doc-src/TutorialI/ToyList/document/ToyList.tex
author nipkow
Mon, 16 Aug 2004 19:47:01 +0200
changeset 15136 1275417e3930
parent 13978 a241cdd9c1c9
child 15141 a95c2ff210ba
permissions -rw-r--r--
Adapted text to new theory header syntax.
nipkow@9722
     1
%
nipkow@9722
     2
\begin{isabellebody}%
wenzelm@9924
     3
\def\isabellecontext{ToyList}%
nipkow@15136
     4
\isacommand{theory}\ ToyList\isanewline
nipkow@15136
     5
\isakeyword{import}\ PreList\isanewline
nipkow@15136
     6
\isakeyword{begin}\isamarkupfalse%
wenzelm@11866
     7
%
nipkow@8749
     8
\begin{isamarkuptext}%
nipkow@8749
     9
\noindent
nipkow@8771
    10
HOL already has a predefined theory of lists called \isa{List} ---
nipkow@8771
    11
\isa{ToyList} is merely a small fragment of it chosen as an example. In
nipkow@8749
    12
contrast to what is recommended in \S\ref{sec:Basic:Theories},
nipkow@8771
    13
\isa{ToyList} is not based on \isa{Main} but on \isa{PreList}, a
nipkow@8749
    14
theory that contains pretty much everything but lists, thus avoiding
nipkow@8749
    15
ambiguities caused by defining lists twice.%
nipkow@8749
    16
\end{isamarkuptext}%
wenzelm@11866
    17
\isamarkuptrue%
wenzelm@9674
    18
\isacommand{datatype}\ {\isacharprime}a\ list\ {\isacharequal}\ Nil\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharbrackleft}{\isacharbrackright}{\isachardoublequote}{\isacharparenright}\isanewline
wenzelm@11866
    19
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\isacharbar}\ Cons\ {\isacharprime}a\ {\isachardoublequote}{\isacharprime}a\ list{\isachardoublequote}\ \ \ \ \ \ \ \ \ \ \ \ {\isacharparenleft}\isakeyword{infixr}\ {\isachardoublequote}{\isacharhash}{\isachardoublequote}\ {\isadigit{6}}{\isadigit{5}}{\isacharparenright}\isamarkupfalse%
wenzelm@11866
    20
%
nipkow@8749
    21
\begin{isamarkuptext}%
nipkow@8749
    22
\noindent
nipkow@12327
    23
The datatype\index{datatype@\isacommand {datatype} (command)}
nipkow@12327
    24
\tydx{list} introduces two
paulson@11428
    25
constructors \cdx{Nil} and \cdx{Cons}, the
nipkow@9541
    26
empty~list and the operator that adds an element to the front of a list. For
nipkow@9792
    27
example, the term \isa{Cons True (Cons False Nil)} is a value of
nipkow@9792
    28
type \isa{bool\ list}, namely the list with the elements \isa{True} and
paulson@11450
    29
\isa{False}. Because this notation quickly becomes unwieldy, the
nipkow@8749
    30
datatype declaration is annotated with an alternative syntax: instead of
nipkow@9541
    31
\isa{Nil} and \isa{Cons x xs} we can write
nipkow@9792
    32
\isa{{\isacharbrackleft}{\isacharbrackright}}\index{$HOL2list@\texttt{[]}|bold} and
nipkow@9792
    33
\isa{x\ {\isacharhash}\ xs}\index{$HOL2list@\texttt{\#}|bold}. In fact, this
paulson@11450
    34
alternative syntax is the familiar one.  Thus the list \isa{Cons True
wenzelm@9674
    35
(Cons False Nil)} becomes \isa{True\ {\isacharhash}\ False\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}}. The annotation
paulson@11428
    36
\isacommand{infixr}\index{infixr@\isacommand{infixr} (annotation)} 
paulson@11428
    37
means that \isa{{\isacharhash}} associates to
paulson@11450
    38
the right: the term \isa{x\ {\isacharhash}\ y\ {\isacharhash}\ z} is read as \isa{x\ {\isacharhash}\ {\isacharparenleft}y\ {\isacharhash}\ z{\isacharparenright}}
nipkow@9792
    39
and not as \isa{{\isacharparenleft}x\ {\isacharhash}\ y{\isacharparenright}\ {\isacharhash}\ z}.
