src/Tools/isac/Knowledge/Rational.thy
author Walther Neuper <walther.neuper@jku.at>
Tue, 03 Sep 2019 12:40:27 +0200
changeset 59603 30cd47104ad7
parent 59553 c917b7d6e9e2
child 59635 9fc1bb69813c
permissions -rw-r--r--
lucin: reorganise theories in ProgLang

note: this introduced: exception Size raised (line 169 of "./basis/LibrarySupport.sml")
neuper@52105
     1
(* rationals, fractions of multivariate polynomials over the real field
neuper@37906
     2
   author: isac team
neuper@52105
     3
   Copyright (c) isac team 2002, 2013
neuper@37906
     4
   Use is subject to license terms.
neuper@37906
     5
neuper@37906
     6
   depends on Poly (and not on Atools), because 
wneuper@59370
     7
   fractions with _normalised_ polynomials are canceled, added, etc.
neuper@37906
     8
*)
neuper@37906
     9
neuper@48884
    10
theory Rational 
wneuper@59553
    11
imports Poly GCD_Poly_ML
neuper@48884
    12
begin
neuper@37906
    13
wneuper@59472
    14
section \<open>Constants for evaluation by "Rule.Calc"\<close>
neuper@37906
    15
consts
neuper@37906
    16
jan@42300
    17
  is'_expanded    :: "real => bool" ("_ is'_expanded")     (*RL->Poly.thy*)
jan@42300
    18
  is'_ratpolyexp  :: "real => bool" ("_ is'_ratpolyexp") 
jan@42300
    19
  get_denominator :: "real => real"
jan@42338
    20
  get_numerator   :: "real => real"
neuper@37906
    21
wneuper@59472
    22
ML \<open>
neuper@52105
    23
(*.the expression contains + - * ^ / only ?.*)
neuper@52105
    24
fun is_ratpolyexp (Free _) = true
neuper@52105
    25
  | is_ratpolyexp (Const ("Groups.plus_class.plus",_) $ Free _ $ Free _) = true
neuper@52105
    26
  | is_ratpolyexp (Const ("Groups.minus_class.minus",_) $ Free _ $ Free _) = true
neuper@52105
    27
  | is_ratpolyexp (Const ("Groups.times_class.times",_) $ Free _ $ Free _) = true
walther@59603
    28
  | is_ratpolyexp (Const ("Prog_Expr.pow",_) $ Free _ $ Free _) = true
wneuper@59360
    29
  | is_ratpolyexp (Const ("Rings.divide_class.divide",_) $ Free _ $ Free _) = true
neuper@52105
    30
  | is_ratpolyexp (Const ("Groups.plus_class.plus",_) $ t1 $ t2) = 
neuper@52105
    31
               ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
neuper@52105
    32
  | is_ratpolyexp (Const ("Groups.minus_class.minus",_) $ t1 $ t2) = 
neuper@52105
    33
               ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
neuper@52105
    34
  | is_ratpolyexp (Const ("Groups.times_class.times",_) $ t1 $ t2) = 
neuper@52105
    35
               ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
walther@59603
    36
  | is_ratpolyexp (Const ("Prog_Expr.pow",_) $ t1 $ t2) = 
neuper@52105
    37
               ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
wneuper@59360
    38
  | is_ratpolyexp (Const ("Rings.divide_class.divide",_) $ t1 $ t2) = 
neuper@52105
    39
               ((is_ratpolyexp t1) andalso (is_ratpolyexp t2))
neuper@52105
    40
  | is_ratpolyexp _ = false;
neuper@37950
    41
neuper@52105
    42
(*("is_ratpolyexp", ("Rational.is'_ratpolyexp", eval_is_ratpolyexp ""))*)
neuper@52105
    43
fun eval_is_ratpolyexp (thmid:string) _ 
neuper@52105
    44
		       (t as (Const("Rational.is'_ratpolyexp", _) $ arg)) thy =
neuper@52105
    45
    if is_ratpolyexp arg
wneuper@59416
    46
    then SOME (TermC.mk_thmid thmid (Rule.term_to_string''' thy arg) "", 
wneuper@59390
    47
	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
wneuper@59416
    48
    else SOME (TermC.mk_thmid thmid (Rule.term_to_string''' thy arg) "", 
wneuper@59390
    49
	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
neuper@52105
    50
  | eval_is_ratpolyexp _ _ _ _ = NONE; 
neuper@52105
    51
neuper@52105
    52
(*("get_denominator", ("Rational.get_denominator", eval_get_denominator ""))*)
neuper@52105
    53
fun eval_get_denominator (thmid:string) _ 
neuper@52105
    54
		      (t as Const ("Rational.get_denominator", _) $
walther@59603
    55
              (Const ("Rings.divide_class.divide", _) $ _(*num*) $
neuper@52105
    56
                denom)) thy = 
wneuper@59416
    57
      SOME (TermC.mk_thmid thmid (Rule.term_to_string''' thy denom) "", 
wneuper@59390
    58
	            HOLogic.Trueprop $ (TermC.mk_equality (t, denom)))
neuper@52105
    59
  | eval_get_denominator _ _ _ _ = NONE; 
neuper@52105
    60
neuper@52105
    61
(*("get_numerator", ("Rational.get_numerator", eval_get_numerator ""))*)
neuper@52105
    62
fun eval_get_numerator (thmid:string) _ 
neuper@52105
    63
      (t as Const ("Rational.get_numerator", _) $
wneuper@59360
    64
          (Const ("Rings.divide_class.divide", _) $num
neuper@52105
    65
            $denom )) thy = 
wneuper@59416
    66
    SOME (TermC.mk_thmid thmid (Rule.term_to_string''' thy num) "", 
wneuper@59390
    67
	    HOLogic.Trueprop $ (TermC.mk_equality (t, num)))
neuper@52105
    68
  | eval_get_numerator _ _ _ _ = NONE; 
wneuper@59472
    69
\<close>
neuper@52105
    70
wneuper@59472
    71
section \<open>Theorems for rewriting\<close>
neuper@52105
    72
neuper@52105
    73
axiomatization (* naming due to Isabelle2002, but not contained in Isabelle2002; 
neuper@52105
    74
                  many thms are due to RL and can be removed with updating the equation solver;
neuper@52105
    75
                  TODO: replace by equivalent thms in recent Isabelle201x *) 
neuper@52105
    76
where
neuper@52105
    77
  mult_cross:      "[| b ~= 0; d ~= 0 |] ==> (a / b = c / d) = (a * d = b * c)" and
neuper@52105
    78
  mult_cross1:     "   b ~= 0            ==> (a / b = c    ) = (a     = b * c)" and
neuper@52105
    79
  mult_cross2:     "           d ~= 0    ==> (a     = c / d) = (a * d =     c)" and
neuper@37950
    80
                  
neuper@52105
    81
  add_minus:       "a + b - b = a"(*RL->Poly.thy*) and
neuper@52105
    82
  add_minus1:      "a - b + b = a"(*RL->Poly.thy*) and
neuper@37950
    83
                  
neuper@52105
    84
  rat_mult:        "a / b * (c / d) = a * c / (b * d)"(*?Isa02*)  and
neuper@52105
    85
  rat_mult2:       "a / b *  c      = a * c /  b     "(*?Isa02*) and
t@42211
    86
neuper@52105
    87
  rat_mult_poly_l: "c is_polyexp ==> c * (a / b) = c * a /  b" and
neuper@52105
    88
  rat_mult_poly_r: "c is_polyexp ==> (a / b) * c = a * c /  b" and
neuper@37906
    89
neuper@37906
    90
(*real_times_divide1_eq .. Isa02*) 
neuper@52105
    91
  real_times_divide_1_eq:  "-1 * (c / d) = -1 * c / d " and
neuper@52105
    92
  real_times_divide_num:   "a is_const ==> a * (c / d) = a * c / d " and
t@42211
    93
neuper@52105
    94
  real_mult_div_cancel2:   "k ~= 0 ==> m * k / (n * k) = m / n" and
neuper@37978
    95
(*real_mult_div_cancel1:   "k ~= 0 ==> k * m / (k * n) = m / n"..Isa02*)
neuper@37906
    96
			  
neuper@52105
    97
  real_divide_divide1:     "y ~= 0 ==> (u / v) / (y / z) = (u / v) * (z / y)" and
neuper@52105
    98
  real_divide_divide1_mg:  "y ~= 0 ==> (u / v) / (y / z) = (u * z) / (y * v)" and
neuper@37978
    99
(*real_divide_divide2_eq:  "x / y / z = x / (y * z)"..Isa02*)
neuper@37906
   100
			  
