doc-src/IsarImplementation/Thy/document/prelim.tex
author wenzelm
Thu, 31 Aug 2006 22:55:49 +0200
changeset 20451 27ea2ba48fa3
parent 20450 725a91601ed1
child 20452 6d8b29c7a960
permissions -rw-r--r--
misc cleanup;
wenzelm@18537
     1
%
wenzelm@18537
     2
\begin{isabellebody}%
wenzelm@18537
     3
\def\isabellecontext{prelim}%
wenzelm@18537
     4
%
wenzelm@18537
     5
\isadelimtheory
wenzelm@18537
     6
\isanewline
wenzelm@18537
     7
\isanewline
wenzelm@18537
     8
\isanewline
wenzelm@18537
     9
%
wenzelm@18537
    10
\endisadelimtheory
wenzelm@18537
    11
%
wenzelm@18537
    12
\isatagtheory
wenzelm@18537
    13
\isacommand{theory}\isamarkupfalse%
wenzelm@18537
    14
\ prelim\ \isakeyword{imports}\ base\ \isakeyword{begin}%
wenzelm@18537
    15
\endisatagtheory
wenzelm@18537
    16
{\isafoldtheory}%
wenzelm@18537
    17
%
wenzelm@18537
    18
\isadelimtheory
wenzelm@18537
    19
%
wenzelm@18537
    20
\endisadelimtheory
wenzelm@18537
    21
%
wenzelm@18537
    22
\isamarkupchapter{Preliminaries%
wenzelm@18537
    23
}
wenzelm@18537
    24
\isamarkuptrue%
wenzelm@18537
    25
%
wenzelm@20429
    26
\isamarkupsection{Contexts \label{sec:context}%
wenzelm@18537
    27
}
wenzelm@18537
    28
\isamarkuptrue%
wenzelm@18537
    29
%
wenzelm@18537
    30
\begin{isamarkuptext}%
wenzelm@20451
    31
A logical context represents the background that is required for
wenzelm@20451
    32
  formulating statements and composing proofs.  It acts as a medium to
wenzelm@20451
    33
  produce formal content, depending on earlier material (declarations,
wenzelm@20451
    34
  results etc.).
wenzelm@18537
    35
wenzelm@20451
    36
  For example, derivations within the Isabelle/Pure logic can be
wenzelm@20451
    37
  described as a judgment \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}, which means that a
wenzelm@20429
    38
  proposition \isa{{\isasymphi}} is derivable from hypotheses \isa{{\isasymGamma}}
wenzelm@20429
    39
  within the theory \isa{{\isasymTheta}}.  There are logical reasons for
wenzelm@20451
    40
  keeping \isa{{\isasymTheta}} and \isa{{\isasymGamma}} separate: theories can be
wenzelm@20451
    41
  liberal about supporting type constructors and schematic
wenzelm@20451
    42
  polymorphism of constants and axioms, while the inner calculus of
wenzelm@20451
    43
  \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}} is strictly limited to Simple Type Theory (with
wenzelm@20451
    44
  fixed type variables in the assumptions).
wenzelm@18537
    45
wenzelm@20429
    46
  \medskip Contexts and derivations are linked by the following key
wenzelm@20429
    47
  principles:
wenzelm@18537
    48
wenzelm@20429
    49
  \begin{itemize}
wenzelm@18537
    50
wenzelm@20429
    51
  \item Transfer: monotonicity of derivations admits results to be
wenzelm@20451
    52
  transferred into a \emph{larger} context, i.e.\ \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}} implies \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\isactrlsub {\isacharprime}\ {\isasymphi}} for contexts \isa{{\isasymTheta}{\isacharprime}\ {\isasymsupseteq}\ {\isasymTheta}} and \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}}.
wenzelm@18537
    53
wenzelm@20429
    54
  \item Export: discharge of hypotheses admits results to be exported
wenzelm@20451
    55
  into a \emph{smaller} context, i.e.\ \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}
wenzelm@20451
    56
  implies \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymDelta}\ {\isasymLongrightarrow}\ {\isasymphi}} where \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}} and
wenzelm@20451
    57
  \isa{{\isasymDelta}\ {\isacharequal}\ {\isasymGamma}{\isacharprime}\ {\isacharminus}\ {\isasymGamma}}.  Note that \isa{{\isasymTheta}} remains unchanged here,
wenzelm@20451
    58
  only the \isa{{\isasymGamma}} part is affected.
wenzelm@18537
    59
wenzelm@20429
    60
  \end{itemize}
wenzelm@18537
    61
wenzelm@20451
    62
  \medskip By modeling the main characteristics of the primitive
wenzelm@20451
    63
  \isa{{\isasymTheta}} and \isa{{\isasymGamma}} above, and abstracting over any
wenzelm@20451
    64
  particular logical content, we arrive at the fundamental notions of
wenzelm@20451
    65
  \emph{theory context} and \emph{proof context} in Isabelle/Isar.
wenzelm@20451
    66
  These implement a certain policy to manage arbitrary \emph{context
wenzelm@20451
    67
  data}.  There is a strongly-typed mechanism to declare new kinds of
wenzelm@20429
    68
  data at compile time.
wenzelm@18537
    69
wenzelm@20451
    70
  The internal bootstrap process of Isabelle/Pure eventually reaches a
wenzelm@20451
    71
  stage where certain data slots provide the logical content of \isa{{\isasymTheta}} and \isa{{\isasymGamma}} sketched above, but this does not stop there!
wenzelm@20451
    72
  Various additional data slots support all kinds of mechanisms that
wenzelm@20451
    73
  are not necessarily part of the core logic.
wenzelm@18537
    74
wenzelm@20429
    75
  For example, there would be data for canonical introduction and
wenzelm@20429
    76
  elimination rules for arbitrary operators (depending on the
wenzelm@20429
    77
  object-logic and application), which enables users to perform
wenzelm@20451
    78
  standard proof steps implicitly (cf.\ the \isa{rule} method
wenzelm@20451
    79
  \cite{isabelle-isar-ref}).
wenzelm@20429
    80
wenzelm@20451
    81
  \medskip Thus Isabelle/Isar is able to bring forth more and more
wenzelm@20451
    82
  concepts successively.  In particular, an object-logic like
wenzelm@20451
    83
  Isabelle/HOL continues the Isabelle/Pure setup by adding specific
wenzelm@20451
    84
  components for automated reasoning (classical reasoner, tableau
wenzelm@20451
    85
  prover, structured induction etc.) and derived specification
wenzelm@20451
    86
  mechanisms (inductive predicates, recursive functions etc.).  All of
wenzelm@20451
    87
  this is ultimately based on the generic data management by theory
wenzelm@20451
    88
  and proof contexts introduced here.%
wenzelm@18537
    89
\end{isamarkuptext}%
wenzelm@18537
    90
\isamarkuptrue%
wenzelm@18537
    91
%
wenzelm@18537
    92
\isamarkupsubsection{Theory context \label{sec:context-theory}%
wenzelm@18537
    93
}
wenzelm@18537
    94
\isamarkuptrue%
wenzelm@18537
    95
%
wenzelm@18537
    96
\begin{isamarkuptext}%
wenzelm@20447
    97
\glossary{Theory}{FIXME}
wenzelm@20447
    98
wenzelm@20451
    99
  A \emph{theory} is a data container with explicit named and unique
wenzelm@20451
   100
  identifier.  Theories are related by a (nominal) sub-theory
wenzelm@20451
   101
  relation, which corresponds to the dependency graph of the original
wenzelm@20451
   102
  construction; each theory is derived from a certain sub-graph of
wenzelm@20451
   103
  ancestor theories.
wenzelm@20451
   104
wenzelm@20451
   105
  The \isa{merge} operation produces the least upper bound of two
wenzelm@20451
   106
  theories, which actually degenerates into absorption of one theory
wenzelm@20451
   107
  into the other (due to the nominal sub-theory relation).
wenzelm@18537
   108
wenzelm@20429
   109
  The \isa{begin} operation starts a new theory by importing
wenzelm@20429
   110
  several parent theories and entering a special \isa{draft} mode,
wenzelm@20429
   111
  which is sustained until the final \isa{end} operation.  A draft
wenzelm@20451
   112
  theory acts like a linear type, where updates invalidate earlier
wenzelm@20451
   113
  versions.  An invalidated draft is called ``stale''.
wenzelm@20429
   114
wenzelm@20447
   115
  The \isa{checkpoint} operation produces an intermediate stepping
wenzelm@20451
   116
  stone that will survive the next update: both the original and the
wenzelm@20451
   117
  changed theory remain valid and are related by the sub-theory
wenzelm@20451
   118
  relation.  Checkpointing essentially recovers purely functional
wenzelm@20451
   119
  theory values, at the expense of some extra internal bookkeeping.
wenzelm@20429
   120
wenzelm@20447
   121
  The \isa{copy} operation produces an auxiliary version that has
wenzelm@20447
   122
  the same data content, but is unrelated to the original: updates of
wenzelm@20447
   123
  the copy do not affect the original, neither does the sub-theory
wenzelm@20447
   124
  relation hold.
wenzelm@20447
   125
wenzelm@20447
   126
  \medskip The example in \figref{fig:ex-theory} below shows a theory
wenzelm@20451
   127
  graph derived from \isa{Pure}, with theory \isa{Length}
wenzelm@20451
   128
  importing \isa{Nat} and \isa{List}.  The body of \isa{Length} consists of a sequence of updates, working mostly on
wenzelm@20451
   129
  drafts.  Intermediate checkpoints may occur as well, due to the
wenzelm@20451
   130
  history mechanism provided by the Isar top-level, cf.\
wenzelm@20451
   131
  \secref{sec:isar-toplevel}.
wenzelm@20447
   132
wenzelm@20447
   133
  \begin{figure}[htb]
wenzelm@20447
   134
  \begin{center}
wenzelm@20429
   135
  \begin{tabular}{rcccl}
wenzelm@20447
   136
        &            & \isa{Pure} \\
wenzelm@20447
   137
        &            & \isa{{\isasymdown}} \\
wenzelm@20447
   138
        &            & \isa{FOL} \\
wenzelm@18537
   139
        & $\swarrow$ &              & $\searrow$ & \\
wenzelm@20447
   140
  $Nat$ &            &              &            & \isa{List} \\
wenzelm@18537
   141
        & $\searrow$ &              & $\swarrow$ \\
wenzelm@20447
   142
        &            & \isa{Length} \\
wenzelm@18537
   143
        &            & \multicolumn{3}{l}{~~$\isarkeyword{imports}$} \\
wenzelm@18537
   144
        &            & \multicolumn{3}{l}{~~$\isarkeyword{begin}$} \\
wenzelm@18537
   145
        &            & $\vdots$~~ \\
wenzelm@20447
   146
        &            & \isa{{\isasymbullet}}~~ \\
wenzelm@20447
   147
        &            & $\vdots$~~ \\
wenzelm@20447
   148
        &            & \isa{{\isasymbullet}}~~ \\
wenzelm@20447
   149
        &            & $\vdots$~~ \\
wenzelm@18537
   150
        &            & \multicolumn{3}{l}{~~$\isarkeyword{end}$} \\
wenzelm@20429
   151
  \end{tabular}
wenzelm@20451
   152
  \caption{A theory definition depending on ancestors}\label{fig:ex-theory}
wenzelm@20447
   153
  \end{center}
wenzelm@20451
   154
  \end{figure}
wenzelm@20451
   155
wenzelm@20451
   156
  \medskip There is a separate notion of \emph{theory reference} for
wenzelm@20451
   157
  maintaining a live link to an evolving theory context: updates on
wenzelm@20451
   158
  drafts are propagated automatically.  The dynamic stops after an
wenzelm@20451
   159
  explicit \isa{end} only.
wenzelm@20451
   160
wenzelm@20451
   161
  Derived entities may store a theory reference in order to indicate
wenzelm@20451
   162
  the context they belong to.  This implicitly assumes monotonic
wenzelm@20451
   163
  reasoning, because the referenced context may become larger without
wenzelm@20451
   164
  further notice.%
wenzelm@18537
   165
\end{isamarkuptext}%
wenzelm@18537
   166
\isamarkuptrue%
wenzelm@18537
   167
%
wenzelm@20430
   168
\isadelimmlref
wenzelm@20430
   169
%
wenzelm@20430
   170
\endisadelimmlref
wenzelm@20430
   171
%
wenzelm@20430
   172
\isatagmlref
wenzelm@20430
   173
%
wenzelm@20430
   174
\begin{isamarkuptext}%
wenzelm@20447
   175
\begin{mldecls}
wenzelm@20447
   176
  \indexmltype{theory}\verb|type theory| \\
wenzelm@20447
   177
  \indexml{Theory.subthy}\verb|Theory.subthy: theory * theory -> bool| \\
wenzelm@20447
   178
  \indexml{Theory.merge}\verb|Theory.merge: theory * theory -> theory| \\
wenzelm@20447
   179
  \indexml{Theory.checkpoint}\verb|Theory.checkpoint: theory -> theory| \\
wenzelm@20447
   180
  \indexml{Theory.copy}\verb|Theory.copy: theory -> theory| \\[1ex]
wenzelm@20447
   181
  \indexmltype{theory-ref}\verb|type theory_ref| \\
wenzelm@20447
   182
  \indexml{Theory.self-ref}\verb|Theory.self_ref: theory -> theory_ref| \\
wenzelm@20447
   183
  \indexml{Theory.deref}\verb|Theory.deref: theory_ref -> theory| \\
wenzelm@20447
   184
  \end{mldecls}
wenzelm@20447
   185
wenzelm@20447
   186
  \begin{description}
wenzelm@20447
   187
wenzelm@20451
   188
  \item \verb|theory| represents theory contexts.  This is
wenzelm@20451
   189
  essentially a linear type!  Most operations destroy the original
wenzelm@20451
   190
  version, which then becomes ``stale''.
wenzelm@20447
   191
wenzelm@20447
   192
  \item \verb|Theory.subthy|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
wenzelm@20447
   193
  compares theories according to the inherent graph structure of the
wenzelm@20447
   194
  construction.  This sub-theory relation is a nominal approximation
wenzelm@20447
   195
  of inclusion (\isa{{\isasymsubseteq}}) of the corresponding content.
wenzelm@20447
   196
wenzelm@20447
   197
  \item \verb|Theory.merge|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
wenzelm@20447
   198
  absorbs one theory into the other.  This fails for unrelated
wenzelm@20447
   199
  theories!
wenzelm@20447
   200
wenzelm@20447
   201
  \item \verb|Theory.checkpoint|~\isa{thy} produces a safe
wenzelm@20447
   202
  stepping stone in the linear development of \isa{thy}.  The next
wenzelm@20447
   203
  update will result in two related, valid theories.
wenzelm@20447
   204
wenzelm@20451
   205
  \item \verb|Theory.copy|~\isa{thy} produces a variant of \isa{thy} that holds a copy of the same data.  The result is not
wenzelm@20451
   206
  related to the original; the original is unchanched.
wenzelm@20447
   207
wenzelm@20451
   208
  \item \verb|theory_ref| represents a sliding reference to an
wenzelm@20451
   209
  always valid theory; updates on the original are propagated
wenzelm@20447
   210
  automatically.
wenzelm@20447
   211
wenzelm@20449
   212
  \item \verb|Theory.self_ref|~\isa{thy} and \verb|Theory.deref|~\isa{thy{\isacharunderscore}ref} convert between \verb|theory| and \verb|theory_ref|.  As the referenced theory
wenzelm@20451
   213
  evolves monotonically over time, later invocations of \verb|Theory.deref| may refer to a larger context.
wenzelm@20447
   214
wenzelm@20447
   215
  \end{description}%
wenzelm@20430
   216
\end{isamarkuptext}%
wenzelm@20430
   217
\isamarkuptrue%
wenzelm@20430
   218
%
wenzelm@20430
   219
\endisatagmlref
wenzelm@20430
   220
{\isafoldmlref}%
wenzelm@20430
   221
%
wenzelm@20430
   222
\isadelimmlref
wenzelm@20430
   223
%
wenzelm@20430
   224
\endisadelimmlref
wenzelm@20430
   225
%
wenzelm@18537
   226
\isamarkupsubsection{Proof context \label{sec:context-proof}%
wenzelm@18537
   227
}
wenzelm@18537
   228
\isamarkuptrue%
wenzelm@18537
   229
%
wenzelm@18537
   230
\begin{isamarkuptext}%
wenzelm@20447
   231
\glossary{Proof context}{The static context of a structured proof,
wenzelm@20447
   232
  acts like a local ``theory'' of the current portion of Isar proof
wenzelm@20447
   233
  text, generalizes the idea of local hypotheses \isa{{\isasymGamma}} in
wenzelm@20447
   234
  judgments \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}} of natural deduction calculi.  There is a
wenzelm@20447
   235
  generic notion of introducing and discharging hypotheses.
wenzelm@20447
   236
  Arbritrary auxiliary context data may be adjoined.}
wenzelm@20429
   237
wenzelm@20447
   238
  A proof context is a container for pure data with a back-reference
wenzelm@20449
   239
  to the theory it belongs to.  The \isa{init} operation creates a
wenzelm@20451
   240
  proof context from a given theory.  Modifications to draft theories
wenzelm@20451
   241
  are propagated to the proof context as usual, but there is also an
wenzelm@20451
   242
  explicit \isa{transfer} operation to force resynchronization
wenzelm@20451
   243
  with more substantial updates to the underlying theory.  The actual
wenzelm@20451
   244
  context data does not require any special bookkeeping, thanks to the
wenzelm@20451
   245
  lack of destructive features.
wenzelm@20429
   246
wenzelm@20447
   247
  Entities derived in a proof context need to record inherent logical
wenzelm@20447
   248
  requirements explicitly, since there is no separate context
wenzelm@20447
   249
  identification as for theories.  For example, hypotheses used in
wenzelm@20451
   250
  primitive derivations (cf.\ \secref{sec:thms}) are recorded
wenzelm@20447
   251
  separately within the sequent \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}}, just to make double
wenzelm@20447
   252
  sure.  Results could still leak into an alien proof context do to
wenzelm@20447
   253
  programming errors, but Isabelle/Isar includes some extra validity
wenzelm@20447
   254
  checks in critical positions, notably at the end of sub-proof.
wenzelm@20429
   255
wenzelm@20451
   256
  Proof contexts may be manipulated arbitrarily, although the common
wenzelm@20451
   257
  discipline is to follow block structure as a mental model: a given
wenzelm@20451
   258
  context is extended consecutively, and results are exported back
wenzelm@20451
   259
  into the original context.  Note that the Isar proof states model
wenzelm@20451
   260
  block-structured reasoning explicitly, using a stack of proof
wenzelm@20451
   261
  contexts internally, cf.\ \secref{sec:isar-proof-state}.%
wenzelm@18537
   262
\end{isamarkuptext}%
wenzelm@18537
   263
\isamarkuptrue%
wenzelm@18537
   264
%
wenzelm@20430
   265
\isadelimmlref
wenzelm@20430
   266
%
wenzelm@20430
   267
\endisadelimmlref
wenzelm@20430
   268
%
wenzelm@20430
   269
\isatagmlref
wenzelm@20430
   270
%
wenzelm@20430
   271
\begin{isamarkuptext}%
wenzelm@20449
   272
\begin{mldecls}
wenzelm@20449
   273
  \indexmltype{Proof.context}\verb|type Proof.context| \\
wenzelm@20449
   274
  \indexml{ProofContext.init}\verb|ProofContext.init: theory -> Proof.context| \\
wenzelm@20449
   275
  \indexml{ProofContext.theory-of}\verb|ProofContext.theory_of: Proof.context -> theory| \\
wenzelm@20449
   276
  \indexml{ProofContext.transfer}\verb|ProofContext.transfer: theory -> Proof.context -> Proof.context| \\
wenzelm@20449
   277
  \end{mldecls}
wenzelm@20449
   278
wenzelm@20449
   279
  \begin{description}
wenzelm@20449
   280
wenzelm@20449
   281
  \item \verb|Proof.context| represents proof contexts.  Elements
wenzelm@20449
   282
  of this type are essentially pure values, with a sliding reference
wenzelm@20449
   283
  to the background theory.
wenzelm@20449
   284
wenzelm@20449
   285
  \item \verb|ProofContext.init|~\isa{thy} produces a proof context
wenzelm@20449
   286
  derived from \isa{thy}, initializing all data.
wenzelm@20449
   287
wenzelm@20449
   288
  \item \verb|ProofContext.theory_of|~\isa{ctxt} selects the
wenzelm@20451
   289
  background theory from \isa{ctxt}, dereferencing its internal
wenzelm@20451
   290
  \verb|theory_ref|.
wenzelm@20449
   291
wenzelm@20449
   292
  \item \verb|ProofContext.transfer|~\isa{thy\ ctxt} promotes the
wenzelm@20449
   293
  background theory of \isa{ctxt} to the super theory \isa{thy}.
wenzelm@20449
   294
wenzelm@20449
   295
  \end{description}%
wenzelm@20430
   296
\end{isamarkuptext}%
wenzelm@20430
   297
\isamarkuptrue%
wenzelm@20430
   298
%
wenzelm@20430
   299
\endisatagmlref
wenzelm@20430
   300
{\isafoldmlref}%
wenzelm@20430
   301
%
wenzelm@20430
   302
\isadelimmlref
wenzelm@20430
   303
%
wenzelm@20430
   304
\endisadelimmlref
wenzelm@20430
   305
%
wenzelm@20451
   306
\isamarkupsubsection{Generic contexts \label{sec:generic-context}%
wenzelm@20429
   307
}
wenzelm@20429
   308
\isamarkuptrue%
wenzelm@20429
   309
%
wenzelm@20430
   310
\begin{isamarkuptext}%
wenzelm@20449
   311
A generic context is the disjoint sum of either a theory or proof
wenzelm@20451
   312
  context.  Occasionally, this enables uniform treatment of generic
wenzelm@20450
   313
  context data, typically extra-logical information.  Operations on
wenzelm@20449
   314
  generic contexts include the usual injections, partial selections,
wenzelm@20449
   315
  and combinators for lifting operations on either component of the
wenzelm@20449
   316
  disjoint sum.
wenzelm@20449
   317
wenzelm@20449
   318
  Moreover, there are total operations \isa{theory{\isacharunderscore}of} and \isa{proof{\isacharunderscore}of} to convert a generic context into either kind: a theory
wenzelm@20451
   319
  can always be selected from the sum, while a proof context might
wenzelm@20451
   320
  have to be constructed by an ad-hoc \isa{init} operation.%
wenzelm@20430
   321
\end{isamarkuptext}%
wenzelm@20430
   322
\isamarkuptrue%
wenzelm@20430
   323
%
wenzelm@20430
   324
\isadelimmlref
wenzelm@20430
   325
%
wenzelm@20430
   326
\endisadelimmlref
wenzelm@20430
   327
%
wenzelm@20430
   328
\isatagmlref
wenzelm@20430
   329
%
wenzelm@20430
   330
\begin{isamarkuptext}%
wenzelm@20449
   331
\begin{mldecls}
wenzelm@20449
   332
  \indexmltype{Context.generic}\verb|type Context.generic| \\
wenzelm@20449
   333
  \indexml{Context.theory-of}\verb|Context.theory_of: Context.generic -> theory| \\
wenzelm@20449
   334
  \indexml{Context.proof-of}\verb|Context.proof_of: Context.generic -> Proof.context| \\
wenzelm@20449
   335
  \end{mldecls}
wenzelm@20449
   336
wenzelm@20449
   337
  \begin{description}
wenzelm@20449
   338
wenzelm@20451
   339
  \item \verb|Context.generic| is the direct sum of \verb|theory| and \verb|Proof.context|, with the datatype
wenzelm@20451
   340
  constructors \verb|Context.Theory| and \verb|Context.Proof|.
wenzelm@20449
   341
wenzelm@20449
   342
  \item \verb|Context.theory_of|~\isa{context} always produces a
wenzelm@20449
   343
  theory from the generic \isa{context}, using \verb|ProofContext.theory_of| as required.
wenzelm@20449
   344
wenzelm@20449
   345
  \item \verb|Context.proof_of|~\isa{context} always produces a
wenzelm@20451
   346
  proof context from the generic \isa{context}, using \verb|ProofContext.init| as required (note that this re-initializes the
wenzelm@20451
   347
  context data with each invocation).
wenzelm@20449
   348
wenzelm@20449
   349
  \end{description}%
wenzelm@20430
   350
\end{isamarkuptext}%
wenzelm@20430
   351
\isamarkuptrue%
wenzelm@20430
   352
%
wenzelm@20430
   353
\endisatagmlref
wenzelm@20430
   354
{\isafoldmlref}%
wenzelm@20430
   355
%
wenzelm@20430
   356
\isadelimmlref
wenzelm@20430
   357
%
wenzelm@20430
   358
\endisadelimmlref
wenzelm@20430
   359
%
wenzelm@20447
   360
\isamarkupsubsection{Context data%
wenzelm@20447
   361
}
wenzelm@20447
   362
\isamarkuptrue%
wenzelm@20447
   363
%
wenzelm@20447
   364
\begin{isamarkuptext}%
wenzelm@20451
   365
The main purpose of theory and proof contexts is to manage arbitrary
wenzelm@20451
   366
  data.  New data types can be declared incrementally at compile time.
wenzelm@20451
   367
  There are separate declaration mechanisms for any of the three kinds
wenzelm@20451
   368
  of contexts: theory, proof, generic.
wenzelm@20449
   369
wenzelm@20449
   370
  \paragraph{Theory data} may refer to destructive entities, which are
wenzelm@20451
   371
  maintained in direct correspondence to the linear evolution of
wenzelm@20451
   372
  theory values, including explicit copies.\footnote{Most existing
wenzelm@20451
   373
  instances of destructive theory data are merely historical relics
wenzelm@20451
   374
  (e.g.\ the destructive theorem storage, and destructive hints for
wenzelm@20451
   375
  the Simplifier and Classical rules).}  A theory data declaration
wenzelm@20451
   376
  needs to implement the following specification (depending on type
wenzelm@20451
   377
  \isa{T}):
wenzelm@20449
   378
wenzelm@20449
   379
  \medskip
wenzelm@20449
   380
  \begin{tabular}{ll}
wenzelm@20449
   381
  \isa{name{\isacharcolon}\ string} \\
wenzelm@20449
   382
  \isa{empty{\isacharcolon}\ T} & initial value \\
wenzelm@20449
   383
  \isa{copy{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & refresh impure data \\
wenzelm@20449
   384
  \isa{extend{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & re-initialize on import \\
wenzelm@20449
   385
  \isa{merge{\isacharcolon}\ T\ {\isasymtimes}\ T\ {\isasymrightarrow}\ T} & join on import \\
wenzelm@20449
   386
  \isa{print{\isacharcolon}\ T\ {\isasymrightarrow}\ unit} & diagnostic output \\
wenzelm@20449
   387
  \end{tabular}
wenzelm@20449
   388
  \medskip
wenzelm@20449
   389
wenzelm@20449
   390
  \noindent The \isa{name} acts as a comment for diagnostic
wenzelm@20449
   391
  messages; \isa{copy} is just the identity for pure data; \isa{extend} is acts like a unitary version of \isa{merge}, both
wenzelm@20449
   392
  should also include the functionality of \isa{copy} for impure
wenzelm@20449
   393
  data.
wenzelm@20449
   394
wenzelm@20451
   395
  \paragraph{Proof context data} is purely functional.  A declaration
wenzelm@20451
   396
  needs to implement the following specification:
wenzelm@20449
   397
wenzelm@20449
   398
  \medskip
wenzelm@20449
   399
  \begin{tabular}{ll}
wenzelm@20449
   400
  \isa{name{\isacharcolon}\ string} \\
wenzelm@20449
   401
  \isa{init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} & produce initial value \\
wenzelm@20449
   402
  \isa{print{\isacharcolon}\ T\ {\isasymrightarrow}\ unit} & diagnostic output \\
wenzelm@20449
   403
  \end{tabular}
wenzelm@20449
   404
  \medskip
wenzelm@20449
   405
wenzelm@20449
   406
  \noindent The \isa{init} operation is supposed to produce a pure
wenzelm@20451
   407
  value from the given background theory.  The remainder is analogous
wenzelm@20451
   408
  to theory data.
wenzelm@20449
   409
wenzelm@20451
   410
  \paragraph{Generic data} provides a hybrid interface for both theory
wenzelm@20451
   411
  and proof data.  The declaration is essentially the same as for
wenzelm@20451
   412
  (pure) theory data, without \isa{copy}, though.  The \isa{init} operation for proof contexts merely selects the current data
wenzelm@20451
   413
  value from the background theory.
wenzelm@20449
   414
wenzelm@20449
   415
  \bigskip In any case, a data declaration of type \isa{T} results
wenzelm@20449
   416
  in the following interface:
wenzelm@20449
   417
wenzelm@20449
   418
  \medskip
wenzelm@20449
   419
  \begin{tabular}{ll}
wenzelm@20449
   420
  \isa{init{\isacharcolon}\ theory\ {\isasymrightarrow}\ theory} \\
wenzelm@20449
   421
  \isa{get{\isacharcolon}\ context\ {\isasymrightarrow}\ T} \\
wenzelm@20449
   422
  \isa{put{\isacharcolon}\ T\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
wenzelm@20449
   423
  \isa{map{\isacharcolon}\ {\isacharparenleft}T\ {\isasymrightarrow}\ T{\isacharparenright}\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
wenzelm@20449
   424
  \isa{print{\isacharcolon}\ context\ {\isasymrightarrow}\ unit}
wenzelm@20449
   425
  \end{tabular}
wenzelm@20449
   426
  \medskip
wenzelm@20449
   427
wenzelm@20449
   428
  \noindent Here \isa{init} needs to be applied to the current
wenzelm@20449
   429
  theory context once, in order to register the initial setup.  The
wenzelm@20449
   430
  other operations provide access for the particular kind of context
wenzelm@20449
   431
  (theory, proof, or generic context).  Note that this is a safe
wenzelm@20449
   432
  interface: there is no other way to access the corresponding data
wenzelm@20451
   433
  slot of a context.  By keeping these operations private, a component
wenzelm@20451
   434
  may maintain abstract values authentically, without other components
wenzelm@20451
   435
  interfering.%
wenzelm@20447
   436
\end{isamarkuptext}%
wenzelm@20447
   437
\isamarkuptrue%
wenzelm@20447
   438
%
wenzelm@20450
   439
\isadelimmlref
wenzelm@20450
   440
%
wenzelm@20450
   441
\endisadelimmlref
wenzelm@20450
   442
%
wenzelm@20450
   443
\isatagmlref
wenzelm@20450
   444
%
wenzelm@20450
   445
\begin{isamarkuptext}%
wenzelm@20450
   446
\begin{mldecls}
wenzelm@20450
   447
  \indexmlfunctor{TheoryDataFun}\verb|functor TheoryDataFun| \\
wenzelm@20450
   448
  \indexmlfunctor{ProofDataFun}\verb|functor ProofDataFun| \\
wenzelm@20450
   449
  \indexmlfunctor{GenericDataFun}\verb|functor GenericDataFun| \\
wenzelm@20450
   450
  \end{mldecls}
wenzelm@20450
   451
wenzelm@20450
   452
  \begin{description}
wenzelm@20450
   453
wenzelm@20450
   454
  \item \verb|TheoryDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} declares data for
wenzelm@20450
   455
  type \verb|theory| according to the specification provided as
wenzelm@20451
   456
  argument structure.  The resulting structure provides data init and
wenzelm@20451
   457
  access operations as described above.
wenzelm@20450
   458
wenzelm@20450
   459
  \item \verb|ProofDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous for
wenzelm@20450
   460
  type \verb|Proof.context|.
wenzelm@20450
   461
wenzelm@20450
   462
  \item \verb|GenericDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous for
wenzelm@20450
   463
  type \verb|Context.generic|.
wenzelm@20450
   464
wenzelm@20450
   465
  \end{description}%
wenzelm@20450
   466
\end{isamarkuptext}%
wenzelm@20450
   467
\isamarkuptrue%
wenzelm@20450
   468
%
wenzelm@20450
   469
\endisatagmlref
wenzelm@20450
   470
{\isafoldmlref}%
wenzelm@20450
   471
%
wenzelm@20450
   472
\isadelimmlref
wenzelm@20450
   473
%
wenzelm@20450
   474
\endisadelimmlref
wenzelm@20450
   475
%
wenzelm@20438
   476
\isamarkupsection{Named entities%
wenzelm@20438
   477
}
wenzelm@20438
   478
\isamarkuptrue%
wenzelm@20438
   479
%
wenzelm@20438
   480
\begin{isamarkuptext}%
wenzelm@20451
   481
By general convention, each kind of formal entities (logical
wenzelm@20451
   482
  constant, type, type class, theorem, method etc.) lives in a
wenzelm@20451
   483
  separate name space.  It is usually clear from the syntactic context
wenzelm@20451
   484
  of a name, which kind of entity it refers to.  For example, proof
wenzelm@20451
   485
  method \isa{foo} vs.\ theorem \isa{foo} vs.\ logical
wenzelm@20451
   486
  constant \isa{foo} are easily distinguished thanks to the design
wenzelm@20451
   487
  of the concrete outer syntax.  A notable exception are logical
wenzelm@20451
   488
  identifiers within a term (\secref{sec:terms}): constants, fixed
wenzelm@20451
   489
  variables, and bound variables all share the same identifier syntax,
wenzelm@20451
   490
  but are distinguished by their scope.
wenzelm@20438
   491
wenzelm@20451
   492
  Name spaces are organized uniformly, as a collection of qualified
wenzelm@20451
   493
  names consisting of a sequence of basic name components separated by
wenzelm@20451
   494
  dots: \isa{Bar{\isachardot}bar{\isachardot}foo}, \isa{Bar{\isachardot}foo}, and \isa{foo}
wenzelm@20451
   495
  are examples for qualified names.
wenzelm@20451
   496
wenzelm@20451
   497
  Despite the independence of names of different kinds, certain naming
wenzelm@20451
   498
  conventions may relate them to each other.  For example, a constant
wenzelm@20451
   499
  \isa{foo} could be accompanied with theorems \isa{foo{\isachardot}intro}, \isa{foo{\isachardot}elim}, \isa{foo{\isachardot}simps} etc.  The same
wenzelm@20451
   500
  could happen for a type \isa{foo}, but this is apt to cause
wenzelm@20451
   501
  clashes in the theorem name space!  To avoid this, there is an
wenzelm@20451
   502
  additional convention to add a suffix that determines the original
wenzelm@20451
   503
  kind.  For example, constant \isa{foo} could associated with
wenzelm@20451
   504
  theorem \isa{foo{\isachardot}intro}, type \isa{foo} with theorem \isa{foo{\isacharunderscore}type{\isachardot}intro}, and type class \isa{foo} with \isa{foo{\isacharunderscore}class{\isachardot}intro}.
wenzelm@20451
   505
wenzelm@20451
   506
  \medskip Name components are subdivided into \emph{symbols}, which
wenzelm@20451
   507
  constitute the smallest textual unit in Isabelle --- raw characters
wenzelm@20451
   508
  are normally not encountered.%
wenzelm@20438
   509
\end{isamarkuptext}%
wenzelm@20438
   510
\isamarkuptrue%
wenzelm@20438
   511
%
wenzelm@20438
   512
\isamarkupsubsection{Strings of symbols%
wenzelm@20438
   513
}
wenzelm@20438
   514
\isamarkuptrue%
wenzelm@20438
   515
%
wenzelm@20438
   516
\begin{isamarkuptext}%
wenzelm@20438
   517
Isabelle strings consist of a sequence of
wenzelm@20451
   518
  symbols\glossary{Symbol}{The smallest unit of text in Isabelle,
wenzelm@20451
   519
  subsumes plain ASCII characters as well as an infinite collection of
wenzelm@20451
   520
  named symbols (for greek, math etc.).}, which are either packed as
wenzelm@20451
   521
  an actual \isa{string}, or represented as a list.  Each symbol
wenzelm@20451
   522
  is in itself a small string of the following form:
wenzelm@20438
   523
wenzelm@20451
   524
  \begin{enumerate}
wenzelm@20438
   525
wenzelm@20451
   526
  \item either a singleton ASCII character ``\isa{c}'' (with
wenzelm@20451
   527
  character code 0--127), for example ``\verb,a,'',
wenzelm@20438
   528
wenzelm@20451
   529
  \item or a regular symbol ``\verb,\,\verb,<,\isa{ident}\verb,>,'', for example ``\verb,\,\verb,<alpha>,'',
wenzelm@20438
   530
wenzelm@20451
   531
  \item or a control symbol ``\verb,\,\verb,<^,\isa{ident}\verb,>,'', for example ``\verb,\,\verb,<^bold>,'',
wenzelm@20438
   532
wenzelm@20451
   533
  \item or a raw control symbol ``\verb,\,\verb,<^raw:,\isa{{\isasymdots}}\verb,>,'' where ``\isa{{\isasymdots}}'' refers to any printable ASCII
wenzelm@20451
   534
  character (excluding ``\verb,.,'' and ``\verb,>,'') or non-ASCII
wenzelm@20451
   535
  character, for example ``\verb,\,\verb,<^raw:$\sum_{i = 1}^n$>,'',
wenzelm@20438
   536
wenzelm@20451
   537
  \item or a numbered raw control symbol ``\verb,\,\verb,<^raw,\isa{nnn}\verb,>, where \isa{nnn} are digits, for example
wenzelm@20451
   538
  ``\verb,\,\verb,<^raw42>,''.
wenzelm@20438
   539
wenzelm@20451
   540
  \end{enumerate}
wenzelm@20438
   541
wenzelm@20451
   542
  The \isa{ident} syntax for symbol names is \isa{letter\ {\isacharparenleft}letter\ {\isacharbar}\ digit{\isacharparenright}\isactrlsup {\isacharasterisk}}, where \isa{letter\ {\isacharequal}\ A{\isachardot}{\isachardot}Za{\isachardot}{\isachardot}z} and
wenzelm@20451
   543
  \isa{digit\ {\isacharequal}\ {\isadigit{0}}{\isachardot}{\isachardot}{\isadigit{9}}}.  There are infinitely many regular symbols
wenzelm@20451
   544
  and control symbols available, but a certain collection of standard
wenzelm@20451
   545
  symbols is treated specifically.  For example,
wenzelm@20451
   546
  ``\verb,\,\verb,<alpha>,'' is classified as a (non-ASCII) letter,
wenzelm@20451
   547
  which means it may occur within regular Isabelle identifier syntax.
wenzelm@20438
   548
wenzelm@20451
   549
  Output of symbols depends on the print mode
wenzelm@20451
   550
  (\secref{sec:print-mode}).  For example, the standard {\LaTeX} setup
wenzelm@20451
   551
  of the Isabelle document preparation system would present
wenzelm@20451
   552
  ``\verb,\,\verb,<alpha>,'' as \isa{{\isasymalpha}}, and
wenzelm@20451
   553
  ``\verb,\,\verb,<^bold>,\verb,\,\verb,<alpha>,'' as \isa{\isactrlbold {\isasymalpha}}.
wenzelm@20438
   554
wenzelm@20451
   555
  \medskip It is important to note that the character set underlying
wenzelm@20451
   556
  Isabelle symbols is plain 7-bit ASCII.  Since 8-bit characters are
wenzelm@20451
   557
  passed through transparently, Isabelle may easily process
wenzelm@20451
   558
  Unicode/UCS data as well (using UTF-8 encoding).  Unicode provides
wenzelm@20451
   559
  its own collection of mathematical symbols, but there is no built-in
wenzelm@20451
   560
  link to the ones of Isabelle.%
wenzelm@20438
   561
\end{isamarkuptext}%
wenzelm@20438
   562
\isamarkuptrue%
wenzelm@20438
   563
%
wenzelm@20438
   564
\isadelimmlref
wenzelm@20438
   565
%
wenzelm@20438
   566
\endisadelimmlref
wenzelm@20438
   567
%
wenzelm@20438
   568
\isatagmlref
wenzelm@20438
   569
%
wenzelm@20438
   570
\begin{isamarkuptext}%
wenzelm@20438
   571
\begin{mldecls}
wenzelm@20438
   572
  \indexmltype{Symbol.symbol}\verb|type Symbol.symbol| \\
wenzelm@20438
   573
  \indexml{Symbol.explode}\verb|Symbol.explode: string -> Symbol.symbol list| \\
wenzelm@20438
   574
  \indexml{Symbol.is-letter}\verb|Symbol.is_letter: Symbol.symbol -> bool| \\
wenzelm@20438
   575
  \indexml{Symbol.is-digit}\verb|Symbol.is_digit: Symbol.symbol -> bool| \\
wenzelm@20438
   576
  \indexml{Symbol.is-quasi}\verb|Symbol.is_quasi: Symbol.symbol -> bool| \\
wenzelm@20451
   577
  \indexml{Symbol.is-blank}\verb|Symbol.is_blank: Symbol.symbol -> bool| \\[1ex]
wenzelm@20438
   578
  \indexmltype{Symbol.sym}\verb|type Symbol.sym| \\
wenzelm@20438
   579
  \indexml{Symbol.decode}\verb|Symbol.decode: Symbol.symbol -> Symbol.sym| \\
wenzelm@20438
   580
  \end{mldecls}
wenzelm@20438
   581
wenzelm@20438
   582
  \begin{description}
wenzelm@20438
   583
wenzelm@20451
   584
  \item \verb|Symbol.symbol| represents Isabelle symbols.  This
wenzelm@20451
   585
  type is an alias for \verb|string|, but emphasizes the
wenzelm@20438
   586
  specific format encountered here.
wenzelm@20438
   587
wenzelm@20447
   588
  \item \verb|Symbol.explode|~\isa{s} produces a symbol list from
wenzelm@20451
   589
  the packed form that is encountered in most practical situations.
wenzelm@20451
   590
  This function supercedes \verb|String.explode| for virtually all
wenzelm@20451
   591
  purposes of manipulating text in Isabelle!  Plain \verb|implode|
wenzelm@20451
   592
  may still be used for the reverse operation.
wenzelm@20438
   593
wenzelm@20438
   594
  \item \verb|Symbol.is_letter|, \verb|Symbol.is_digit|, \verb|Symbol.is_quasi|, \verb|Symbol.is_blank| classify certain symbols
wenzelm@20438
   595
  (both ASCII and several named ones) according to fixed syntactic
wenzelm@20451
   596
  conventions of Isabelle, cf.\ \cite{isabelle-isar-ref}.
wenzelm@20438
   597
wenzelm@20438
   598
  \item \verb|Symbol.sym| is a concrete datatype that represents
wenzelm@20451
   599
  the different kinds of symbols explicitly with constructors \verb|Symbol.Char|, \verb|Symbol.Sym|, \verb|Symbol.Ctrl|, or \verb|Symbol.Raw|.
wenzelm@20438
   600
wenzelm@20438
   601
  \item \verb|Symbol.decode| converts the string representation of a
wenzelm@20451
   602
  symbol into the datatype version.
wenzelm@20438
   603
wenzelm@20438
   604
  \end{description}%
wenzelm@20438
   605
\end{isamarkuptext}%
wenzelm@20438
   606
\isamarkuptrue%
wenzelm@20438
   607
%
wenzelm@20438
   608
\endisatagmlref
wenzelm@20438
   609
{\isafoldmlref}%
wenzelm@20438
   610
%
wenzelm@20438
   611
\isadelimmlref
wenzelm@20438
   612
%
wenzelm@20438
   613
\endisadelimmlref
wenzelm@20438
   614
%
wenzelm@20438
   615
\isamarkupsubsection{Qualified names and name spaces%
wenzelm@20438
   616
}
wenzelm@20438
   617
\isamarkuptrue%
wenzelm@20438
   618
%
wenzelm@20438
   619
\begin{isamarkuptext}%
wenzelm@20451
   620
A \emph{qualified name} essentially consists of a non-empty list of
wenzelm@20451
   621
  basic name components.  The packad notation uses a dot as separator,
wenzelm@20451
   622
  as in \isa{A{\isachardot}b}, for example.  The very last component is called
wenzelm@20451
   623
  \emph{base} name, the remaining prefix \emph{qualifier} (which may
wenzelm@20451
   624
  be empty).
wenzelm@20438
   625
wenzelm@20451
   626
  A \isa{naming} policy tells how to produce fully qualified names
wenzelm@20451
   627
  from a given specification.  The \isa{full} operation applies
wenzelm@20451
   628
  performs naming of a name; the policy is usually taken from the
wenzelm@20451
   629
  context.  For example, a common policy is to attach an implicit
wenzelm@20451
   630
  prefix.
wenzelm@20438
   631
wenzelm@20451
   632
  A \isa{name\ space} manages declarations of fully qualified
wenzelm@20451
   633
  names.  There are separate operations to \isa{declare}, \isa{intern}, and \isa{extern} names.
wenzelm@20438
   634
wenzelm@20451
   635
  FIXME%
wenzelm@20438
   636
\end{isamarkuptext}%
wenzelm@20438
   637
\isamarkuptrue%
wenzelm@20438
   638
%
wenzelm@20451
   639
\isadelimmlref
wenzelm@20451
   640
%
wenzelm@20451
   641
\endisadelimmlref
wenzelm@20451
   642
%
wenzelm@20451
   643
\isatagmlref
wenzelm@20451
   644
%
wenzelm@20451
   645
\begin{isamarkuptext}%
wenzelm@20451
   646
FIXME%
wenzelm@20451
   647
\end{isamarkuptext}%
wenzelm@20451
   648
\isamarkuptrue%
wenzelm@20451
   649
%
wenzelm@20451
   650
\endisatagmlref
wenzelm@20451
   651
{\isafoldmlref}%
wenzelm@20451
   652
%
wenzelm@20451
   653
\isadelimmlref
wenzelm@20451
   654
%
wenzelm@20451
   655
\endisadelimmlref
wenzelm@20451
   656
%
wenzelm@20438
   657
\isamarkupsection{Structured output%
wenzelm@20438
   658
}
wenzelm@20438
   659
\isamarkuptrue%
wenzelm@20438
   660
%
wenzelm@20438
   661
\isamarkupsubsection{Pretty printing%
wenzelm@20438
   662
}
wenzelm@20438
   663
\isamarkuptrue%
wenzelm@20438
   664
%
wenzelm@20438
   665
\begin{isamarkuptext}%
wenzelm@20438
   666
FIXME%
wenzelm@20438
   667
\end{isamarkuptext}%
wenzelm@20438
   668
\isamarkuptrue%
wenzelm@20438
   669
%
wenzelm@20438
   670
\isamarkupsubsection{Output channels%
wenzelm@20438
   671
}
wenzelm@20438
   672
\isamarkuptrue%
wenzelm@20438
   673
%
wenzelm@20438
   674
\begin{isamarkuptext}%
wenzelm@20438
   675
FIXME%
wenzelm@20438
   676
\end{isamarkuptext}%
wenzelm@20438
   677
\isamarkuptrue%
wenzelm@20438
   678
%
wenzelm@20451
   679
\isamarkupsubsection{Print modes \label{sec:print-mode}%
wenzelm@20438
   680
}
wenzelm@20438
   681
\isamarkuptrue%
wenzelm@20438
   682
%
wenzelm@20438
   683
\begin{isamarkuptext}%
wenzelm@20438
   684
FIXME%
wenzelm@20438
   685
\end{isamarkuptext}%
wenzelm@20438
   686
\isamarkuptrue%
wenzelm@20438
   687
%
wenzelm@18537
   688
\isadelimtheory
wenzelm@18537
   689
%
wenzelm@18537
   690
\endisadelimtheory
wenzelm@18537
   691
%
wenzelm@18537
   692
\isatagtheory
wenzelm@18537
   693
\isacommand{end}\isamarkupfalse%
wenzelm@18537
   694
%
wenzelm@18537
   695
\endisatagtheory
wenzelm@18537
   696
{\isafoldtheory}%
wenzelm@18537
   697
%
wenzelm@18537
   698
\isadelimtheory
wenzelm@18537
   699
%
wenzelm@18537
   700
\endisadelimtheory
wenzelm@18537
   701
\isanewline
wenzelm@18537
   702
\end{isabellebody}%
wenzelm@18537
   703
%%% Local Variables:
wenzelm@18537
   704
%%% mode: latex
wenzelm@18537
   705
%%% TeX-master: "root"
wenzelm@18537
   706
%%% End: