doc-src/IsarImplementation/Thy/document/Integration.tex
author wenzelm
Mon, 31 May 2010 21:06:57 +0200
changeset 37216 3165bc303f66
parent 35001 31f8d9eaceff
child 37306 2bde06a2a706
permissions -rw-r--r--
modernized some structure names, keeping a few legacy aliases;
wenzelm@30296
     1
%
wenzelm@30296
     2
\begin{isabellebody}%
wenzelm@30296
     3
\def\isabellecontext{Integration}%
wenzelm@30296
     4
%
wenzelm@30296
     5
\isadelimtheory
wenzelm@30296
     6
%
wenzelm@30296
     7
\endisadelimtheory
wenzelm@30296
     8
%
wenzelm@30296
     9
\isatagtheory
wenzelm@30296
    10
\isacommand{theory}\isamarkupfalse%
wenzelm@30296
    11
\ Integration\isanewline
wenzelm@30296
    12
\isakeyword{imports}\ Base\isanewline
wenzelm@30296
    13
\isakeyword{begin}%
wenzelm@30296
    14
\endisatagtheory
wenzelm@30296
    15
{\isafoldtheory}%
wenzelm@30296
    16
%
wenzelm@30296
    17
\isadelimtheory
wenzelm@30296
    18
%
wenzelm@30296
    19
\endisadelimtheory
wenzelm@30296
    20
%
wenzelm@30296
    21
\isamarkupchapter{System integration%
wenzelm@30296
    22
}
wenzelm@30296
    23
\isamarkuptrue%
wenzelm@30296
    24
%
wenzelm@30296
    25
\isamarkupsection{Isar toplevel \label{sec:isar-toplevel}%
wenzelm@30296
    26
}
wenzelm@30296
    27
\isamarkuptrue%
wenzelm@30296
    28
%
wenzelm@30296
    29
\begin{isamarkuptext}%
wenzelm@30296
    30
The Isar toplevel may be considered the centeral hub of the
wenzelm@30296
    31
  Isabelle/Isar system, where all key components and sub-systems are
wenzelm@30296
    32
  integrated into a single read-eval-print loop of Isar commands.  We
wenzelm@30296
    33
  shall even incorporate the existing {\ML} toplevel of the compiler
wenzelm@30296
    34
  and run-time system (cf.\ \secref{sec:ML-toplevel}).
wenzelm@30296
    35
wenzelm@30296
    36
  Isabelle/Isar departs from the original ``LCF system architecture''
wenzelm@30296
    37
  where {\ML} was really The Meta Language for defining theories and
wenzelm@30296
    38
  conducting proofs.  Instead, {\ML} now only serves as the
wenzelm@30296
    39
  implementation language for the system (and user extensions), while
wenzelm@30296
    40
  the specific Isar toplevel supports the concepts of theory and proof
wenzelm@30296
    41
  development natively.  This includes the graph structure of theories
wenzelm@30296
    42
  and the block structure of proofs, support for unlimited undo,
wenzelm@30296
    43
  facilities for tracing, debugging, timing, profiling etc.
wenzelm@30296
    44
wenzelm@30296
    45
  \medskip The toplevel maintains an implicit state, which is
wenzelm@30296
    46
  transformed by a sequence of transitions -- either interactively or
wenzelm@30296
    47
  in batch-mode.  In interactive mode, Isar state transitions are
wenzelm@30296
    48
  encapsulated as safe transactions, such that both failure and undo
wenzelm@30296
    49
  are handled conveniently without destroying the underlying draft
wenzelm@30296
    50
  theory (cf.~\secref{sec:context-theory}).  In batch mode,
wenzelm@30296
    51
  transitions operate in a linear (destructive) fashion, such that
wenzelm@30296
    52
  error conditions abort the present attempt to construct a theory or
wenzelm@30296
    53
  proof altogether.
wenzelm@30296
    54
wenzelm@30296
    55
  The toplevel state is a disjoint sum of empty \isa{toplevel}, or
wenzelm@30296
    56
  \isa{theory}, or \isa{proof}.  On entering the main Isar loop we
wenzelm@30296
    57
  start with an empty toplevel.  A theory is commenced by giving a
wenzelm@30296
    58
  \isa{{\isasymTHEORY}} header; within a theory we may issue theory
wenzelm@30296
    59
  commands such as \isa{{\isasymDEFINITION}}, or state a \isa{{\isasymTHEOREM}} to be proven.  Now we are within a proof state, with a
wenzelm@30296
    60
  rich collection of Isar proof commands for structured proof
wenzelm@30296
    61
  composition, or unstructured proof scripts.  When the proof is
wenzelm@30296
    62
  concluded we get back to the theory, which is then updated by
wenzelm@30296
    63
  storing the resulting fact.  Further theory declarations or theorem
wenzelm@30296
    64
  statements with proofs may follow, until we eventually conclude the
wenzelm@30296
    65
  theory development by issuing \isa{{\isasymEND}}.  The resulting theory
wenzelm@30296
    66
  is then stored within the theory database and we are back to the
wenzelm@30296
    67
  empty toplevel.