neuper@52105
   101
  rat_power:               "(a / b)^^^n = (a^^^n) / (b^^^n)" and
neuper@37978
   102
neuper@37978
   103
  rat_add:         "[| a is_const; b is_const; c is_const; d is_const |] ==> 
neuper@52105
   104
	           a / c + b / d = (a * d + b * c) / (c * d)" and
neuper@37978
   105
  rat_add_assoc:   "[| a is_const; b is_const; c is_const; d is_const |] ==> 
neuper@52105
   106
	           a / c +(b / d + e) = (a * d + b * c)/(d * c) + e" and
neuper@37978
   107
  rat_add1:        "[| a is_const; b is_const; c is_const |] ==> 
neuper@52105
   108
	           a / c + b / c = (a + b) / c" and
neuper@37978
   109
  rat_add1_assoc:   "[| a is_const; b is_const; c is_const |] ==> 
neuper@52105
   110
	           a / c + (b / c + e) = (a + b) / c + e" and
neuper@37978
   111
  rat_add2:        "[| a is_const; b is_const; c is_const |] ==> 
neuper@52105
   112
	           a / c + b = (a + b * c) / c" and
neuper@37978
   113
  rat_add2_assoc:  "[| a is_const; b is_const; c is_const |] ==> 
neuper@52105
   114
	           a / c + (b + e) = (a + b * c) / c + e" and
neuper@37978
   115
  rat_add3:        "[| a is_const; b is_const; c is_const |] ==> 
neuper@52105
   116
	           a + b / c = (a * c + b) / c" and
neuper@37978
   117
  rat_add3_assoc:   "[| a is_const; b is_const; c is_const |] ==> 
neuper@37950
   118
	           a + (b / c + e) = (a * c + b) / c + e"
neuper@37950
   119
wneuper@59472
   120
section \<open>Cancellation and addition of fractions\<close>
wneuper@59472
   121
subsection \<open>Conversion term <--> poly\<close>
wneuper@59472
   122
subsubsection \<open>Convert a term to the internal representation of a multivariate polynomial\<close>
wneuper@59472
   123
ML \<open>
wneuper@59532
   124
fun monom_of_term vs (c, es) (t as Const _) =
wneuper@59532
   125
    (c, list_update es (find_index (curry op = t) vs) 1)
wneuper@59532
   126
  | monom_of_term  vs (c, es) (t as Free (id, _)) =
wneuper@59390
   127
    if TermC.is_num' id 
wneuper@59390
   128
    then (id |> TermC.int_of_str_opt |> the |> curry op * c, es) (*several numerals in one monom*)
wneuper@59532
   129
    else (c, list_update es (find_index (curry op = t) vs) 1)
walther@59603
   130
  | monom_of_term  vs (c, es) (Const ("Prog_Expr.pow", _) $ (t as Free _) $ Free (e, _)) =
wneuper@59532
   131
    (c, list_update es (find_index (curry op = t) vs) (the (TermC.int_of_str_opt e)))
neuper@52087
   132
  | monom_of_term vs (c, es) (Const ("Groups.times_class.times", _) $ m1 $ m2) =
neuper@52087
   133
    let val (c', es') = monom_of_term vs (c, es) m1
neuper@52087
   134
    in monom_of_term vs (c', es') m2 end
wneuper@59531
   135
  | monom_of_term _ _ t = raise ERROR ("poly malformed 1 with " ^ Rule.term2str t)
neuper@52087
   136
wneuper@59531
   137
fun monoms_of_term vs (t as Const _) =
wneuper@59531
   138
    [monom_of_term  vs (1, replicate (length vs) 0) t]
wneuper@59531
   139
  | monoms_of_term vs (t as Free _) =
neuper@52087
   140
    [monom_of_term  vs (1, replicate (length vs) 0) t]
walther@59603
   141
  | monoms_of_term vs (t as Const ("Prog_Expr.pow", _) $ _ $  _) =
neuper@52087
   142
    [monom_of_term  vs (1, replicate (length vs) 0) t]
neuper@52087
   143
  | monoms_of_term vs (t as Const ("Groups.times_class.times", _) $ _ $  _) =
neuper@52087
   144
    [monom_of_term  vs (1, replicate (length vs) 0) t]
neuper@52087
   145
  | monoms_of_term vs (Const ("Groups.plus_class.plus", _) $ ms1 $ ms2) =
neuper@52087
   146
    (monoms_of_term vs ms1) @ (monoms_of_term vs ms2)
wneuper@59531
   147
  | monoms_of_term _ t = raise ERROR ("poly malformed 2 with " ^ Rule.term2str t)
neuper@52087
   148
neuper@52087
   149
(* convert a term to the internal representation of a multivariate polynomial;
neuper@52087
   150
  the conversion is quite liberal, see test --- fun poly_of_term ---:
neuper@52087
   151
* the order of variables and the parentheses within a monomial are arbitrary
neuper@52087
   152
* the coefficient may be somewhere
neuper@52087
   153
* he order and the parentheses within monomials are arbitrary
neuper@52087
   154
But the term must be completely expand + over * (laws of distributivity are not applicable).
neuper@52087
   155
neuper@52087
   156
The function requires the free variables as strings already given, 
neuper@52087
   157
because the gcd involves 2 polynomials (with the same length for their list of exponents).
neuper@52087
   158
*)
neuper@52087
   159
fun poly_of_term vs (t as Const ("Groups.plus_class.plus", _) $ _ $ _) =
neuper@52101
   160
    (SOME (t |> monoms_of_term vs |> order)
neuper@52087
   161
      handle ERROR _ => NONE)
neuper@52087
   162
  | poly_of_term vs t =
neuper@52101
   163
    (SOME [monom_of_term vs (1, replicate (length vs) 0) t]
neuper@52087
   164
      handle ERROR _ => NONE)
neuper@52087
   165
neuper@52087
   166
fun is_poly t =
wneuper@59532
   167
  let
wneuper@59532
   168
    val vs = TermC.vars_of t
neuper@52087
   169
  in 
neuper@52087
   170
    case poly_of_term vs t of SOME _ => true | NONE => false
neuper@52087
   171
  end
neuper@52105
   172
val is_expanded = is_poly   (* TODO: check names *)
neuper@52105
   173
val is_polynomial = is_poly (* TODO: check names *)
wneuper@59472
   174
\<close>
neuper@52087
   175
wneuper@59472
   176
subsubsection \<open>Convert internal representation of a multivariate polynomial to a term\<close>
wneuper@59472
   177
ML \<open>
neuper@52087
   178
fun term_of_es _ _ _ [] = [] (*assumes same length for vs and es*)
wneuper@59532
   179
  | term_of_es baseT expT (_ :: vs) (0 :: es) = [] @ term_of_es baseT expT vs es
wneuper@59532
   180
  | term_of_es baseT expT (v :: vs) (1 :: es) = v :: term_of_es baseT expT vs es
neuper@52087
   181
  | term_of_es baseT expT (v :: vs) (e :: es) =
walther@59603
   182
    Const ("Prog_Expr.pow", [baseT, expT] ---> baseT) $ v $  (Free (TermC.isastr_of_int e, expT))
wneuper@59532
   183
    :: term_of_es baseT expT vs es
wneuper@59532
   184
  | term_of_es _ _ _ _ = raise ERROR "term_of_es: length vs <> length es"
neuper@52087
   185
neuper@52087
   186
fun term_of_monom baseT expT vs ((c, es): monom) =
neuper@52087
   187
    let val es' = term_of_es baseT expT vs es
neuper@52087
   188
    in 
neuper@52087
   189
      if c = 1 
neuper@52087
   190
      then 
neuper@52087
   191
        if es' = [] (*if es = [0,0,0,...]*)
wneuper@59389
   192
        then Free (TermC.isastr_of_int c, baseT)
neuper@52087
   193
        else foldl (HOLogic.mk_binop "Groups.times_class.times") (hd es', tl es')
wneuper@59389
   194
      else foldl (HOLogic.mk_binop "Groups.times_class.times") (Free (TermC.isastr_of_int c, baseT), es') 
neuper@52087
   195
    end
neuper@52087
   196
neuper@52087
   197
fun term_of_poly baseT expT vs p =
wneuper@59190
   198
  let val monos = map (term_of_monom baseT expT vs) p
neuper@52087
   199
  in foldl (HOLogic.mk_binop "Groups.plus_class.plus") (hd monos, tl monos) end
wneuper@59472
   200
\<close>
neuper@52087
   201
wneuper@59472
   202
subsection \<open>Apply gcd_poly for cancelling and adding fractions as terms\<close>
wneuper@59472
   203
ML \<open>
neuper@52091
   204
fun mk_noteq_0 baseT t = 
neuper@52091
   205
  Const ("HOL.Not", HOLogic.boolT --> HOLogic.boolT) $ 
neuper@52091
   206
    (Const ("HOL.eq", [baseT, baseT] ---> HOLogic.boolT) $ t $ Free ("0", HOLogic.realT))
neuper@52091
   207
neuper@52094
   208
fun mk_asms baseT ts =
wneuper@59389
   209
  let val as' = filter_out TermC.is_num ts (* asm like "2 ~= 0" is needless *)
neuper@52094
   210
  in map (mk_noteq_0 baseT) as' end
wneuper@59472
   211
\<close>
neuper@52094
   212
wneuper@59472
   213
subsubsection \<open>Factor out gcd for cancellation\<close>
wneuper@59472
   214
ML \<open>
neuper@52091
   215
fun check_fraction t =
wneuper@59360
   216
  let val Const ("Rings.divide_class.divide", _) $ numerator $ denominator = t
neuper@52091
   217
  in SOME (numerator, denominator) end
neuper@52091
   218
  handle Bind => NONE
neuper@52091
   219
neuper@52091
   220
(* prepare a term for cancellation by factoring out the gcd
neuper@52091
   221
  assumes: is a fraction with outmost "/"*)
neuper@52091
   222
fun factout_p_ (thy: theory) t =
neuper@52091
   223
  let val opt = check_fraction t
neuper@52091
   224
  in
neuper@52091
   225
    case opt of 
neuper@52091
   226
      NONE => NONE
neuper@52091
   227
    | SOME (numerator, denominator) =>
wneuper@59532
   228
      let
wneuper@59532
   229
        val vs = TermC.vars_of t
neuper@52091
   230
        val baseT = type_of numerator
neuper@52091
   231
        val expT = HOLogic.realT
neuper@52091
   232
      in
neuper@52091
   233
        case (poly_of_term vs numerator, poly_of_term vs denominator) of
neuper@52091
   234
          (SOME a, SOME b) =>
neuper@52091
   235
            let
neuper@52091
   236
              val ((a', b'), c) = gcd_poly a b
neuper@52096
   237
              val es = replicate (length vs) 0 
neuper@52096
   238
            in
neuper@52096
   239
              if c = [(1, es)] orelse c = [(~1, es)]
neuper@52096
   240
              then NONE
neuper@52096
   241
              else 
neuper@52096
   242
                let
neuper@52096
   243
                  val b't = term_of_poly baseT expT vs b'
neuper@52096
   244
                  val ct = term_of_poly baseT expT vs c
neuper@52096
   245
                  val t' = 
wneuper@59360
   246
                    HOLogic.mk_binop "Rings.divide_class.divide" 
neuper@52096
   247
                      (HOLogic.mk_binop "Groups.times_class.times"
wneuper@59190
   248
                        (term_of_poly baseT expT vs a', ct),
neuper@52096
   249
                       HOLogic.mk_binop "Groups.times_class.times" (b't, ct))
neuper@52105
   250
                in SOME (t', mk_asms baseT [b't, ct]) end
neuper@52096
   251
            end
neuper@52091
   252
        | _ => NONE : (term * term list) option
neuper@52091
   253
      end
neuper@52091
   254
  end
wneuper@59472
   255
\<close>
neuper@52091
   256
wneuper@59472
   257
subsubsection \<open>Cancel a fraction\<close>
wneuper@59472
   258
ML \<open>
neuper@52096
   259
(* cancel a term by the gcd ("" denote terms with internal algebraic structure)
neuper@52096
   260
  cancel_p_ :: theory \<Rightarrow> term  \<Rightarrow> (term \<times> term list) option
neuper@52096
   261
  cancel_p_ thy "a / b" = SOME ("a' / b'", ["b' \<noteq> 0"])
neuper@52096
   262
