test/Tools/isac/ADDTESTS/course/SignalProcess/Build_Inverse_Z_Transform.thy
author Walther Neuper <wneuper@ist.tugraz.at>
Thu, 22 Aug 2019 16:48:04 +0200
changeset 59585 0bb418c3855a
parent 59582 23984b62804f
child 59592 99c8d2ff63eb
permissions -rw-r--r--
lucin: rename Script --> Program
neuper@42301
     1
(* Title:  Build_Inverse_Z_Transform
neuper@42279
     2
   Author: Jan Rocnik
neuper@42376
     3
   (c) copyright due to license terms.
neuper@42279
     4
*)
neuper@42279
     5
wneuper@59465
     6
theory Build_Inverse_Z_Transform imports Isac.Inverse_Z_Transform
neuper@42289
     7
  
neuper@42289
     8
begin
neuper@42279
     9
wneuper@59472
    10
text\<open>We stepwise build \ttfamily Inverse\_Z\_Transform.thy \normalfont as an 
jan@42381
    11
  exercise. Because Subsection~\ref{sec:stepcheck} requires 
jan@42371
    12
  \ttfamily Inverse\_Z\_Transform.thy \normalfont as a subtheory of \ttfamily 
jan@42368
    13
  Isac.thy\normalfont, the setup has been changed from \ttfamily theory 
jan@42371
    14
  Inverse\_Z\_Transform imports Isac \normalfont to the above one.
jan@42368
    15
  \par \noindent
jan@42368
    16
  \begin{center} 
jan@42381
    17
  \textbf{Attention with the names of identifiers when going into internals!}
jan@42368
    18
  \end{center}
jan@42368
    19
  Here in this theory there are the internal names twice, for instance we have
jan@42368
    20
  \ttfamily (Thm.derivation\_name @{thm rule1} = 
jan@42368
    21
  "Build\_Inverse\_Z\_Transform.rule1") = true; \normalfont
jan@42368
    22
  but actually in us will be \ttfamily Inverse\_Z\_Transform.rule1 \normalfont
wneuper@59472
    23
\<close>
neuper@42279
    24
wneuper@59472
    25
section \<open>Trials towards the Z-Transform\label{sec:trials}\<close>
jan@42368
    26
wneuper@59472
    27
ML \<open>val thy = @{theory};\<close>
neuper@42279
    28
wneuper@59472
    29
subsection \<open>Notations and Terms\<close>
wneuper@59472
    30
text\<open>\noindent Try which notations we are able to use.\<close>
wneuper@59472
    31
ML \<open>
jan@42368
    32
  @{term "1 < || z ||"};
jan@42368
    33
  @{term "z / (z - 1)"};
jan@42368
    34
  @{term "-u -n - 1"};
jan@42368
    35
  @{term "-u [-n - 1]"}; (*[ ] denotes lists !!!*)
neuper@42389
    36
  @{term "z /(z - 1) = -u [-n - 1]"};
jan@42368
    37
  @{term "1 < || z || ==> z / (z - 1) = -u [-n - 1]"};
jan@42368
    38
  term2str @{term "1 < || z || ==> z / (z - 1) = -u [-n - 1]"};
wneuper@59472
    39
\<close>
wneuper@59472
    40
text\<open>\noindent Try which symbols we are able to use and how we generate them.\<close>
wneuper@59472
    41
ML \<open>
jan@42368
    42
  (*alpha -->  "</alpha>" *)
jan@42368
    43
  @{term "\<alpha> "};
jan@42368
    44
  @{term "\<delta> "};
jan@42368
    45
  @{term "\<phi> "};
jan@42368
    46
  @{term "\<rho> "};
jan@42368
    47
  term2str @{term "\<rho> "};
wneuper@59472
    48
\<close>
neuper@42279
    49
wneuper@59472
    50
subsection \<open>Rules\<close>
jan@42368
    51
(*axiomatization "z / (z - 1) = -u [-n - 1]"
jan@42368
    52
  Illegal variable name: "z / (z - 1) = -u [-n - 1]" *)
jan@42368
    53
(*definition     "z / (z - 1) = -u [-n - 1]"
jan@42368
    54
  Bad head of lhs: existing constant "op /"*)
neuper@42279
    55
axiomatization where 
neuper@42279
    56
  rule1: "1 = \<delta>[n]" and
neuper@42279
    57
  rule2: "|| z || > 1 ==> z / (z - 1) = u [n]" and
neuper@42279
    58
  rule3: "|| z || < 1 ==> z / (z - 1) = -u [-n - 1]" and 
neuper@42279
    59
  rule4: "|| z || > || \<alpha> || ==> z / (z - \<alpha>) = \<alpha>^^^n * u [n]" and
neuper@42279
    60
  rule5: "|| z || < || \<alpha> || ==> z / (z - \<alpha>) = -(\<alpha>^^^n) * u [-n - 1]" and
neuper@42279
    61
  rule6: "|| z || > 1 ==> z/(z - 1)^^^2 = n * u [n]"
jan@42368
    62
wneuper@59472
    63
text\<open>\noindent Check the rules for their correct notation. 
wneuper@59472
    64
      (See the machine output.)\<close>
wneuper@59472
    65
ML \<open>
jan@42368
    66
  @{thm rule1};
jan@42368
    67
  @{thm rule2};
jan@42368
    68
  @{thm rule3};
jan@42368
    69
  @{thm rule4};
wneuper@59472
    70
\<close>
neuper@42279
    71
wneuper@59472
    72
subsection \<open>Apply Rules\<close>
wneuper@59472
    73
text\<open>\noindent We try to apply the rules to a given expression.\<close>
jan@42368
    74
wneuper@59472
    75
ML \<open>
jan@42368
    76
  val inverse_Z = append_rls "inverse_Z" e_rls
wneuper@59395
    77
    [ Thm  ("rule3",TermC.num_str @{thm rule3}),
wneuper@59395
    78
      Thm  ("rule4",TermC.num_str @{thm rule4}),
wneuper@59395
    79
      Thm  ("rule1",TermC.num_str @{thm rule1})   
jan@42368
    80
    ];
neuper@42279
    81
wneuper@59395
    82
  val t = TermC.str2term "z / (z - 1) + z / (z - \<alpha>) + 1";
wneuper@59395
    83
  val SOME (t', asm) = Rewrite.rewrite_set_ thy true inverse_Z t;
jan@42368
    84
  term2str t' = "z / (z - ?\<delta> [?n]) + z / (z - \<alpha>) + ?\<delta> [?n]";
jan@42368
    85
  (*
jan@42368
    86
   * Attention rule1 is applied before the expression is 
jan@42368
    87
   * checked for rule4 which would be correct!!!
jan@42368
    88
   *)
wneuper@59472
    89
\<close>
neuper@42279
    90
wneuper@59472
    91
ML \<open>val (thy, ro, er) = (@{theory}, tless_true, eval_rls);\<close>
wneuper@59472
    92
ML \<open>
jan@42368
    93
  val SOME (t, asm1) = 
wneuper@59395
    94
    Rewrite.rewrite_ thy ro er true (TermC.num_str @{thm rule3}) t;
jan@42368
    95
  term2str t = "- ?u [- ?n - 1] + z / (z - \<alpha>) + 1";
jan@42368
    96
  (*- real *)
jan@42368
    97
  term2str t;
jan@42296
    98
jan@42368
    99
  val SOME (t, asm2) = 
wneuper@59395
   100
    Rewrite.rewrite_ thy ro er true (TermC.num_str @{thm rule4}) t;
jan@42368
   101
  term2str t = "- ?u [- ?n - 1] + \<alpha> ^^^ ?n * ?u [?n] + 1";
jan@42368
   102
  (*- real *)
jan@42368
   103
  term2str t;
jan@42296
   104
jan@42368
   105
  val SOME (t, asm3) = 
wneuper@59395
   106
    Rewrite.rewrite_ thy ro er true (TermC.num_str @{thm rule1}) t;
jan@42368
   107
  term2str t = "- ?u [- ?n - 1] + \<alpha> ^^^ ?n * ?u [?n] + ?\<delta> [?n]";
jan@42368
   108
  (*- real *)
jan@42368
   109
  term2str t;
wneuper@59472
   110
\<close>
wneuper@59472
   111
ML \<open>terms2str (asm1 @ asm2 @ asm3);\<close>
jan@42296
   112
wneuper@59472
   113
section\<open>Prepare Steps for TP-based programming Language\label{sec:prepstep}\<close>
wneuper@59472
   114
text\<open>
neuper@42376
   115
      \par \noindent The following sections are challenging with the CTP-based 
neuper@42376
   116
      possibilities of building the program. The goal is realized in 
jan@42368
   117
      Section~\ref{spec-meth} and Section~\ref{prog-steps}.
jan@42368
   118
      \par The reader is advised to jump between the subsequent subsections and 
jan@42368
   119
      the respective steps in Section~\ref{prog-steps}. By comparing 
jan@42368
   120
      Section~\ref{sec:calc:ztrans} the calculation can be comprehended step 
jan@42368
   121
      by step.
wneuper@59472
   122
\<close>
neuper@42279
   123
wneuper@59472
   124
subsection \<open>Prepare Expression\label{prep-expr}\<close>
wneuper@59472
   125
text\<open>\noindent We try two different notations and check which of them 
wneuper@59472
   126
       Isabelle can handle best.\<close>
wneuper@59472
   127
ML \<open>
neuper@48761
   128
  val ctxt = Proof_Context.init_global @{theory};
wneuper@59582
   129
(*val ctxt = ContextC.declare_constraints' [@{term "z::real"}] ctxt;*)
jan@42368
   130
jan@42368
   131
  val SOME fun1 = 
wneuper@59395
   132
    TermC.parseNEW ctxt "X z = 3 / (z - 1/4 + -1/8 * z ^^^ -1)"; term2str fun1;
jan@42368
   133
  val SOME fun1' = 
wneuper@59395
   134
    TermC.parseNEW ctxt "X z = 3 / (z - 1/4 + -1/8 * (1/z))"; term2str fun1';
wneuper@59472
   135
\<close>
jan@42368
   136
wneuper@59472
   137
subsubsection \<open>Prepare Numerator and Denominator\<close>
wneuper@59472
   138
text\<open>\noindent The partial fraction decomposition is only possible if we
jan@42368
   139
       get the bound variable out of the numerator. Therefor we divide
jan@42368
   140
       the expression by $z$. Follow up the Calculation at 
wneuper@59472
   141
       Section~\ref{sec:calc:ztrans} line number 02.\<close>
jan@42368
   142
neuper@42279
   143
axiomatization where
neuper@42279
   144
  ruleZY: "(X z = a / b) = (X' z = a / (z * b))"
neuper@42279
   145
wneuper@59472
   146
ML \<open>
neuper@42384
   147
  val (thy, ro, er) = (@{theory}, tless_true, eval_rls);
jan@42368
   148
  val SOME (fun2, asm1) = 
wneuper@59395
   149
    Rewrite.rewrite_ thy ro er true  @{thm ruleZY} fun1; term2str fun2;
jan@42368
   150
  val SOME (fun2', asm1) = 
wneuper@59395
   151
    Rewrite.rewrite_ thy ro er true  @{thm ruleZY} fun1'; term2str fun2';
neuper@42279
   152
jan@42368
   153
  val SOME (fun3,_) = 
wneuper@59395
   154
    Rewrite.rewrite_set_ @{theory} false norm_Rational fun2;
jan@42368
   155
  term2str fun3;
jan@42368
   156
  (*
jan@42368
   157
   * Fails on x^^^(-1)
jan@42368
   158
   * We solve this problem by using 1/x as a workaround.
jan@42368
   159
   *)
jan@42368
   160
  val SOME (fun3',_) = 
wneuper@59395
   161
    Rewrite.rewrite_set_ @{theory} false norm_Rational fun2';
jan@42368
   162
  term2str fun3';
jan@42368
   163
  (*
jan@42368
   164
   * OK - workaround!
jan@42368
   165
   *)
wneuper@59472
   166
\<close>
neuper@42279
   167
wneuper@59472
   168
subsubsection \<open>Get the Argument of the Expression X'\<close>
wneuper@59472
   169
text\<open>\noindent We use \texttt{grep} for finding possibilities how we can
jan@42368
   170
       extract the bound variable in the expression. \ttfamily Atools.thy, 
jan@42368
   171
       Tools.thy \normalfont contain general utilities: \ttfamily 
jan@42368
   172
       eval\_argument\_in, eval\_rhs, eval\_lhs,\ldots \normalfont
jan@42368
   173
       \ttfamily grep -r "fun eva\_" * \normalfont shows all functions 
jan@42371
   174
       witch can be used in a script. Lookup this files how to build 
jan@42368
   175
       and handle such functions.
jan@42368
   176
       \par The next section shows how to introduce such a function.
wneuper@59472
   177
\<close>
jan@42298
   178
wneuper@59472
   179
subsubsection\<open>Decompose the Given Term Into lhs and rhs\<close>
wneuper@59472
   180
ML \<open>
neuper@42302
   181
  val (_, expr) = HOLogic.dest_eq fun3'; term2str expr;
jan@42368
   182
  val (_, denom) = 
wneuper@59360
   183
    HOLogic.dest_bin "Rings.divide_class.divide" (type_of expr) expr;
neuper@42302
   184
  term2str denom = "-1 + -2 * z + 8 * z ^^^ 2";
wneuper@59472
   185
\<close>
jan@42298
   186
wneuper@59472
   187
text\<open>\noindent We have rhs\footnote{Note: lhs means \em Left Hand Side
jan@42370
   188
      \normalfont and rhs means \em Right Hand Side \normalfont and indicates
wneuper@59585
   189
      the left or the right part of an equation.} in the Program language, but
wneuper@59472
   190
      we need a function which gets the denominator of a fraction.\<close>
jan@42298
   191
wneuper@59472
   192
subsubsection\<open>Get the Denominator and Numerator out of a Fraction\<close>
wneuper@59472
   193
text\<open>\noindent The self written functions in e.g. \texttt{get\_denominator}
wneuper@59472
   194
       should become a constant for the Isabelle parser:\<close>
jan@42298
   195
jan@42298
   196
consts
jan@42345
   197
  get_denominator :: "real => real"
jan@42344
   198
  get_numerator :: "real => real"
jan@42298
   199
wneuper@59472
   200
text \<open>\noindent With the above definition we run into problems when we parse
wneuper@59585
   201
        the Program \texttt{InverseZTransform}. This leads to \em ambiguous
jan@42368
   202
        parse trees. \normalfont We avoid this by moving the definition
jan@42369
   203
        to \ttfamily Rational.thy \normalfont and re-building {\sisac}.
jan@42368
   204
        \par \noindent ATTENTION: From now on \ttfamily 
jan@42368
   205
        Build\_Inverse\_Z\_Transform \normalfont mimics a build from scratch;
jan@42369
   206
        it only works due to re-building {\sisac} several times (indicated 
neuper@42376
   207
        explicitly).
wneuper@59472
   208
\<close>
jan@42300
   209
wneuper@59472
   210
ML \<open>
jan@42368
   211
(*
jan@42368
   212
 *("get_denominator",
jan@42368
   213
 *  ("Rational.get_denominator", eval_get_denominator ""))
jan@42368
   214
 *)
jan@42298
   215
fun eval_get_denominator (thmid:string) _ 
neuper@42301
   216
		      (t as Const ("Rational.get_denominator", _) $
wneuper@59360
   217
              (Const ("Rings.divide_class.divide", _) $num 
jan@42369
   218
                $denom)) thy = 
wneuper@59395
   219
        SOME (TermC.mk_thmid thmid (term_to_string''' thy denom) "", 
wneuper@59395
   220
	        HOLogic.Trueprop $ (TermC.mk_equality (t, denom)))
jan@42300
   221
  | eval_get_denominator _ _ _ _ = NONE; 
wneuper@59472
   222
\<close>
wneuper@59472
   223
text \<open>\noindent For the tests of \ttfamily eval\_get\_denominator \normalfont
wneuper@59472
   224
        see \ttfamily test/Knowledge/rational.sml\normalfont\<close>
neuper@42289
   225
wneuper@59472
   226
text \<open>\noindent \ttfamily get\_numerator \normalfont should also become a
neuper@42376
   227
        constant for the Isabelle parser, follow up the \texttt{const}
wneuper@59472
   228
        declaration above.\<close>
jan@42337
   229
wneuper@59472
   230
ML \<open>
jan@42369
   231
(*
jan@42369
   232
 *("get_numerator",
jan@42369
   233
 *  ("Rational.get_numerator", eval_get_numerator ""))
jan@42369
   234
 *)
jan@42337
   235
fun eval_get_numerator (thmid:string) _ 
jan@42337
   236
		      (t as Const ("Rational.get_numerator", _) $
wneuper@59360
   237
              (Const ("Rings.divide_class.divide", _) $num
jan@42338
   238
                $denom )) thy = 
wneuper@59395
   239
        SOME (TermC.mk_thmid thmid (term_to_string''' thy num) "", 
wneuper@59395
   240
	        HOLogic.Trueprop $ (TermC.mk_equality (t, num)))
jan@42337
   241
  | eval_get_numerator _ _ _ _ = NONE; 
wneuper@59472
   242
\<close>
jan@42337
   243
wneuper@59472
   244
text \<open>\noindent We discovered several problems by implementing the 
jan@42369
   245
       \ttfamily get\_numerator \normalfont function. Remember when 
jan@42369
   246
       putting new functions to {\sisac}, put them in a thy file and rebuild 
wneuper@59472
   247
       {\sisac}, also put them in the ruleset for the script!\<close>
jan@42369
   248
wneuper@59472
   249
subsection \<open>Solve Equation\label{sec:solveq}\<close>
wneuper@59472
   250
text \<open>\noindent We have to find the zeros of the term, therefor we use our
jan@42369
   251
       \ttfamily get\_denominator \normalfont function from the step before
neuper@42376
   252
       and try to solve the second order equation. (Follow up the Calculation
jan@42369
   253
       in Section~\ref{sec:calc:ztrans} Subproblem 2) Note: This type of
jan@42369
   254
       equation is too general for the present program.
jan@42369
   255
       \par We know that this equation can be categorized as \em univariate
jan@42369
   256
       equation \normalfont and solved with the functions {\sisac} provides
jan@42369
   257
       for this equation type. Later on {\sisac} should determine the type
wneuper@59472
   258
       of the given equation self.\<close>
wneuper@59472
   259
ML \<open>
wneuper@59395
   260
  val denominator = TermC.parseNEW ctxt "z^^^2 - 1/4*z - 1/8 = 0";
jan@42369
   261
  val fmz = ["equality (z^^^2 - 1/4*z - 1/8 = (0::real))",
jan@42369
   262
             "solveFor z",
jan@42369
   263
             "solutions L"];
jan@42369
   264
  val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
wneuper@59472
   265
\<close>
wneuper@59472
   266
text \<open>\noindent Check if the given equation matches the specification of this
wneuper@59472
   267
        equation type.\<close>
wneuper@59472
   268
ML \<open>
wneuper@59395
   269
  Specify.match_pbl fmz (Specify.get_pbt ["univariate","equation"]);
wneuper@59472
   270
\<close>
jan@42345
   271
wneuper@59472
   272
text\<open>\noindent We switch up to the {\sisac} Context and try to solve the 
wneuper@59472
   273
       equation with a more specific type definition.\<close>
neuper@42279
   274
wneuper@59472
   275
ML \<open>
jan@42369
   276
  Context.theory_name thy = "Isac";
wneuper@59395
   277
  val denominator = TermC.parseNEW ctxt "-1 + -2 * z + 8 * z ^^^ 2 = 0";
jan@42369
   278
  val fmz =                                             (*specification*)
jan@42369
   279
    ["equality (-1 + -2 * z + 8 * z ^^^ 2 = (0::real))",(*equality*)
jan@42369
   280
     "solveFor z",                                      (*bound variable*)
jan@42369
   281
     "solutions L"];                                    (*identifier for
jan@42369
   282
                                                          solution*)
jan@42369
   283
  val (dI',pI',mI') =
jan@42369
   284
    ("Isac", 
jan@42369
   285
      ["abcFormula","degree_2","polynomial","univariate","equation"],
jan@42369
   286
      ["no_met"]);
wneuper@59472
   287
\<close>
neuper@42279
   288
wneuper@59472
   289
text \<open>\noindent Check if the (other) given equation matches the 
wneuper@59472
   290
        specification of this equation type.\<close>
jan@42369
   291
        