wenzelm@30296
    68
wenzelm@30296
    69
  In addition to these proper state transformations, there are also
wenzelm@30296
    70
  some diagnostic commands for peeking at the toplevel state without
wenzelm@30296
    71
  modifying it (e.g.\ \isakeyword{thm}, \isakeyword{term},
wenzelm@30296
    72
  \isakeyword{print-cases}).%
wenzelm@30296
    73
\end{isamarkuptext}%
wenzelm@30296
    74
\isamarkuptrue%
wenzelm@30296
    75
%
wenzelm@30296
    76
\isadelimmlref
wenzelm@30296
    77
%
wenzelm@30296
    78
\endisadelimmlref
wenzelm@30296
    79
%
wenzelm@30296
    80
\isatagmlref
wenzelm@30296
    81
%
wenzelm@30296
    82
\begin{isamarkuptext}%
wenzelm@30296
    83
\begin{mldecls}
wenzelm@30296
    84
  \indexdef{}{ML type}{Toplevel.state}\verb|type Toplevel.state| \\
wenzelm@30296
    85
  \indexdef{}{ML}{Toplevel.UNDEF}\verb|Toplevel.UNDEF: exn| \\
wenzelm@30296
    86
  \indexdef{}{ML}{Toplevel.is\_toplevel}\verb|Toplevel.is_toplevel: Toplevel.state -> bool| \\
wenzelm@30296
    87
  \indexdef{}{ML}{Toplevel.theory\_of}\verb|Toplevel.theory_of: Toplevel.state -> theory| \\
wenzelm@30296
    88
  \indexdef{}{ML}{Toplevel.proof\_of}\verb|Toplevel.proof_of: Toplevel.state -> Proof.state| \\
wenzelm@32836
    89
  \indexdef{}{ML}{Toplevel.debug}\verb|Toplevel.debug: bool Unsynchronized.ref| \\
wenzelm@32836
    90
  \indexdef{}{ML}{Toplevel.timing}\verb|Toplevel.timing: bool Unsynchronized.ref| \\
wenzelm@32836
    91
  \indexdef{}{ML}{Toplevel.profiling}\verb|Toplevel.profiling: int Unsynchronized.ref| \\
wenzelm@30296
    92
  \end{mldecls}
wenzelm@30296
    93
wenzelm@30296
    94
  \begin{description}
wenzelm@30296
    95
wenzelm@30296
    96
  \item \verb|Toplevel.state| represents Isar toplevel states,
wenzelm@30296
    97
  which are normally manipulated through the concept of toplevel
wenzelm@30296
    98
  transitions only (\secref{sec:toplevel-transition}).  Also note that
wenzelm@30296
    99
  a raw toplevel state is subject to the same linearity restrictions
wenzelm@30296
   100
  as a theory context (cf.~\secref{sec:context-theory}).
wenzelm@30296
   101
wenzelm@30296
   102
  \item \verb|Toplevel.UNDEF| is raised for undefined toplevel
wenzelm@30296
   103
  operations.  Many operations work only partially for certain cases,
wenzelm@30296
   104
  since \verb|Toplevel.state| is a sum type.
wenzelm@30296
   105
wenzelm@30296
   106
  \item \verb|Toplevel.is_toplevel|~\isa{state} checks for an empty
wenzelm@30296
   107
  toplevel state.
wenzelm@30296
   108
wenzelm@35001
   109
  \item \verb|Toplevel.theory_of|~\isa{state} selects the
wenzelm@35001
   110
  background theory of \isa{state}, raises \verb|Toplevel.UNDEF|
wenzelm@35001
   111
  for an empty toplevel state.
wenzelm@30296
   112
wenzelm@30296
   113
  \item \verb|Toplevel.proof_of|~\isa{state} selects the Isar proof
wenzelm@30296
   114
  state if available, otherwise raises \verb|Toplevel.UNDEF|.
wenzelm@30296
   115
wenzelm@32836
   116
  \item \verb|Toplevel.debug := true| makes the toplevel print further
wenzelm@30296
   117
  details about internal error conditions, exceptions being raised
wenzelm@30296
   118
  etc.
wenzelm@30296
   119
wenzelm@32836
   120
  \item \verb|Toplevel.timing := true| makes the toplevel print timing
wenzelm@30296
   121
  information for each Isar command being executed.