  assumes: a is_polynomial  \<and>  b is_polynomial  \<and>  b \<noteq> 0
neuper@52096
   263
  yields
neuper@52096
   264
    SOME ("a' / b'", ["b' \<noteq> 0"]). gcd_poly a b \<noteq> 1  \<and>  gcd_poly a b \<noteq> -1  \<and>  
neuper@52096
   265
      a' * gcd_poly a b = a  \<and>  b' * gcd_poly a b = b
neuper@52096
   266
    \<or> NONE *)
neuper@52101
   267
fun cancel_p_ (_: theory) t =
neuper@52091
   268
  let val opt = check_fraction t
neuper@52091
   269
  in
neuper@52091
   270
    case opt of 
neuper@52091
   271
      NONE => NONE
neuper@52091
   272
    | SOME (numerator, denominator) =>
wneuper@59532
   273
      let
wneuper@59532
   274
        val vs = TermC.vars_of t
neuper@52091
   275
        val baseT = type_of numerator
neuper@52091
   276
        val expT = HOLogic.realT
neuper@52091
   277
      in
neuper@52091
   278
        case (poly_of_term vs numerator, poly_of_term vs denominator) of
neuper@52091
   279
          (SOME a, SOME b) =>
neuper@52091
   280
            let
neuper@52091
   281
              val ((a', b'), c) = gcd_poly a b
neuper@52096
   282
              val es = replicate (length vs) 0 
neuper@52096
   283
            in
neuper@52096
   284
              if c = [(1, es)] orelse c = [(~1, es)]
neuper@52096
   285
              then NONE
neuper@52096
   286
              else 
neuper@52096
   287
                let
neuper@52096
   288
                  val bt' = term_of_poly baseT expT vs b'
neuper@52096
   289
                  val ct = term_of_poly baseT expT vs c
neuper@52096
   290
                  val t' = 
wneuper@59360
   291
                    HOLogic.mk_binop "Rings.divide_class.divide" 
wneuper@59190
   292
                      (term_of_poly baseT expT vs a', bt')
neuper@52096
   293
                  val asm = mk_asms baseT [bt']
neuper@52096
   294
                in SOME (t', asm) end
neuper@52096
   295
            end
neuper@52091
   296
        | _ => NONE : (term * term list) option
neuper@52091
   297
      end
neuper@52091
   298
  end
wneuper@59472
   299
\<close>
neuper@52091
   300
wneuper@59472
   301
subsubsection \<open>Factor out to a common denominator for addition\<close>
wneuper@59472
   302
ML \<open>
neuper@52101
   303
(* addition of fractions allows (at most) one non-fraction (a monomial) *)
neuper@52101
   304
fun check_frac_sum 
neuper@52091
   305
    (Const ("Groups.plus_class.plus", _) $ 
wneuper@59360
   306
      (Const ("Rings.divide_class.divide", _) $ n1 $ d1) $
wneuper@59360
   307
      (Const ("Rings.divide_class.divide", _) $ n2 $ d2))
neuper@52091
   308
    = SOME ((n1, d1), (n2, d2))
neuper@52101
   309
  | check_frac_sum 
neuper@52091
   310
    (Const ("Groups.plus_class.plus", _) $ 
neuper@52091
   311
      nofrac $ 
wneuper@59360
   312
      (Const ("Rings.divide_class.divide", _) $ n2 $ d2))
neuper@52091
   313
    = SOME ((nofrac, Free ("1", HOLogic.realT)), (n2, d2))
neuper@52101
   314
  | check_frac_sum 
neuper@52091
   315
    (Const ("Groups.plus_class.plus", _) $ 
wneuper@59360
   316
      (Const ("Rings.divide_class.divide", _) $ n1 $ d1) $ 
neuper@52091
   317
      nofrac)
neuper@52091
   318
    = SOME ((n1, d1), (nofrac, Free ("1", HOLogic.realT)))
neuper@52101
   319
  | check_frac_sum _ = NONE  
neuper@52091
   320
neuper@52091
   321
(* prepare a term for addition by providing the least common denominator as a product
neuper@52091
   322
  assumes: is a term with outmost "+" and at least one outmost "/" in respective summands*)
neuper@52101
   323
fun common_nominator_p_ (_: theory) t =
neuper@52101
   324
  let val opt = check_frac_sum t
neuper@52091
   325
  in
neuper@52091
   326
    case opt of 
neuper@52091
   327
      NONE => NONE
neuper@52091
   328
    | SOME ((n1, d1), (n2, d2)) =>
wneuper@59532
   329
      let
wneuper@59532
   330
        val vs = TermC.vars_of t
neuper@52091
   331
      in
neuper@52091
   332
        case (poly_of_term vs d1, poly_of_term vs d2) of
neuper@52091
   333
          (SOME a, SOME b) =>
neuper@52091
   334
            let
neuper@52091
   335
              val ((a', b'), c) = gcd_poly a b
neuper@52101
   336
              val (baseT, expT) = (type_of n1, HOLogic.realT)
wneuper@59190
   337
              val [d1', d2', c'] = map (term_of_poly baseT expT vs) [a', b', c]
neuper@52091
   338
              (*----- minimum of parentheses & nice result, but breaks tests: -------------
neuper@52091
   339
              val denom = HOLogic.mk_binop "Groups.times_class.times" 
neuper@52101
   340
                (HOLogic.mk_binop "Groups.times_class.times" (d1', d2'), c') -------------*)
neuper@52101
   341
              val denom =
neuper@52101
   342
                if c = [(1, replicate (length vs) 0)]
neuper@52101
   343
                then HOLogic.mk_binop "Groups.times_class.times" (d1', d2')
neuper@52101
   344
                else
neuper@52101
   345
                  HOLogic.mk_binop "Groups.times_class.times" (c',
neuper@52101
   346
                  HOLogic.mk_binop "Groups.times_class.times" (d1', d2')) (*--------------*)
neuper@52091
   347
              val t' =
neuper@52091
   348
                HOLogic.mk_binop "Groups.plus_class.plus"
wneuper@59360
   349
                  (HOLogic.mk_binop "Rings.divide_class.divide"
neuper@52091
   350
                    (HOLogic.mk_binop "Groups.times_class.times" (n1, d2'), denom),
wneuper@59360
   351
                  HOLogic.mk_binop "Rings.divide_class.divide" 
neuper@52091
   352
                    (HOLogic.mk_binop "Groups.times_class.times" (n2, d1'), denom))
neuper@52094
   353
              val asm = mk_asms baseT [d1', d2', c']
neuper@52091
   354
            in SOME (t', asm) end
neuper@52091
   355
        | _ => NONE : (term * term list) option
neuper@52091
   356
      end
neuper@52091
   357
  end
neuper@52091
   358
wneuper@59472
   359
\<close>
neuper@52105
   360
wneuper@59472
   361
subsubsection \<open>Addition of at least one fraction within a sum\<close>
wneuper@59472
   362
ML \<open>
neuper@52091
   363
(* add fractions
neuper@52100
   364
  assumes: is a term with outmost "+" and at least one outmost "/" in respective summands
neuper@52100
   365
  NOTE: the case "(_ + _) + _" need not be considered due to iterated addition.*)
neuper@52105
   366
fun add_fraction_p_ (_: theory) t =
neuper@52101
   367
  case check_frac_sum t of 
neuper@52101
   368
    NONE => NONE
neuper@52101
   369
  | SOME ((n1, d1), (n2, d2)) =>
wneuper@59532
   370
    let
wneuper@59532
   371
      val vs = TermC.vars_of t
neuper@52101
   372
    in
neuper@52101
   373
      case (poly_of_term vs n1, poly_of_term vs d1, poly_of_term vs n2, poly_of_term vs d2) of
neuper@52101
   374
        (SOME _, SOME a, SOME _, SOME b) =>
neuper@52101
   375
          let
neuper@52101
   376
            val ((a', b'), c) = gcd_poly a b
neuper@52101
   377
            val (baseT, expT) = (type_of n1, HOLogic.realT)
neuper@52101
   378
            val nomin = term_of_poly baseT expT vs 
neuper@52101
   379
              (((the (poly_of_term vs n1)) %%*%% b') %%+%% ((the (poly_of_term vs n2)) %%*%% a')) 
neuper@52101
   380
            val denom = term_of_poly baseT expT vs ((c %%*%% a') %%*%% b')
wneuper@59360
   381
            val t' = HOLogic.mk_binop "Rings.divide_class.divide" (nomin, denom)
neuper@52101
   382
          in SOME (t', mk_asms baseT [denom]) end
neuper@52101
   383
      | _ => NONE : (term * term list) option
neuper@52101
   384
    end
wneuper@59472
   385
\<close>
neuper@52091
   386
wneuper@59472
   387
section \<open>Embed cancellation and addition into rewriting\<close>
wneuper@59472
   388
ML \<open>val thy = @{theory}\<close>
wneuper@59472
   389
subsection \<open>Rulesets and predicate for embedding\<close>
wneuper@59472
   390
ML \<open>
neuper@52105
   391
(* evaluates conditions in calculate_Rational *)
neuper@52105
   392
val calc_rat_erls =
s1210629013@55444
   393
  prep_rls'
wneuper@59416
   394
    (Rule.Rls {id = "calc_rat_erls", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   395
      erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
neuper@52105
   396
      rules = 
walther@59603
   397
        [Rule.Calc ("HOL.eq", Prog_Expr.eval_equal "#equal_"),
walther@59603
   398
        Rule.Calc ("Prog_Expr.is'_const", Prog_Expr.eval_const "#is_const_"),
wneuper@59416
   399
        Rule.Thm ("not_true", TermC.num_str @{thm not_true}),
wneuper@59416
   400
        Rule.Thm ("not_false", TermC.num_str @{thm not_false})], 
wneuper@59416
   401
      scr = Rule.EmptyScr});
neuper@37950
   402
neuper@52105
   403
(* simplifies expressions with numerals;
neuper@52105
   404
   does NOT rearrange the term by AC-rewriting; thus terms with variables 
neuper@52105
   405
   need to have constants to be commuted together respectively           *)
neuper@52105
   406
val calculate_Rational =
wneuper@59416
   407
  prep_rls' (Rule.merge_rls "calculate_Rational"
wneuper@59416
   408
    (Rule.Rls {id = "divide", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   409
      erls = calc_rat_erls, srls = Rule.Erls,
neuper@52105
   410
      calc = [], errpatts = [],
neuper@52105
   411
      rules = 
walther@59603
   412
        [Rule.Calc ("Rings.divide_class.divide", Prog_Expr.eval_cancel "#divide_e"),
neuper@37950
   413
wneuper@59416
   414
        Rule.Thm ("minus_divide_left", TermC.num_str (@{thm minus_divide_left} RS @{thm sym})),
neuper@52105
   415
          (*SYM - ?x / ?y = - (?x / ?y)  may come from subst*)
wneuper@59416
   416
        Rule.Thm ("rat_add", TermC.num_str @{thm rat_add}),
neuper@52105
   417
          (*"[| a is_const; b is_const; c is_const; d is_const |] ==> \
neuper@52105
   418
          \a / c + b / d = (a * d) / (c * d) + (b * c ) / (d * c)"*)
wneuper@59416
   419
        Rule.Thm ("rat_add1", TermC.num_str @{thm rat_add1}),
neuper@52105
   420
          (*"[| a is_const; b is_const; c is_const |] ==> a / c + b / c = (a + b) / c"*)
wneuper@59416
   421
        Rule.Thm ("rat_add2", TermC.num_str @{thm rat_add2}),
neuper@52105
   422
          (*"[| ?a is_const; ?b is_const; ?c is_const |] ==> ?a / ?c + ?b = (?a + ?b * ?c) / ?c"*)
wneuper@59416
   423
        Rule.Thm ("rat_add3", TermC.num_str @{thm rat_add3}),
neuper@52105
   424
          (*"[| a is_const; b is_const; c is_const |] ==> a + b / c = (a * c) / c + b / c"\
neuper@52105
   425
          .... is_const to be omitted here FIXME*)
neuper@52105
   426
        
wneuper@59416
   427
        Rule.Thm ("rat_mult", TermC.num_str @{thm rat_mult}), 
neuper@52105
   428
          (*a / b * (c / d) = a * c / (b * d)*)
wneuper@59416
   429
        Rule.Thm ("times_divide_eq_right", TermC.num_str @{thm times_divide_eq_right}),
neuper@52105
   430
          (*?x * (?y / ?z) = ?x * ?y / ?z*)
wneuper@59416
   431
        Rule.Thm ("times_divide_eq_left", TermC.num_str @{thm times_divide_eq_left}),
neuper@52105
   432
          (*?y / ?z * ?x = ?y * ?x / ?z*)
neuper@52105
   433
        
wneuper@59416
   434
        Rule.Thm ("real_divide_divide1", TermC.num_str @{thm real_divide_divide1}),
neuper@52105
   435
          (*"?y ~= 0 ==> ?u / ?v / (?y / ?z) = ?u / ?v * (?z / ?y)"*)
wneuper@59416
   436
        Rule.Thm ("divide_divide_eq_left", TermC.num_str @{thm divide_divide_eq_left}),
neuper@52105
   437
          (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
neuper@52105
   438
        
wneuper@59416
   439
        Rule.Thm ("rat_power", TermC.num_str @{thm rat_power}),
neuper@52105
   440
          (*"(?a / ?b) ^^^ ?n = ?a ^^^ ?n / ?b ^^^ ?n"*)
neuper@52105
   441
        
wneuper@59416
   442
        Rule.Thm ("mult_cross", TermC.num_str @{thm mult_cross}),
neuper@52105
   443
          (*"[| b ~= 0; d ~= 0 |] ==> (a / b = c / d) = (a * d = b * c)*)
wneuper@59416
   444
        Rule.Thm ("mult_cross1", TermC.num_str @{thm mult_cross1}),
neuper@52105
   445
          (*"   b ~= 0            ==> (a / b = c    ) = (a     = b * c)*)
wneuper@59416
   446
        Rule.Thm ("mult_cross2", TermC.num_str @{thm mult_cross2})
neuper@52105
   447
          (*"           d ~= 0    ==> (a     = c / d) = (a * d =     c)*)], 
wneuper@59416
   448
      scr = Rule.EmptyScr})
neuper@52105
   449
    calculate_Poly);
neuper@37950
   450
neuper@37950
   451
(*("is_expanded", ("Rational.is'_expanded", eval_is_expanded ""))*)
neuper@37950
   452
fun eval_is_expanded (thmid:string) _ 
neuper@37950
   453
		       (t as (Const("Rational.is'_expanded", _) $ arg)) thy = 
neuper@37950
   454
    if is_expanded arg
wneuper@59416
   455
    then SOME (TermC.mk_thmid thmid (Rule.term_to_string''' thy arg) "", 
wneuper@59390
   456
	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term True})))
wneuper@59416
   457
    else SOME (TermC.mk_thmid thmid (Rule.term_to_string''' thy arg) "", 
wneuper@59390
   458
	         HOLogic.Trueprop $ (TermC.mk_equality (t, @{term False})))
s1210629013@52159
   459
  | eval_is_expanded _ _ _ _ = NONE;
wneuper@59472
   460
\<close>
wneuper@59472
   461
setup \<open>KEStore_Elems.add_calcs
wneuper@59472
   462
  [("is_expanded", ("Rational.is'_expanded", eval_is_expanded ""))]\<close>
wneuper@59472
   463
ML \<open>
neuper@37950
   464
val rational_erls = 
wneuper@59416
   465
  Rule.merge_rls "rational_erls" calculate_Rational 
wneuper@59416
   466
    (Rule.append_rls "is_expanded" Atools_erls 
wneuper@59416
   467
      [Rule.Calc ("Rational.is'_expanded", eval_is_expanded "")]);
wneuper@59472
   468
\<close>
neuper@37950
   469
wneuper@59472
   470
subsection \<open>Embed cancellation into rewriting\<close>
wneuper@59472
   471
ML \<open>
walther@59603
   472
(**)local (* cancel_p *)
neuper@37950
   473
wneuper@59416
   474
val {rules = rules, rew_ord = (_, ro), ...} = Rule.rep_rls (assoc_rls' @{theory} "rev_rew_p");
neuper@37950
   475
neuper@52105
   476
fun init_state thy eval_rls ro t =
neuper@52105
   477
  let
neuper@52105
   478
    val SOME (t', _) = factout_p_ thy t;
neuper@52105
   479
    val SOME (t'', asm) = cancel_p_ thy t;
wneuper@59263
   480
    val der = Rtools.reverse_deriv thy eval_rls rules ro NONE t';
neuper@52105
   481
    val der = der @ 
wneuper@59416
   482
      [(Rule.Thm ("real_mult_div_cancel2", TermC.num_str @{thm real_mult_div_cancel2}), (t'', asm))]
wneuper@59263
   483
    val rs = (Rtools.distinct_Thm o (map #1)) der
wneuper@59263
   484
  	val rs = filter_out (Rtools.eq_Thms 
neuper@52105
   485
  	  ["sym_real_add_zero_left", "sym_real_mult_0", "sym_real_mult_1"]) rs
neuper@52105
   486
  in (t, t'', [rs(*one in order to ease locate_rule*)], der) end;
neuper@37950
   487
neuper@52105
   488
fun locate_rule thy eval_rls ro [rs] t r =
wneuper@59406
   489
    if member op = ((map (Celem.id_of_thm)) rs) (Celem.id_of_thm r)
neuper@52105
   490
    then 
wneuper@59406
   491
      let val ropt = Rewrite.rewrite_ thy ro eval_rls true (Celem.thm_of_thm r) t;
neuper@52105
   492
      in
neuper@52105
   493
        case ropt of SOME ta => [(r, ta)]
neuper@52105
   494
	      | NONE => (tracing 
wneuper@59416
   495
	          ("### locate_rule:  rewrite " ^ Celem.id_of_thm r ^ " " ^ Rule.term2str t ^ " = NONE"); []) 
neuper@52105
   496
			end
wneuper@59406
   497
    else (tracing ("### locate_rule:  " ^ Celem.id_of_thm r ^ " not mem rrls"); [])
neuper@52105
   498
  | locate_rule _ _ _ _ _ _ = error "locate_rule: doesnt match rev-sets in istate";
neuper@37950
   499
neuper@52105
   500
fun next_rule thy eval_rls ro [rs] t =
neuper@52105
   501
    let
wneuper@59263
   502
      val der = Rtools.make_deriv thy eval_rls rs ro NONE t;
neuper@52105
   503
    in case der of (_, r, _) :: _ => SOME r | _ => NONE end
neuper@52105
   504
  | next_rule _ _ _ _ _ = error ("next_rule: doesnt match rev-sets in istate");
neuper@37950
   505
wneuper@59416
   506
fun attach_form (_: Rule.rule list list) (_: term) (_: term) = 
wneuper@59416
   507
  [(*TODO*)]: ( Rule.rule * (term * term list)) list;
neuper@37950
   508
neuper@37950
   509
in
neuper@37950
   510
neuper@52105
   511
val cancel_p = 
wneuper@59416
   512
  Rule.Rrls {id = "cancel_p", prepat = [],
neuper@52105
   513
	rew_ord=("ord_make_polynomial", ord_make_polynomial false thy),
neuper@52105
   514
	erls = rational_erls, 
neuper@52105
   515
	calc = 
walther@59603
   516
	  [("PLUS", ("Groups.plus_class.plus", (**)eval_binop "#add_")),
walther@59603
   517
	  ("TIMES" , ("Groups.times_class.times", (**)eval_binop "#mult_")),
walther@59603
   518
	  ("DIVIDE", ("Rings.divide_class.divide", Prog_Expr.eval_cancel "#divide_e")),
walther@59603
   519
	  ("POWER", ("Prog_Expr.pow", (**)eval_binop "#power_"))],
neuper@52105
   520
    errpatts = [],
neuper@52105
   521
	scr =
wneuper@59416
   522
	  Rule.Rfuns {init_state  = init_state thy Atools_erls ro,
neuper@52105
   523
		normal_form = cancel_p_ thy, 
neuper@52105
   524
		locate_rule = locate_rule thy Atools_erls ro,
neuper@52105
   525
		next_rule   = next_rule thy Atools_erls ro,
neuper@52105
   526
		attach_form = attach_form}}
neuper@52105
   527
end; (* local cancel_p *)
wneuper@59472
   528
\<close>
neuper@37950
   529
wneuper@59472
   530
subsection \<open>Embed addition into rewriting\<close>
wneuper@59472
   531
ML \<open>
walther@59603
   532
(** )local ( * add_fractions_p *)
neuper@37950
   533
wneuper@59416
   534
(*val {rules = rules, rew_ord = (_, ro), ...} = Rule.rep_rls (assoc_rls "make_polynomial");*)
wneuper@59416
   535
val {rules, rew_ord=(_,ro),...} = Rule.rep_rls (assoc_rls' @{theory} "rev_rew_p");
neuper@37950
   536
neuper@52105
   537
fun init_state thy eval_rls ro t =
neuper@52105
   538
  let 
neuper@52105
   539
    val SOME (t',_) = common_nominator_p_ thy t;
neuper@52105
   540
    val SOME (t'', asm) = add_fraction_p_ thy t;
wneuper@59263
   541
    val der = Rtools.reverse_deriv thy eval_rls rules ro NONE t';
neuper@52105
   542
    val der = der @ 
wneuper@59416
   543
      [(Rule.Thm ("real_mult_div_cancel2", TermC.num_str @{thm real_mult_div_cancel2}), (t'',asm))]
wneuper@59263
   544
    val rs = (Rtools.distinct_Thm o (map #1)) der;
wneuper@59263
   545
    val rs = filter_out (Rtools.eq_Thms 
neuper@52105
   546
      ["sym_real_add_zero_left", "sym_real_mult_0", "sym_real_mult_1"]) rs;
neuper@52105
   547
  in (t, t'', [rs(*here only _ONE_*)], der) end;
neuper@37950
   548
walther@59603
   549
\<close> ML \<open>
neuper@52105
   550
fun locate_rule thy eval_rls ro [rs] t r =
wneuper@59406
   551
    if member op = ((map (Celem.id_of_thm)) rs) (Celem.id_of_thm r)
neuper@52105
   552
    then 
wneuper@59406
   553
      let val ropt = Rewrite.rewrite_ thy ro eval_rls true (Celem.thm_of_thm r) t;
neuper@52105
   554
      in 
neuper@52105
   555
        case ropt of
neuper@52105
   556
          SOME ta => [(r, ta)]
neuper@52105
   557
	      | NONE => 
wneuper@59416
   558
	        (tracing ("### locate_rule:  rewrite " ^ Celem.id_of_thm r ^ " " ^ Rule.term2str t ^ " = NONE");
neuper@52105
   559
	        []) end
wneuper@59406
   560
    else (tracing ("### locate_rule:  " ^ Celem.id_of_thm r ^ " not mem rrls"); [])
neuper@52105
   561
  | locate_rule _ _ _ _ _ _ = error "locate_rule: doesnt match rev-sets in istate";
neuper@37950
   562
neuper@37950
   563
fun next_rule thy eval_rls ro [rs] t =
wneuper@59263
   564
    let val der = Rtools.make_deriv thy eval_rls rs ro NONE t;
neuper@52105
   565
    in 
neuper@52105
   566
      case der of
neuper@52105
   567
	      (_,r,_)::_ => SOME r
neuper@52105
   568
	    | _ => NONE
neuper@37950
   569
    end
neuper@52105
   570
  | next_rule _ _ _ _ _ = error ("next_rule: doesnt match rev-sets in istate");
neuper@37950
   571
wneuper@59389
   572
val pat0 = TermC.parse_patt thy "?r/?s+?u/?v :: real";
wneuper@59389
   573
val pat1 = TermC.parse_patt thy "?r/?s+?u    :: real";
wneuper@59389
   574
val pat2 = TermC.parse_patt thy "?r   +?u/?v :: real";
neuper@48760
   575
val prepat = [([@{term True}], pat0),
neuper@48760
   576
	      ([@{term True}], pat1),
neuper@48760
   577
	      ([@{term True}], pat2)];
walther@59603
   578
(** )in( **)
neuper@37950
   579
neuper@52105
   580
val add_fractions_p =
wneuper@59416
   581
  Rule.Rrls {id = "add_fractions_p", prepat=prepat,
neuper@52105
   582
    rew_ord = ("ord_make_polynomial", ord_make_polynomial false thy),
neuper@52105
   583
    erls = rational_erls,
walther@59603
   584
    calc = [("PLUS", ("Groups.plus_class.plus", (**)eval_binop "#add_")),
walther@59603
   585
      ("TIMES", ("Groups.times_class.times", (**)eval_binop "#mult_")),
walther@59603
   586
      ("DIVIDE", ("Rings.divide_class.divide", Prog_Expr.eval_cancel "#divide_e")),
walther@59603
   587
      ("POWER", ("Prog_Expr.pow", (**)eval_binop "#power_"))],
neuper@52105
   588
    errpatts = [],
wneuper@59416
   589
    scr = Rule.Rfuns {init_state  = init_state thy Atools_erls ro,
neuper@52105
   590
      normal_form = add_fraction_p_ thy,
neuper@52105
   591
      locate_rule = locate_rule thy Atools_erls ro,
neuper@52105
   592
      next_rule   = next_rule thy Atools_erls ro,
neuper@52105
   593
      attach_form = attach_form}}
walther@59603
   594
(** )end; ( *local add_fractions_p *)
wneuper@59472
   595
\<close>
neuper@37950
   596
wneuper@59472
   597
subsection \<open>Cancelling and adding all occurrences in a term /////////////////////////////\<close>
wneuper@59472
   598
ML \<open>
neuper@52105
   599
(*copying cancel_p_rls + add her caused error in interface.sml*)
wneuper@59472
   600
\<close>
neuper@42451
   601
wneuper@59472
   602
section \<open>Rulesets for general simplification\<close>
wneuper@59472
   603
ML \<open>
neuper@37950
   604
(*erls for calculate_Rational; make local with FIXX@ME result:term *term list*)
s1210629013@55444
   605
val powers_erls = prep_rls'(
wneuper@59416
   606
  Rule.Rls {id = "powers_erls", preconds = [], rew_ord = ("dummy_ord",Rule.dummy_ord), 
wneuper@59416
   607
      erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
walther@59603
   608
      rules = [Rule.Calc ("Prog_Expr.is'_atom", Prog_Expr.eval_is_atom "#is_atom_"),
walther@59603
   609
	       Rule.Calc ("Prog_Expr.is'_even", Prog_Expr.eval_is_even "#is_even_"),
walther@59603
   610
	       Rule.Calc ("Orderings.ord_class.less", Prog_Expr.eval_equ "#less_"),
wneuper@59416
   611
	       Rule.Thm ("not_false", TermC.num_str @{thm not_false}),
wneuper@59416
   612
	       Rule.Thm ("not_true", TermC.num_str @{thm not_true}),
walther@59603
   613
	       Rule.Calc ("Groups.plus_class.plus", (**)eval_binop "#add_")
neuper@37950
   614
	       ],
wneuper@59416
   615
      scr = Rule.EmptyScr
wneuper@59406
   616
      });
neuper@37950
   617
(*.all powers over + distributed; atoms over * collected, other distributed
neuper@37950
   618
   contains absolute minimum of thms for context in norm_Rational .*)
s1210629013@55444
   619
val powers = prep_rls'(
wneuper@59416
   620
  Rule.Rls {id = "powers", preconds = [], rew_ord = ("dummy_ord",Rule.dummy_ord), 
wneuper@59416
   621
      erls = powers_erls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   622
      rules = [Rule.Thm ("realpow_multI", TermC.num_str @{thm realpow_multI}),
neuper@37950
   623
	       (*"(r * s) ^^^ n = r ^^^ n * s ^^^ n"*)
wneuper@59416
   624
	       Rule.Thm ("realpow_pow",TermC.num_str @{thm realpow_pow}),
neuper@37950
   625
	       (*"(a ^^^ b) ^^^ c = a ^^^ (b * c)"*)
wneuper@59416
   626
	       Rule.Thm ("realpow_oneI",TermC.num_str @{thm realpow_oneI}),
neuper@37950
   627
	       (*"r ^^^ 1 = r"*)
wneuper@59416
   628
	       Rule.Thm ("realpow_minus_even",TermC.num_str @{thm realpow_minus_even}),
neuper@37950
   629
	       (*"n is_even ==> (- r) ^^^ n = r ^^^ n" ?-->discard_minus?*)
wneuper@59416
   630
	       Rule.Thm ("realpow_minus_odd",TermC.num_str @{thm realpow_minus_odd}),
neuper@37950
   631
	       (*"Not (n is_even) ==> (- r) ^^^ n = -1 * r ^^^ n"*)
neuper@37950
   632
	       
neuper@37950
   633
	       (*----- collect atoms over * -----*)
wneuper@59416
   634
	       Rule.Thm ("realpow_two_atom",TermC.num_str @{thm realpow_two_atom}),	
neuper@37950
   635
	       (*"r is_atom ==> r * r = r ^^^ 2"*)
wneuper@59416
   636
	       Rule.Thm ("realpow_plus_1",TermC.num_str @{thm realpow_plus_1}),		
neuper@37950
   637
	       (*"r is_atom ==> r * r ^^^ n = r ^^^ (n + 1)"*)
wneuper@59416
   638
	       Rule.Thm ("realpow_addI_atom",TermC.num_str @{thm realpow_addI_atom}),
neuper@37950
   639
	       (*"r is_atom ==> r ^^^ n * r ^^^ m = r ^^^ (n + m)"*)
neuper@37950
   640
neuper@37950
   641
	       (*----- distribute none-atoms -----*)
wneuper@59416
   642
	       Rule.Thm ("realpow_def_atom",TermC.num_str @{thm realpow_def_atom}),
neuper@37950
   643
	       (*"[| 1 < n; not(r is_atom) |]==>r ^^^ n = r * r ^^^ (n + -1)"*)
wneuper@59416
   644
	       Rule.Thm ("realpow_eq_oneI",TermC.num_str @{thm realpow_eq_oneI}),
neuper@37950
   645
	       (*"1 ^^^ n = 1"*)
walther@59603
   646
	       Rule.Calc ("Groups.plus_class.plus", (**)eval_binop "#add_")
neuper@37950
   647
	       ],
wneuper@59416
   648
      scr = Rule.EmptyScr
wneuper@59406
   649
      });
neuper@37950
   650
(*.contains absolute minimum of thms for context in norm_Rational.*)
s1210629013@55444
   651
val rat_mult_divide = prep_rls'(
wneuper@59416
   652
  Rule.Rls {id = "rat_mult_divide", preconds = [], 
wneuper@59416
   653
      rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   654
      erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   655
      rules = [Rule.Thm ("rat_mult",TermC.num_str @{thm rat_mult}),
neuper@37950
   656
	       (*(1)"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
wneuper@59416
   657
	       Rule.Thm ("times_divide_eq_right",TermC.num_str @{thm times_divide_eq_right}),
neuper@37950
   658
	       (*(2)"?a * (?c / ?d) = ?a * ?c / ?d" must be [2],
neuper@37950
   659
	       otherwise inv.to a / b / c = ...*)
wneuper@59416
   660
	       Rule.Thm ("times_divide_eq_left",TermC.num_str @{thm times_divide_eq_left}),
neuper@37950
   661
	       (*"?a / ?b * ?c = ?a * ?c / ?b" order weights x^^^n too much
neuper@37950
   662
		     and does not commute a / b * c ^^^ 2 !*)
neuper@37950
   663
	       
wneuper@59416
   664
	       Rule.Thm ("divide_divide_eq_right", 
wneuper@59389
   665
                     TermC.num_str @{thm divide_divide_eq_right}),
neuper@37950
   666
	       (*"?x / (?y / ?z) = ?x * ?z / ?y"*)
wneuper@59416
   667
	       Rule.Thm ("divide_divide_eq_left",
wneuper@59389
   668
                     TermC.num_str @{thm divide_divide_eq_left}),
neuper@37950
   669
	       (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
walther@59603
   670
	       Rule.Calc ("Rings.divide_class.divide", Prog_Expr.eval_cancel "#divide_e")
neuper@37950
   671
	       ],
wneuper@59416
   672
      scr = Rule.EmptyScr
wneuper@59406
   673
      });
neuper@37979
   674
neuper@37950
   675
(*.contains absolute minimum of thms for context in norm_Rational.*)
s1210629013@55444
   676
val reduce_0_1_2 = prep_rls'(
wneuper@59416
   677
  Rule.Rls{id = "reduce_0_1_2", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord),
wneuper@59416
   678
      erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   679
      rules = [(*Rule.Thm ("divide_1",TermC.num_str @{thm divide_1}),
neuper@37950
   680
		 "?x / 1 = ?x" unnecess.for normalform*)
wneuper@59416
   681
	       Rule.Thm ("mult_1_left",TermC.num_str @{thm mult_1_left}),                 
neuper@37950
   682
	       (*"1 * z = z"*)
wneuper@59416
   683
	       (*Rule.Thm ("real_mult_minus1",TermC.num_str @{thm real_mult_minus1}),
neuper@37950
   684
	       "-1 * z = - z"*)
wneuper@59416
   685
	       (*Rule.Thm ("real_minus_mult_cancel",TermC.num_str @{thm real_minus_mult_cancel}),
neuper@37950
   686
	       "- ?x * - ?y = ?x * ?y"*)
neuper@37950
   687
wneuper@59416
   688
	       Rule.Thm ("mult_zero_left",TermC.num_str @{thm mult_zero_left}),        
neuper@37950
   689
	       (*"0 * z = 0"*)
wneuper@59416
   690
	       Rule.Thm ("add_0_left",TermC.num_str @{thm add_0_left}),
neuper@37950
   691
	       (*"0 + z = z"*)
wneuper@59416
   692
	       (*Rule.Thm ("right_minus",TermC.num_str @{thm right_minus}),
neuper@37950
   693
	       "?z + - ?z = 0"*)
neuper@37950
   694
wneuper@59416
   695
	       Rule.Thm ("sym_real_mult_2",
wneuper@59389
   696
                     TermC.num_str (@{thm real_mult_2} RS @{thm sym})),	
neuper@37950
   697
	       (*"z1 + z1 = 2 * z1"*)
wneuper@59416
   698
	       Rule.Thm ("real_mult_2_assoc",TermC.num_str @{thm real_mult_2_assoc}),
neuper@37950
   699
	       (*"z1 + (z1 + k) = 2 * z1 + k"*)
neuper@37950
   700
wneuper@59416
   701
	       Rule.Thm ("division_ring_divide_zero",TermC.num_str @{thm division_ring_divide_zero})
neuper@37950
   702
	       (*"0 / ?x = 0"*)
wneuper@59416
   703
	       ], scr = Rule.EmptyScr});
neuper@37950
   704
neuper@37950
   705
(*erls for calculate_Rational; 
neuper@37950
   706
  make local with FIXX@ME result:term *term list WN0609???SKMG*)
s1210629013@55444
   707
val norm_rat_erls = prep_rls'(
wneuper@59416
   708
  Rule.Rls {id = "norm_rat_erls", preconds = [], rew_ord = ("dummy_ord",Rule.dummy_ord), 
wneuper@59416
   709
      erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
walther@59603
   710
      rules = [Rule.Calc ("Prog_Expr.is'_const", Prog_Expr.eval_const "#is_const_")
wneuper@59416
   711
	       ], scr = Rule.EmptyScr});
neuper@37979
   712
neuper@52105
   713
(* consists of rls containing the absolute minimum of thms *)
neuper@37950
   714
(*040209: this version has been used by RL for his equations,
neuper@52105
   715
which is now replaced by MGs version "norm_Rational" below *)
s1210629013@55444
   716
val norm_Rational_min = prep_rls'(
wneuper@59416
   717
  Rule.Rls {id = "norm_Rational_min", preconds = [], rew_ord = ("dummy_ord",Rule.dummy_ord), 
wneuper@59416
   718
      erls = norm_rat_erls, srls = Rule.Erls, calc = [], errpatts = [],
neuper@37950
   719
      rules = [(*sequence given by operator precedence*)
wneuper@59416
   720
	       Rule.Rls_ discard_minus,
wneuper@59416
   721
	       Rule.Rls_ powers,
wneuper@59416
   722
	       Rule.Rls_ rat_mult_divide,
wneuper@59416
   723
	       Rule.Rls_ expand,
wneuper@59416
   724
	       Rule.Rls_ reduce_0_1_2,
wneuper@59416
   725
	       Rule.Rls_ order_add_mult,
wneuper@59416
   726
	       Rule.Rls_ collect_numerals,
wneuper@59416
   727
	       Rule.Rls_ add_fractions_p,
wneuper@59416
   728
	       Rule.Rls_ cancel_p
neuper@37950
   729
	       ],
wneuper@59416
   730
      scr = Rule.EmptyScr});
neuper@37979
   731
s1210629013@55444
   732
val norm_Rational_parenthesized = prep_rls'(
wneuper@59416
   733
  Rule.Seq {id = "norm_Rational_parenthesized", preconds = []:term list, 
wneuper@59416
   734
       rew_ord = ("dummy_ord", Rule.dummy_ord),
wneuper@59416
   735
      erls = Atools_erls, srls = Rule.Erls,
neuper@42451
   736
      calc = [], errpatts = [],
wneuper@59416
   737
      rules = [Rule.Rls_  norm_Rational_min,
wneuper@59416
   738
	       Rule.Rls_ discard_parentheses
neuper@37950
   739
	       ],
wneuper@59416
   740
      scr = Rule.EmptyScr});      
neuper@37950
   741
neuper@37950
   742
(*WN030318???SK: simplifies all but cancel and common_nominator*)
neuper@37950
   743
val simplify_rational = 
wneuper@59416
   744
    Rule.merge_rls "simplify_rational" expand_binoms
wneuper@59416
   745
    (Rule.append_rls "divide" calculate_Rational
wneuper@59416
   746
		[Rule.Thm ("div_by_1",TermC.num_str @{thm div_by_1}),
neuper@37950
   747
		 (*"?x / 1 = ?x"*)
wneuper@59416
   748
		 Rule.Thm ("rat_mult",TermC.num_str @{thm rat_mult}),
neuper@37950
   749
		 (*(1)"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
wneuper@59416
   750
		 Rule.Thm ("times_divide_eq_right",TermC.num_str @{thm times_divide_eq_right}),
neuper@37950
   751
		 (*(2)"?a * (?c / ?d) = ?a * ?c / ?d" must be [2],
neuper@37950
   752
		 otherwise inv.to a / b / c = ...*)
wneuper@59416
   753
		 Rule.Thm ("times_divide_eq_left",TermC.num_str @{thm times_divide_eq_left}),
neuper@37950
   754
		 (*"?a / ?b * ?c = ?a * ?c / ?b"*)
wneuper@59416
   755
		 Rule.Thm ("add_minus",TermC.num_str @{thm add_minus}),
neuper@37950
   756
		 (*"?a + ?b - ?b = ?a"*)
wneuper@59416
   757
		 Rule.Thm ("add_minus1",TermC.num_str @{thm add_minus1}),
neuper@37950
   758
		 (*"?a - ?b + ?b = ?a"*)
wneuper@59416
   759
		 Rule.Thm ("divide_minus1",TermC.num_str @{thm divide_minus1})
neuper@37950
   760
		 (*"?x / -1 = - ?x"*)
neuper@37950
   761
		 ]);
wneuper@59472
   762
\<close>
wneuper@59472
   763
ML \<open>
s1210629013@55444
   764
val add_fractions_p_rls = prep_rls'(
wneuper@59416
   765
  Rule.Rls {id = "add_fractions_p_rls", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   766
	  erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   767
	  rules = [Rule.Rls_ add_fractions_p], 
wneuper@59416
   768
	  scr = Rule.EmptyScr});
neuper@37950
   769
wneuper@59416
   770
(* "Rule.Rls" causes repeated application of cancel_p to one and the same term *)
s1210629013@55444
   771
val cancel_p_rls = prep_rls'(
wneuper@59416
   772
  Rule.Rls 
wneuper@59416
   773
    {id = "cancel_p_rls", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   774
    erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   775
    rules = [Rule.Rls_ cancel_p], 
wneuper@59416
   776
	  scr = Rule.EmptyScr});
neuper@52105
   777
neuper@37950
   778
(*. makes 'normal' fractions; 'is_polyexp' inhibits double fractions;
neuper@37950
   779
    used in initial part norm_Rational_mg, see example DA-M02-main.p.60.*)
s1210629013@55444
   780
val rat_mult_poly = prep_rls'(
wneuper@59416
   781
  Rule.Rls {id = "rat_mult_poly", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   782
	  erls = Rule.append_rls "Rule.e_rls-is_polyexp" Rule.e_rls [Rule.Calc ("Poly.is'_polyexp", eval_is_polyexp "")], 
wneuper@59416
   783
	  srls = Rule.Erls, calc = [], errpatts = [],
neuper@52105
   784
	  rules = 
wneuper@59416
   785
	    [Rule.Thm ("rat_mult_poly_l",TermC.num_str @{thm rat_mult_poly_l}),
neuper@52105
   786
	    (*"?c is_polyexp ==> ?c * (?a / ?b) = ?c * ?a / ?b"*)
wneuper@59416
   787
	    Rule.Thm ("rat_mult_poly_r",TermC.num_str @{thm rat_mult_poly_r})
neuper@52105
   788
	    (*"?c is_polyexp ==> ?a / ?b * ?c = ?a * ?c / ?b"*) ], 
wneuper@59416
   789
	  scr = Rule.EmptyScr});
neuper@37979
   790
neuper@37950
   791
(*. makes 'normal' fractions; 'is_polyexp' inhibits double fractions;
neuper@37950
   792
    used in looping part norm_Rational_rls, see example DA-M02-main.p.60 
wneuper@59416
   793
    .. WHERE THE LATTER DOES ALWAYS WORK, BECAUSE erls = Rule.e_rls, 
wneuper@59416
   794
    I.E. THE RESPECTIVE ASSUMPTION IS STORED AND Rule.Thm APPLIED; WN051028 
neuper@37950
   795
    ... WN0609???MG.*)
s1210629013@55444
   796
val rat_mult_div_pow = prep_rls'(
wneuper@59416
   797
  Rule.Rls {id = "rat_mult_div_pow", preconds = [], rew_ord = ("dummy_ord",Rule.dummy_ord), 
wneuper@59416
   798
    erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   799
    rules = [Rule.Thm ("rat_mult", TermC.num_str @{thm rat_mult}),
neuper@52105
   800
      (*"?a / ?b * (?c / ?d) = ?a * ?c / (?b * ?d)"*)
wneuper@59416
   801
      Rule.Thm ("rat_mult_poly_l", TermC.num_str @{thm rat_mult_poly_l}),
neuper@52105
   802
      (*"?c is_polyexp ==> ?c * (?a / ?b) = ?c * ?a / ?b"*)
wneuper@59416
   803
      Rule.Thm ("rat_mult_poly_r", TermC.num_str @{thm rat_mult_poly_r}),
neuper@52105
   804
      (*"?c is_polyexp ==> ?a / ?b * ?c = ?a * ?c / ?b"*)
neuper@52105
   805
      
wneuper@59416
   806
      Rule.Thm ("real_divide_divide1_mg", TermC.num_str @{thm real_divide_divide1_mg}),
neuper@52105
   807
      (*"y ~= 0 ==> (u / v) / (y / z) = (u * z) / (y * v)"*)
wneuper@59416
   808
      Rule.Thm ("divide_divide_eq_right", TermC.num_str @{thm divide_divide_eq_right}),
neuper@52105
   809
      (*"?x / (?y / ?z) = ?x * ?z / ?y"*)
wneuper@59416
   810
      Rule.Thm ("divide_divide_eq_left", TermC.num_str @{thm divide_divide_eq_left}),
neuper@52105
   811
      (*"?x / ?y / ?z = ?x / (?y * ?z)"*)
walther@59603
   812
      Rule.Calc ("Rings.divide_class.divide", Prog_Expr.eval_cancel "#divide_e"),
neuper@52105
   813
      
wneuper@59416
   814
      Rule.Thm ("rat_power", TermC.num_str @{thm rat_power})
neuper@52105
   815
      (*"(?a / ?b) ^^^ ?n = ?a ^^^ ?n / ?b ^^^ ?n"*)
neuper@52105
   816
      ],
wneuper@59416
   817
    scr = Rule.EmptyScr});
neuper@37950
   818
s1210629013@55444
   819
val rat_reduce_1 = prep_rls'(
wneuper@59416
   820
  Rule.Rls {id = "rat_reduce_1", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   821
    erls = Rule.e_rls, srls = Rule.Erls, calc = [], errpatts = [], 
neuper@52105
   822
    rules = 
wneuper@59416
   823
      [Rule.Thm ("div_by_1", TermC.num_str @{thm div_by_1}),
neuper@52105
   824
      (*"?x / 1 = ?x"*)
wneuper@59416
   825
      Rule.Thm ("mult_1_left", TermC.num_str @{thm mult_1_left})           
neuper@52105
   826
      (*"1 * z = z"*)
neuper@52105
   827
      ],
wneuper@59416
   828
    scr = Rule.EmptyScr});
neuper@52105
   829
neuper@52105
   830
(* looping part of norm_Rational *)
s1210629013@55444
   831
val norm_Rational_rls = prep_rls' (
wneuper@59416
   832
  Rule.Rls {id = "norm_Rational_rls", preconds = [], rew_ord = ("dummy_ord",Rule.dummy_ord), 
wneuper@59416
   833
    erls = norm_rat_erls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   834
    rules = [Rule.Rls_ add_fractions_p_rls,
wneuper@59416
   835
      Rule.Rls_ rat_mult_div_pow,
wneuper@59416
   836
      Rule.Rls_ make_rat_poly_with_parentheses,
wneuper@59416
   837
      Rule.Rls_ cancel_p_rls,
wneuper@59416
   838
      Rule.Rls_ rat_reduce_1
neuper@52105
   839
      ],
wneuper@59416
   840
    scr = Rule.EmptyScr});
neuper@52105
   841
s1210629013@55444
   842
val norm_Rational = prep_rls' (
wneuper@59416
   843
  Rule.Seq 
wneuper@59416
   844
    {id = "norm_Rational", preconds = [], rew_ord = ("dummy_ord", Rule.dummy_ord), 
wneuper@59416
   845
    erls = norm_rat_erls, srls = Rule.Erls, calc = [], errpatts = [],
wneuper@59416
   846
    rules = [Rule.Rls_ discard_minus,
wneuper@59416
   847
      Rule.Rls_ rat_mult_poly,             (* removes double fractions like a/b/c *)
wneuper@59416
   848
      Rule.Rls_ make_rat_poly_with_parentheses,
wneuper@59416
   849
      Rule.Rls_ cancel_p_rls,
wneuper@59416
   850
      Rule.Rls_ norm_Rational_rls,         (* the main rls, looping (#) *)
wneuper@59416
   851
      Rule.Rls_ discard_parentheses1       (* mult only *)
neuper@52100
   852
      ],
wneuper@59416
   853
    scr = Rule.EmptyScr});
wneuper@59472
   854
\<close>
neuper@52125
   855
wneuper@59472
   856
setup \<open>KEStore_Elems.add_rlss 
neuper@52125
   857
  [("calculate_Rational", (Context.theory_name @{theory}, calculate_Rational)), 
neuper@52125
   858
  ("calc_rat_erls", (Context.theory_name @{theory}, calc_rat_erls)), 
neuper@52125
   859
  ("rational_erls", (Context.theory_name @{theory}, rational_erls)), 
neuper@52125
   860
  ("cancel_p", (Context.theory_name @{theory}, cancel_p)), 
neuper@52125
   861
  ("add_fractions_p", (Context.theory_name @{theory}, add_fractions_p)),
neuper@52125
   862
 
neuper@52125
   863
  ("add_fractions_p_rls", (Context.theory_name @{theory}, add_fractions_p_rls)), 
neuper@52125
   864
  ("powers_erls", (Context.theory_name @{theory}, powers_erls)), 
neuper@52125
   865
  ("powers", (Context.theory_name @{theory}, powers)), 
neuper@52125
   866
  ("rat_mult_divide", (Context.theory_name @{theory}, rat_mult_divide)), 
neuper@52125
   867
  ("reduce_0_1_2", (Context.theory_name @{theory}, reduce_0_1_2)),
neuper@52125
   868
 
neuper@52125
   869
  ("rat_reduce_1", (Context.theory_name @{theory}, rat_reduce_1)), 
neuper@52125
   870
  ("norm_rat_erls", (Context.theory_name @{theory}, norm_rat_erls)), 
neuper@52125
   871
  ("norm_Rational", (Context.theory_name @{theory}, norm_Rational)), 
neuper@52125
   872
  ("norm_Rational_rls", (Context.theory_name @{theory}, norm_Rational_rls)), 
neuper@55493
   873
  ("norm_Rational_min", (Context.theory_name @{theory}, norm_Rational_min)),
neuper@52125
   874
  ("norm_Rational_parenthesized", (Context.theory_name @{theory}, norm_Rational_parenthesized)),
neuper@52125
   875
 
neuper@52125
   876
  ("rat_mult_poly", (Context.theory_name @{theory}, rat_mult_poly)), 
neuper@52125
   877
  ("rat_mult_div_pow", (Context.theory_name @{theory}, rat_mult_div_pow)), 
wneuper@59472
   878
  ("cancel_p_rls", (Context.theory_name @{theory}, cancel_p_rls))]\<close>
neuper@37950
   879
wneuper@59472
   880
section \<open>A problem for simplification of rationals\<close>
wneuper@59472
   881
setup \<open>KEStore_Elems.add_pbts
wneuper@59406
   882
  [(Specify.prep_pbt thy "pbl_simp_rat" [] Celem.e_pblID
s1210629013@55339
   883
      (["rational","simplification"],
s1210629013@55339
   884
        [("#Given" ,["Term t_t"]),
s1210629013@55339
   885
          ("#Where" ,["t_t is_ratpolyexp"]),
s1210629013@55339
   886
          ("#Find"  ,["normalform n_n"])],
wneuper@59416
   887
        Rule.append_rls "e_rls" Rule.e_rls [(*for preds in where_*)], 
wneuper@59472
   888
        SOME "Simplify t_t", [["simplification","of_rationals"]]))]\<close>
neuper@37950
   889
wneuper@59472
   890
section \<open>A methods for simplification of rationals\<close>
s1210629013@55373
   891
(*WN061025 this methods script is copied from (auto-generated) script
s1210629013@55373
   892
  of norm_Rational in order to ease repair on inform*)
wneuper@59545
   893
wneuper@59504
   894
partial_function (tailrec) simplify :: "real \<Rightarrow> real"
wneuper@59504
   895
  where
wneuper@59504
   896
"simplify t_t =
wneuper@59504
   897
  ((Try (Rewrite_Set ''discard_minus'' False) @@
wneuper@59504
   898
    Try (Rewrite_Set ''rat_mult_poly'' False) @@
wneuper@59504
   899
    Try (Rewrite_Set ''make_rat_poly_with_parentheses'' False) @@
wneuper@59504
   900
    Try (Rewrite_Set ''cancel_p_rls'' False) @@
wneuper@59504
   901
    (Repeat
wneuper@59504
   902
     ((Try (Rewrite_Set ''add_fractions_p_rls'' False) @@
wneuper@59504
   903
       Try (Rewrite_Set ''rat_mult_div_pow'' False) @@
wneuper@59504
   904
       Try (Rewrite_Set ''make_rat_poly_with_parentheses'' False) @@
wneuper@59504
   905
       Try (Rewrite_Set ''cancel_p_rls'' False) @@
wneuper@59504
   906
       Try (Rewrite_Set ''rat_reduce_1'' False)))) @@
wneuper@59504
   907
    Try (Rewrite_Set ''discard_parentheses1'' False))
wneuper@59504
   908
   t_t)"
wneuper@59472
   909
setup \<open>KEStore_Elems.add_mets
wneuper@59473
   910
    [Specify.prep_met thy "met_simp_rat" [] Celem.e_metID
s1210629013@55373
   911
      (["simplification","of_rationals"],
s1210629013@55373
   912
        [("#Given" ,["Term t_t"]),
s1210629013@55373
   913
          ("#Where" ,["t_t is_ratpolyexp"]),
s1210629013@55373
   914
          ("#Find"  ,["normalform n_n"])],
wneuper@59416
   915
	      {rew_ord'="tless_true", rls' = Rule.e_rls, calc = [], srls = Rule.e_rls, 
wneuper@59416
   916
	        prls = Rule.append_rls "simplification_of_rationals_prls" Rule.e_rls 
wneuper@59416
   917
				    [(*for preds in where_*) Rule.Calc ("Rational.is'_ratpolyexp", eval_is_ratpolyexp "")],
wneuper@59416
   918
				  crls = Rule.e_rls, errpats = [], nrls = norm_Rational_rls},
wneuper@59551
   919
				  @{thm simplify.simps})]
wneuper@59472
   920
\<close>
neuper@37979
   921
neuper@52105
   922
end