doc-src/TutorialI/Sets/Functions.thy
author wenzelm
Sat, 08 May 2010 19:14:13 +0200
changeset 36754 403585a89772
parent 16417 9bc16273c2d4
child 40041 9e59b4c11039
permissions -rw-r--r--
unified/simplified Pretty.margin_default;
discontinued special Pretty.setmargin etc;
explicit margin argument for Pretty.string_of_margin etc.;
paulson@10341
     1
(* ID:         $Id$ *)
haftmann@16417
     2
theory Functions imports Main begin
paulson@10294
     3
wenzelm@36754
     4
ML "Pretty.margin_default := 64"
paulson@10294
     5
paulson@10294
     6
paulson@10294
     7
text{*
paulson@10294
     8
@{thm[display] id_def[no_vars]}
paulson@10294
     9
\rulename{id_def}
paulson@10294
    10
paulson@10294
    11
@{thm[display] o_def[no_vars]}
paulson@10294
    12
\rulename{o_def}
paulson@10294
    13
paulson@10294
    14
@{thm[display] o_assoc[no_vars]}
paulson@10294
    15
\rulename{o_assoc}
paulson@10294
    16
*}
paulson@10294
    17
paulson@10294
    18
text{*
paulson@10294
    19
@{thm[display] fun_upd_apply[no_vars]}
paulson@10294
    20
\rulename{fun_upd_apply}
paulson@10294
    21
paulson@10294
    22
@{thm[display] fun_upd_upd[no_vars]}
paulson@10294
    23
\rulename{fun_upd_upd}
paulson@10294
    24
*}
paulson@10294
    25
paulson@10294
    26
paulson@10294
    27
text{*
paulson@10294
    28
definitions of injective, surjective, bijective
paulson@10294
    29
paulson@10294
    30
@{thm[display] inj_on_def[no_vars]}
paulson@10294
    31
\rulename{inj_on_def}
paulson@10294
    32
paulson@10294
    33
@{thm[display] surj_def[no_vars]}
paulson@10294
    34
\rulename{surj_def}
paulson@10294
    35
paulson@10294
    36
@{thm[display] bij_def[no_vars]}
paulson@10294
    37
\rulename{bij_def}
paulson@10294
    38
*}
paulson@10294
    39
paulson@10294
    40
paulson@10294
    41
paulson@10294
    42
text{*
paulson@10294
    43
possibly interesting theorems about inv
paulson@10294
    44
*}
paulson@10294
    45
paulson@10294
    46
text{*
paulson@10294
    47
@{thm[display] inv_f_f[no_vars]}
paulson@10294
    48
\rulename{inv_f_f}
paulson@10294
    49
paulson@10294
    50
@{thm[display] inj_imp_surj_inv[no_vars]}
paulson@10294
    51
\rulename{inj_imp_surj_inv}
paulson@10294
    52
paulson@10294
    53
@{thm[display] surj_imp_inj_inv[no_vars]}
paulson@10294
    54
\rulename{surj_imp_inj_inv}
paulson@10294
    55
paulson@10294
    56
@{thm[display] surj_f_inv_f[no_vars]}
paulson@10294
    57
\rulename{surj_f_inv_f}
paulson@10294
    58
paulson@10294
    59
@{thm[display] bij_imp_bij_inv[no_vars]}
paulson@10294
    60
\rulename{bij_imp_bij_inv}
paulson@10294
    61
paulson@10294
    62
@{thm[display] inv_inv_eq[no_vars]}
paulson@10294
    63
\rulename{inv_inv_eq}
paulson@10294
    64
paulson@10294
    65
@{thm[display] o_inv_distrib[no_vars]}
paulson@10294
    66
\rulename{o_inv_distrib}
paulson@10294
    67
*}
paulson@10294
    68
paulson@10294
    69
paulson@10294
    70
paulson@10294
    71
text{*
paulson@10294
    72
small sample proof
paulson@10294
    73
paulson@10294
    74
@{thm[display] ext[no_vars]}
paulson@10294
    75
\rulename{ext}
paulson@10294
    76
paulson@10294
    77
@{thm[display] expand_fun_eq[no_vars]}
paulson@10294
    78
\rulename{expand_fun_eq}
paulson@10294
    79
*}
paulson@10294
    80
paulson@10294
    81
lemma "inj f \<Longrightarrow> (f o g = f o h) = (g = h)";
nipkow@10983
    82
  apply (simp add: expand_fun_eq inj_on_def)
paulson@10294
    83
  apply (auto)
paulson@10294
    84
  done
paulson@10294
    85
paulson@10294
    86
text{*
paulson@10294
    87
\begin{isabelle}
paulson@10294
    88
inj\ f\ \isasymLongrightarrow \ (f\ \isasymcirc \ g\ =\ f\ \isasymcirc \ h)\ =\ (g\ =\ h)\isanewline
paulson@10294
    89
\ 1.\ \isasymforall x\ y.\ f\ x\ =\ f\ y\ \isasymlongrightarrow \ x\ =\ y\ \isasymLongrightarrow \isanewline
paulson@10294
    90
\ \ \ \ (\isasymforall x.\ f\ (g\ x)\ =\ f\ (h\ x))\ =\ (\isasymforall x.\ g\ x\ =\ h\ x)
paulson@10294
    91
\end{isabelle}
paulson@10294
    92
*}
paulson@10294
    93
 
paulson@10294
    94
paulson@10294
    95
text{*image, inverse image*}
paulson@10294
    96
paulson@10294
    97
text{*
paulson@10294
    98
@{thm[display] image_def[no_vars]}
paulson@10294
    99
\rulename{image_def}
paulson@10294
   100
*}
paulson@10294
   101
paulson@10294
   102
text{*
paulson@10294
   103
@{thm[display] image_Un[no_vars]}
paulson@10294
   104
\rulename{image_Un}
paulson@10294
   105
*}
paulson@10294
   106
paulson@10294
   107
text{*
paulson@10294
   108
@{thm[display] image_compose[no_vars]}
paulson@10294
   109
\rulename{image_compose}
paulson@10294
   110
paulson@10294
   111
@{thm[display] image_Int[no_vars]}
paulson@10294
   112
\rulename{image_Int}
paulson@10294
   113
paulson@10294
   114
@{thm[display] bij_image_Compl_eq[no_vars]}
paulson@10294
   115
\rulename{bij_image_Compl_eq}
paulson@10294
   116
*}
paulson@10294
   117
paulson@10294
   118
paulson@10294
   119
text{*
paulson@10294
   120
illustrates Union as well as image
paulson@10294
   121
*}
paulson@10849
   122
nipkow@10839
   123
lemma "f`A \<union> g`A = (\<Union>x\<in>A. {f x, g x})"
paulson@10849
   124
by blast
paulson@10294
   125
nipkow@10839
   126
lemma "f ` {(x,y). P x y} = {f(x,y) | x y. P x y}"
paulson@10849
   127
by blast
paulson@10294
   128
paulson@10294
   129
text{*actually a macro!*}
paulson@10294
   130
nipkow@10839
   131
lemma "range f = f`UNIV"
paulson@10849
   132
by blast
paulson@10294
   133
paulson@10294
   134
paulson@10294
   135
text{*
paulson@10294
   136
inverse image
paulson@10294
   137
*}
paulson@10294
   138
paulson@10294
   139
text{*
paulson@10294
   140
@{thm[display] vimage_def[no_vars]}
paulson@10294
   141
\rulename{vimage_def}
paulson@10294
   142
paulson@10294
   143
@{thm[display] vimage_Compl[no_vars]}
paulson@10294
   144
\rulename{vimage_Compl}
paulson@10294
   145
*}
paulson@10294
   146
paulson@10294
   147
paulson@10294
   148
end