wenzelm@30296
   122
wenzelm@30296
   123
  \item \verb|Toplevel.profiling|~\verb|:=|~\isa{n} controls
wenzelm@30296
   124
  low-level profiling of the underlying {\ML} runtime system.  For
wenzelm@30296
   125
  Poly/ML, \isa{n\ {\isacharequal}\ {\isadigit{1}}} means time and \isa{n\ {\isacharequal}\ {\isadigit{2}}} space
wenzelm@30296
   126
  profiling.
wenzelm@30296
   127
wenzelm@30296
   128
  \end{description}%
wenzelm@30296
   129
\end{isamarkuptext}%
wenzelm@30296
   130
\isamarkuptrue%
wenzelm@30296
   131
%
wenzelm@30296
   132
\endisatagmlref
wenzelm@30296
   133
{\isafoldmlref}%
wenzelm@30296
   134
%
wenzelm@30296
   135
\isadelimmlref
wenzelm@30296
   136
%
wenzelm@30296
   137
\endisadelimmlref
wenzelm@30296
   138
%
wenzelm@30296
   139
\isamarkupsubsection{Toplevel transitions \label{sec:toplevel-transition}%
wenzelm@30296
   140
}
wenzelm@30296
   141
\isamarkuptrue%
wenzelm@30296
   142
%
wenzelm@30296
   143
\begin{isamarkuptext}%
wenzelm@30296
   144
An Isar toplevel transition consists of a partial function on the
wenzelm@30296
   145
  toplevel state, with additional information for diagnostics and
wenzelm@30296
   146
  error reporting: there are fields for command name, source position,
wenzelm@30296
   147
  optional source text, as well as flags for interactive-only commands
wenzelm@30296
   148
  (which issue a warning in batch-mode), printing of result state,
wenzelm@30296
   149
  etc.
wenzelm@30296
   150
wenzelm@30296
   151
  The operational part is represented as the sequential union of a
wenzelm@30296
   152
  list of partial functions, which are tried in turn until the first
wenzelm@30296
   153
  one succeeds.  This acts like an outer case-expression for various
wenzelm@35001
   154
  alternative state transitions.  For example, \isakeyword{qed} works
wenzelm@30296
   155
  differently for a local proofs vs.\ the global ending of the main
wenzelm@30296
   156
  proof.
wenzelm@30296
   157
wenzelm@30296
   158
  Toplevel transitions are composed via transition transformers.
wenzelm@30296
   159
  Internally, Isar commands are put together from an empty transition
wenzelm@35001
   160
  extended by name and source position.  It is then left to the
wenzelm@35001
   161
  individual command parser to turn the given concrete syntax into a
wenzelm@35001
   162
  suitable transition transformer that adjoins actual operations on a
wenzelm@35001
   163
  theory or proof state etc.%
wenzelm@30296
   164
\end{isamarkuptext}%
wenzelm@30296
   165
\isamarkuptrue%
wenzelm@30296
   166
%
wenzelm@30296
   167
\isadelimmlref
wenzelm@30296
   168
%
wenzelm@30296
   169
\endisadelimmlref
wenzelm@30296
   170
%
wenzelm@30296
   171
\isatagmlref
wenzelm@30296
   172
%
wenzelm@30296
   173
\begin{isamarkuptext}%
wenzelm@30296
   174
\begin{mldecls}
wenzelm@30296
   175
  \indexdef{}{ML}{Toplevel.print}\verb|Toplevel.print: Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   176
  \indexdef{}{ML}{Toplevel.no\_timing}\verb|Toplevel.no_timing: Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   177
  \indexdef{}{ML}{Toplevel.keep}\verb|Toplevel.keep: (Toplevel.state -> unit) ->|\isasep\isanewline%
wenzelm@30296
   178
\verb|  Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   179
  \indexdef{}{ML}{Toplevel.theory}\verb|Toplevel.theory: (theory -> theory) ->|\isasep\isanewline%
wenzelm@30296
   180
\verb|  Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   181
  \indexdef{}{ML}{Toplevel.theory\_to\_proof}\verb|Toplevel.theory_to_proof: (theory -> Proof.state) ->|\isasep\isanewline%
wenzelm@30296
   182
\verb|  Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   183
  \indexdef{}{ML}{Toplevel.proof}\verb|Toplevel.proof: (Proof.state -> Proof.state) ->|\isasep\isanewline%
wenzelm@30296
   184
\verb|  Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   185
  \indexdef{}{ML}{Toplevel.proofs}\verb|Toplevel.proofs: (Proof.state -> Proof.state Seq.seq) ->|\isasep\isanewline%
wenzelm@30296
   186
\verb|  Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   187
  \indexdef{}{ML}{Toplevel.end\_proof}\verb|Toplevel.end_proof: (bool -> Proof.state -> Proof.context) ->|\isasep\isanewline%
wenzelm@30296
   188
\verb|  Toplevel.transition -> Toplevel.transition| \\
wenzelm@30296
   189
  \end{mldecls}
wenzelm@30296
   190
wenzelm@30296
   191
  \begin{description}
wenzelm@30296
   192
wenzelm@30296
   193
  \item \verb|Toplevel.print|~\isa{tr} sets the print flag, which
wenzelm@30296
   194
  causes the toplevel loop to echo the result state (in interactive
wenzelm@30296
   195
  mode).
wenzelm@30296
   196
wenzelm@30296
   197
  \item \verb|Toplevel.no_timing|~\isa{tr} indicates that the
wenzelm@30296
   198
  transition should never show timing information, e.g.\ because it is
wenzelm@30296
   199
  a diagnostic command.
wenzelm@30296
   200
wenzelm@30296
   201
  \item \verb|Toplevel.keep|~\isa{tr} adjoins a diagnostic
wenzelm@30296
   202
  function.
wenzelm@30296
   203
wenzelm@30296
   204
  \item \verb|Toplevel.theory|~\isa{tr} adjoins a theory
wenzelm@30296
   205
  transformer.
wenzelm@30296
   206
wenzelm@30296
   207
  \item \verb|Toplevel.theory_to_proof|~\isa{tr} adjoins a global
wenzelm@30296
   208
  goal function, which turns a theory into a proof state.  The theory
wenzelm@30296
   209
  may be changed before entering the proof; the generic Isar goal
wenzelm@30296
   210
  setup includes an argument that specifies how to apply the proven
wenzelm@30296
   211
  result to the theory, when the proof is finished.
wenzelm@30296
   212
wenzelm@30296
   213
  \item \verb|Toplevel.proof|~\isa{tr} adjoins a deterministic
wenzelm@30296
   214
  proof command, with a singleton result.
wenzelm@30296
   215
wenzelm@30296
   216
  \item \verb|Toplevel.proofs|~\isa{tr} adjoins a general proof
wenzelm@30296
   217
  command, with zero or more result states (represented as a lazy
wenzelm@30296
   218
  list).
wenzelm@30296
   219
wenzelm@30296
   220
  \item \verb|Toplevel.end_proof|~\isa{tr} adjoins a concluding
wenzelm@30296
   221
  proof command, that returns the resulting theory, after storing the
wenzelm@30296
   222
  resulting facts in the context etc.
wenzelm@30296
   223
wenzelm@30296
   224
  \end{description}%
wenzelm@30296
   225
\end{isamarkuptext}%
wenzelm@30296
   226
\isamarkuptrue%
wenzelm@30296
   227
%
wenzelm@30296
   228
\endisatagmlref
wenzelm@30296
   229
{\isafoldmlref}%
wenzelm@30296
   230
%
wenzelm@30296
   231
\isadelimmlref
wenzelm@30296
   232
%
wenzelm@30296
   233
\endisadelimmlref
wenzelm@30296
   234
%
wenzelm@30296
   235
\isamarkupsubsection{Toplevel control%
wenzelm@30296
   236
}
wenzelm@30296
   237
\isamarkuptrue%
wenzelm@30296
   238
%
wenzelm@30296
   239
\begin{isamarkuptext}%
wenzelm@30296
   240
There are a few special control commands that modify the behavior
wenzelm@30296
   241
  the toplevel itself, and only make sense in interactive mode.  Under
wenzelm@30296
   242
  normal circumstances, the user encounters these only implicitly as
wenzelm@30296
   243
  part of the protocol between the Isabelle/Isar system and a
wenzelm@35001
   244
  user-interface such as Proof~General.
wenzelm@30296
   245
wenzelm@30296
   246
  \begin{description}
wenzelm@30296
   247
wenzelm@30296
   248
  \item \isacommand{undo} follows the three-level hierarchy of empty
wenzelm@30296
   249
  toplevel vs.\ theory vs.\ proof: undo within a proof reverts to the
wenzelm@30296
   250
  previous proof context, undo after a proof reverts to the theory
wenzelm@30296
   251
  before the initial goal statement, undo of a theory command reverts
wenzelm@30296
   252
  to the previous theory value, undo of a theory header discontinues
wenzelm@30296
   253
  the current theory development and removes it from the theory
wenzelm@30296
   254
  database (\secref{sec:theory-database}).
wenzelm@30296
   255
wenzelm@30296
   256
  \item \isacommand{kill} aborts the current level of development:
wenzelm@30296
   257
  kill in a proof context reverts to the theory before the initial
wenzelm@30296
   258
  goal statement, kill in a theory context aborts the current theory
wenzelm@30296
   259
  development, removing it from the database.
wenzelm@30296
   260
wenzelm@30296
   261
  \item \isacommand{exit} drops out of the Isar toplevel into the
wenzelm@30296
   262
  underlying {\ML} toplevel (\secref{sec:ML-toplevel}).  The Isar
wenzelm@30296
   263
  toplevel state is preserved and may be continued later.
wenzelm@30296
   264
wenzelm@30296
   265
  \item \isacommand{quit} terminates the Isabelle/Isar process without
wenzelm@30296
   266
  saving.
wenzelm@30296
   267
wenzelm@30296
   268
  \end{description}%
wenzelm@30296
   269
\end{isamarkuptext}%
wenzelm@30296
   270
\isamarkuptrue%
wenzelm@30296
   271
%
wenzelm@30296
   272
\isamarkupsection{ML toplevel \label{sec:ML-toplevel}%
wenzelm@30296
   273
}
wenzelm@30296
   274
\isamarkuptrue%
wenzelm@30296
   275
%
wenzelm@30296
   276
\begin{isamarkuptext}%
wenzelm@30296
   277
The {\ML} toplevel provides a read-compile-eval-print loop for {\ML}
wenzelm@30296
   278
  values, types, structures, and functors.  {\ML} declarations operate
wenzelm@30296
   279
  on the global system state, which consists of the compiler
wenzelm@30296
   280
  environment plus the values of {\ML} reference variables.  There is
wenzelm@30296
   281
  no clean way to undo {\ML} declarations, except for reverting to a
wenzelm@30296
   282
  previously saved state of the whole Isabelle process.  {\ML} input
wenzelm@30296
   283
  is either read interactively from a TTY, or from a string (usually
wenzelm@30296
   284
  within a theory text), or from a source file (usually loaded from a
wenzelm@30296
   285
  theory).
wenzelm@30296
   286
wenzelm@30296
   287
  Whenever the {\ML} toplevel is active, the current Isabelle theory
wenzelm@30296
   288
  context is passed as an internal reference variable.  Thus {\ML}
wenzelm@30296
   289
  code may access the theory context during compilation, it may even
wenzelm@30296
   290
  change the value of a theory being under construction --- while
wenzelm@30296
   291
  observing the usual linearity restrictions
wenzelm@30296
   292
  (cf.~\secref{sec:context-theory}).%
wenzelm@30296
   293
\end{isamarkuptext}%
wenzelm@30296
   294
\isamarkuptrue%
wenzelm@30296
   295
%
wenzelm@30296
   296
\isadelimmlref
wenzelm@30296
   297
%
wenzelm@30296
   298
\endisadelimmlref
wenzelm@30296
   299
%
wenzelm@30296
   300
\isatagmlref
wenzelm@30296
   301
%
wenzelm@30296
   302
\begin{isamarkuptext}%
wenzelm@30296
   303
\begin{mldecls}
wenzelm@32189
   304
  \indexdef{}{ML}{ML\_Context.the\_generic\_context}\verb|ML_Context.the_generic_context: unit -> Context.generic| \\
wenzelm@30296
   305
  \indexdef{}{ML}{Context.$>$$>$ }\verb|Context.>> : (Context.generic -> Context.generic) -> unit| \\
wenzelm@30296
   306
  \end{mldecls}
wenzelm@30296
   307
wenzelm@30296
   308
  \begin{description}
wenzelm@30296
   309
wenzelm@32189
   310
  \item \verb|ML_Context.the_generic_context ()| refers to the theory
wenzelm@32189
   311
  context of the {\ML} toplevel --- at compile time!  {\ML} code needs
wenzelm@32189
   312
  to take care to refer to \verb|ML_Context.the_generic_context ()|
wenzelm@32189
   313
  correctly.  Recall that evaluation of a function body is delayed
wenzelm@32189
   314
  until actual runtime.  Moreover, persistent {\ML} toplevel bindings
wenzelm@32189
   315
  to an unfinished theory should be avoided: code should either
wenzelm@32189
   316
  project out the desired information immediately, or produce an
wenzelm@32189
   317
  explicit \verb|theory_ref| (cf.\ \secref{sec:context-theory}).
wenzelm@30296
   318
wenzelm@30296
   319
  \item \verb|Context.>>|~\isa{f} applies context transformation
wenzelm@30296
   320
  \isa{f} to the implicit context of the {\ML} toplevel.
wenzelm@30296
   321
wenzelm@30296
   322
  \end{description}
wenzelm@30296
   323
wenzelm@30296
   324
  It is very important to note that the above functions are really
wenzelm@30296
   325
  restricted to the compile time, even though the {\ML} compiler is
wenzelm@30296
   326
  invoked at runtime!  The majority of {\ML} code uses explicit
wenzelm@30296
   327
  functional arguments of a theory or proof context instead.  Thus it
wenzelm@30296
   328
  may be invoked for an arbitrary context later on, without having to
wenzelm@30296
   329
  worry about any operational details.
wenzelm@30296
   330
wenzelm@30296
   331
  \bigskip
wenzelm@30296
   332
wenzelm@30296
   333
  \begin{mldecls}
wenzelm@30296
   334
  \indexdef{}{ML}{Isar.main}\verb|Isar.main: unit -> unit| \\
wenzelm@30296
   335
  \indexdef{}{ML}{Isar.loop}\verb|Isar.loop: unit -> unit| \\
wenzelm@30296
   336
  \indexdef{}{ML}{Isar.state}\verb|Isar.state: unit -> Toplevel.state| \\
wenzelm@30296
   337
  \indexdef{}{ML}{Isar.exn}\verb|Isar.exn: unit -> (exn * string) option| \\
wenzelm@30296
   338
  \indexdef{}{ML}{Isar.context}\verb|Isar.context: unit -> Proof.context| \\
wenzelm@33293
   339
  \indexdef{}{ML}{Isar.goal}\verb|Isar.goal: unit ->|\isasep\isanewline%
wenzelm@33293
   340
\verb|  {context: Proof.context, facts: thm list, goal: thm}| \\
wenzelm@30296
   341
  \end{mldecls}
wenzelm@30296
   342
wenzelm@30296
   343
  \begin{description}
wenzelm@30296
   344
wenzelm@30296
   345
  \item \verb|Isar.main ()| invokes the Isar toplevel from {\ML},
wenzelm@30296
   346
  initializing an empty toplevel state.
wenzelm@30296
   347
wenzelm@30296
   348
  \item \verb|Isar.loop ()| continues the Isar toplevel with the
wenzelm@30296
   349
  current state, after having dropped out of the Isar toplevel loop.
wenzelm@30296
   350
wenzelm@30296
   351
  \item \verb|Isar.state ()| and \verb|Isar.exn ()| get current
wenzelm@30296
   352
  toplevel state and error condition, respectively.  This only works
wenzelm@30296
   353
  after having dropped out of the Isar toplevel loop.
wenzelm@30296
   354
wenzelm@30296
   355
  \item \verb|Isar.context ()| produces the proof context from \verb|Isar.state ()|, analogous to \verb|Context.proof_of|
wenzelm@30296
   356
  (\secref{sec:generic-context}).
wenzelm@30296
   357
wenzelm@33293
   358
  \item \verb|Isar.goal ()| produces the full Isar goal state,
wenzelm@33293
   359
  consisting of proof context, facts that have been indicated for
wenzelm@33293
   360
  immediate use, and the tactical goal according to
wenzelm@30296
   361
  \secref{sec:tactical-goals}.
wenzelm@30296
   362
wenzelm@30296
   363
  \end{description}%
wenzelm@30296
   364
\end{isamarkuptext}%
wenzelm@30296
   365
\isamarkuptrue%
wenzelm@30296
   366
%
wenzelm@30296
   367
\endisatagmlref
wenzelm@30296
   368
{\isafoldmlref}%
wenzelm@30296
   369
%
wenzelm@30296
   370
\isadelimmlref
wenzelm@30296
   371
%
wenzelm@30296
   372
\endisadelimmlref
wenzelm@30296
   373
%
wenzelm@30296
   374
\isamarkupsection{Theory database \label{sec:theory-database}%
wenzelm@30296
   375
}
wenzelm@30296
   376
\isamarkuptrue%
wenzelm@30296
   377
%
wenzelm@30296
   378
\begin{isamarkuptext}%
wenzelm@30296
   379
The theory database maintains a collection of theories, together
wenzelm@30296
   380
  with some administrative information about their original sources,
wenzelm@30296
   381
  which are held in an external store (i.e.\ some directory within the
wenzelm@30296
   382
  regular file system).
wenzelm@30296
   383
wenzelm@30296
   384
  The theory database is organized as a directed acyclic graph;
wenzelm@30296
   385
  entries are referenced by theory name.  Although some additional
wenzelm@30296
   386
  interfaces allow to include a directory specification as well, this
wenzelm@30296
   387
  is only a hint to the underlying theory loader.  The internal theory
wenzelm@30296
   388
  name space is flat!
wenzelm@30296
   389
wenzelm@30296
   390
  Theory \isa{A} is associated with the main theory file \isa{A}\verb,.thy,, which needs to be accessible through the theory
wenzelm@30296
   391
  loader path.  Any number of additional {\ML} source files may be
wenzelm@30296
   392
  associated with each theory, by declaring these dependencies in the
wenzelm@30296
   393
  theory header as \isa{{\isasymUSES}}, and loading them consecutively
wenzelm@30296
   394
  within the theory context.  The system keeps track of incoming {\ML}
wenzelm@35001
   395
  sources and associates them with the current theory.