nipkow@10971
    40
The \isa{{\isadigit{6}}{\isadigit{5}}} is the priority of the infix \isa{{\isacharhash}}.
nipkow@8749
    41
nipkow@8749
    42
\begin{warn}
nipkow@13191
    43
  Syntax annotations can be powerful, but they are difficult to master and 
paulson@11456
    44
  are never necessary.  You
nipkow@8771
    45
  could drop them from theory \isa{ToyList} and go back to the identifiers
paulson@10795
    46
  \isa{Nil} and \isa{Cons}.
paulson@11456
    47
  Novices should avoid using
paulson@10795
    48
  syntax annotations in their own theories.
nipkow@8749
    49
\end{warn}
paulson@11428
    50
Next, two functions \isa{app} and \cdx{rev} are declared:%
nipkow@8749
    51
\end{isamarkuptext}%
wenzelm@11866
    52
\isamarkuptrue%
nipkow@10187
    53
\isacommand{consts}\ app\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list{\isachardoublequote}\ \ \ {\isacharparenleft}\isakeyword{infixr}\ {\isachardoublequote}{\isacharat}{\isachardoublequote}\ {\isadigit{6}}{\isadigit{5}}{\isacharparenright}\isanewline
wenzelm@11866
    54
\ \ \ \ \ \ \ rev\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a\ list{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
    55
%
nipkow@8749
    56
\begin{isamarkuptext}%
nipkow@8749
    57
\noindent
nipkow@10971
    58
In contrast to many functional programming languages,
nipkow@10971
    59
Isabelle insists on explicit declarations of all functions
paulson@11456
    60
(keyword \commdx{consts}).  Apart from the declaration-before-use
nipkow@10971
    61
restriction, the order of items in a theory file is unconstrained. Function
nipkow@10790
    62
\isa{app} is annotated with concrete syntax too. Instead of the
nipkow@10790
    63
prefix syntax \isa{app\ xs\ ys} the infix
nipkow@9792
    64
\isa{xs\ {\isacharat}\ ys}\index{$HOL2list@\texttt{\at}|bold} becomes the preferred
nipkow@8749
    65
form. Both functions are defined recursively:%
nipkow@8749
    66
\end{isamarkuptext}%
wenzelm@11866
    67
\isamarkuptrue%
nipkow@8749
    68
\isacommand{primrec}\isanewline
wenzelm@9674
    69
{\isachardoublequote}{\isacharbrackleft}{\isacharbrackright}\ {\isacharat}\ ys\ \ \ \ \ \ \ {\isacharequal}\ ys{\isachardoublequote}\isanewline
wenzelm@9674
    70
{\isachardoublequote}{\isacharparenleft}x\ {\isacharhash}\ xs{\isacharparenright}\ {\isacharat}\ ys\ {\isacharequal}\ x\ {\isacharhash}\ {\isacharparenleft}xs\ {\isacharat}\ ys{\isacharparenright}{\isachardoublequote}\isanewline
nipkow@8749
    71
\isanewline
wenzelm@11866
    72
\isamarkupfalse%
nipkow@8749
    73
\isacommand{primrec}\isanewline
wenzelm@9674
    74
{\isachardoublequote}rev\ {\isacharbrackleft}{\isacharbrackright}\ \ \ \ \ \ \ \ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}{\isachardoublequote}\isanewline
wenzelm@11866
    75
{\isachardoublequote}rev\ {\isacharparenleft}x\ {\isacharhash}\ xs{\isacharparenright}\ \ {\isacharequal}\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharat}\ {\isacharparenleft}x\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
    76
%
nipkow@8749
    77
\begin{isamarkuptext}%
paulson@11456
    78
\noindent\index{*rev (constant)|(}\index{append function|(}
nipkow@10790
    79
The equations for \isa{app} and \isa{rev} hardly need comments:
nipkow@10790
    80
\isa{app} appends two lists and \isa{rev} reverses a list.  The
paulson@11428
    81
keyword \commdx{primrec} indicates that the recursion is
nipkow@10790
    82
of a particularly primitive kind where each recursive call peels off a datatype
nipkow@8771
    83
constructor from one of the arguments.  Thus the
nipkow@10654
    84
recursion always terminates, i.e.\ the function is \textbf{total}.
paulson@11428
    85
\index{functions!total}
nipkow@8749
    86
nipkow@8749
    87
The termination requirement is absolutely essential in HOL, a logic of total
nipkow@8749
    88
functions. If we were to drop it, inconsistencies would quickly arise: the
nipkow@8749
    89
``definition'' $f(n) = f(n)+1$ immediately leads to $0 = 1$ by subtracting
nipkow@8749
    90
$f(n)$ on both sides.
nipkow@8749
    91
% However, this is a subtle issue that we cannot discuss here further.
nipkow@8749
    92
nipkow@8749
    93
\begin{warn}
paulson@11456
    94
  As we have indicated, the requirement for total functions is an essential characteristic of HOL\@. It is only
nipkow@8749
    95
  because of totality that reasoning in HOL is comparatively easy.  More
paulson@11456
    96
  generally, the philosophy in HOL is to refrain from asserting arbitrary axioms (such as
nipkow@8749
    97
  function definitions whose totality has not been proved) because they
nipkow@8749
    98
  quickly lead to inconsistencies. Instead, fixed constructs for introducing
nipkow@8749
    99
  types and functions are offered (such as \isacommand{datatype} and
nipkow@8749
   100
  \isacommand{primrec}) which are guaranteed to preserve consistency.
nipkow@8749
   101
\end{warn}
nipkow@8749
   102
paulson@11456
   103
\index{syntax}%
nipkow@8749
   104
A remark about syntax.  The textual definition of a theory follows a fixed
nipkow@10971
   105
syntax with keywords like \isacommand{datatype} and \isacommand{end}.
nipkow@10971
   106
% (see Fig.~\ref{fig:keywords} in Appendix~\ref{sec:Appendix} for a full list).
nipkow@8749
   107
Embedded in this syntax are the types and formulae of HOL, whose syntax is
wenzelm@12627
   108
extensible (see \S\ref{sec:concrete-syntax}), e.g.\ by new user-defined infix operators.
nipkow@10971
   109
To distinguish the two levels, everything
nipkow@8749
   110
HOL-specific (terms and types) should be enclosed in
nipkow@8749
   111
\texttt{"}\dots\texttt{"}. 
nipkow@8749
   112
To lessen this burden, quotation marks around a single identifier can be
nipkow@8749
   113
dropped, unless the identifier happens to be a keyword, as in%
nipkow@8749
   114
\end{isamarkuptext}%
wenzelm@11866
   115
\isamarkuptrue%
wenzelm@11866
   116
\isacommand{consts}\ {\isachardoublequote}end{\isachardoublequote}\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ list\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
   117
%
nipkow@8749
   118
\begin{isamarkuptext}%
nipkow@8749
   119
\noindent
nipkow@8749
   120
When Isabelle prints a syntax error message, it refers to the HOL syntax as
paulson@11456
   121
the \textbf{inner syntax} and the enclosing theory language as the \textbf{outer syntax}.
nipkow@8749
   122
nipkow@8749
   123
paulson@10878
   124
\section{An Introductory Proof}
nipkow@8749
   125
\label{sec:intro-proof}
nipkow@8749
   126
nipkow@8749
   127
Assuming you have input the declarations and definitions of \texttt{ToyList}
nipkow@8749
   128
presented so far, we are ready to prove a few simple theorems. This will
nipkow@8749
   129
illustrate not just the basic proof commands but also the typical proof
nipkow@8749
   130
process.
nipkow@8749
   131
paulson@11457
   132
\subsubsection*{Main Goal.}
nipkow@8749
   133
nipkow@8749
   134
Our goal is to show that reversing a list twice produces the original
paulson@11456
   135
list.%
nipkow@8749
   136
\end{isamarkuptext}%
wenzelm@11866
   137
\isamarkuptrue%
wenzelm@11866
   138
\isacommand{theorem}\ rev{\isacharunderscore}rev\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}rev{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
   139
%
nipkow@8749
   140
\begin{isamarkuptxt}%
paulson@11428
   141
\index{theorem@\isacommand {theorem} (command)|bold}%
paulson@10795
   142
\noindent
paulson@11456
   143
This \isacommand{theorem} command does several things:
nipkow@8749
   144
\begin{itemize}
nipkow@8749
   145
\item
paulson@11456
   146
It establishes a new theorem to be proved, namely \isa{rev\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs}.
nipkow@8749
   147
\item
paulson@11456
   148
It gives that theorem the name \isa{rev{\isacharunderscore}rev}, for later reference.
nipkow@8749
   149
\item
paulson@11456
   150
It tells Isabelle (via the bracketed attribute \attrdx{simp}) to take the eventual theorem as a simplification rule: future proofs involving
nipkow@9792
   151
simplification will replace occurrences of \isa{rev\ {\isacharparenleft}rev\ xs{\isacharparenright}} by
nipkow@8749
   152
\isa{xs}.
paulson@11457
   153
\end{itemize}
nipkow@8749
   154
The name and the simplification attribute are optional.
nipkow@12332
   155
Isabelle's response is to print the initial proof state consisting
nipkow@12332
   156
of some header information (like how many subgoals there are) followed by
nipkow@12332
   157
\begin{isabelle}%
nipkow@12332
   158
\ {\isadigit{1}}{\isachardot}\ rev\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs%
nipkow@9723
   159
\end{isabelle}
nipkow@12332
   160
For compactness reasons we omit the header in this tutorial.
nipkow@12332
   161
Until we have finished a proof, the \rmindex{proof state} proper
nipkow@12332
   162
always looks like this:
nipkow@9723
   163
\begin{isabelle}
nipkow@8749
   164
~1.~$G\sb{1}$\isanewline
nipkow@8749
   165
~~\vdots~~\isanewline
nipkow@8749
   166
~$n$.~$G\sb{n}$
nipkow@9723
   167
\end{isabelle}
paulson@13978
   168
The numbered lines contain the subgoals $G\sb{1}$, \dots, $G\sb{n}$
paulson@13978
   169
that we need to prove to establish the main goal.\index{subgoals}
paulson@13978
   170
Initially there is only one subgoal, which is identical with the
paulson@13978
   171
main goal. (If you always want to see the main goal as well,
paulson@13978
   172
set the flag \isa{Proof.show_main_goal}\index{*show_main_goal (flag)}
paulson@13978
   173
--- this flag used to be set by default.)
nipkow@8749
   174
nipkow@9792
   175
Let us now get back to \isa{rev\ {\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs}. Properties of recursively
nipkow@8749
   176
defined functions are best established by induction. In this case there is
paulson@11428
   177
nothing obvious except induction on \isa{xs}:%
nipkow@8749
   178
\end{isamarkuptxt}%
wenzelm@11866
   179
\isamarkuptrue%
wenzelm@11866
   180
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   181
%
nipkow@8749
   182
\begin{isamarkuptxt}%
paulson@11428
   183
\noindent\index{*induct_tac (method)}%
nipkow@8749
   184
This tells Isabelle to perform induction on variable \isa{xs}. The suffix
paulson@11428
   185
\isa{tac} stands for \textbf{tactic},\index{tactics}
paulson@11428
   186
a synonym for ``theorem proving function''.
nipkow@8749
   187
By default, induction acts on the first subgoal. The new proof state contains
nipkow@8749
   188
two subgoals, namely the base case (\isa{Nil}) and the induction step
nipkow@8749
   189
(\isa{Cons}):
nipkow@10971
   190
\begin{isabelle}%
nipkow@10971
   191
\ {\isadigit{1}}{\isachardot}\ rev\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}\isanewline
nipkow@10971
   192
\ {\isadigit{2}}{\isachardot}\ {\isasymAnd}a\ list{\isachardot}\isanewline
nipkow@10971
   193
\isaindent{\ {\isadigit{2}}{\isachardot}\ \ \ \ }rev\ {\isacharparenleft}rev\ list{\isacharparenright}\ {\isacharequal}\ list\ {\isasymLongrightarrow}\ rev\ {\isacharparenleft}rev\ {\isacharparenleft}a\ {\isacharhash}\ list{\isacharparenright}{\isacharparenright}\ {\isacharequal}\ a\ {\isacharhash}\ list%
nipkow@9723
   194
\end{isabelle}
nipkow@8749
   195
paulson@11456
   196
The induction step is an example of the general format of a subgoal:\index{subgoals}
nipkow@9723
   197
\begin{isabelle}
nipkow@12327
   198
~$i$.~{\isasymAnd}$x\sb{1}$~\dots$x\sb{n}$.~{\it assumptions}~{\isasymLongrightarrow}~{\it conclusion}
nipkow@10328
   199
\end{isabelle}\index{$IsaAnd@\isasymAnd|bold}
nipkow@8749
   200
The prefix of bound variables \isasymAnd$x\sb{1}$~\dots~$x\sb{n}$ can be
nipkow@8749
   201
ignored most of the time, or simply treated as a list of variables local to
paulson@10299
   202
this subgoal. Their deeper significance is explained in Chapter~\ref{chap:rules}.
paulson@11456
   203
The {\it assumptions}\index{assumptions!of subgoal}
paulson@11456
   204
are the local assumptions for this subgoal and {\it
paulson@11456
   205
  conclusion}\index{conclusion!of subgoal} is the actual proposition to be proved. 
paulson@11456
   206
Typical proof steps
paulson@11456
   207
that add new assumptions are induction and case distinction. In our example
nipkow@9792
   208
the only assumption is the induction hypothesis \isa{rev\ {\isacharparenleft}rev\ list{\isacharparenright}\ {\isacharequal}\ list}, where \isa{list} is a variable name chosen by Isabelle. If there
nipkow@8749
   209
are multiple assumptions, they are enclosed in the bracket pair
nipkow@8749
   210
\indexboldpos{\isasymlbrakk}{$Isabrl} and
nipkow@8749
   211
\indexboldpos{\isasymrbrakk}{$Isabrr} and separated by semicolons.
nipkow@8749
   212
nipkow@8749
   213
Let us try to solve both goals automatically:%
nipkow@8749
   214
\end{isamarkuptxt}%
wenzelm@11866
   215
\isamarkuptrue%
wenzelm@11866
   216
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   217
%
nipkow@8749
   218
\begin{isamarkuptxt}%
nipkow@8749
   219
\noindent
nipkow@8749
   220
This command tells Isabelle to apply a proof strategy called
nipkow@8749
   221
\isa{auto} to all subgoals. Essentially, \isa{auto} tries to
nipkow@10978
   222
simplify the subgoals.  In our case, subgoal~1 is solved completely (thanks
nipkow@9792
   223
to the equation \isa{rev\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharequal}\ {\isacharbrackleft}{\isacharbrackright}}) and disappears; the simplified version
nipkow@8749
   224
of subgoal~2 becomes the new subgoal~1:
nipkow@10971
   225
\begin{isabelle}%
nipkow@10971
   226
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}a\ list{\isachardot}\isanewline
nipkow@10971
   227
\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }rev\ {\isacharparenleft}rev\ list{\isacharparenright}\ {\isacharequal}\ list\ {\isasymLongrightarrow}\ rev\ {\isacharparenleft}rev\ list\ {\isacharat}\ a\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ a\ {\isacharhash}\ list%
nipkow@9723
   228
\end{isabelle}
nipkow@8749
   229
In order to simplify this subgoal further, a lemma suggests itself.%
nipkow@8749
   230
\end{isamarkuptxt}%
wenzelm@11866
   231
\isamarkuptrue%
wenzelm@11866
   232
\isamarkupfalse%
nipkow@8749
   233
%
paulson@11428
   234
\isamarkupsubsubsection{First Lemma%
wenzelm@10395
   235
}
wenzelm@11866
   236
\isamarkuptrue%
nipkow@9723
   237
%
nipkow@8749
   238
\begin{isamarkuptext}%
paulson@11428
   239
\indexbold{abandoning a proof}\indexbold{proofs!abandoning}
paulson@11428
   240
After abandoning the above proof attempt (at the shell level type
paulson@11428
   241
\commdx{oops}) we start a new proof:%
nipkow@8749
   242
\end{isamarkuptext}%
wenzelm@11866
   243
\isamarkuptrue%
wenzelm@11866
   244
\isacommand{lemma}\ rev{\isacharunderscore}app\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}rev{\isacharparenleft}xs\ {\isacharat}\ ys{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}rev\ ys{\isacharparenright}\ {\isacharat}\ {\isacharparenleft}rev\ xs{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
wenzelm@11866
   245
%
nipkow@8749
   246
\begin{isamarkuptxt}%
paulson@11428
   247
\noindent The keywords \commdx{theorem} and
paulson@11428
   248
\commdx{lemma} are interchangeable and merely indicate
nipkow@10971
   249
the importance we attach to a proposition.  Therefore we use the words
paulson@11428
   250
\emph{theorem} and \emph{lemma} pretty much interchangeably, too.
nipkow@8749
   251
nipkow@8749
   252
There are two variables that we could induct on: \isa{xs} and
nipkow@9792
   253
\isa{ys}. Because \isa{{\isacharat}} is defined by recursion on
nipkow@8749
   254
the first argument, \isa{xs} is the correct one:%
nipkow@8749
   255
\end{isamarkuptxt}%
wenzelm@11866
   256
\isamarkuptrue%
wenzelm@11866
   257
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   258
%
nipkow@8749
   259
\begin{isamarkuptxt}%
nipkow@8749
   260
\noindent
nipkow@8749
   261
This time not even the base case is solved automatically:%
nipkow@8749
   262
\end{isamarkuptxt}%
wenzelm@11866
   263
\isamarkuptrue%
wenzelm@11866
   264
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   265
%
nipkow@8749
   266
\begin{isamarkuptxt}%
nipkow@10362
   267
\begin{isabelle}%
nipkow@10362
   268
\ {\isadigit{1}}{\isachardot}\ rev\ ys\ {\isacharequal}\ rev\ ys\ {\isacharat}\ {\isacharbrackleft}{\isacharbrackright}%
nipkow@9723
   269
\end{isabelle}
nipkow@10362
   270
Again, we need to abandon this proof attempt and prove another simple lemma
nipkow@10362
   271
first. In the future the step of abandoning an incomplete proof before
nipkow@10362
   272
embarking on the proof of a lemma usually remains implicit.%
nipkow@8749
   273
\end{isamarkuptxt}%
wenzelm@11866
   274
\isamarkuptrue%
wenzelm@11866
   275
\isamarkupfalse%
nipkow@8749
   276
%
paulson@11428
   277
\isamarkupsubsubsection{Second Lemma%
wenzelm@10395
   278
}
wenzelm@11866
   279
\isamarkuptrue%
nipkow@9723
   280
%
nipkow@8749
   281
\begin{isamarkuptext}%
paulson@11456
   282
We again try the canonical proof procedure:%
nipkow@8749
   283
\end{isamarkuptext}%
wenzelm@11866
   284
\isamarkuptrue%
nipkow@10187
   285
\isacommand{lemma}\ app{\isacharunderscore}Nil{\isadigit{2}}\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}xs\ {\isacharat}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharequal}\ xs{\isachardoublequote}\isanewline
wenzelm@11866
   286
\isamarkupfalse%
wenzelm@9674
   287
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isanewline
wenzelm@11866
   288
\isamarkupfalse%
wenzelm@11866
   289
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   290
%
nipkow@8749
   291
\begin{isamarkuptxt}%
nipkow@8749
   292
\noindent
paulson@11456
   293
It works, yielding the desired message \isa{No\ subgoals{\isacharbang}}:
nipkow@10362
   294
\begin{isabelle}%
nipkow@10362
   295
xs\ {\isacharat}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharequal}\ xs\isanewline
nipkow@10362
   296
No\ subgoals{\isacharbang}%
nipkow@9723
   297
\end{isabelle}
nipkow@8749
   298
We still need to confirm that the proof is now finished:%
nipkow@8749
   299
\end{isamarkuptxt}%
wenzelm@11866
   300
\isamarkuptrue%
wenzelm@11866
   301
\isacommand{done}\isamarkupfalse%
wenzelm@11866
   302
%
nipkow@8749
   303
\begin{isamarkuptext}%
paulson@11428
   304
\noindent
paulson@11428
   305
As a result of that final \commdx{done}, Isabelle associates the lemma just proved
nipkow@10171
   306
with its name. In this tutorial, we sometimes omit to show that final \isacommand{done}
nipkow@10171
   307
if it is obvious from the context that the proof is finished.
nipkow@10171
   308
nipkow@10171
   309
% Instead of \isacommand{apply} followed by a dot, you can simply write
nipkow@10171
   310
% \isacommand{by}\indexbold{by}, which we do most of the time.
nipkow@10971
   311
Notice that in lemma \isa{app{\isacharunderscore}Nil{\isadigit{2}}},
nipkow@10971
   312
as printed out after the final \isacommand{done}, the free variable \isa{xs} has been
nipkow@9792
   313
replaced by the unknown \isa{{\isacharquery}xs}, just as explained in
nipkow@9792
   314
\S\ref{sec:variables}.
nipkow@8749
   315
nipkow@8749
   316
Going back to the proof of the first lemma%
nipkow@8749
   317
\end{isamarkuptext}%
wenzelm@11866
   318
\isamarkuptrue%
wenzelm@9674
   319
\isacommand{lemma}\ rev{\isacharunderscore}app\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}rev{\isacharparenleft}xs\ {\isacharat}\ ys{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}rev\ ys{\isacharparenright}\ {\isacharat}\ {\isacharparenleft}rev\ xs{\isacharparenright}{\isachardoublequote}\isanewline
wenzelm@11866
   320
\isamarkupfalse%
wenzelm@9674
   321
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isanewline
wenzelm@11866
   322
\isamarkupfalse%
wenzelm@11866
   323
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isamarkupfalse%
wenzelm@11866
   324
%
nipkow@8749
   325
\begin{isamarkuptxt}%
nipkow@8749
   326
\noindent
nipkow@8749
   327
we find that this time \isa{auto} solves the base case, but the
nipkow@8749
   328
induction step merely simplifies to
nipkow@10362
   329
\begin{isabelle}%
nipkow@10362
   330
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}a\ list{\isachardot}\isanewline
wenzelm@10950
   331
\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }rev\ {\isacharparenleft}list\ {\isacharat}\ ys{\isacharparenright}\ {\isacharequal}\ rev\ ys\ {\isacharat}\ rev\ list\ {\isasymLongrightarrow}\isanewline
wenzelm@10950
   332
\isaindent{\ {\isadigit{1}}{\isachardot}\ \ \ \ }{\isacharparenleft}rev\ ys\ {\isacharat}\ rev\ list{\isacharparenright}\ {\isacharat}\ a\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}\ {\isacharequal}\ rev\ ys\ {\isacharat}\ rev\ list\ {\isacharat}\ a\ {\isacharhash}\ {\isacharbrackleft}{\isacharbrackright}%
nipkow@9723
   333
\end{isabelle}
nipkow@9792
   334
Now we need to remember that \isa{{\isacharat}} associates to the right, and that
nipkow@10187
   335
\isa{{\isacharhash}} and \isa{{\isacharat}} have the same priority (namely the \isa{{\isadigit{6}}{\isadigit{5}}}
nipkow@8749
   336
in their \isacommand{infixr} annotation). Thus the conclusion really is
nipkow@9723
   337
\begin{isabelle}
nipkow@9792
   338
~~~~~(rev~ys~@~rev~list)~@~(a~\#~[])~=~rev~ys~@~(rev~list~@~(a~\#~[]))
nipkow@9723
   339
\end{isabelle}
nipkow@9792
   340
and the missing lemma is associativity of \isa{{\isacharat}}.%
nipkow@8749
   341
\end{isamarkuptxt}%
wenzelm@11866
   342
\isamarkuptrue%
wenzelm@11866
   343
\isamarkupfalse%
nipkow@8749
   344
%
paulson@11456
   345
\isamarkupsubsubsection{Third Lemma%
wenzelm@10395
   346
}
wenzelm@11866
   347
\isamarkuptrue%
nipkow@9723
   348
%
nipkow@9723
   349
\begin{isamarkuptext}%
paulson@11456
   350
Abandoning the previous attempt, the canonical proof procedure
paulson@11456
   351
succeeds without further ado.%
nipkow@9723
   352
\end{isamarkuptext}%
wenzelm@11866
   353
\isamarkuptrue%
wenzelm@9674
   354
\isacommand{lemma}\ app{\isacharunderscore}assoc\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}xs\ {\isacharat}\ ys{\isacharparenright}\ {\isacharat}\ zs\ {\isacharequal}\ xs\ {\isacharat}\ {\isacharparenleft}ys\ {\isacharat}\ zs{\isacharparenright}{\isachardoublequote}\isanewline
wenzelm@11866
   355
\isamarkupfalse%
wenzelm@9674
   356
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isanewline
wenzelm@11866
   357
\isamarkupfalse%
nipkow@10171
   358
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isanewline
wenzelm@11866
   359
\isamarkupfalse%
wenzelm@11866
   360
\isacommand{done}\isamarkupfalse%
wenzelm@11866
   361
%
nipkow@8749
   362
\begin{isamarkuptext}%
nipkow@8749
   363
\noindent
paulson@11456
   364
Now we can prove the first lemma:%
nipkow@8749
   365
\end{isamarkuptext}%
wenzelm@11866
   366
\isamarkuptrue%
wenzelm@9674
   367
\isacommand{lemma}\ rev{\isacharunderscore}app\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}rev{\isacharparenleft}xs\ {\isacharat}\ ys{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}rev\ ys{\isacharparenright}\ {\isacharat}\ {\isacharparenleft}rev\ xs{\isacharparenright}{\isachardoublequote}\isanewline
wenzelm@11866
   368
\isamarkupfalse%
wenzelm@9674
   369
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isanewline
wenzelm@11866
   370
\isamarkupfalse%
nipkow@10171
   371
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isanewline
wenzelm@11866
   372
\isamarkupfalse%
wenzelm@11866
   373
\isacommand{done}\isamarkupfalse%
wenzelm@11866
   374
%
nipkow@8749
   375
\begin{isamarkuptext}%
nipkow@8749
   376
\noindent
paulson@11456
   377
Finally, we prove our main theorem:%
nipkow@8749
   378
\end{isamarkuptext}%
wenzelm@11866
   379
\isamarkuptrue%
wenzelm@9674
   380
\isacommand{theorem}\ rev{\isacharunderscore}rev\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}rev{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ xs{\isachardoublequote}\isanewline
wenzelm@11866
   381
\isamarkupfalse%
wenzelm@9674
   382
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}\isanewline
wenzelm@11866
   383
\isamarkupfalse%
nipkow@10171
   384
\isacommand{apply}{\isacharparenleft}auto{\isacharparenright}\isanewline
wenzelm@11866
   385
\isamarkupfalse%
wenzelm@11866
   386
\isacommand{done}\isamarkupfalse%
wenzelm@11866
   387
%
nipkow@8749
   388
\begin{isamarkuptext}%
nipkow@8749
   389
\noindent
paulson@11456
   390
The final \commdx{end} tells Isabelle to close the current theory because
nipkow@8749
   391
we are finished with its development:%
paulson@11456
   392
\index{*rev (constant)|)}\index{append function|)}%
nipkow@8749
   393
\end{isamarkuptext}%
wenzelm@11866
   394
\isamarkuptrue%
nipkow@8749
   395
\isacommand{end}\isanewline
wenzelm@11866
   396
\isamarkupfalse%
nipkow@9722
   397
\end{isabellebody}%
wenzelm@9145
   398
%%% Local Variables:
wenzelm@9145
   399
%%% mode: latex
wenzelm@9145
   400
%%% TeX-master: "root"
wenzelm@9145
   401
%%% End: