src/HOL/Extraction/Higman.thy
author haftmann
Mon, 13 Aug 2007 21:22:37 +0200
changeset 24249 1f60b45c5f97
parent 24221 dd4a7ea0e64a
child 24348 c708ea5b109a
permissions -rw-r--r--
renamed keyword "to" to "module_name"
berghofe@13405
     1
(*  Title:      HOL/Extraction/Higman.thy
berghofe@13405
     2
    ID:         $Id$
berghofe@13405
     3
    Author:     Stefan Berghofer, TU Muenchen
berghofe@13405
     4
                Monika Seisenberger, LMU Muenchen
berghofe@13405
     5
*)
berghofe@13405
     6
berghofe@13405
     7
header {* Higman's lemma *}
berghofe@13405
     8
haftmann@24221
     9
theory Higman
haftmann@24221
    10
imports Main (*"~~/src/HOL/ex/Random"*)
haftmann@24221
    11
begin
berghofe@13405
    12
berghofe@13405
    13
text {*
berghofe@13405
    14
  Formalization by Stefan Berghofer and Monika Seisenberger,
berghofe@13405
    15
  based on Coquand and Fridlender \cite{Coquand93}.
berghofe@13405
    16
*}
berghofe@13405
    17
berghofe@13405
    18
datatype letter = A | B
berghofe@13405
    19
berghofe@23747
    20
inductive emb :: "letter list \<Rightarrow> letter list \<Rightarrow> bool"
berghofe@22266
    21
where
berghofe@22266
    22
   emb0 [Pure.intro]: "emb [] bs"
berghofe@22266
    23
 | emb1 [Pure.intro]: "emb as bs \<Longrightarrow> emb as (b # bs)"
berghofe@22266
    24
 | emb2 [Pure.intro]: "emb as bs \<Longrightarrow> emb (a # as) (a # bs)"
berghofe@13405
    25
berghofe@23747
    26
inductive L :: "letter list \<Rightarrow> letter list list \<Rightarrow> bool"
berghofe@22266
    27
  for v :: "letter list"
berghofe@22266
    28
where
berghofe@22266
    29
   L0 [Pure.intro]: "emb w v \<Longrightarrow> L v (w # ws)"
berghofe@22266
    30
 | L1 [Pure.intro]: "L v ws \<Longrightarrow> L v (w # ws)"
berghofe@13405
    31
berghofe@23747
    32
inductive good :: "letter list list \<Rightarrow> bool"
berghofe@22266
    33
where
berghofe@22266
    34
    good0 [Pure.intro]: "L w ws \<Longrightarrow> good (w # ws)"
berghofe@22266
    35
  | good1 [Pure.intro]: "good ws \<Longrightarrow> good (w # ws)"
berghofe@13405
    36
berghofe@23747
    37
inductive R :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
berghofe@22266
    38
  for a :: letter
berghofe@22266
    39
where
berghofe@22266
    40
    R0 [Pure.intro]: "R a [] []"
berghofe@22266
    41
  | R1 [Pure.intro]: "R a vs ws \<Longrightarrow> R a (w # vs) ((a # w) # ws)"
berghofe@13405
    42
berghofe@23747
    43
inductive T :: "letter \<Rightarrow> letter list list \<Rightarrow> letter list list \<Rightarrow> bool"
berghofe@22266
    44
  for a :: letter
berghofe@22266
    45
where
berghofe@22266
    46
    T0 [Pure.intro]: "a \<noteq> b \<Longrightarrow> R b ws zs \<Longrightarrow> T a (w # zs) ((a # w) # zs)"
berghofe@22266
    47
  | T1 [Pure.intro]: "T a ws zs \<Longrightarrow> T a (w # ws) ((a # w) # zs)"
berghofe@22266
    48
  | T2 [Pure.intro]: "a \<noteq> b \<Longrightarrow> T a ws zs \<Longrightarrow> T a ws ((b # w) # zs)"
berghofe@13405
    49
berghofe@23747
    50
inductive bar :: "letter list list \<Rightarrow> bool"
berghofe@22266
    51
where
berghofe@22266
    52
    bar1 [Pure.intro]: "good ws \<Longrightarrow> bar ws"
berghofe@22266
    53
  | bar2 [Pure.intro]: "(\<And>w. bar (w # ws)) \<Longrightarrow> bar ws"
berghofe@13405
    54
berghofe@22266
    55
theorem prop1: "bar ([] # ws)" by iprover
berghofe@13405
    56
berghofe@22266
    57
theorem lemma1: "L as ws \<Longrightarrow> L (a # as) ws"
nipkow@17604
    58
  by (erule L.induct, iprover+)
berghofe@13405
    59
berghofe@22266
    60
lemma lemma2': "R a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
berghofe@13969
    61
  apply (induct set: R)
berghofe@22266
    62
  apply (erule L.cases)
berghofe@13405
    63
  apply simp+
berghofe@22266
    64
  apply (erule L.cases)
berghofe@13405
    65
  apply simp_all
berghofe@13405
    66
  apply (rule L0)
berghofe@13405
    67
  apply (erule emb2)
berghofe@13405
    68
  apply (erule L1)
berghofe@13405
    69
  done
berghofe@13969
    70
berghofe@22266
    71
lemma lemma2: "R a vs ws \<Longrightarrow> good vs \<Longrightarrow> good ws"
berghofe@13969
    72
  apply (induct set: R)
nipkow@17604
    73
  apply iprover
berghofe@22266
    74
  apply (erule good.cases)
berghofe@13405
    75
  apply simp_all
berghofe@13405
    76
  apply (rule good0)
berghofe@13405
    77
  apply (erule lemma2')
berghofe@13405
    78
  apply assumption
berghofe@13405
    79
  apply (erule good1)
berghofe@13405
    80
  done
berghofe@13405
    81
berghofe@22266
    82
lemma lemma3': "T a vs ws \<Longrightarrow> L as vs \<Longrightarrow> L (a # as) ws"
berghofe@13969
    83
  apply (induct set: T)
berghofe@22266
    84
  apply (erule L.cases)
berghofe@13405
    85
  apply simp_all
berghofe@13405
    86
  apply (rule L0)
berghofe@13405
    87
  apply (erule emb2)
berghofe@13405
    88
  apply (rule L1)
berghofe@13405
    89
  apply (erule lemma1)
berghofe@22266
    90
  apply (erule L.cases)
berghofe@13405
    91
  apply simp_all
nipkow@17604
    92
  apply iprover+
berghofe@13405
    93
  done
berghofe@13405
    94
berghofe@22266
    95
lemma lemma3: "T a ws zs \<Longrightarrow> good ws \<Longrightarrow> good zs"
berghofe@13969
    96
  apply (induct set: T)
berghofe@22266
    97
  apply (erule good.cases)
berghofe@13405
    98
  apply simp_all
berghofe@13405
    99
  apply (rule good0)
berghofe@13405
   100
  apply (erule lemma1)
berghofe@13405
   101
  apply (erule good1)
berghofe@22266
   102
  apply (erule good.cases)
berghofe@13405
   103
  apply simp_all
berghofe@13405
   104
  apply (rule good0)
berghofe@13405
   105
  apply (erule lemma3')
nipkow@17604
   106
  apply iprover+
berghofe@13405
   107
  done
berghofe@13405
   108
berghofe@22266
   109
lemma lemma4: "R a ws zs \<Longrightarrow> ws \<noteq> [] \<Longrightarrow> T a ws zs"
berghofe@13969
   110
  apply (induct set: R)
nipkow@17604
   111
  apply iprover
berghofe@13405
   112
  apply (case_tac vs)
berghofe@22266
   113
  apply (erule R.cases)
berghofe@13405
   114
  apply simp
berghofe@13405
   115
  apply (case_tac a)
berghofe@13405
   116
  apply (rule_tac b=B in T0)
berghofe@13405
   117
  apply simp
berghofe@13405
   118
  apply (rule R0)
berghofe@13405
   119
  apply (rule_tac b=A in T0)
berghofe@13405
   120
  apply simp
berghofe@13405
   121
  apply (rule R0)
berghofe@13405
   122
  apply simp
berghofe@13405
   123
  apply (rule T1)
berghofe@13405
   124
  apply simp
berghofe@13405
   125
  done
berghofe@13405
   126
berghofe@13930
   127
lemma letter_neq: "(a::letter) \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> c = b"
berghofe@13930
   128
  apply (case_tac a)
berghofe@13930
   129
  apply (case_tac b)
berghofe@13930
   130
  apply (case_tac c, simp, simp)
berghofe@13930
   131
  apply (case_tac c, simp, simp)
berghofe@13930
   132
  apply (case_tac b)
berghofe@13930
   133
  apply (case_tac c, simp, simp)
berghofe@13930
   134
  apply (case_tac c, simp, simp)
berghofe@13930
   135
  done
berghofe@13405
   136
berghofe@13930
   137
lemma letter_eq_dec: "(a::letter) = b \<or> a \<noteq> b"
berghofe@13405
   138
  apply (case_tac a)
berghofe@13405
   139
  apply (case_tac b)
berghofe@13405
   140
  apply simp
berghofe@13405
   141
  apply simp
berghofe@13405
   142
  apply (case_tac b)
berghofe@13405
   143
  apply simp
berghofe@13405
   144
  apply simp
berghofe@13405
   145
  done
berghofe@13405
   146
berghofe@13930
   147
theorem prop2:
berghofe@22266
   148
  assumes ab: "a \<noteq> b" and bar: "bar xs"
berghofe@22266
   149
  shows "\<And>ys zs. bar ys \<Longrightarrow> T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs" using bar
berghofe@13930
   150
proof induct
wenzelm@23373
   151
  fix xs zs assume "T a xs zs" and "good xs"
wenzelm@23373
   152
  hence "good zs" by (rule lemma3)
wenzelm@23373
   153
  then show "bar zs" by (rule bar1)
berghofe@13930
   154
next
berghofe@13930
   155
  fix xs ys
berghofe@22266
   156
  assume I: "\<And>w ys zs. bar ys \<Longrightarrow> T a (w # xs) zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
berghofe@22266
   157
  assume "bar ys"
berghofe@22266
   158
  thus "\<And>zs. T a xs zs \<Longrightarrow> T b ys zs \<Longrightarrow> bar zs"
berghofe@13930
   159
  proof induct
wenzelm@23373
   160
    fix ys zs assume "T b ys zs" and "good ys"
wenzelm@23373
   161
    then have "good zs" by (rule lemma3)
wenzelm@23373
   162
    then show "bar zs" by (rule bar1)
berghofe@13930
   163
  next
berghofe@22266
   164
    fix ys zs assume I': "\<And>w zs. T a xs zs \<Longrightarrow> T b (w # ys) zs \<Longrightarrow> bar zs"
berghofe@22266
   165
    and ys: "\<And>w. bar (w # ys)" and Ta: "T a xs zs" and Tb: "T b ys zs"
berghofe@22266
   166
    show "bar zs"
berghofe@13930
   167
    proof (rule bar2)
berghofe@13930
   168
      fix w
berghofe@22266
   169
      show "bar (w # zs)"
berghofe@13930
   170
      proof (cases w)
berghofe@13930
   171
	case Nil
berghofe@13930
   172
	thus ?thesis by simp (rule prop1)
berghofe@13930
   173
      next
berghofe@13930
   174
	case (Cons c cs)
berghofe@13930
   175
	from letter_eq_dec show ?thesis
berghofe@13930
   176
	proof
berghofe@13930
   177
	  assume ca: "c = a"
berghofe@22266
   178
	  from ab have "bar ((a # cs) # zs)" by (iprover intro: I ys Ta Tb)
berghofe@13930
   179
	  thus ?thesis by (simp add: Cons ca)
berghofe@13930
   180
	next
berghofe@13930
   181
	  assume "c \<noteq> a"
berghofe@13930
   182
	  with ab have cb: "c = b" by (rule letter_neq)
berghofe@22266
   183
	  from ab have "bar ((b # cs) # zs)" by (iprover intro: I' Ta Tb)
berghofe@13930
   184
	  thus ?thesis by (simp add: Cons cb)
berghofe@13930
   185
	qed
berghofe@13930
   186
      qed
berghofe@13930
   187
    qed
berghofe@13930
   188
  qed
berghofe@13930
   189
qed
berghofe@13405
   190
berghofe@13930
   191
theorem prop3:
berghofe@22266
   192
  assumes bar: "bar xs"
berghofe@22266
   193
  shows "\<And>zs. xs \<noteq> [] \<Longrightarrow> R a xs zs \<Longrightarrow> bar zs" using bar
berghofe@13930
   194
proof induct
berghofe@13930
   195
  fix xs zs
wenzelm@23373
   196
  assume "R a xs zs" and "good xs"
wenzelm@23373
   197
  then have "good zs" by (rule lemma2)
wenzelm@23373
   198
  then show "bar zs" by (rule bar1)
berghofe@13930
   199
next
berghofe@13930
   200
  fix xs zs
berghofe@22266
   201
  assume I: "\<And>w zs. w # xs \<noteq> [] \<Longrightarrow> R a (w # xs) zs \<Longrightarrow> bar zs"
berghofe@22266
   202
  and xsb: "\<And>w. bar (w # xs)" and xsn: "xs \<noteq> []" and R: "R a xs zs"
berghofe@22266
   203
  show "bar zs"
berghofe@13930
   204
  proof (rule bar2)
berghofe@13930
   205
    fix w
berghofe@22266
   206
    show "bar (w # zs)"
berghofe@13930
   207
    proof (induct w)
berghofe@13930
   208
      case Nil
berghofe@13930
   209
      show ?case by (rule prop1)
berghofe@13930
   210
    next
berghofe@13930
   211
      case (Cons c cs)
berghofe@13930
   212
      from letter_eq_dec show ?case
berghofe@13930
   213
      proof
berghofe@13930
   214
	assume "c = a"
nipkow@17604
   215
	thus ?thesis by (iprover intro: I [simplified] R)
berghofe@13930
   216
      next
berghofe@22266
   217
	from R xsn have T: "T a xs zs" by (rule lemma4)
berghofe@13930
   218
	assume "c \<noteq> a"
nipkow@17604
   219
	thus ?thesis by (iprover intro: prop2 Cons xsb xsn R T)
berghofe@13930
   220
      qed
berghofe@13930
   221
    qed
berghofe@13930
   222
  qed
berghofe@13930
   223
qed
berghofe@13405
   224
berghofe@22266
   225
theorem higman: "bar []"
berghofe@13930
   226
proof (rule bar2)
berghofe@13930
   227
  fix w
berghofe@22266
   228
  show "bar [w]"
berghofe@13930
   229
  proof (induct w)
berghofe@22266
   230
    show "bar [[]]" by (rule prop1)
berghofe@13930
   231
  next
berghofe@22266
   232
    fix c cs assume "bar [cs]"
berghofe@22266
   233
    thus "bar [c # cs]" by (rule prop3) (simp, iprover)
berghofe@13930
   234
  qed
berghofe@13930
   235
qed
berghofe@13405
   236
berghofe@13405
   237
consts
berghofe@13405
   238
  is_prefix :: "'a list \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool"
berghofe@13405
   239
berghofe@13405
   240
primrec
berghofe@13405
   241
  "is_prefix [] f = True"
berghofe@13405
   242
  "is_prefix (x # xs) f = (x = f (length xs) \<and> is_prefix xs f)"
berghofe@13405
   243
berghofe@22266
   244
theorem L_idx:
berghofe@22266
   245
  assumes L: "L w ws"
berghofe@22266
   246
  shows "is_prefix ws f \<Longrightarrow> \<exists>i. emb (f i) w \<and> i < length ws" using L
berghofe@22266
   247
proof induct
berghofe@22266
   248
  case (L0 v ws)
berghofe@22266
   249
  hence "emb (f (length ws)) w" by simp
berghofe@22266
   250
  moreover have "length ws < length (v # ws)" by simp
berghofe@22266
   251
  ultimately show ?case by iprover
berghofe@22266
   252
next
berghofe@22266
   253
  case (L1 ws v)
berghofe@22266
   254
  then obtain i where emb: "emb (f i) w" and "i < length ws"
berghofe@22266
   255
    by simp iprover
berghofe@22266
   256
  hence "i < length (v # ws)" by simp
berghofe@22266
   257
  with emb show ?case by iprover
berghofe@22266
   258
qed
berghofe@22266
   259
berghofe@22266
   260
theorem good_idx:
berghofe@22266
   261
  assumes good: "good ws"
berghofe@22266
   262
  shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using good
berghofe@22266
   263
proof induct
berghofe@22266
   264
  case (good0 w ws)
berghofe@22266
   265
  hence "w = f (length ws)" and "is_prefix ws f" by simp_all
berghofe@22266
   266
  with good0 show ?case by (iprover dest: L_idx)
berghofe@22266
   267
next
berghofe@22266
   268
  case (good1 ws w)
berghofe@22266
   269
  thus ?case by simp
berghofe@22266
   270
qed
berghofe@22266
   271
berghofe@22266
   272
theorem bar_idx:
berghofe@22266
   273
  assumes bar: "bar ws"
berghofe@22266
   274
  shows "is_prefix ws f \<Longrightarrow> \<exists>i j. emb (f i) (f j) \<and> i < j" using bar
berghofe@22266
   275
proof induct
berghofe@22266
   276
  case (bar1 ws)
berghofe@22266
   277
  thus ?case by (rule good_idx)
berghofe@22266
   278
next
berghofe@22266
   279
  case (bar2 ws)
berghofe@22266
   280
  hence "is_prefix (f (length ws) # ws) f" by simp
berghofe@22266
   281
  thus ?case by (rule bar2)
berghofe@22266
   282
qed
berghofe@22266
   283
berghofe@22266
   284
text {*
berghofe@22266
   285
Strong version: yields indices of words that can be embedded into each other.
berghofe@22266
   286
*}
berghofe@22266
   287
berghofe@22266
   288
theorem higman_idx: "\<exists>(i::nat) j. emb (f i) (f j) \<and> i < j"
berghofe@22266
   289
proof (rule bar_idx)
berghofe@22266
   290
  show "bar []" by (rule higman)
berghofe@22266
   291
  show "is_prefix [] f" by simp
berghofe@22266
   292
qed
berghofe@22266
   293
berghofe@22266
   294
text {*
berghofe@22266
   295
Weak version: only yield sequence containing words
berghofe@22266
   296
that can be embedded into each other.
berghofe@22266
   297
*}
berghofe@22266
   298
berghofe@13405
   299
theorem good_prefix_lemma:
berghofe@22266
   300
  assumes bar: "bar ws"
berghofe@22266
   301
  shows "is_prefix ws f \<Longrightarrow> \<exists>vs. is_prefix vs f \<and> good vs" using bar
berghofe@13930
   302
proof induct
berghofe@13930
   303
  case bar1
nipkow@17604
   304
  thus ?case by iprover
berghofe@13930
   305
next
berghofe@13930
   306
  case (bar2 ws)
wenzelm@23373
   307
  from bar2.prems have "is_prefix (f (length ws) # ws) f" by simp
nipkow@17604
   308
  thus ?case by (iprover intro: bar2)
berghofe@13930
   309
qed
berghofe@13405
   310
berghofe@22266
   311
theorem good_prefix: "\<exists>vs. is_prefix vs f \<and> good vs"
berghofe@13930
   312
  using higman
berghofe@13930
   313
  by (rule good_prefix_lemma) simp+
berghofe@13405
   314
berghofe@13711
   315
subsection {* Extracting the program *}
berghofe@13405
   316
berghofe@22266
   317
declare R.induct [ind_realizer]
berghofe@22266
   318
declare T.induct [ind_realizer]
berghofe@22266
   319
declare L.induct [ind_realizer]
berghofe@22266
   320
declare good.induct [ind_realizer]
berghofe@13711
   321
declare bar.induct [ind_realizer]
berghofe@13405
   322
berghofe@22266
   323
extract higman_idx
berghofe@13405
   324
berghofe@13405
   325
text {*
berghofe@22266
   326
  Program extracted from the proof of @{text higman_idx}:
berghofe@22266
   327
  @{thm [display] higman_idx_def [no_vars]}
berghofe@13405
   328
  Corresponding correctness theorem:
berghofe@22266
   329
  @{thm [display] higman_idx_correctness [no_vars]}
berghofe@13405
   330
  Program extracted from the proof of @{text higman}:
berghofe@13405
   331
  @{thm [display] higman_def [no_vars]}
berghofe@13405
   332
  Program extracted from the proof of @{text prop1}:
berghofe@13405
   333
  @{thm [display] prop1_def [no_vars]}
berghofe@13405
   334
  Program extracted from the proof of @{text prop2}:
berghofe@13405
   335
  @{thm [display] prop2_def [no_vars]}
berghofe@13405
   336
  Program extracted from the proof of @{text prop3}:
berghofe@13405
   337
  @{thm [display] prop3_def [no_vars]}
berghofe@13405
   338
*}
berghofe@13405
   339
haftmann@24221
   340
haftmann@24221
   341
subsection {* Some examples *}
haftmann@24221
   342
haftmann@24221
   343
(* an attempt to express examples in HOL -- function
haftmann@24221
   344
  mk_word :: "nat \<Rightarrow> randseed \<Rightarrow> letter list \<times> randseed"
haftmann@24221
   345
where
haftmann@24221
   346
  "mk_word k = (do
haftmann@24221
   347
     i \<leftarrow> random 10;
haftmann@24221
   348
     (if i > 7 \<and> k > 2 \<or> k > 1000 then return []
haftmann@24221
   349
     else do
haftmann@24221
   350
       let l = (if i mod 2 = 0 then A else B);
haftmann@24221
   351
       ls \<leftarrow> mk_word (Suc k);
haftmann@24221
   352
       return (l # ls)
haftmann@24221
   353
     done)
haftmann@24221
   354
   done)"
haftmann@24221
   355
by pat_completeness auto
haftmann@24221
   356
termination by (relation "measure ((op -) 1001)") auto
haftmann@24221
   357
haftmann@24221
   358
fun
haftmann@24221
   359
  mk_word' :: "nat \<Rightarrow> randseed \<Rightarrow> letter list \<times> randseed"
haftmann@24221
   360
where
haftmann@24221
   361
  "mk_word' 0 = mk_word 0"
haftmann@24221
   362
  | "mk_word' (Suc n) = (do _ \<leftarrow> mk_word 0; mk_word' n done)"*)
haftmann@24221
   363
berghofe@22266
   364
consts_code
haftmann@22921
   365
  "arbitrary :: LT"  ("({* L0 [] [] *})")
haftmann@22921
   366
  "arbitrary :: TT"  ("({* T0 A [] [] [] R0 *})")
berghofe@22266
   367
berghofe@17145
   368
code_module Higman
berghofe@17145
   369
contains
haftmann@24221
   370
  higman = higman_idx
berghofe@13405
   371
berghofe@13405
   372
ML {*
berghofe@17145
   373
local open Higman in
berghofe@17145
   374
berghofe@13405
   375
val a = 16807.0;
berghofe@13405
   376
val m = 2147483647.0;
berghofe@13405
   377
berghofe@13405
   378
fun nextRand seed =
berghofe@13405
   379
  let val t = a*seed
berghofe@13405
   380
  in  t - m * real (Real.floor(t/m)) end;
berghofe@13405
   381
berghofe@13405
   382
fun mk_word seed l =
berghofe@13405
   383
  let
berghofe@13405
   384
    val r = nextRand seed;
berghofe@13405
   385
    val i = Real.round (r / m * 10.0);
berghofe@13405
   386
  in if i > 7 andalso l > 2 then (r, []) else
berghofe@13405
   387
    apsnd (cons (if i mod 2 = 0 then A else B)) (mk_word r (l+1))
berghofe@13405
   388
  end;
berghofe@13405
   389
berghofe@22266
   390
fun f s zero = mk_word s 0
berghofe@13405
   391
  | f s (Suc n) = f (fst (mk_word s 0)) n;
berghofe@13405
   392
berghofe@13405
   393
val g1 = snd o (f 20000.0);
berghofe@13405
   394
berghofe@13405
   395
val g2 = snd o (f 50000.0);
berghofe@13405
   396
berghofe@22266
   397
fun f1 zero = [A,A]
berghofe@22266
   398
  | f1 (Suc zero) = [B]
berghofe@22266
   399
  | f1 (Suc (Suc zero)) = [A,B]
berghofe@13405
   400
  | f1 _ = [];
berghofe@13405
   401
berghofe@22266
   402
fun f2 zero = [A,A]
berghofe@22266
   403
  | f2 (Suc zero) = [B]
berghofe@22266
   404
  | f2 (Suc (Suc zero)) = [B,A]
berghofe@13405
   405
  | f2 _ = [];
berghofe@13405
   406
haftmann@24221
   407
val (i1, j1) = higman g1;
berghofe@22266
   408
val (v1, w1) = (g1 i1, g1 j1);
haftmann@24221
   409
val (i2, j2) = higman g2;
berghofe@22266
   410
val (v2, w2) = (g2 i2, g2 j2);
haftmann@24221
   411
val (i3, j3) = higman f1;
berghofe@22266
   412
val (v3, w3) = (f1 i3, f1 j3);
haftmann@24221
   413
val (i4, j4) = higman f2;
berghofe@22266
   414
val (v4, w4) = (f2 i4, f2 j4);
berghofe@17145
   415
berghofe@17145
   416
end;
berghofe@13405
   417
*}
berghofe@13405
   418
berghofe@22266
   419
definition
haftmann@24221
   420
  arbitrary_LT :: LT where
berghofe@22266
   421
  [symmetric, code inline]: "arbitrary_LT = arbitrary"
berghofe@22266
   422
berghofe@22266
   423
definition
haftmann@24221
   424
  arbitrary_TT :: TT where
berghofe@22266
   425
  [symmetric, code inline]: "arbitrary_TT = arbitrary"
berghofe@22266
   426
haftmann@24221
   427
code_datatype L0 L1 arbitrary_LT
haftmann@24221
   428
code_datatype T0 T1 T2 arbitrary_TT
berghofe@22266
   429
haftmann@24249
   430
code_gen higman_idx in SML module_name Higman
haftmann@20837
   431
haftmann@20837
   432
ML {*
haftmann@20837
   433
local
haftmann@23810
   434
  open Higman
haftmann@20837
   435
in
haftmann@20837
   436
haftmann@20837
   437
val a = 16807.0;
haftmann@20837
   438
val m = 2147483647.0;
haftmann@20837
   439
haftmann@20837
   440
fun nextRand seed =
haftmann@20837
   441
  let val t = a*seed
haftmann@20837
   442
  in  t - m * real (Real.floor(t/m)) end;
haftmann@20837
   443
haftmann@20837
   444
fun mk_word seed l =
haftmann@20837
   445
  let
haftmann@20837
   446
    val r = nextRand seed;
haftmann@20837
   447
    val i = Real.round (r / m * 10.0);
haftmann@20837
   448
  in if i > 7 andalso l > 2 then (r, []) else
haftmann@20837
   449
    apsnd (cons (if i mod 2 = 0 then A else B)) (mk_word r (l+1))
haftmann@20837
   450
  end;
haftmann@20837
   451
berghofe@22266
   452
fun f s Zero_nat = mk_word s 0
haftmann@21196
   453
  | f s (Suc n) = f (fst (mk_word s 0)) n;
haftmann@20837
   454
haftmann@20837
   455
val g1 = snd o (f 20000.0);
haftmann@20837
   456
haftmann@20837
   457
val g2 = snd o (f 50000.0);
haftmann@20837
   458
berghofe@22266
   459
fun f1 Zero_nat = [A,A]
berghofe@22266
   460
  | f1 (Suc Zero_nat) = [B]
berghofe@22266
   461
  | f1 (Suc (Suc Zero_nat)) = [A,B]
haftmann@20837
   462
  | f1 _ = [];
haftmann@20837
   463
berghofe@22266
   464
fun f2 Zero_nat = [A,A]
berghofe@22266
   465
  | f2 (Suc Zero_nat) = [B]
berghofe@22266
   466
  | f2 (Suc (Suc Zero_nat)) = [B,A]
haftmann@20837
   467
  | f2 _ = [];
haftmann@20837
   468
berghofe@22266
   469
val (i1, j1) = higman_idx g1;
berghofe@22266
   470
val (v1, w1) = (g1 i1, g1 j1);
berghofe@22266
   471
val (i2, j2) = higman_idx g2;
berghofe@22266
   472
val (v2, w2) = (g2 i2, g2 j2);
berghofe@22266
   473
val (i3, j3) = higman_idx f1;
berghofe@22266
   474
val (v3, w3) = (f1 i3, f1 j3);
berghofe@22266
   475
val (i4, j4) = higman_idx f2;
berghofe@22266
   476
val (v4, w4) = (f2 i4, f2 j4);
haftmann@20837
   477
haftmann@20837
   478
end;
haftmann@21152
   479
*}
haftmann@20837
   480
berghofe@13405
   481
end