wenzelm@30296
   396
wenzelm@30296
   397
  The basic internal actions of the theory database are \isa{update}, \isa{outdate}, and \isa{remove}:
wenzelm@30296
   398
wenzelm@30296
   399
  \begin{itemize}
wenzelm@30296
   400
wenzelm@30296
   401
  \item \isa{update\ A} introduces a link of \isa{A} with a
wenzelm@30296
   402
  \isa{theory} value of the same name; it asserts that the theory
wenzelm@30296
   403
  sources are now consistent with that value;
wenzelm@30296
   404
wenzelm@30296
   405
  \item \isa{outdate\ A} invalidates the link of a theory database
wenzelm@30296
   406
  entry to its sources, but retains the present theory value;
wenzelm@30296
   407
wenzelm@30296
   408
  \item \isa{remove\ A} deletes entry \isa{A} from the theory
wenzelm@30296
   409
  database.
wenzelm@30296
   410
  
wenzelm@30296
   411
  \end{itemize}
wenzelm@30296
   412
wenzelm@30296
   413
  These actions are propagated to sub- or super-graphs of a theory
wenzelm@30296
   414
  entry as expected, in order to preserve global consistency of the
wenzelm@30296
   415
  state of all loaded theories with the sources of the external store.
wenzelm@30296
   416
  This implies certain causalities between actions: \isa{update}
wenzelm@30296
   417
  or \isa{outdate} of an entry will \isa{outdate} all
wenzelm@30296
   418
  descendants; \isa{remove} will \isa{remove} all descendants.
wenzelm@30296
   419
wenzelm@30296
   420
  \medskip There are separate user-level interfaces to operate on the
wenzelm@30296
   421
  theory database directly or indirectly.  The primitive actions then
wenzelm@30296
   422
  just happen automatically while working with the system.  In
wenzelm@30296
   423
  particular, processing a theory header \isa{{\isasymTHEORY}\ A\ {\isasymIMPORTS}\ B\isactrlsub {\isadigit{1}}\ {\isasymdots}\ B\isactrlsub n\ {\isasymBEGIN}} ensures that the
wenzelm@30296
   424
  sub-graph of the collective imports \isa{B\isactrlsub {\isadigit{1}}\ {\isasymdots}\ B\isactrlsub n}
wenzelm@30296
   425
  is up-to-date, too.  Earlier theories are reloaded as required, with
wenzelm@30296
   426
  \isa{update} actions proceeding in topological order according to
wenzelm@30296
   427
  theory dependencies.  There may be also a wave of implied \isa{outdate} actions for derived theory nodes until a stable situation
wenzelm@30296
   428
  is achieved eventually.%
wenzelm@30296
   429
\end{isamarkuptext}%
wenzelm@30296
   430
\isamarkuptrue%
wenzelm@30296
   431
%
wenzelm@30296
   432
\isadelimmlref
wenzelm@30296
   433
%
wenzelm@30296
   434
\endisadelimmlref
wenzelm@30296
   435
%
wenzelm@30296
   436
\isatagmlref
wenzelm@30296
   437
%
wenzelm@30296
   438
\begin{isamarkuptext}%
wenzelm@30296
   439
\begin{mldecls}
wenzelm@30296
   440
  \indexdef{}{ML}{theory}\verb|theory: string -> theory| \\
wenzelm@30296
   441
  \indexdef{}{ML}{use\_thy}\verb|use_thy: string -> unit| \\
wenzelm@30296
   442
  \indexdef{}{ML}{use\_thys}\verb|use_thys: string list -> unit| \\
wenzelm@37216
   443
  \indexdef{}{ML}{Thy\_Info.touch\_thy}\verb|Thy_Info.touch_thy: string -> unit| \\
wenzelm@37216
   444
  \indexdef{}{ML}{Thy\_Info.remove\_thy}\verb|Thy_Info.remove_thy: string -> unit| \\[1ex]
wenzelm@37216
   445
  \indexdef{}{ML}{Thy\_Info.begin\_theory}\verb|Thy_Info.begin_theory|\verb|: ... -> bool -> theory| \\
wenzelm@37216
   446
  \indexdef{}{ML}{Thy\_Info.end\_theory}\verb|Thy_Info.end_theory: theory -> unit| \\
wenzelm@37216
   447
  \indexdef{}{ML}{Thy\_Info.register\_theory}\verb|Thy_Info.register_theory: theory -> unit| \\[1ex]
wenzelm@30296
   448
  \verb|datatype action = Update |\verb,|,\verb| Outdate |\verb,|,\verb| Remove| \\
wenzelm@37216
   449
  \indexdef{}{ML}{Thy\_Info.add\_hook}\verb|Thy_Info.add_hook: (Thy_Info.action -> string -> unit) -> unit| \\
wenzelm@30296
   450
  \end{mldecls}
wenzelm@30296
   451
wenzelm@30296
   452
  \begin{description}
wenzelm@30296
   453
wenzelm@30296
   454
  \item \verb|theory|~\isa{A} retrieves the theory value presently
wenzelm@30296
   455
  associated with name \isa{A}.  Note that the result might be
wenzelm@30296
   456
  outdated.
wenzelm@30296
   457
wenzelm@30296
   458
  \item \verb|use_thy|~\isa{A} ensures that theory \isa{A} is fully
wenzelm@30296
   459
  up-to-date wrt.\ the external file store, reloading outdated
wenzelm@35001
   460
  ancestors as required.  In batch mode, the simultaneous \verb|use_thys| should be used exclusively.
wenzelm@30296
   461
wenzelm@30296
   462
  \item \verb|use_thys| is similar to \verb|use_thy|, but handles
wenzelm@30296
   463
  several theories simultaneously.  Thus it acts like processing the
wenzelm@30296
   464
  import header of a theory, without performing the merge of the
wenzelm@35001
   465
  result.  By loading a whole sub-graph of theories like that, the
wenzelm@35001
   466
  intrinsic parallelism can be exploited by the system, to speedup
wenzelm@35001
   467
  loading.
wenzelm@30296
   468
wenzelm@37216
   469
  \item \verb|Thy_Info.touch_thy|~\isa{A} performs and \isa{outdate} action
wenzelm@30296
   470
  on theory \isa{A} and all descendants.
wenzelm@30296
   471
wenzelm@37216
   472
  \item \verb|Thy_Info.remove_thy|~\isa{A} deletes theory \isa{A} and all
wenzelm@30296
   473
  descendants from the theory database.
wenzelm@30296
   474
wenzelm@37216
   475
  \item \verb|Thy_Info.begin_theory| is the basic operation behind a
wenzelm@35001
   476
  \isa{{\isasymTHEORY}} header declaration.  This {\ML} function is
wenzelm@30296
   477
  normally not invoked directly.
wenzelm@30296
   478
wenzelm@37216
   479
  \item \verb|Thy_Info.end_theory| concludes the loading of a theory
wenzelm@30296
   480
  proper and stores the result in the theory database.
wenzelm@30296
   481
wenzelm@37216
   482
  \item \verb|Thy_Info.register_theory|~\isa{text\ thy} registers an
wenzelm@30296
   483
  existing theory value with the theory loader database.  There is no
wenzelm@30296
   484
  management of associated sources.
wenzelm@30296
   485
wenzelm@37216
   486
  \item \verb|Thy_Info.add_hook|~\isa{f} registers function \isa{f} as a hook for theory database actions.  The function will be
wenzelm@30296
   487
  invoked with the action and theory name being involved; thus derived
wenzelm@30296
   488
  actions may be performed in associated system components, e.g.\
wenzelm@30296
   489
  maintaining the state of an editor for the theory sources.
wenzelm@30296
   490
wenzelm@30296
   491
  The kind and order of actions occurring in practice depends both on
wenzelm@30296
   492
  user interactions and the internal process of resolving theory
wenzelm@30296
   493
  imports.  Hooks should not rely on a particular policy here!  Any
wenzelm@30296
   494
  exceptions raised by the hook are ignored.
wenzelm@30296
   495
wenzelm@30296
   496
  \end{description}%
wenzelm@30296
   497
\end{isamarkuptext}%
wenzelm@30296
   498
\isamarkuptrue%
wenzelm@30296
   499
%
wenzelm@30296
   500
\endisatagmlref
wenzelm@30296
   501
{\isafoldmlref}%
wenzelm@30296
   502
%
wenzelm@30296
   503
\isadelimmlref
wenzelm@30296
   504
%
wenzelm@30296
   505
\endisadelimmlref
wenzelm@30296
   506
%
wenzelm@30296
   507
\isadelimtheory
wenzelm@30296
   508
%
wenzelm@30296
   509
\endisadelimtheory
wenzelm@30296
   510
%
wenzelm@30296
   511
\isatagtheory
wenzelm@30296
   512
\isacommand{end}\isamarkupfalse%
wenzelm@30296
   513
%
wenzelm@30296
   514
\endisatagtheory
wenzelm@30296
   515
{\isafoldtheory}%
wenzelm@30296
   516
%
wenzelm@30296
   517
\isadelimtheory
wenzelm@30296
   518
%
wenzelm@30296
   519
\endisadelimtheory
wenzelm@30296
   520
\isanewline
wenzelm@30296
   521
\end{isabellebody}%
wenzelm@30296
   522
%%% Local Variables:
wenzelm@30296
   523
%%% mode: latex
wenzelm@30296
   524
%%% TeX-master: "root"
wenzelm@30296
   525
%%% End: