20819
   125
lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard]
wenzelm@20819
   126
wenzelm@20819
   127
wenzelm@20819
   128
(*** Introduction rules for Node ***)
wenzelm@20819
   129
wenzelm@20819
   130
lemma Node_K0_I: "(%k. Inr 0, a) : Node"
wenzelm@20819
   131
by (simp add: Node_def)
wenzelm@20819
   132
wenzelm@20819
   133
lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node"
wenzelm@20819
   134
apply (simp add: Node_def Push_def) 
wenzelm@20819
   135
apply (fast intro!: apfst_conv nat_case_Suc [THEN trans])
wenzelm@20819
   136
done
wenzelm@20819
   137
wenzelm@20819
   138
wenzelm@20819
   139
subsection{*Freeness: Distinctness of Constructors*}
wenzelm@20819
   140
wenzelm@20819
   141
(** Scons vs Atom **)
wenzelm@20819
   142
wenzelm@20819
   143
lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)"
wenzelm@20819
   144
apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def)
wenzelm@20819
   145
apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] 
wenzelm@20819
   146
         dest!: Abs_Node_inj 
wenzelm@20819
   147
         elim!: apfst_convE sym [THEN Push_neq_K0])  
wenzelm@20819
   148
done
wenzelm@20819
   149
haftmann@21407
   150
lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym, standard]
haftmann@21407
   151
wenzelm@20819
   152
wenzelm@20819
   153
(*** Injectiveness ***)
wenzelm@20819
   154
wenzelm@20819
   155
(** Atomic nodes **)
wenzelm@20819
   156
wenzelm@20819
   157
lemma inj_Atom: "inj(Atom)"
wenzelm@20819
   158
apply (simp add: Atom_def)
wenzelm@20819
   159
apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj)
wenzelm@20819
   160
done
wenzelm@20819
   161
lemmas Atom_inject = inj_Atom [THEN injD, standard]
wenzelm@20819
   162
wenzelm@20819
   163
lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)"
wenzelm@20819
   164
by (blast dest!: Atom_inject)
wenzelm@20819
   165
wenzelm@20819
   166
lemma inj_Leaf: "inj(Leaf)"
wenzelm@20819
   167
apply (simp add: Leaf_def o_def)
wenzelm@20819
   168
apply (rule inj_onI)
wenzelm@20819
   169
apply (erule Atom_inject [THEN Inl_inject])
wenzelm@20819
   170
done
wenzelm@20819
   171
haftmann@21407
   172
lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD, standard]
wenzelm@20819
   173
wenzelm@20819
   174
lemma inj_Numb: "inj(Numb)"
wenzelm@20819
   175
apply (simp add: Numb_def o_def)
wenzelm@20819
   176
apply (rule inj_onI)
wenzelm@20819
   177
apply (erule Atom_inject [THEN Inr_inject])
wenzelm@20819
   178
done
wenzelm@20819
   179
haftmann@21407
   180
lemmas Numb_inject [dest!] = inj_Numb [THEN injD, standard]
wenzelm@20819
   181
wenzelm@20819
   182
wenzelm@20819
   183
(** Injectiveness of Push_Node **)
wenzelm@20819
   184
wenzelm@20819
   185
lemma Push_Node_inject:
wenzelm@20819
   186
    "[| Push_Node i m =Push_Node j n;  [| i=j;  m=n |] ==> P  
wenzelm@20819
   187
     |] ==> P"
wenzelm@20819
   188
apply (simp add: Push_Node_def)
wenzelm@20819
   189
apply (erule Abs_Node_inj [THEN apfst_convE])
wenzelm@20819
   190
apply (rule Rep_Node [THEN Node_Push_I])+
wenzelm@20819
   191
apply (erule sym [THEN apfst_convE]) 
wenzelm@20819
   192
apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject)
wenzelm@20819
   193
done
wenzelm@20819
   194
wenzelm@20819
   195
wenzelm@20819
   196
(** Injectiveness of Scons **)
wenzelm@20819
   197
wenzelm@20819
   198
lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'"
wenzelm@20819
   199
apply (simp add: Scons_def One_nat_def)
wenzelm@20819
   200
apply (blast dest!: Push_Node_inject)
wenzelm@20819
   201
done
wenzelm@20819
   202
wenzelm@20819
   203
lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'"
wenzelm@20819
   204
apply (simp add: Scons_def One_nat_def)
wenzelm@20819
   205
apply (blast dest!: Push_Node_inject)
wenzelm@20819
   206
done
wenzelm@20819
   207
wenzelm@20819
   208
lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'"
wenzelm@20819
   209
apply (erule equalityE)
wenzelm@20819
   210
apply (iprover intro: equalityI Scons_inject_lemma1)
wenzelm@20819
   211
done
wenzelm@20819
   212
wenzelm@20819
   213
lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'"
wenzelm@20819
   214
apply (erule equalityE)
wenzelm@20819
   215
apply (iprover intro: equalityI Scons_inject_lemma2)
wenzelm@20819
   216
done
wenzelm@20819
   217
wenzelm@20819
   218
lemma Scons_inject:
wenzelm@20819
   219
    "[| Scons M N = Scons M' N';  [| M=M';  N=N' |] ==> P |] ==> P"
wenzelm@20819
   220
by (iprover dest: Scons_inject1 Scons_inject2)
wenzelm@20819
   221
wenzelm@20819
   222
lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')"
wenzelm@20819
   223
by (blast elim!: Scons_inject)
wenzelm@20819
   224
wenzelm@20819
   225
(*** Distinctness involving Leaf and Numb ***)
wenzelm@20819
   226
wenzelm@20819
   227
(** Scons vs Leaf **)
wenzelm@20819
   228
wenzelm@20819
   229
lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)"
wenzelm@20819
   230
by (simp add: Leaf_def o_def Scons_not_Atom)
wenzelm@20819
   231
haftmann@21407
   232
lemmas Leaf_not_Scons  [iff] = Scons_not_Leaf [THEN not_sym, standard]
wenzelm@20819
   233
wenzelm@20819
   234
(** Scons vs Numb **)
wenzelm@20819
   235
wenzelm@20819
   236
lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)"
wenzelm@20819
   237
by (simp add: Numb_def o_def Scons_not_Atom)
wenzelm@20819
   238
haftmann@21407
   239
lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym, standard]
wenzelm@20819
   240
wenzelm@20819
   241
wenzelm@20819
   242
(** Leaf vs Numb **)
wenzelm@20819
   243
wenzelm@20819
   244
lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)"
wenzelm@20819
   245
by (simp add: Leaf_def Numb_def)
wenzelm@20819
   246
haftmann@21407
   247
lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym, standard]
wenzelm@20819
   248
wenzelm@20819
   249
wenzelm@20819
   250
(*** ndepth -- the depth of a node ***)
wenzelm@20819
   251
wenzelm@20819
   252
lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0"
wenzelm@20819
   253
by (simp add: ndepth_def  Node_K0_I [THEN Abs_Node_inverse] Least_equality)
wenzelm@20819
   254
wenzelm@20819
   255
lemma ndepth_Push_Node_aux:
wenzelm@20819
   256
     "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k"
wenzelm@20819
   257
apply (induct_tac "k", auto)
wenzelm@20819
   258
apply (erule Least_le)
wenzelm@20819
   259
done
wenzelm@20819
   260
wenzelm@20819
   261
lemma ndepth_Push_Node: 
wenzelm@20819
   262
    "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))"
wenzelm@20819
   263
apply (insert Rep_Node [of n, unfolded Node_def])
wenzelm@20819
   264
apply (auto simp add: ndepth_def Push_Node_def
wenzelm@20819
   265
                 Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse])
wenzelm@20819
   266
apply (rule Least_equality)
wenzelm@20819
   267
apply (auto simp add: Push_def ndepth_Push_Node_aux)
wenzelm@20819
   268
apply (erule LeastI)
wenzelm@20819
   269
done
wenzelm@20819
   270
wenzelm@20819
   271
wenzelm@20819
   272
(*** ntrunc applied to the various node sets ***)
wenzelm@20819
   273
wenzelm@20819
   274
lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
wenzelm@20819
   275
by (simp add: ntrunc_def)
wenzelm@20819
   276
wenzelm@20819
   277
lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)"
wenzelm@20819
   278
by (auto simp add: Atom_def ntrunc_def ndepth_K0)
wenzelm@20819
   279
wenzelm@20819
   280
lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)"
wenzelm@20819
   281
by (simp add: Leaf_def o_def ntrunc_Atom)
wenzelm@20819
   282
wenzelm@20819
   283
lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)"
wenzelm@20819
   284
by (simp add: Numb_def o_def ntrunc_Atom)
wenzelm@20819
   285
wenzelm@20819
   286
lemma ntrunc_Scons [simp]: 
wenzelm@20819
   287
    "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)"
wenzelm@20819
   288
by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) 
wenzelm@20819
   289
wenzelm@20819
   290
wenzelm@20819
   291
wenzelm@20819
   292
(** Injection nodes **)
wenzelm@20819
   293
wenzelm@20819
   294
lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
wenzelm@20819
   295
apply (simp add: In0_def)
wenzelm@20819
   296
apply (simp add: Scons_def)
wenzelm@20819
   297
done
wenzelm@20819
   298
wenzelm@20819
   299
lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)"
wenzelm@20819
   300
by (simp add: In0_def)
wenzelm@20819
   301
wenzelm@20819
   302
lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
wenzelm@20819
   303
apply (simp add: In1_def)
wenzelm@20819
   304
apply (simp add: Scons_def)
wenzelm@20819
   305
done
wenzelm@20819
   306
wenzelm@20819
   307
lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)"
wenzelm@20819
   308
by (simp add: In1_def)
wenzelm@20819
   309
wenzelm@20819
   310
wenzelm@20819
   311
subsection{*Set Constructions*}
wenzelm@20819
   312
wenzelm@20819
   313
wenzelm@20819
   314
(*** Cartesian Product ***)
wenzelm@20819
   315
wenzelm@20819
   316
lemma uprodI [intro!]: "[| M:A;  N:B |] ==> Scons M N : uprod A B"
wenzelm@20819
   317
by (simp add: uprod_def)
wenzelm@20819
   318
wenzelm@20819
   319
(*The general elimination rule*)
wenzelm@20819
   320
lemma uprodE [elim!]:
wenzelm@20819
   321
    "[| c : uprod A B;   
wenzelm@20819
   322
        !!x y. [| x:A;  y:B;  c = Scons x y |] ==> P  
wenzelm@20819
   323
     |] ==> P"
wenzelm@20819
   324
by (auto simp add: uprod_def) 
wenzelm@20819
   325
wenzelm@20819
   326
wenzelm@20819
   327
(*Elimination of a pair -- introduces no eigenvariables*)
wenzelm@20819
   328
lemma uprodE2: "[| Scons M N : uprod A B;  [| M:A;  N:B |] ==> P |] ==> P"
wenzelm@20819
   329
by (auto simp add: uprod_def)
wenzelm@20819
   330
wenzelm@20819
   331
wenzelm@20819
   332
(*** Disjoint Sum ***)
wenzelm@20819
   333
wenzelm@20819
   334
lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B"
wenzelm@20819
   335
by (simp add: usum_def)
wenzelm@20819
   336
wenzelm@20819
   337
lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B"
wenzelm@20819
   338
by (simp add: usum_def)
wenzelm@20819
   339
wenzelm@20819
   340
lemma usumE [elim!]: 
wenzelm@20819
   341
    "[| u : usum A B;   
wenzelm@20819
   342
        !!x. [| x:A;  u=In0(x) |] ==> P;  
wenzelm@20819
   343
        !!y. [| y:B;  u=In1(y) |] ==> P  
wenzelm@20819
   344
     |] ==> P"
wenzelm@20819
   345
by (auto simp add: usum_def)
wenzelm@20819
   346
wenzelm@20819
   347
wenzelm@20819
   348
(** Injection **)
wenzelm@20819
   349
wenzelm@20819
   350
lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)"
wenzelm@20819
   351
by (auto simp add: In0_def In1_def One_nat_def)
wenzelm@20819
   352
haftmann@21407
   353
lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym, standard]
wenzelm@20819
   354
wenzelm@20819
   355
lemma In0_inject: "In0(M) = In0(N) ==>  M=N"
wenzelm@20819
   356
by (simp add: In0_def)
wenzelm@20819
   357
wenzelm@20819
   358
lemma In1_inject: "In1(M) = In1(N) ==>  M=N"
wenzelm@20819
   359
by (simp add: In1_def)
wenzelm@20819
   360
wenzelm@20819
   361
lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)"
wenzelm@20819
   362
by (blast dest!: In0_inject)
wenzelm@20819
   363
wenzelm@20819
   364
lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)"
wenzelm@20819
   365
by (blast dest!: In1_inject)
wenzelm@20819
   366
wenzelm@20819
   367
lemma inj_In0: "inj In0"
wenzelm@20819
   368
by (blast intro!: inj_onI)
wenzelm@20819
   369
wenzelm@20819
   370
lemma inj_In1: "inj In1"
wenzelm@20819
   371
by (blast intro!: inj_onI)
wenzelm@20819
   372
wenzelm@20819
   373
wenzelm@20819
   374
(*** Function spaces ***)
wenzelm@20819
   375
wenzelm@20819
   376
lemma Lim_inject: "Lim f = Lim g ==> f = g"
wenzelm@20819
   377
apply (simp add: Lim_def)
wenzelm@20819
   378
apply (rule ext)
wenzelm@20819
   379
apply (blast elim!: Push_Node_inject)
wenzelm@20819
   380
done
wenzelm@20819
   381
wenzelm@20819
   382
wenzelm@20819
   383
(*** proving equality of sets and functions using ntrunc ***)
wenzelm@20819
   384
wenzelm@20819
   385
lemma ntrunc_subsetI: "ntrunc k M <= M"
wenzelm@20819
   386
by (auto simp add: ntrunc_def)
wenzelm@20819
   387
wenzelm@20819
   388
lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N"
wenzelm@20819
   389
by (auto simp add: ntrunc_def)
wenzelm@20819
   390
wenzelm@20819
   391
(*A generalized form of the take-lemma*)
wenzelm@20819
   392
lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N"
wenzelm@20819
   393
apply (rule equalityI)
wenzelm@20819
   394
apply (rule_tac [!] ntrunc_subsetD)
wenzelm@20819
   395
apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) 
wenzelm@20819
   396
done
wenzelm@20819
   397
wenzelm@20819
   398
lemma ntrunc_o_equality: 
wenzelm@20819
   399
    "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2"
wenzelm@20819
   400
apply (rule ntrunc_equality [THEN ext])
wenzelm@20819
   401
apply (simp add: expand_fun_eq) 
wenzelm@20819
   402
done
wenzelm@20819
   403
wenzelm@20819
   404
wenzelm@20819
   405
(*** Monotonicity ***)
wenzelm@20819
   406
wenzelm@20819
   407
lemma uprod_mono: "[| A<=A';  B<=B' |] ==> uprod A B <= uprod A' B'"
wenzelm@20819
   408
by (simp add: uprod_def, blast)
wenzelm@20819
   409
wenzelm@20819
   410
lemma usum_mono: "[| A<=A';  B<=B' |] ==> usum A B <= usum A' B'"
wenzelm@20819
   411
by (simp add: usum_def, blast)
wenzelm@20819
   412
wenzelm@20819
   413
lemma Scons_mono: "[| M<=M';  N<=N' |] ==> Scons M N <= Scons M' N'"
wenzelm@20819
   414
by (simp add: Scons_def, blast)
wenzelm@20819
   415
wenzelm@20819
   416
lemma In0_mono: "M<=N ==> In0(M) <= In0(N)"
wenzelm@20819
   417
by (simp add: In0_def subset_refl Scons_mono)
wenzelm@20819
   418
wenzelm@20819
   419
lemma In1_mono: "M<=N ==> In1(M) <= In1(N)"
wenzelm@20819
   420
by (simp add: In1_def subset_refl Scons_mono)
wenzelm@20819
   421
wenzelm@20819
   422
wenzelm@20819
   423
(*** Split and Case ***)
wenzelm@20819
   424
wenzelm@20819
   425
lemma Split [simp]: "Split c (Scons M N) = c M N"
wenzelm@20819
   426
by (simp add: Split_def)
wenzelm@20819
   427
wenzelm@20819
   428
lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)"
wenzelm@20819
   429
by (simp add: Case_def)
wenzelm@20819
   430
wenzelm@20819
   431
lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)"
wenzelm@20819
   432
by (simp add: Case_def)
wenzelm@20819
   433
wenzelm@20819
   434
wenzelm@20819
   435
wenzelm@20819
   436
(**** UN x. B(x) rules ****)
wenzelm@20819
   437
wenzelm@20819
   438
lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))"
wenzelm@20819
   439
by (simp add: ntrunc_def, blast)
wenzelm@20819
   440
wenzelm@20819
   441
lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)"
wenzelm@20819
   442
by (simp add: Scons_def, blast)
wenzelm@20819
   443
wenzelm@20819
   444
lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))"
wenzelm@20819
   445
by (simp add: Scons_def, blast)
wenzelm@20819
   446
wenzelm@20819
   447
lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))"
wenzelm@20819
   448
by (simp add: In0_def Scons_UN1_y)
wenzelm@20819
   449
wenzelm@20819
   450
lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))"
wenzelm@20819
   451
by (simp add: In1_def Scons_UN1_y)
wenzelm@20819
   452
wenzelm@20819
   453
wenzelm@20819
   454
(*** Equality for Cartesian Product ***)
wenzelm@20819
   455
wenzelm@20819
   456
lemma dprodI [intro!]: 
wenzelm@20819
   457
    "[| (M,M'):r;  (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s"
wenzelm@20819
   458
by (auto simp add: dprod_def)
wenzelm@20819
   459
wenzelm@20819
   460
(*The general elimination rule*)
wenzelm@20819
   461
lemma dprodE [elim!]: 
wenzelm@20819
   462
    "[| c : dprod r s;   
wenzelm@20819
   463
        !!x y x' y'. [| (x,x') : r;  (y,y') : s;  
wenzelm@20819
   464
                        c = (Scons x y, Scons x' y') |] ==> P  
wenzelm@20819
   465
     |] ==> P"
wenzelm@20819
   466
by (auto simp add: dprod_def)
wenzelm@20819
   467
wenzelm@20819
   468
wenzelm@20819
   469
(*** Equality for Disjoint Sum ***)
wenzelm@20819
   470
wenzelm@20819
   471
lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s"
wenzelm@20819
   472
by (auto simp add: dsum_def)
wenzelm@20819
   473
wenzelm@20819
   474
lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s"
wenzelm@20819
   475
by (auto simp add: dsum_def)
wenzelm@20819
   476
wenzelm@20819
   477
lemma dsumE [elim!]: 
wenzelm@20819
   478
    "[| w : dsum r s;   
wenzelm@20819
   479
        !!x x'. [| (x,x') : r;  w = (In0(x), In0(x')) |] ==> P;  
wenzelm@20819
   480
        !!y y'. [| (y,y') : s;  w = (In1(y), In1(y')) |] ==> P  
wenzelm@20819
   481
     |] ==> P"
wenzelm@20819
   482
by (auto simp add: dsum_def)
wenzelm@20819
   483
wenzelm@20819
   484
wenzelm@20819
   485
(*** Monotonicity ***)
wenzelm@20819
   486
wenzelm@20819
   487
lemma dprod_mono: "[| r<=r';  s<=s' |] ==> dprod r s <= dprod r' s'"
wenzelm@20819
   488
by blast
wenzelm@20819
   489
wenzelm@20819
   490
lemma dsum_mono: "[| r<=r';  s<=s' |] ==> dsum r s <= dsum r' s'"
wenzelm@20819
   491
by blast
wenzelm@20819
   492
wenzelm@20819
   493
wenzelm@20819
   494
(*** Bounding theorems ***)
wenzelm@20819
   495
wenzelm@20819
   496
lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)"
wenzelm@20819
   497
by blast
wenzelm@20819
   498
wenzelm@20819
   499
lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard]
wenzelm@20819
   500
wenzelm@20819
   501
(*Dependent version*)
wenzelm@20819
   502
lemma dprod_subset_Sigma2:
wenzelm@20819
   503
     "(dprod (Sigma A B) (Sigma C D)) <= 
wenzelm@20819
   504
      Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))"
wenzelm@20819
   505
by auto
wenzelm@20819
   506
wenzelm@20819
   507
lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)"
wenzelm@20819
   508
by blast
wenzelm@20819
   509
wenzelm@20819
   510
lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard]
wenzelm@20819
   511
wenzelm@20819
   512
wenzelm@20819
   513
(*** Domain ***)
wenzelm@20819
   514
wenzelm@20819
   515
lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)"
wenzelm@20819
   516
by auto
wenzelm@20819
   517
wenzelm@20819
   518
lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)"
wenzelm@20819
   519
by auto
wenzelm@20819
   520
wenzelm@20819
   521
haftmann@24162
   522
text {* hides popular names *}
haftmann@24162
   523
hide (open) type node item
wenzelm@20819
   524
hide (open) const Push Node Atom Leaf Numb Lim Split Case
wenzelm@20819
   525
wenzelm@20819
   526
wenzelm@20819
   527
section {* Datatypes *}
wenzelm@20819
   528
haftmann@24699
   529
subsection {* Representing sums *}
wenzelm@12918
   530
haftmann@27104
   531
rep_datatype (sum) Inl Inr
haftmann@27104
   532
proof -
haftmann@27104
   533
  fix P
haftmann@27104
   534
  fix s :: "'a + 'b"
haftmann@27104
   535
  assume x: "\<And>x\<Colon>'a. P (Inl x)" and y: "\<And>y\<Colon>'b. P (Inr y)"
haftmann@27104
   536
  then show "P s" by (auto intro: sumE [of s])
haftmann@27104
   537
qed simp_all
haftmann@24194
   538
nipkow@22230
   539
lemma sum_case_KK[simp]: "sum_case (%x. a) (%x. a) = (%x. a)"
nipkow@22230
   540
  by (rule ext) (simp split: sum.split)
nipkow@22230
   541
wenzelm@12918
   542
lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)"
wenzelm@12918
   543
  apply (rule_tac s = s in sumE)
wenzelm@12918
   544
   apply (erule ssubst)
wenzelm@20798
   545
   apply (rule sum.cases(1))
wenzelm@12918
   546
  apply (erule ssubst)
wenzelm@20798
   547
  apply (rule sum.cases(2))
wenzelm@12918
   548
  done
wenzelm@12918
   549
wenzelm@12918
   550
lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t"
wenzelm@12918
   551
  -- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
wenzelm@20798
   552
  by simp
wenzelm@12918
   553
wenzelm@12918
   554
lemma sum_case_inject:
wenzelm@12918
   555
  "sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P"
wenzelm@12918
   556
proof -
wenzelm@12918
   557
  assume a: "sum_case f1 f2 = sum_case g1 g2"
wenzelm@12918
   558
  assume r: "f1 = g1 ==> f2 = g2 ==> P"
wenzelm@12918
   559
  show P
wenzelm@12918
   560
    apply (rule r)
wenzelm@12918
   561
     apply (rule ext)
paulson@14208
   562
     apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp)
wenzelm@12918
   563
    apply (rule ext)
paulson@14208
   564
    apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp)
wenzelm@12918
   565
    done
wenzelm@12918
   566
qed
wenzelm@12918
   567
berghofe@13635
   568
constdefs
berghofe@13635
   569
  Suml :: "('a => 'c) => 'a + 'b => 'c"
haftmann@28524
   570
  "Suml == (%f. sum_case f undefined)"
berghofe@13635
   571
berghofe@13635
   572
  Sumr :: "('b => 'c) => 'a + 'b => 'c"
haftmann@28524
   573
  "Sumr == sum_case undefined"
berghofe@13635
   574
berghofe@13635
   575
lemma Suml_inject: "Suml f = Suml g ==> f = g"
berghofe@13635
   576
  by (unfold Suml_def) (erule sum_case_inject)
berghofe@13635
   577
berghofe@13635
   578
lemma Sumr_inject: "Sumr f = Sumr g ==> f = g"
berghofe@13635
   579
  by (unfold Sumr_def) (erule sum_case_inject)
berghofe@13635
   580
wenzelm@20798
   581
hide (open) const Suml Sumr
berghofe@13635
   582
wenzelm@12918
   583
haftmann@24194
   584
subsection {* The option datatype *}
haftmann@24194
   585
haftmann@24194
   586
datatype 'a option = None | Some 'a
haftmann@24194
   587
haftmann@24194
   588
lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)"
haftmann@24194
   589
  by (induct x) auto
haftmann@24194
   590
haftmann@24194
   591
lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)"
haftmann@24194
   592
  by (induct x) auto
haftmann@24194
   593
haftmann@24194
   594
text{*Although it may appear that both of these equalities are helpful
haftmann@24194
   595
only when applied to assumptions, in practice it seems better to give
haftmann@24194
   596
them the uniform iff attribute. *}
haftmann@24194
   597
haftmann@24194
   598
lemma option_caseE:
haftmann@24194
   599
  assumes c: "(case x of None => P | Some y => Q y)"
haftmann@24194
   600
  obtains
haftmann@24194
   601
    (None) "x = None" and P
haftmann@24194
   602
  | (Some) y where "x = Some y" and "Q y"
haftmann@24194
   603
  using c by (cases x) simp_all
haftmann@24194
   604
haftmann@24728
   605
lemma insert_None_conv_UNIV: "insert None (range Some) = UNIV"
haftmann@24728
   606
  by (rule set_ext, case_tac x) auto
haftmann@24728
   607
haftmann@24194
   608
haftmann@24194
   609
subsubsection {* Operations *}
haftmann@24194
   610
haftmann@24194
   611
consts
haftmann@24194
   612
  the :: "'a option => 'a"
haftmann@24194
   613
primrec
haftmann@24194
   614
  "the (Some x) = x"
haftmann@24194
   615
haftmann@24194
   616
consts
haftmann@24194
   617
  o2s :: "'a option => 'a set"
haftmann@24194
   618
primrec
haftmann@24194
   619
  "o2s None = {}"
haftmann@24194
   620
  "o2s (Some x) = {x}"
haftmann@24194
   621
haftmann@24194
   622
lemma ospec [dest]: "(ALL x:o2s A. P x) ==> A = Some x ==> P x"
haftmann@24194
   623
  by simp
haftmann@24194
   624
wenzelm@26339
   625
declaration {* fn _ =>
wenzelm@26339
   626
  Classical.map_cs (fn cs => cs addSD2 ("ospec", thm "ospec"))
wenzelm@26339
   627
*}
haftmann@24194
   628
haftmann@24194
   629
lemma elem_o2s [iff]: "(x : o2s xo) = (xo = Some x)"
haftmann@24194
   630
  by (cases xo) auto
haftmann@24194
   631
haftmann@24194
   632
lemma o2s_empty_eq [simp]: "(o2s xo = {}) = (xo = None)"
haftmann@24194
   633
  by (cases xo) auto
haftmann@24194
   634
haftmann@25511
   635
definition
haftmann@25511
   636
  option_map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a option \<Rightarrow> 'b option"
haftmann@25511
   637
where
haftmann@28562
   638
  [code del]: "option_map = (%f y. case y of None => None | Some x => Some (f x))"
haftmann@24194
   639
haftmann@24194
   640
lemma option_map_None [simp, code]: "option_map f None = None"
haftmann@24194
   641
  by (simp add: option_map_def)
haftmann@24194
   642
haftmann@24194
   643
lemma option_map_Some [simp, code]: "option_map f (Some x) = Some (f x)"
haftmann@24194
   644
  by (simp add: option_map_def)
haftmann@24194
   645
haftmann@24194
   646
lemma option_map_is_None [iff]:
haftmann@24194
   647
    "(option_map f opt = None) = (opt = None)"
haftmann@24194
   648
  by (simp add: option_map_def split add: option.split)
haftmann@24194
   649
haftmann@24194
   650
lemma option_map_eq_Some [iff]:
haftmann@24194
   651
    "(option_map f xo = Some y) = (EX z. xo = Some z & f z = y)"
haftmann@24194
   652
  by (simp add: option_map_def split add: option.split)
haftmann@24194
   653
haftmann@24194
   654
lemma option_map_comp:
haftmann@24194
   655
    "option_map f (option_map g opt) = option_map (f o g) opt"
haftmann@24194
   656
  by (simp add: option_map_def split add: option.split)
haftmann@24194
   657
haftmann@24194
   658
lemma option_map_o_sum_case [simp]:
haftmann@24194
   659
    "option_map f o sum_case g h = sum_case (option_map f o g) (option_map f o h)"
haftmann@24194
   660
  by (rule ext) (simp split: sum.split)
haftmann@24194
   661
haftmann@24194
   662
haftmann@24194
   663
subsubsection {* Code generator setup *}
haftmann@24194
   664
haftmann@24194
   665
definition
haftmann@24194
   666
  is_none :: "'a option \<Rightarrow> bool" where
haftmann@24194
   667
  is_none_none [code post, symmetric, code inline]: "is_none x \<longleftrightarrow> x = None"
haftmann@24194
   668
haftmann@24194
   669
lemma is_none_code [code]:
haftmann@24194
   670
  shows "is_none None \<longleftrightarrow> True"
haftmann@24194
   671
    and "is_none (Some x) \<longleftrightarrow> False"
haftmann@24194
   672
  unfolding is_none_none [symmetric] by simp_all
haftmann@24194
   673
haftmann@24194
   674
hide (open) const is_none
haftmann@24194
   675
haftmann@24194
   676
code_type option
haftmann@24194
   677
  (SML "_ option")
haftmann@24194
   678
  (OCaml "_ option")
haftmann@24194
   679
  (Haskell "Maybe _")
haftmann@24194
   680
haftmann@24194
   681
code_const None and Some
haftmann@24194
   682
  (SML "NONE" and "SOME")
haftmann@24194
   683
  (OCaml "None" and "Some _")
haftmann@24194
   684
  (Haskell "Nothing" and "Just")
haftmann@24194
   685
haftmann@24194
   686
code_instance option :: eq
haftmann@24194
   687
  (Haskell -)
haftmann@24194
   688
haftmann@28346
   689
code_const "eq_class.eq \<Colon> 'a\<Colon>eq option \<Rightarrow> 'a option \<Rightarrow> bool"
haftmann@24194
   690
  (Haskell infixl 4 "==")
haftmann@24194
   691
haftmann@24194
   692
code_reserved SML
haftmann@24194
   693
  option NONE SOME
haftmann@24194
   694
haftmann@24194
   695
code_reserved OCaml
haftmann@24194
   696
  option None Some
haftmann@24194
   697
haftmann@24194
   698
code_modulename SML
haftmann@24194
   699
  Datatype Nat
haftmann@24194
   700
haftmann@24194
   701
code_modulename OCaml
haftmann@24194
   702
  Datatype Nat
haftmann@24194
   703
haftmann@24194
   704
code_modulename Haskell
haftmann@24194
   705
  Datatype Nat
haftmann@24194
   706
berghofe@5181
   707
end