wneuper@59472
   292
ML \<open>
wneuper@59395
   293
  Specify.match_pbl fmz (Specify.get_pbt
jan@42369
   294
    ["abcFormula","degree_2","polynomial","univariate","equation"]);
wneuper@59472
   295
\<close>
neuper@42279
   296
wneuper@59472
   297
text \<open>\noindent We stepwise solve the equation. This is done by the
wneuper@59472
   298
        use of a so called calc tree seen downwards.\<close>
jan@42369
   299
wneuper@59472
   300
ML \<open>
jan@42369
   301
  val (p,_,f,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
jan@42369
   302
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   303
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   304
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   305
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   306
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   307
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   308
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   309
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   310
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   311
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   312
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;         
jan@42369
   313
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42369
   314
  (*
jan@42369
   315
   * nxt =..,Check_elementwise "Assumptions") 
jan@42369
   316
   *)
jan@42369
   317
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;         
jan@42369
   318
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; f2str f;
jan@42369
   319
  (*
jan@42369
   320
   * [z = 1 / 2, z = -1 / 4]
jan@42369
   321
   *)
wneuper@59265
   322
  Chead.show_pt pt; 
jan@42369
   323
  val SOME f = parseNEW ctxt "[z=1/2, z=-1/4]";
wneuper@59472
   324
\<close>
neuper@42279
   325
wneuper@59472
   326
subsection \<open>Partial Fraction Decomposition\label{sec:pbz}\<close>
wneuper@59472
   327
text\<open>\noindent We go on with the decomposition of our expression. Follow up the
jan@42369
   328
       Calculation in Section~\ref{sec:calc:ztrans} Step~3 and later on
wneuper@59472
   329
       Subproblem~1.\<close>
wneuper@59472
   330
subsubsection \<open>Solutions of the Equation\<close>
wneuper@59472
   331
text\<open>\noindent We get the solutions of the before solved equation in a list.\<close>
jan@42369
   332
wneuper@59472
   333
ML \<open>
jan@42369
   334
  val SOME solutions = parseNEW ctxt "[z=1/2, z=-1/4]";
jan@42369
   335
  term2str solutions;
jan@42369
   336
  atomty solutions;
wneuper@59472
   337
\<close>
jan@42369
   338
wneuper@59472
   339
subsubsection \<open>Get Solutions out of a List\<close>
wneuper@59472
   340
text \<open>\noindent In {\sisac}'s TP-based programming language: 
jan@42381
   341
\begin{verbatim}
jan@42381
   342
  let $ $ s_1 = NTH 1 $ solutions; $ s_2 = NTH 2... $
jan@42381
   343
\end{verbatim}
jan@42381
   344
       can be useful.
wneuper@59472
   345
\<close>
jan@42369
   346
wneuper@59472
   347
ML \<open>
jan@42369
   348
  val Const ("List.list.Cons", _) $ s_1 $ (Const ("List.list.Cons", _)
jan@42369
   349
        $ s_2 $ Const ("List.list.Nil", _)) = solutions;
jan@42369
   350
  term2str s_1;
jan@42369
   351
  term2str s_2;
wneuper@59472
   352
\<close>
jan@42369
   353
wneuper@59472
   354
text\<open>\noindent The ansatz for the \em Partial Fraction Decomposition \normalfont
jan@42369
   355
      requires to get the denominators of the partial fractions out of the 
jan@42369
   356
      Solutions as:
jan@42369
   357
      \begin{itemize}
jan@42381
   358
        \item $Denominator_{1}=z-Zeropoint_{1}$
jan@42381
   359
        \item $Denominator_{2}=z-Zeropoint_{2}$
jan@42381
   360
        \item \ldots
jan@42381
   361
      \end{itemize}
wneuper@59472
   362
\<close>
jan@42369
   363
      
wneuper@59472
   364
ML \<open>
jan@42369
   365
  val xx = HOLogic.dest_eq s_1;
jan@42369
   366
  val s_1' = HOLogic.mk_binop "Groups.minus_class.minus" xx;
jan@42369
   367
  val xx = HOLogic.dest_eq s_2;
jan@42369
   368
  val s_2' = HOLogic.mk_binop "Groups.minus_class.minus" xx;
jan@42369
   369
  term2str s_1';
jan@42369
   370
  term2str s_2';
wneuper@59472
   371
\<close>
jan@42369
   372
wneuper@59472
   373
text \<open>\noindent For the programming language a function collecting all the 
wneuper@59472
   374
        above manipulations is helpful.\<close>
jan@42369
   375
wneuper@59472
   376
ML \<open>
jan@42369
   377
  fun fac_from_sol s =
jan@42369
   378
    let val (lhs, rhs) = HOLogic.dest_eq s
jan@42369
   379
    in HOLogic.mk_binop "Groups.minus_class.minus" (lhs, rhs) end;
wneuper@59472
   380
\<close>
jan@42369
   381
wneuper@59472
   382
ML \<open>
jan@42369
   383
  fun mk_prod prod [] =
jan@42369
   384
        if prod = e_term
jan@42369
   385
        then error "mk_prod called with []" 
jan@42369
   386
        else prod
jan@42369
   387
    | mk_prod prod (t :: []) =
jan@42369
   388
        if prod = e_term
jan@42369
   389
        then t
jan@42369
   390
        else HOLogic.mk_binop "Groups.times_class.times" (prod, t)
jan@42369
   391
    | mk_prod prod (t1 :: t2 :: ts) =
jan@42369
   392
          if prod = e_term 
jan@42369
   393
          then 
jan@42369
   394
             let val p = 
jan@42369
   395
               HOLogic.mk_binop "Groups.times_class.times" (t1, t2)
jan@42369
   396
             in mk_prod p ts end 
jan@42369
   397
          else 
jan@42369
   398
             let val p =
jan@42369
   399
               HOLogic.mk_binop "Groups.times_class.times" (prod, t1)
jan@42369
   400
             in mk_prod p (t2 :: ts) end 
wneuper@59472
   401
\<close>
jan@42369
   402
(* ML {* 
neuper@42376
   403
probably keep these test in test/Tools/isac/...
neuper@42335
   404
(*mk_prod e_term [];*)
neuper@42335
   405
neuper@42335
   406
val prod = mk_prod e_term [str2term "x + 123"]; 
neuper@42335
   407
term2str prod = "x + 123";
neuper@42335
   408
neuper@42335
   409
val sol = str2term "[z = 1 / 2, z = -1 / 4]";
neuper@42335
   410
val sols = HOLogic.dest_list sol;
neuper@42335
   411
val facs = map fac_from_sol sols;
neuper@42335
   412
val prod = mk_prod e_term facs; 
neuper@42335
   413
term2str prod = "(z + -1 * (1 / 2)) * (z + -1 * (-1 / 4))";
neuper@42335
   414
jan@42369
   415
val prod = 
jan@42369
   416
  mk_prod e_term [str2term "x + 1", str2term "x + 2", str2term "x + 3"]; 
neuper@42335
   417
term2str prod = "(x + 1) * (x + 2) * (x + 3)";
jan@42369
   418
*} *)
wneuper@59472
   419
ML \<open>
jan@42369
   420
  fun factors_from_solution sol = 
jan@42369
   421
    let val ts = HOLogic.dest_list sol
jan@42369
   422
    in mk_prod e_term (map fac_from_sol ts) end;
wneuper@59472
   423
\<close>
jan@42369
   424
(* ML {*
neuper@42335
   425
val sol = str2term "[z = 1 / 2, z = -1 / 4]";
neuper@42335
   426
val fs = factors_from_solution sol;
neuper@42335
   427
term2str fs = "(z + -1 * (1 / 2)) * (z + -1 * (-1 / 4))"
jan@42369
   428
*} *)
wneuper@59472
   429
text \<open>\noindent This function needs to be packed such that it can be evaluated
jan@42369
   430
        by the Lucas-Interpreter. Therefor we moved the function to the
jan@42369
   431
        corresponding \ttfamily Equation.thy \normalfont in our case
neuper@42376
   432
        \ttfamily PartialFractions.thy \normalfont. The necessary steps
jan@42381
   433
        are quit the same as we have done with \ttfamily get\_denominator 
wneuper@59472
   434
        \normalfont before.\<close>
wneuper@59472
   435
ML \<open>
jan@42369
   436
  (*("factors_from_solution",
jan@42369
   437
    ("Partial_Fractions.factors_from_solution",
jan@42369
   438
      eval_factors_from_solution ""))*)
jan@42369
   439
      
jan@42369
   440
  fun eval_factors_from_solution (thmid:string) _
jan@42369
   441
       (t as Const ("Partial_Fractions.factors_from_solution", _) $ sol)
jan@42369
   442
         thy = ((let val prod = factors_from_solution sol
neuper@52070
   443
                   in SOME (mk_thmid thmid "" (term_to_string''' thy prod) "",
jan@42369
   444
                         Trueprop $ (mk_equality (t, prod)))
jan@42369
   445
                end)
jan@42369
   446
               handle _ => NONE)
jan@42369
   447
   | eval_factors_from_solution _ _ _ _ = NONE;
wneuper@59472
   448
\<close>
jan@42352
   449
wneuper@59472
   450
text \<open>\noindent The tracing output of the calc tree after applying this
jan@42381
   451
       function was:
jan@42381
   452
\begin{verbatim}
jan@42381
   453
  24 / factors_from_solution [z = 1/ 2, z = -1 / 4])]
jan@42381
   454
\end{verbatim}
jan@42381
   455
       and the next step:
jan@42381
   456
\begin{verbatim}
jan@42381
   457
  val nxt = ("Empty_Tac", ...): tac'_)
jan@42381
   458
\end{verbatim}
jan@42381
   459
       These observations indicate, that the Lucas-Interpreter (LIP) 
jan@42381
   460
       does not know how to evaluate \ttfamily factors\_from\_solution
jan@42381
   461
       \normalfont, so we knew that there is something wrong or missing.
wneuper@59472
   462
\<close>
jan@42369
   463
       
wneuper@59472
   464
text\<open>\noindent First we isolate the difficulty in the program as follows:
jan@42381
   465
\begin{verbatim}      
wneuper@59476
   466
  " (L_L::bool list) = (SubProblem (PolyEqX,      " ^
jan@42381
   467
  "   [abcFormula, degree_2, polynomial,          " ^
jan@42381
   468
  "    univariate,equation],                      " ^
jan@42381
   469
  "   [no_met])                                   " ^
jan@42381
   470
  "   [BOOL equ, REAL zzz]);                      " ^
jan@42381
   471
  " (facs::real) = factors_from_solution L_L;     " ^
jan@42381
   472
  " (foo::real) = Take facs                       " ^
jan@42381
   473
\end{verbatim}
jan@42381
   474
jan@42381
   475
      \par \noindent And see the tracing output:
jan@42381
   476
      
jan@42381
   477
\begin{verbatim}
jan@42381
   478
  [(([], Frm), Problem (Isac, [inverse, 
jan@42381
   479
                               Z_Transform,
jan@42381
   480
                                SignalProcessing])),
jan@42381
   481
   (([1], Frm), X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))),
jan@42381
   482
   (([1], Res), ?X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))),
jan@42381
   483
   (([2], Res), ?X' z = 24 / (-1 + -2 * z + 8 * z ^^^ 2)),
jan@42381
   484
   (([3], Pbl), solve (-1 + -2 * z + 8 * z ^^^ 2 = 0, z)),
jan@42381
   485
   (([3,1], Frm), -1 + -2 * z + 8 * z ^^^ 2 = 0),
jan@42381
   486
   (([3,1], Res), z = (- -2 + sqrt (-2 ^^^ 2 - 4 * 8 * -1)) / (2 * 8)|
jan@42381
   487
                  z = (- -2 - sqrt (-2 ^^^ 2 - 4 * 8 * -1)) / (2 * 8)),
jan@42381
   488
   (([3,2], Res), z = 1 / 2 | z = -1 / 4),
jan@42381
   489
   (([3,3], Res), [ z = 1 / 2, z = -1 / 4]),
jan@42381
   490
   (([3,4], Res), [ z = 1 / 2, z = -1 / 4]),
jan@42381
   491
   (([3], Res), [ z = 1 / 2, z = -1 / 4]),
jan@42381
   492
   (([4], Frm), factors_from_solution [z = 1 / 2, z = -1 / 4])]
jan@42381
   493
\end{verbatim}      
jan@42381
   494
      
jan@42381
   495
      \par \noindent In particular that:
jan@42381
   496
      
jan@42381
   497
\begin{verbatim}
jan@42381
   498
  (([3], Pbl), solve (-1 + -2 * z + 8 * z ^^^ 2 = 0, z)),
jan@42381
   499
\end{verbatim}
jan@42381
   500
      \par \noindent Shows the equation which has been created in
jan@42381
   501
      the program by: 
jan@42381
   502
\begin{verbatim}
jan@42381
   503
  "(denom::real) = get_denominator funterm;      " ^ 
jan@42381
   504
    (* get_denominator *)
jan@42381
   505
  "(equ::bool) = (denom = (0::real));            " ^
jan@42381
   506
\end{verbatim}
jan@42369
   507
        
jan@42381
   508
      \noindent \ttfamily get\_denominator \normalfont has been evaluated successfully,
jan@42369
   509
      but not\\ \ttfamily factors\_from\_solution.\normalfont
jan@42369
   510
      So we stepwise compare with an analogous case, \ttfamily get\_denominator
jan@42369
   511
      \normalfont successfully done above: We know that LIP evaluates
jan@42369
   512
      expressions in the program by use of the \emph{srls}, so we try to get
jan@42369
   513
      the original \emph{srls}.\\
jan@42352
   514
jan@42381
   515
\begin{verbatim}
jan@42381
   516
  val {srls,...} = get_met ["SignalProcessing",
jan@42381
   517
                            "Z_Transform",
neuper@42405
   518
                            "Inverse"];
jan@42381
   519
\end{verbatim}
jan@42369
   520
          
jan@42381
   521
      \par \noindent Create 2 good example terms:
jan@42352
   522
jan@42381
   523
\begin{verbatim}
jan@42381
   524
val SOME t1 =
jan@42381
   525
  parseNEW ctxt "get_denominator ((111::real) / 222)";
jan@42381
   526
val SOME t2 =
jan@42381
   527
  parseNEW ctxt "factors_from_solution [(z::real)=1/2, z=-1/4]";
jan@42381
   528
\end{verbatim}
jan@42381
   529
jan@42381
   530
      \par \noindent Rewrite the terms using srls:\\
jan@42369
   531
      \ttfamily \par \noindent rewrite\_set\_ thy true srls t1;\\
jan@42369
   532
        rewrite\_set\_ thy true srls t2;\\
jan@42369
   533
      \par \noindent \normalfont Now we see a difference: \texttt{t1} gives
jan@42369
   534
      \texttt{SOME} but \texttt{t2} gives \texttt{NONE}. We look at the 
jan@42381
   535
      \emph{srls}:
jan@42381
   536
\begin{verbatim}
jan@42381
   537
  val srls = 
jan@42381
   538
    Rls{id = "srls_InverseZTransform",
jan@42381
   539
        rules = [Calc("Rational.get_numerator",
jan@42381
   540
                   eval_get_numerator "Rational.get_numerator"),
jan@42381
   541
                 Calc("Partial_Fractions.factors_from_solution",
jan@42381
   542
                   eval_factors_from_solution 
jan@42381
   543
                     "Partial_Fractions.factors_from_solution")]}
jan@42381
   544
\end{verbatim}                
jan@42381
   545
      \par \noindent Here everthing is perfect. So the error can
jan@42369
   546
      only be in the SML code of \ttfamily eval\_factors\_from\_solution.
jan@42369
   547
      \normalfont We try to check the code with an existing test; since the 
jan@42369
   548
      \emph{code} is in 
jan@42369
   549
      \begin{center}\ttfamily src/Tools/isac/Knowledge/Partial\_Fractions.thy
jan@42369
   550
      \normalfont\end{center}
jan@42369
   551
      the \emph{test} should be in
jan@42369
   552
      \begin{center}\ttfamily test/Tools/isac/Knowledge/partial\_fractions.sml
jan@42369
   553
      \normalfont\end{center}
jan@42369
   554
      \par \noindent After updating the function \ttfamily
jan@42369
   555
      factors\_from\_solution \normalfont to a new version and putting a
neuper@42376
   556
      test-case to \ttfamily Partial\_Fractions.sml \normalfont we tried again
jan@42369
   557
      to evaluate the term with the same result.
jan@42369
   558
      \par We opened the test \ttfamily Test\_Isac.thy \normalfont and saw that
jan@42369
   559
      everything is working fine. Also we checked that the test \ttfamily 
jan@42369
   560
      partial\_fractions.sml \normalfont is used in \ttfamily Test\_Isac.thy 
jan@42369
   561
      \normalfont
jan@42369
   562
      \begin{center}use \ttfamily "Knowledge/partial\_fractions.sml"
jan@42369
   563
      \normalfont \end{center}
jan@42369
   564
      and \ttfamily Partial\_Fractions.thy \normalfont is part is part of
jan@42381
   565
      {\sisac} by evaluating
jan@42352
   566
jan@42381
   567
\begin{verbatim}
neuper@42389
   568
  val thy = @{theory "Inverse_Z_Transform"};
jan@42381
   569
\end{verbatim}
jan@42352
   570
jan@42381
   571
      After rebuilding {\sisac} again it worked.
wneuper@59472
   572
\<close>
neuper@42279
   573
wneuper@59472
   574
subsubsection \<open>Build Expression\<close>
wneuper@59472
   575
text \<open>\noindent In {\sisac}'s TP-based programming language we can build
jan@42369
   576
       expressions by:\\
wneuper@59472
   577
       \ttfamily let s\_1 = Take numerator / (s\_1 * s\_2) \normalfont\<close>
jan@42369
   578
       
wneuper@59472
   579
ML \<open>
jan@42369
   580
  (*
neuper@42376
   581
   * The main denominator is the multiplication of the denominators of
jan@42369
   582
   * all partial fractions.
jan@42369
   583
   *)
jan@42369
   584
   
jan@42369
   585
  val denominator' = HOLogic.mk_binop 
jan@42369
   586
    "Groups.times_class.times" (s_1', s_2') ;
jan@42369
   587
  val SOME numerator = parseNEW ctxt "3::real";
neuper@42279
   588
jan@42369
   589
  val expr' = HOLogic.mk_binop
wneuper@59360
   590
    "Rings.divide_class.divide" (numerator, denominator');
jan@42369
   591
  term2str expr';
wneuper@59472
   592
\<close>
neuper@42279
   593
wneuper@59472
   594
subsubsection \<open>Apply the Partial Fraction Decomposion Ansatz\<close>
jan@42369
   595
wneuper@59472
   596
text\<open>\noindent We use the Ansatz of the Partial Fraction Decomposition for our
jan@42369
   597
      expression 2nd order. Follow up the calculation in 
wneuper@59472
   598
      Section~\ref{sec:calc:ztrans} Step~03.\<close>
jan@42369
   599
wneuper@59472
   600
ML \<open>Context.theory_name thy = "Isac"\<close>
neuper@42279
   601
wneuper@59472
   602
text\<open>\noindent We define two axiomatization, the first one is the main ansatz,
neuper@42376
   603
      the next one is just an equivalent transformation of the resulting
jan@42369
   604
      equation. Both axiomatizations were moved to \ttfamily
jan@42369
   605
      Partial\_Fractions.thy \normalfont and got their own rulesets. In later
neuper@42376
   606
      programs it is possible to use the rulesets and the machine will find
wneuper@59472
   607
      the correct ansatz and equivalent transformation itself.\<close>
jan@42369
   608
neuper@42279
   609
axiomatization where
jan@42369
   610
  ansatz_2nd_order: "n / (a*b) = A/a + B/b" and
jan@42369
   611
  equival_trans_2nd_order: "(n/(a*b) = A/a + B/b) = (n = A*b + B*a)"
jan@42369
   612
wneuper@59472
   613
text\<open>\noindent We use our \ttfamily ansatz\_2nd\_order \normalfont to rewrite
neuper@42376
   614
       our expression and get an equation with our expression on the left
wneuper@59472
   615
       and the partial fractions of it on the right hand side.\<close>
jan@42369
   616
  
wneuper@59472
   617
ML \<open>
jan@42369
   618
  val SOME (t1,_) = 
neuper@42384
   619
    rewrite_ @{theory} e_rew_ord e_rls false 
jan@42369
   620
             @{thm ansatz_2nd_order} expr';
jan@42369
   621
  term2str t1; atomty t1;
jan@42369
   622
  val eq1 = HOLogic.mk_eq (expr', t1);
jan@42369
   623
  term2str eq1;
wneuper@59472
   624
\<close>
jan@42369
   625
wneuper@59472
   626
text\<open>\noindent Eliminate the denominators by multiplying the left and the
jan@42369
   627
      right hand side of the equation with the main denominator. This is an
jan@42369
   628
      simple equivalent transformation. Later on we use an own ruleset
jan@42369
   629
      defined in \ttfamily Partial\_Fractions.thy \normalfont for doing this.
wneuper@59472
   630
      Follow up the calculation in Section~\ref{sec:calc:ztrans} Step~04.\<close>
neuper@42279
   631
wneuper@59472
   632
ML \<open>
jan@42369
   633
  val SOME (eq2,_) = 
neuper@42384
   634
    rewrite_ @{theory} e_rew_ord e_rls false 
jan@42369
   635
             @{thm equival_trans_2nd_order} eq1;
jan@42369
   636
  term2str eq2;
wneuper@59472
   637
\<close>
neuper@42342
   638
wneuper@59472
   639
text\<open>\noindent We use the existing ruleset \ttfamily norm\_Rational \normalfont 
wneuper@59472
   640
     for simplifications on expressions.\<close>
neuper@42279
   641
wneuper@59472
   642
ML \<open>
neuper@42384
   643
  val SOME (eq3,_) = rewrite_set_ @{theory} false norm_Rational eq2;
jan@42369
   644
  term2str eq3;
jan@42369
   645
  (*
jan@42369
   646
   * ?A ?B not simplified
jan@42369
   647
   *)
wneuper@59472
   648
\<close>
neuper@42279
   649
wneuper@59472
   650
text\<open>\noindent In Example~\ref{eg:gap} of my thesis I'm describing a problem about
jan@42369
   651
      simplifications. The problem that we would like to have only a specific degree
wneuper@59472
   652
      of simplification occurs right here, in the next step.\<close>
jan@42369
   653
wneuper@59472
   654
ML \<open>
neuper@52065
   655
  trace_rewrite := false;
jan@42369
   656
  val SOME fract1 =
jan@42369
   657
    parseNEW ctxt "(z - 1/2)*(z - -1/4) * (A/(z - 1/2) + B/(z - -1/4))";
jan@42369
   658
  (*
jan@42369
   659
   * A B !
jan@42369
   660
   *)
jan@42369
   661
  val SOME (fract2,_) = 
neuper@42384
   662
    rewrite_set_ @{theory} false norm_Rational fract1;
jan@42369
   663
  term2str fract2 = "(A + -2 * B + 4 * A * z + 4 * B * z) / 4";
jan@42369
   664
  (*
jan@42369
   665
   * term2str fract2 = "A * (1 / 4 + z) + B * (-1 / 2 + z)" 
jan@42369
   666
   * would be more traditional...
jan@42369
   667
   *)
wneuper@59472
   668
\<close>
jan@42369
   669
wneuper@59472
   670
text\<open>\noindent We walk around this problem by generating our new equation first.\<close>
jan@42369
   671
wneuper@59472
   672
ML \<open>
jan@42369
   673
  val (numerator, denominator) = HOLogic.dest_eq eq3;
jan@42369
   674
  val eq3' = HOLogic.mk_eq (numerator, fract1);
jan@42369
   675
  (*
jan@42369
   676
   * A B !
jan@42369
   677
   *)
jan@42369
   678
  term2str eq3';
jan@42369
   679
  (*
jan@42369
   680
   * MANDATORY: simplify (and remove denominator) otherwise 3 = 0
jan@42369
   681
   *)
jan@42369
   682
  val SOME (eq3'' ,_) = 
neuper@42384
   683
    rewrite_set_ @{theory} false norm_Rational eq3';
jan@42369
   684
  term2str eq3'';
wneuper@59472
   685
\<close>
jan@42369
   686
wneuper@59472
   687
text\<open>\noindent Still working at {\sisac}\ldots\<close>
jan@42369
   688
wneuper@59472
   689
ML \<open>Context.theory_name thy = "Isac"\<close>
jan@42369
   690
wneuper@59472
   691
subsubsection \<open>Build a Rule-Set for the Ansatz\<close>
wneuper@59472
   692
text \<open>\noindent The \emph{ansatz} rules violate the principle that each
jan@42369
   693
       variable on the right-hand-side must also occur on the
jan@42369
   694
       left-hand-side of the rule: A, B, etc. don't do that. Thus the
jan@42369
   695
       rewriter marks these variables with question marks: ?A, ?B, etc.
jan@42369
   696
       These question marks can be dropped by \ttfamily fun
wneuper@59472
   697
       drop\_questionmarks\normalfont.\<close>
jan@42369
   698
       
wneuper@59472
   699
ML \<open>
s1210629013@55444
   700
  val ansatz_rls = prep_rls @{theory} (
jan@42369
   701
    Rls {id = "ansatz_rls", preconds = [], rew_ord = ("dummy_ord",dummy_ord),
neuper@42451
   702
      erls = e_rls, srls = Erls, calc = [], errpatts = [],
jan@42369
   703
      rules = [
jan@42369
   704
        Thm ("ansatz_2nd_order",num_str @{thm ansatz_2nd_order}),
jan@42369
   705
        Thm ("equival_trans_2nd_order",num_str @{thm equival_trans_2nd_order})
jan@42369
   706
              ], 
jan@42369
   707
      scr = EmptyScr});
wneuper@59472
   708
\<close>
jan@42369
   709
wneuper@59472
   710
text\<open>\noindent We apply the ruleset\ldots\<close>
jan@42369
   711
wneuper@59472
   712
ML \<open>
jan@42369
   713
  val SOME (ttttt,_) = 
neuper@42384
   714
    rewrite_set_ @{theory} false ansatz_rls expr';
wneuper@59472
   715
\<close>
jan@42369
   716
wneuper@59472
   717
text\<open>\noindent And check the output\ldots\<close>
jan@42369
   718
wneuper@59472
   719
ML \<open>
jan@42369
   720
  term2str expr' = "3 / ((z - 1 / 2) * (z - -1 / 4))";
jan@42369
   721
  term2str ttttt = "?A / (z - 1 / 2) + ?B / (z - -1 / 4)";
wneuper@59472
   722
\<close>
jan@42369
   723
wneuper@59472
   724
subsubsection \<open>Get the First Coefficient\<close>
jan@42369
   725
wneuper@59472
   726
text\<open>\noindent Now it's up to get the two coefficients A and B, which will be
neuper@42376
   727
      the numerators of our partial fractions. Continue following up the 
wneuper@59472
   728
      Calculation in Section~\ref{sec:calc:ztrans} Subproblem~1.\<close>
jan@42369
   729
      
wneuper@59472
   730
text\<open>\noindent To get the first coefficient we substitute $z$ with the first
wneuper@59472
   731
      zero-point we determined in Section~\ref{sec:solveq}.\<close>
jan@42369
   732
wneuper@59472
   733
ML \<open>
jan@42369
   734
  val SOME (eq4_1,_) =
neuper@42384
   735
    rewrite_terms_ @{theory} e_rew_ord e_rls [s_1] eq3'';
jan@42369
   736
  term2str eq4_1;
jan@42369
   737
  val SOME (eq4_2,_) =
neuper@42384
   738
    rewrite_set_ @{theory} false norm_Rational eq4_1;
jan@42369
   739
  term2str eq4_2;
jan@42369
   740
jan@42369
   741
  val fmz = ["equality (3=3*A/(4::real))", "solveFor A","solutions L"];
jan@42369
   742
  val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
jan@42369
   743
  (*
neuper@42377
   744
   * Solve the simple linear equation for A:
jan@42369
   745
   * Return eq, not list of eq's
jan@42369
   746
   *)
jan@42369
   747
  val (p,_,fa,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
jan@42369
   748
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   749
    (*Add_Given "equality (3=3*A/4)"*)
jan@42369
   750
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   751
    (*Add_Given "solveFor A"*)
jan@42369
   752
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   753
    (*Add_Find "solutions L"*)
jan@42369
   754
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   755
    (*Specify_Theory "Isac"*)
jan@42369
   756
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
wneuper@59367
   757
    (*Specify_Problem ["normalise","polynomial",
jan@42369
   758
                       "univariate","equation"])*)
jan@42369
   759
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
wneuper@59370
   760
    (* Specify_Method["PolyEq","normalise_poly"]*)
jan@42369
   761
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
wneuper@59370
   762
    (*Apply_Method["PolyEq","normalise_poly"]*)
jan@42369
   763
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   764
    (*Rewrite ("all_left","PolyEq.all_left")*)
jan@42369
   765
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
wneuper@59497
   766
    (*Rewrite_Set_Inst(["(''bdv'',A)"],"make_ratpoly_in")*)
jan@42369
   767
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   768
    (*Rewrite_Set "polyeq_simplify"*)
jan@42369
   769
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   770
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   771
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   772
    (*Add_Given "equality (3 + -3 / 4 * A =0)"*)
jan@42369
   773
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   774
    (*Add_Given "solveFor A"*)
jan@42369
   775
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   776
    (*Add_Find "solutions A_i"*)
jan@42369
   777
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   778
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   779
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   780
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   781
    (*Apply_Method ["PolyEq","solve_d1_polyeq_equation"]*)
jan@42369
   782
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
wneuper@59497
   783
    (*Rewrite_Set_Inst(["(''bdv'',A)"],"d1_polyeq_simplify")*)
jan@42369
   784
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   785
    (*Rewrite_Set "polyeq_simplify"*)
jan@42369
   786
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   787
    (*Rewrite_Set "norm_Rational_parenthesized"*)
jan@42369
   788
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   789
    (*Or_to_List*)
jan@42369
   790
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   791
    (*Check_elementwise "Assumptions"*)
jan@42369
   792
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   793
    (*Check_Postcond ["degree_1","polynomial",
jan@42369
   794
                      "univariate","equation"]*)
jan@42369
   795
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
wneuper@59367
   796
    (*Check_Postcond ["normalise","polynomial",
jan@42369
   797
                      "univariate","equation"]*)
jan@42369
   798
  val (p,_,fa,nxt,_,pt) = me nxt p [] pt;
jan@42369
   799
    (*End_Proof'*)
jan@42369
   800
  f2str fa;
wneuper@59472
   801
\<close>
jan@42369
   802
wneuper@59472
   803
subsubsection \<open>Get Second Coefficient\<close>
jan@42369
   804
wneuper@59472
   805
text\<open>\noindent With the use of \texttt{thy} we check which theories the 
wneuper@59472
   806
      interpreter knows.\<close>
jan@42369
   807
wneuper@59472
   808
ML \<open>thy\<close>
neuper@42279
   809
wneuper@59472
   810
text\<open>\noindent To get the second coefficient we substitute $z$ with the second
wneuper@59472
   811
      zero-point we determined in Section~\ref{sec:solveq}.\<close>
jan@42369
   812
wneuper@59472
   813
ML \<open>
jan@42369
   814
  val SOME (eq4b_1,_) =
neuper@42384
   815
    rewrite_terms_ @{theory} e_rew_ord e_rls [s_2] eq3'';
jan@42369
   816
  term2str eq4b_1;
jan@42369
   817
  val SOME (eq4b_2,_) =
neuper@42384
   818
    rewrite_set_ @{theory} false norm_Rational eq4b_1;
jan@42369
   819
  term2str eq4b_2;
neuper@42279
   820
jan@42369
   821
  val fmz = ["equality (3= -3*B/(4::real))", "solveFor B","solutions L"];
jan@42369
   822
  val (dI',pI',mI') =("Isac", ["univariate","equation"], ["no_met"]);
jan@42369
   823
  val (p,_,fb,nxt,_,pt) = CalcTreeTEST [(fmz, (dI',pI',mI'))];
jan@42369
   824
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   825
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   826
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   827
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   828
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   829
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   830
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   831
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   832
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   833
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   834
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   835
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   836
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   837
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   838
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   839
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   840
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   841
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   842
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   843
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   844
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   845
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   846
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   847
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   848
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   849
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt;
jan@42369
   850
  val (p,_,fb,nxt,_,pt) = me nxt p [] pt; 
jan@42369
   851
  f2str fb;
wneuper@59472
   852
\<close>
neuper@42279
   853
wneuper@59472
   854
text\<open>\noindent We compare our results with the pre calculated upshot.\<close>
jan@42369
   855
wneuper@59472
   856
ML \<open>
jan@42369
   857
  if f2str fa = "[A = 4]" then () else error "part.fract. eq4_1";
jan@42369
   858
  if f2str fb = "[B = -4]" then () else error "part.fract. eq4_1";
wneuper@59472
   859
\<close>
neuper@42279
   860
wneuper@59472
   861
section \<open>Implement the Specification and the Method \label{spec-meth}\<close>
neuper@42279
   862
wneuper@59472
   863
text\<open>\noindent Now everything we need for solving the problem has been
jan@42369
   864
      tested out. We now start by creating new nodes for our methods and
wneuper@59472
   865
      further on our new program in the interpreter.\<close>
jan@42369
   866
wneuper@59472
   867
subsection\<open>Define the Field Descriptions for the 
wneuper@59472
   868
            Specification\label{sec:deffdes}\<close>
jan@42369
   869
wneuper@59472
   870
text\<open>\noindent We define the fields \em filterExpression \normalfont and
neuper@42376
   871
      \em stepResponse \normalfont both as equations, they represent the in- and
wneuper@59472
   872
      output of the program.\<close>
jan@42369
   873
neuper@42279
   874
consts
neuper@42279
   875
  filterExpression  :: "bool => una"
neuper@42279
   876
  stepResponse      :: "bool => una"
neuper@42279
   877
wneuper@59472
   878
subsection\<open>Define the Specification\<close>
jan@42369
   879
wneuper@59472
   880
text\<open>\noindent The next step is defining the specifications as nodes in the
neuper@42376
   881
      designated part. We have to create the hierarchy node by node and start
jan@42369
   882
      with \em SignalProcessing \normalfont and go on by creating the node
wneuper@59472
   883
      \em Z\_Transform\normalfont.\<close>
jan@42369
   884
wneuper@59472
   885
setup \<open>KEStore_Elems.add_pbts
s1210629013@55355
   886
  [prep_pbt thy "pbl_SP" [] e_pblID (["SignalProcessing"], [], e_rls, NONE, []),
s1210629013@55355
   887
    prep_pbt thy "pbl_SP_Ztrans" [] e_pblID
wneuper@59472
   888
      (["Z_Transform","SignalProcessing"], [], e_rls, NONE, [])]\<close>
jan@42369
   889
wneuper@59472
   890
text\<open>\noindent For the suddenly created node we have to define the input
neuper@42376
   891
       and output parameters. We already prepared their definition in
wneuper@59472
   892
       Section~\ref{sec:deffdes}.\<close>
jan@42369
   893
wneuper@59472
   894
setup \<open>KEStore_Elems.add_pbts
s1210629013@55355
   895
  [prep_pbt thy "pbl_SP_Ztrans_inv" [] e_pblID
s1210629013@55355
   896
      (["Inverse", "Z_Transform", "SignalProcessing"],
wneuper@59550
   897
        [("#Given" ,["filterExpression X_eq"]),
s1210629013@55355
   898
          ("#Find", ["stepResponse n_eq"])],
s1210629013@55355
   899
        append_rls "e_rls" e_rls [(*for preds in where_*)],
s1210629013@55355
   900
        NONE,
wneuper@59472
   901
        [["SignalProcessing","Z_Transform","Inverse"]])]\<close>
wneuper@59472
   902
ML \<open>
s1210629013@55355
   903
  show_ptyps ();
neuper@42405
   904
  get_pbt ["Inverse","Z_Transform","SignalProcessing"];
wneuper@59472
   905
\<close>
neuper@42279
   906
wneuper@59472
   907
subsection \<open>Define Name and Signature for the Method\<close>
jan@42369
   908
wneuper@59472
   909
text\<open>\noindent As a next step we store the definition of our new method as a
wneuper@59472
   910
      constant for the interpreter.\<close>
jan@42369
   911
neuper@42279
   912
consts
neuper@42279
   913
  InverseZTransform :: "[bool, bool] => bool"
wneuper@59585
   914
    ("((Program InverseZTransform (_ =))// (_))" 9)
neuper@42279
   915
wneuper@59472
   916
subsection \<open>Setup Parent Nodes in Hierarchy of Method\label{sec:cparentnode}\<close>
jan@42369
   917
wneuper@59472
   918
text\<open>\noindent Again we have to generate the nodes step by step, first the
jan@42369
   919
      parent node and then the originally \em Z\_Transformation 
jan@42369
   920
      \normalfont node. We have to define both nodes first with an empty script
wneuper@59472
   921
      as content.\<close>
jan@42369
   922
wneuper@59472
   923
setup \<open>KEStore_Elems.add_mets
s1210629013@55377
   924
  [prep_met thy "met_SP" [] e_metID
s1210629013@55377
   925
      (["SignalProcessing"], [],
s1210629013@55377
   926
        {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
s1210629013@55377
   927
          errpats = [], nrls = e_rls},
s1210629013@55377
   928
        "empty_script"),
s1210629013@55377
   929
    prep_met thy "met_SP_Ztrans" [] e_metID
s1210629013@55377
   930
      (["SignalProcessing", "Z_Transform"], [],
s1210629013@55377
   931
        {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
s1210629013@55377
   932
          errpats = [], nrls = e_rls},
s1210629013@55377
   933
        "empty_script")]
wneuper@59472
   934
\<close>
jan@42369
   935
wneuper@59472
   936
text\<open>\noindent After we generated both nodes, we can fill the containing
jan@42369
   937
      script we want to implement later. First we define the specifications
wneuper@59472
   938
      of the script in e.g. the in- and output.\<close>
jan@42369
   939
wneuper@59472
   940
setup \<open>KEStore_Elems.add_mets
s1210629013@55377
   941
  [prep_met thy "met_SP_Ztrans_inv" [] e_metID
s1210629013@55377
   942
      (["SignalProcessing", "Z_Transform", "Inverse"], 
wneuper@59550
   943
        [("#Given" ,["filterExpression X_eq", "boundVariable X_z"]),
wneuper@59550
   944
          ("#Find", ["stepResponse n_eq"])],
s1210629013@55377
   945
        {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
s1210629013@55377
   946
          errpats = [], nrls = e_rls},
s1210629013@55377
   947
        "empty_script")]
wneuper@59472
   948
\<close>
jan@42369
   949
wneuper@59472
   950
text\<open>\noindent After we stored the definition we can start implementing the
jan@42369
   951
      script itself. As a first try we define only three rows containing one
wneuper@59472
   952
      simple operation.\<close>
jan@42369
   953
wneuper@59472
   954
setup \<open>KEStore_Elems.add_mets
s1210629013@55377
   955
  [prep_met thy "met_SP_Ztrans_inv" [] e_metID
s1210629013@55377
   956
      (["SignalProcessing", "Z_Transform", "Inverse"], 
wneuper@59550
   957
        [("#Given" , ["filterExpression X_eq", "boundVariable X_z"]),
wneuper@59550
   958
          ("#Find", ["stepResponse n_eq"])],
s1210629013@55377
   959
        {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = e_rls, prls = e_rls, crls = e_rls,
s1210629013@55377
   960
          errpats = [], nrls = e_rls},
wneuper@59585
   961
        "Program InverseZTransform (Xeq::bool) =" ^ (*TODO boundVariable X_z*)
s1210629013@55377
   962
          " (let X = Take Xeq;" ^
s1210629013@55377
   963
          "      X = Rewrite ruleZY False X" ^
s1210629013@55377
   964
          "  in X)")]
wneuper@59472
   965
\<close>
jan@42369
   966
wneuper@59472
   967
text\<open>\noindent Check if the method has been stored correctly\ldots\<close>
jan@42369
   968
wneuper@59472
   969
ML \<open>
jan@42369
   970
  show_mets(); 
wneuper@59472
   971
\<close>
jan@42369
   972
wneuper@59472
   973
text\<open>\noindent If yes we can get the method by stepping backwards through
wneuper@59472
   974
      the hierarchy.\<close>
jan@42369
   975
wneuper@59472
   976
ML \<open>
neuper@42405
   977
  get_met ["SignalProcessing","Z_Transform","Inverse"];
wneuper@59472
   978
\<close>
neuper@42279
   979
wneuper@59472
   980
section \<open>Program in TP-based language \label{prog-steps}\<close>
jan@42369
   981
wneuper@59472
   982
text\<open>\noindent We start stepwise expanding our program. The script is a
neuper@42376
   983
      simple string containing several manipulation instructions.
jan@42370
   984
      \par The first script we try contains no instruction, we only test if
wneuper@59472
   985
      building scripts that way work.\<close>
jan@42369
   986
wneuper@59472
   987
subsection \<open>Stepwise Extend the Program\<close>
wneuper@59472
   988
ML \<open>
jan@42370
   989
  val str = 
wneuper@59585
   990
    "Program InverseZTransform (Xeq::bool) =                          "^
jan@42370
   991
    " Xeq";
wneuper@59472
   992
\<close>
jan@42300
   993
wneuper@59472
   994
text\<open>\noindent Next we put some instructions in the script and try if we are
wneuper@59472
   995
      able to solve our first equation.\<close>
jan@42370
   996
wneuper@59472
   997
ML \<open>
jan@42370
   998
  val str = 
wneuper@59585
   999
    "Program InverseZTransform (Xeq::bool) =                          "^
jan@42370
  1000
    (*
jan@42370
  1001
     * 1/z) instead of z ^^^ -1
jan@42370
  1002
     *)
jan@42381
  1003
    " (let X = Take Xeq;                                             "^
jan@42381
  1004
    "      X' = Rewrite ruleZY False X;                              "^
jan@42370
  1005
    (*
jan@42370
  1006
     * z * denominator
jan@42370
  1007
     *)
jan@42381
  1008
    "      X' = (Rewrite_Set norm_Rational False) X'                 "^
jan@42370
  1009
    (*
jan@42370
  1010
     * simplify
jan@42370
  1011
     *)
jan@42370
  1012
    "  in X)";
jan@42370
  1013
    (*
jan@42370
  1014
     * NONE
jan@42370
  1015
     *)
wneuper@59585
  1016
    "Program InverseZTransform (Xeq::bool) =                          "^
jan@42370
  1017
    (*
jan@42370
  1018
     * (1/z) instead of z ^^^ -1
jan@42370
  1019
     *)
jan@42381
  1020
    " (let X = Take Xeq;                                             "^
jan@42381
  1021
    "      X' = Rewrite ruleZY False X;                              "^
jan@42370
  1022
    (*
jan@42370
  1023
     * z * denominator
jan@42370
  1024
     *)
jan@42381
  1025
    "      X' = (Rewrite_Set norm_Rational False) X';                "^
jan@42370
  1026
    (*
jan@42370
  1027
     * simplify
jan@42370
  1028
     *)
wneuper@59476
  1029
    "      X' = (SubProblem (IsacX,[pqFormula,degree_2,              "^
jan@42381
  1030
    "                               polynomial,univariate,equation], "^
jan@42381
  1031
    "                              [no_met])                         "^
jan@42381
  1032
    "                              [BOOL e_e, REAL v_v])             "^
jan@42370
  1033
    "            in X)";
wneuper@59472
  1034
\<close>
jan@42370
  1035
wneuper@59472
  1036
text\<open>\noindent To solve the equation it is necessary to drop the left hand
jan@42370
  1037
      side, now we only need the denominator of the right hand side. The first
wneuper@59472
  1038
      equation solves the zeros of our expression.\<close>
jan@42370
  1039
wneuper@59472
  1040
ML \<open>
jan@42370
  1041
  val str = 
wneuper@59585
  1042
    "Program InverseZTransform (Xeq::bool) =                          "^
jan@42381
  1043
    " (let X = Take Xeq;                                             "^
jan@42381
  1044
    "      X' = Rewrite ruleZY False X;                              "^
jan@42381
  1045
    "      X' = (Rewrite_Set norm_Rational False) X';                "^
jan@42381
  1046
    "      funterm = rhs X'                                          "^
jan@42370
  1047
    (*
jan@42370
  1048
     * drop X'= for equation solving
jan@42370
  1049
     *)
jan@42370
  1050
    "  in X)";
wneuper@59472
  1051
\<close>
jan@42370
  1052
wneuper@59472
  1053
text\<open>\noindent As mentioned above, we need the denominator of the right hand
jan@42370
  1054
      side. The equation itself consists of this denominator and tries to find
wneuper@59472
  1055
      a $z$ for this the denominator is equal to zero.\<close>
jan@42370
  1056
wneuper@59585
  1057
text \<open> dropped during switch from Program to partial_function:
jan@42370
  1058
  val str = 
wneuper@59585
  1059
    "Program InverseZTransform (X_eq::bool) =                         "^
jan@42381
  1060
    " (let X = Take X_eq;                                            "^
jan@42381
  1061
    "      X' = Rewrite ruleZY False X;                              "^
jan@42381
  1062
    "      X' = (Rewrite_Set norm_Rational False) X';                "^
jan@42381
  1063
    "      (X'_z::real) = lhs X';                                    "^
jan@42381
  1064
    "      (z::real) = argument_in X'_z;                             "^
jan@42381
  1065
    "      (funterm::real) = rhs X';                                 "^
jan@42381
  1066
    "      (denom::real) = get_denominator funterm;                  "^
jan@42370
  1067
    (*
jan@42370
  1068
     * get_denominator
jan@42370
  1069
     *)
jan@42381
  1070
    "      (equ::bool) = (denom = (0::real));                        "^
jan@42381
  1071
    "      (L_L::bool list) =                                        "^
wneuper@59546
  1072
    "            (SubProblem (Test,                                 "^
neuper@55279
  1073
    "                         [LINEAR,univariate,equation,test],     "^
jan@42381
  1074
    "                         [Test,solve_linear])                   "^
jan@42381
  1075
    "                         [BOOL equ, REAL z])                    "^
jan@42370
  1076
    "  in X)";
jan@42370
  1077
jan@42370
  1078
  parse thy str;
wneuper@59395
  1079
  val sc = (inst_abs o Thm.term_of o the o (parse thy)) str;
jan@42370
  1080
  atomty sc;
wneuper@59472
  1081
\<close>
jan@42370
  1082
wneuper@59472
  1083
text \<open>\noindent This ruleset contains all functions that are in the script; 
wneuper@59472
  1084
       The evaluation of the functions is done by rewriting using this ruleset.\<close>
jan@42370
  1085
wneuper@59472
  1086
ML \<open>
jan@42381
  1087
  val srls = 
jan@42381
  1088
    Rls {id="srls_InverseZTransform", 
jan@42381
  1089
         preconds = [],
jan@42381
  1090
         rew_ord = ("termlessI",termlessI),
jan@42381
  1091
         erls = append_rls "erls_in_srls_InverseZTransform" e_rls
jan@42381
  1092
           [(*for asm in NTH_CONS ...*)
jan@42381
  1093
            Calc ("Orderings.ord_class.less",eval_equ "#less_"),
jan@42381
  1094
            (*2nd NTH_CONS pushes n+-1 into asms*)
jan@42381
  1095
            Calc("Groups.plus_class.plus", eval_binop "#add_")
jan@42381
  1096
           ], 
neuper@42451
  1097
         srls = Erls, calc = [], errpatts = [],
jan@42381
  1098
         rules = [
jan@42381
  1099
                  Thm ("NTH_CONS",num_str @{thm NTH_CONS}),
jan@42381
  1100
                  Calc("Groups.plus_class.plus", 
jan@42381
  1101
                       eval_binop "#add_"),
jan@42381
  1102
                  Thm ("NTH_NIL",num_str @{thm NTH_NIL}),
jan@42381
  1103
                  Calc("Tools.lhs", eval_lhs"eval_lhs_"),
jan@42381
  1104
                  Calc("Tools.rhs", eval_rhs"eval_rhs_"),
jan@42381
  1105
                  Calc("Atools.argument'_in",
jan@42381
  1106
                       eval_argument_in "Atools.argument'_in"),
jan@42381
  1107
                  Calc("Rational.get_denominator",
jan@42381
  1108
                       eval_get_denominator "#get_denominator"),
jan@42381
  1109
                  Calc("Rational.get_numerator",
jan@42381
  1110
                       eval_get_numerator "#get_numerator"),
jan@42381
  1111
                  Calc("Partial_Fractions.factors_from_solution",
jan@42381
  1112
                       eval_factors_from_solution 
jan@42381
  1113
                         "#factors_from_solution"),
jan@42381
  1114
                  Calc("Partial_Fractions.drop_questionmarks",
jan@42381
  1115
                       eval_drop_questionmarks "#drop_?")
jan@42381
  1116
                 ],
jan@42381
  1117
         scr = EmptyScr};
wneuper@59472
  1118
\<close>
jan@42370
  1119
jan@42370
  1120
wneuper@59472
  1121
subsection \<open>Store Final Version of Program for Execution\<close>
jan@42370
  1122
wneuper@59472
  1123
text\<open>\noindent After we also tested how to write scripts and run them,
jan@42370
  1124
      we start creating the final version of our script and store it into
jan@42381
  1125
      the method for which we created a node in Section~\ref{sec:cparentnode}
jan@42370
  1126
      Note that we also did this stepwise, but we didn't kept every
wneuper@59472
  1127
      subversion.\<close>
jan@42370
  1128
wneuper@59472
  1129
setup \<open>KEStore_Elems.add_mets
s1210629013@55377
  1130
  [prep_met thy "met_SP_Ztrans_inv" [] e_metID
s1210629013@55377
  1131
      (["SignalProcessing", "Z_Transform", "Inverse"], 
wneuper@59550
  1132
        [("#Given" , ["filterExpression X_eq"]), (*TODO boundVariable X_z*)
wneuper@59550
  1133
          ("#Find", ["stepResponse n_eq"])],
s1210629013@55377
  1134
        {rew_ord'="tless_true", rls'= e_rls, calc = [], srls = srls, prls = e_rls, crls = e_rls,
s1210629013@55377
  1135
          errpats = [], nrls = e_rls},
wneuper@59585
  1136
        "Program InverseZTransform (X_eq::bool) =                        "^
s1210629013@55377
  1137
          (*(1/z) instead of z ^^^ -1*)
s1210629013@55377
  1138
          "(let X = Take X_eq;                                            "^
s1210629013@55377
  1139
          "      X' = Rewrite ruleZY False X;                             "^
s1210629013@55377
  1140
          (*z * denominator*)
s1210629013@55377
  1141
          "      (num_orig::real) = get_numerator (rhs X');               "^
s1210629013@55377
  1142
          "      X' = (Rewrite_Set norm_Rational False) X';               "^
s1210629013@55377
  1143
          (*simplify*)
s1210629013@55377
  1144
          "      (X'_z::real) = lhs X';                                   "^
s1210629013@55377
  1145
          "      (zzz::real) = argument_in X'_z;                          "^
s1210629013@55377
  1146
          "      (funterm::real) = rhs X';                                "^
s1210629013@55377
  1147
          (*drop X' z = for equation solving*)
s1210629013@55377
  1148
          "      (denom::real) = get_denominator funterm;                 "^
s1210629013@55377
  1149
          (*get_denominator*)
s1210629013@55377
  1150
          "      (num::real) = get_numerator funterm;                     "^
s1210629013@55377
  1151
          (*get_numerator*)
s1210629013@55377
  1152
          "      (equ::bool) = (denom = (0::real));                       "^
wneuper@59476
  1153
          "      (L_L::bool list) = (SubProblem (PolyEqX,                 "^
s1210629013@55377
  1154
          "         [abcFormula,degree_2,polynomial,univariate,equation], "^
s1210629013@55377
  1155
          "         [no_met])                                             "^
s1210629013@55377
  1156
          "         [BOOL equ, REAL zzz]);                                "^
s1210629013@55377
  1157
          "      (facs::real) = factors_from_solution L_L;                "^
s1210629013@55377
  1158
          "      (eql::real) = Take (num_orig / facs);                    "^ 
s1210629013@55377
  1159
s1210629013@55377
  1160
          "      (eqr::real) = (Try (Rewrite_Set ansatz_rls False)) eql;  "^
s1210629013@55377
  1161
s1210629013@55377
  1162
          "      (eq::bool) = Take (eql = eqr);                           "^
s1210629013@55377
  1163
          (*Maybe possible to use HOLogic.mk_eq ??*)
s1210629013@55377
  1164
          "      eq = (Try (Rewrite_Set equival_trans False)) eq;         "^ 
s1210629013@55377
  1165
s1210629013@55377
  1166
          "      eq = drop_questionmarks eq;                              "^
s1210629013@55377
  1167
          "      (z1::real) = (rhs (NTH 1 L_L));                          "^
s1210629013@55377
  1168
          (* 
s1210629013@55377
  1169
          * prepare equation for a - eq_a
s1210629013@55377
  1170
          * therefor substitute z with solution 1 - z1
s1210629013@55377
  1171
          *)
s1210629013@55377
  1172
          "      (z2::real) = (rhs (NTH 2 L_L));                          "^
s1210629013@55377
  1173
s1210629013@55377
  1174
          "      (eq_a::bool) = Take eq;                                  "^
s1210629013@55377
  1175
          "      eq_a = (Substitute [zzz=z1]) eq;                         "^
s1210629013@55377
  1176
          "      eq_a = (Rewrite_Set norm_Rational False) eq_a;           "^
s1210629013@55377
  1177
          "      (sol_a::bool list) =                                     "^
wneuper@59476
  1178
          "                 (SubProblem (IsacX,                           "^
s1210629013@55377
  1179
          "                              [univariate,equation],[no_met])  "^
s1210629013@55377
  1180
          "                              [BOOL eq_a, REAL (A::real)]);    "^
s1210629013@55377
  1181
          "      (a::real) = (rhs(NTH 1 sol_a));                          "^
s1210629013@55377
  1182
s1210629013@55377
  1183
          "      (eq_b::bool) = Take eq;                                  "^
s1210629013@55377
  1184
          "      eq_b =  (Substitute [zzz=z2]) eq_b;                      "^
s1210629013@55377
  1185
          "      eq_b = (Rewrite_Set norm_Rational False) eq_b;           "^
s1210629013@55377
  1186
          "      (sol_b::bool list) =                                     "^
wneuper@59476
  1187
          "                 (SubProblem (IsacX,                           "^
s1210629013@55377
  1188
          "                              [univariate,equation],[no_met])  "^
s1210629013@55377
  1189
          "                              [BOOL eq_b, REAL (B::real)]);    "^
s1210629013@55377
  1190
          "      (b::real) = (rhs(NTH 1 sol_b));                          "^
s1210629013@55377
  1191
s1210629013@55377
  1192
          "      eqr = drop_questionmarks eqr;                            "^
s1210629013@55377
  1193
          "      (pbz::real) = Take eqr;                                  "^
s1210629013@55377
  1194
          "      pbz = ((Substitute [A=a, B=b]) pbz);                     "^
s1210629013@55377
  1195
s1210629013@55377
  1196
          "      pbz = Rewrite ruleYZ False pbz;                          "^
s1210629013@55377
  1197
          "      pbz = drop_questionmarks pbz;                            "^
s1210629013@55377
  1198
s1210629013@55377
  1199
          "      (X_z::bool) = Take (X_z = pbz);                          "^
s1210629013@55377
  1200
          "      (n_eq::bool) = (Rewrite_Set inverse_z False) X_z;        "^
s1210629013@55377
  1201
          "      n_eq = drop_questionmarks n_eq                           "^
s1210629013@55377
  1202
          "in n_eq)")]
wneuper@59472
  1203
\<close>
jan@42370
  1204
jan@42370
  1205
wneuper@59472
  1206
subsection \<open>Check the Program\<close>
wneuper@59472
  1207
text\<open>\noindent When the script is ready we can start checking our work.\<close>
wneuper@59472
  1208
subsubsection \<open>Check the Formalization\<close>
wneuper@59472
  1209
text\<open>\noindent First we want to check the formalization of the in and
wneuper@59472
  1210
       output of our program.\<close>
jan@42370
  1211
wneuper@59472
  1212
ML \<open>
jan@42370
  1213
  val fmz = 
jan@42370
  1214
    ["filterExpression (X  = 3 / (z - 1/4 + -1/8 * (1/(z::real))))",
jan@42370
  1215
     "stepResponse (x[n::real]::bool)"];
jan@42370
  1216
  val (dI,pI,mI) = 
neuper@42405
  1217
    ("Isac", ["Inverse", "Z_Transform", "SignalProcessing"], 
neuper@42405
  1218
             ["SignalProcessing","Z_Transform","Inverse"]);
jan@42370
  1219
jan@42370
  1220
  val ([
jan@42370
  1221
          (
jan@42370
  1222
            1,
jan@42370
  1223
            [1],
jan@42370
  1224
            "#Given",
jan@42370
  1225
            Const ("Inverse_Z_Transform.filterExpression", _),
jan@42370
  1226
            [Const ("HOL.eq", _) $ _ $ _]
jan@42370
  1227
          ),
jan@42370
  1228
          (
jan@42370
  1229
            2,
jan@42370
  1230
            [1],
jan@42370
  1231
            "#Find",
jan@42370
  1232
            Const ("Inverse_Z_Transform.stepResponse", _),
jan@42370
  1233
            [Free ("x", _) $ _]
jan@42370
  1234
          )
jan@42370
  1235
       ],_
jan@42370
  1236
      ) = prep_ori fmz thy ((#ppc o get_pbt) pI);
jan@42370
  1237
neuper@48790
  1238
  val Prog sc 
jan@42370
  1239
    = (#scr o get_met) ["SignalProcessing",
jan@42370
  1240
                        "Z_Transform",
neuper@42405
  1241
                        "Inverse"];
jan@42370
  1242
  atomty sc;
wneuper@59472
  1243
\<close>
jan@42370
  1244
wneuper@59472
  1245
subsubsection \<open>Stepwise Check the Program\label{sec:stepcheck}\<close>
wneuper@59472
  1246
text\<open>\noindent We start to stepwise execute our new program in a calculation
wneuper@59472
  1247
      tree and check if every node implements that what we have wanted.\<close>
jan@42370
  1248
      
wneuper@59472
  1249
ML \<open>
neuper@52101
  1250
  trace_rewrite := false; (*true*)
neuper@52101
  1251
  trace_script := false; (*true*)
jan@42370
  1252
  print_depth 9;
jan@42370
  1253
  
jan@42370
  1254
  val fmz =
jan@42418
  1255
    ["filterExpression (X z = 3 / ((z::real) + 1/10 - 1/50*(1/z)))",
jan@42370
  1256
     "stepResponse (x[n::real]::bool)"];
jan@42370
  1257
     
jan@42370
  1258
  val (dI,pI,mI) =
neuper@42405
  1259
    ("Isac", ["Inverse", "Z_Transform", "SignalProcessing"], 
neuper@42405
  1260
             ["SignalProcessing","Z_Transform","Inverse"]);
jan@42370
  1261
             
jan@42370
  1262
  val (p,_,f,nxt,_,pt)  = CalcTreeTEST [(fmz, (dI,pI,mI))];
jan@42370
  1263
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1264
    "Add_Given";
jan@42370
  1265
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1266
    "Add_Find";
jan@42370
  1267
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1268
    "Specify_Theory";
jan@42370
  1269
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1270
    "Specify_Problem";
jan@42370
  1271
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1272
    "Specify_Method";
jan@42370
  1273
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1274
    "Apply_Method";
jan@42370
  1275
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1276
    "Rewrite (ruleZY, Inverse_Z_Transform.ruleZY)";
jan@42370
  1277
    "--> X z = 3 / (z - 1 / 4 + -1 / 8 * (1 / z))";
jan@42370
  1278
  (*
jan@42370
  1279
   * TODO naming!
jan@42370
  1280
   *)
jan@42370
  1281
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1282
    "Rewrite_Set norm_Rational";
jan@42370
  1283
    " --> X' z = 3 / (z * (z - 1 / 4 + -1 / 8 * (1 / z)))";
jan@42371
  1284
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1285
    "SubProblem";
neuper@52101
  1286
  print_depth 3;
wneuper@59472
  1287
\<close>
jan@42370
  1288
wneuper@59472
  1289
text \<open>\noindent Instead of \ttfamily nxt = Subproblem \normalfont above we had
jan@42370
  1290
       \ttfamily Empty\_Tac; \normalfont the search for the reason considered
jan@42370
  1291
       the following points:\begin{itemize}
jan@42381
  1292
       \item What shows \ttfamily show\_pt pt;\normalfont\ldots?
jan@42381
  1293
\begin{verbatim}(([2], Res), ?X' z = 24 / (-1 + -2 * z + 8 * z ^^^ 2))]\end{verbatim}
jan@42370
  1294
         The calculation is ok but no \ttfamily next \normalfont step found:
jan@42370
  1295
         Should be\\ \ttfamily nxt = Subproblem\normalfont!
jan@42370
  1296
       \item What shows \ttfamily trace\_script := true; \normalfont we read
jan@42381
  1297
         bottom up\ldots
jan@42381
  1298
     \begin{verbatim}
jan@42381
  1299
     @@@next leaf 'SubProblem
jan@42381
  1300
     (PolyEq',[abcFormula, degree_2, polynomial, 
jan@42381
  1301
               univariate, equation], no_meth)
jan@42381
  1302
     [BOOL equ, REAL z]' 
jan@42381
  1303
       ---> STac 'SubProblem (PolyEq',
jan@42381
  1304
              [abcFormula, degree_2, polynomial,
jan@42381
  1305
               univariate, equation], no_meth)
jan@42381
  1306
     [BOOL (-1 + -2 * z + 8 * z \^\^\^ ~2 = 0), REAL z]'
jan@42381
  1307
     \end{verbatim}
jan@42370
  1308
         We see the SubProblem with correct arguments from searching next
jan@42370
  1309
         step (program text !!!--->!!! STac (script tactic) with arguments
jan@42370
  1310
         evaluated.)
wneuper@59585
  1311
     \item Do we have the right Program \ldots difference in the
jan@42381
  1312
         arguments in the arguments\ldots
jan@42381
  1313
         \begin{verbatim}
neuper@48790
  1314
     val Prog s =
jan@42381
  1315
     (#scr o get_met) ["SignalProcessing",
jan@42381
  1316
                       "Z_Transform",
neuper@42405
  1317
                       "Inverse"];
jan@42381
  1318
     writeln (term2str s);
jan@42381
  1319
         \end{verbatim}
jan@42370
  1320
         \ldots shows the right script. Difference in the arguments.
jan@42370
  1321
     \item Test --- Why helpless here ? --- shows: \ttfamily replace
wneuper@59585
  1322
         no\_meth by [no\_meth] \normalfont in Program
jan@42370
  1323
     \end{itemize}
wneuper@59472
  1324
\<close>
jan@42300
  1325
wneuper@59472
  1326
ML \<open>
jan@42370
  1327
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1328
    (*Model_Problem";*)
wneuper@59472
  1329
\<close>
neuper@42279
  1330
wneuper@59472
  1331
text \<open>\noindent Instead of \ttfamily nxt = Model\_Problem \normalfont above
jan@42370
  1332
       we had \ttfamily Empty\_Tac; \normalfont the search for the reason 
jan@42370
  1333
       considered the following points:\begin{itemize}
jan@42370
  1334
       \item Difference in the arguments
jan@42381
  1335
       \item Comparison with Subsection~\ref{sec:solveq}: There solving this
jan@42370
  1336
         equation works, so there must be some difference in the arguments
jan@42370
  1337
         of the Subproblem: RIGHT: we had \ttfamily [no\_meth] \normalfont
jan@42370
  1338
         instead of \ttfamily [no\_met] \normalfont ;-)
wneuper@59472
  1339
       \end{itemize}\<close>
jan@42338
  1340
wneuper@59472
  1341
ML \<open>
jan@42370
  1342
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1343
    (*Add_Given equality (-1 + -2 * z + 8 * z ^^^ 2 = 0)";*)
jan@42370
  1344
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1345
    (*Add_Given solveFor z";*)
jan@42370
  1346
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1347
    (*Add_Find solutions z_i";*)
jan@42370
  1348
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1349
    (*Specify_Theory Isac";*)
wneuper@59472
  1350
\<close>
neuper@42279
  1351
wneuper@59472
  1352
text \<open>\noindent We had \ttfamily nxt = Empty\_Tac instead Specify\_Theory;
jan@42370
  1353
       \normalfont The search for the reason considered the following points:
jan@42370
  1354
       \begin{itemize}
jan@42370
  1355
       \item Was there an error message? NO -- ok
jan@42370
  1356
       \item Has \ttfamily nxt = Add\_Find \normalfont been inserted in pt:\\
jan@42370
  1357
         \ttfamily get\_obj g\_pbl pt (fst p);\normalfont? YES -- ok
jan@42381
  1358
       \item What is the returned formula:
jan@42381
  1359
\begin{verbatim}
neuper@52101
  1360
print_depth 999; f; print_depth 3;
jan@42381
  1361
{ Find = [ Correct "solutions z_i"],
jan@42381
  1362
  With = [],
jan@42381
  1363
  Given = [Correct "equality (-1 + -2*z + 8*z ^^^ 2 = 0)",
jan@42381
  1364
           Correct "solveFor z"],
jan@42381
  1365
  Where = [...],
jan@42381
  1366
  Relate = [] }
jan@42381
  1367
\end{verbatim}
jan@42370
  1368
     \normalfont The only False is the reason: the Where (the precondition) is
jan@42370
  1369
     False for good reasons: The precondition seems to check for linear
jan@42370
  1370
     equations, not for the one we want to solve! Removed this error by
wneuper@59585
  1371
     correcting the Program from \ttfamily SubProblem (PolyEq',
jan@42370
  1372
     \lbrack linear,univariate,equation,
jan@42370
  1373
       test\rbrack, \lbrack Test,solve\_linear\rbrack \normalfont to
jan@42370
  1374
     \ttfamily SubProblem (PolyEq',\\ \lbrack abcFormula,degree\_2,
jan@42370
  1375
       polynomial,univariate,equation\rbrack,\\
jan@42370
  1376
                   \lbrack PolyEq,solve\_d2\_polyeq\_abc\_equation
jan@42370
  1377
                   \rbrack\normalfont
jan@42370
  1378
     You find the appropriate type of equation at the
jan@42370
  1379
     {\sisac}-WEB-Page\footnote{
jan@42370
  1380
     \href{http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index\_pbl.html}
jan@42370
  1381
          {http://www.ist.tugraz.at/projects/isac/www/kbase/pbl/index\_pbl.html}
jan@42370
  1382
                               }
jan@42370
  1383
     And the respective method in \ttfamily Knowledge/PolyEq.thy \normalfont
jan@42370
  1384
     at the respective \ttfamily store\_pbt. \normalfont Or you leave the
wneuper@59585
  1385
     selection of the appropriate type to isac as done in the final Program ;-))
wneuper@59472
  1386
  \end{itemize}\<close>
jan@42370
  1387
  
wneuper@59472
  1388
ML \<open>
jan@42370
  1389
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1390
    (*Specify_Problem [abcFormula,...";*)
jan@42370
  1391
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1392
    (*Specify_Method [PolyEq,solve_d2_polyeq_abc_equation";*)
jan@42370
  1393
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1394
    (*Apply_Method [PolyEq,solve_d2_polyeq_abc_equation";*)
jan@42370
  1395
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59497
  1396
    (*Rewrite_Set_Inst [(''bdv'', z)], d2_polyeq_abcFormula_simplify";*)
jan@42370
  1397
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1398
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1399
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1400
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1401
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1402
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1403
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1404
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1405
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1406
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1407
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1408
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1409
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1410
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1411
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1412
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1413
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59367
  1414
    (*Specify_Problem ["normalise","polynomial","univariate","equation"]*)
jan@42370
  1415
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59370
  1416
    (*Specify_Method ["PolyEq", "normalise_poly"]*)
jan@42370
  1417
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59370
  1418
    (*Apply_Method ["PolyEq", "normalise_poly"]*)
jan@42370
  1419
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1420
    (*Rewrite ("all_left", "PolyEq.all_left")*)
jan@42370
  1421
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59497
  1422
    (*Rewrite_Set_Inst (["(''bdv'', A)"], "make_ratpoly_in")*)
jan@42370
  1423
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1424
    (*Rewrite_Set "polyeq_simplify"*)
jan@42370
  1425
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; 
jan@42370
  1426
    (*Subproblem("Isac",["degree_1","polynomial","univariate","equation"])*)
jan@42370
  1427
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1428
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1429
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1430
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1431
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1432
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1433
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1434
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1435
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1436
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1437
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1438
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1439
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1440
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1441
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1442
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1443
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1444
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1445
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1446
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1447
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1448
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1449
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1450
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1451
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1452
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1453
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1454
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1455
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1456
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1457
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1458
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1459
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1460
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1461
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1462
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1463
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1464
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1465
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1466
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1467
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1468
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1469
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1470
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
jan@42370
  1471
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
neuper@42451
  1472
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([11, 4, 5], Res) Check_Postcond*)
neuper@42451
  1473
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([11, 4], Res) Check_Postcond*)
neuper@42451
  1474
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([11], Res) Take*)
neuper@42451
  1475
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([12], Frm) Substitute*)
neuper@42451
  1476
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([12], Res) Rewrite*)
neuper@42451
  1477
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([13], Res) Take*)
neuper@42451
  1478
  val (p,_,f,nxt,_,pt) = me nxt p [] pt; (*([14], Frm) Empty_Tac*)
wneuper@59472
  1479
\<close>
wneuper@59472
  1480
ML \<open>
jan@42370
  1481
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1482
\<close>
wneuper@59472
  1483
ML \<open>
jan@42370
  1484
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1485
\<close>
wneuper@59472
  1486
ML \<open>
jan@42370
  1487
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1488
\<close>
wneuper@59472
  1489
ML \<open>
jan@42370
  1490
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1491
\<close>
wneuper@59472
  1492
ML \<open>
jan@42370
  1493
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1494
\<close>
wneuper@59472
  1495
ML \<open>
jan@42370
  1496
  val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1497
\<close>
neuper@42281
  1498
wneuper@59472
  1499
ML \<open>
jan@42418
  1500
trace_script := true;
wneuper@59472
  1501
\<close>
wneuper@59472
  1502
ML \<open>
jan@42418
  1503
val (p,_,f,nxt,_,pt) = me nxt p [] pt;
wneuper@59472
  1504
\<close>
wneuper@59472
  1505
ML \<open>
wneuper@59265
  1506
Chead.show_pt pt;
wneuper@59472
  1507
\<close>
wneuper@59472
  1508
ML \<open>
wneuper@59472
  1509
\<close> 
wneuper@59472
  1510
ML \<open>
wneuper@59472
  1511
\<close> 
wneuper@59472
  1512
ML \<open>
wneuper@59472
  1513
\<close> 
wneuper@59472
  1514
ML \<open>
wneuper@59472
  1515
\<close> 
wneuper@59472
  1516
ML \<open>
wneuper@59472
  1517
\<close> 
wneuper@59472
  1518
ML \<open>
wneuper@59472
  1519
\<close> 
jan@42418
  1520
wneuper@59472
  1521
text\<open>\noindent As a last step we check the tracing output of the last calc
wneuper@59472
  1522
      tree instruction and compare it with the pre-calculated result.\<close>
neuper@42315
  1523
wneuper@59472
  1524
section \<open>Improve and Transfer into Knowledge\<close>
wneuper@59472
  1525
text \<open>
neuper@42376
  1526
  We want to improve the very long program \ttfamily InverseZTransform
neuper@42376
  1527
  \normalfont by modularisation: partial fraction decomposition shall
neuper@42376
  1528
  become a sub-problem.
neuper@42376
  1529
neuper@42376
  1530
  We could transfer all knowledge in \ttfamily Build\_Inverse\_Z\_Transform.thy 
neuper@42376
  1531
  \normalfont first to the \ttfamily Knowledge/Inverse\_Z\_Transform.thy 
neuper@42376
  1532
  \normalfont and then modularise. In this case TODO problems?!?
neuper@42376
  1533
neuper@42376
  1534
  We chose another way and go bottom up: first we build the sub-problem in
jan@42381
  1535
  \ttfamily Partial\_Fractions.thy \normalfont with the term:
neuper@42376
  1536
jan@42381
  1537
      $$\frac{3}{x\cdot(z - \frac{1}{4} + \frac{-1}{8}\cdot\frac{1}{z})}$$
neuper@42376
  1538
jan@42381
  1539
  \noindent (how this still can be improved see \ttfamily Partial\_Fractions.thy\normalfont),
neuper@42376
  1540
  and re-use all stuff prepared in \ttfamily Build\_Inverse\_Z\_Transform.thy:
jan@42381
  1541
  \normalfont The knowledge will be transferred to \ttfamily src/../Partial\_Fractions.thy 
jan@42381
  1542
  \normalfont and the respective tests to:
jan@42381
  1543
  \begin{center}\ttfamily test/../sartial\_fractions.sml\normalfont\end{center}
wneuper@59472
  1544
\<close>
neuper@42279
  1545
wneuper@59472
  1546
subsection \<open>Transfer to Partial\_Fractions.thy\<close>
wneuper@59472
  1547
text \<open>
jan@42381
  1548
  First we transfer both, knowledge and tests into:
jan@42381
  1549
  \begin{center}\ttfamily src/../Partial\_Fractions.thy\normalfont\end{center}
jan@42381
  1550
  in order to immediately have the test results.
neuper@42376
  1551
jan@42381
  1552
  We copy \ttfamily factors\_from\_solution, drop\_questionmarks,\\
jan@42381
  1553
  ansatz\_2nd\_order \normalfont and rule-sets --- no problem.
jan@42381
  1554
  
jan@42381
  1555
  Also \ttfamily store\_pbt ..\\ "pbl\_simp\_rat\_partfrac"
neuper@42376
  1556
  \normalfont is easy.
neuper@42376
  1557
jan@42381
  1558
  But then we copy from:\\
jan@42381
  1559
  (1) \ttfamily Build\_Inverse\_Z\_Transform.thy store\_met\ldots "met\_SP\_Ztrans\_inv"
jan@42381
  1560
  \normalfont\\ to\\ 
jan@42381
  1561
  (2) \ttfamily Partial\_Fractions.thy store\_met\ldots "met\_SP\_Ztrans\_inv" 
jan@42381
  1562
  \normalfont\\ and cut out the respective part from the program. First we ensure that
neuper@42376
  1563
  the string is correct. When we insert the string into (2)
jan@42381
  1564
  \ttfamily store\_met .. "met\_partial\_fraction" \normalfont --- and get an error.
wneuper@59472
  1565
\<close>
neuper@42376
  1566
wneuper@59472
  1567
subsubsection \<open>'Programming' in ISAC's TP-based Language\<close>
wneuper@59472
  1568
text \<open>
neuper@42376
  1569
  At the present state writing programs in {\sisac} is particularly cumbersome.
neuper@42376
  1570
  So we give hints how to cope with the many obstacles. Below we describe the
neuper@42376
  1571
  steps we did in making (2) run.
neuper@42376
  1572
  
neuper@42376
  1573
  \begin{enumerate}
neuper@42376
  1574
    \item We check if the \textbf{string} containing the program is correct.
neuper@42376
  1575
    \item We check if the \textbf{types in the program} are correct.
neuper@42376
  1576
      For this purpose we start start with the first and last lines
jan@42381
  1577
     \begin{verbatim}
jan@42381
  1578
     "PartFracScript (f_f::real) (v_v::real) =       " ^
jan@42381
  1579
     " (let X = Take f_f;                            " ^
jan@42381
  1580
     "      pbz = ((Substitute []) X)                " ^
jan@42381
  1581
     "  in pbz)"
jan@42381
  1582
     \end{verbatim}
neuper@42376
  1583
       The last but one line helps not to bother with ';'.
neuper@42376
  1584
     \item Then we add line by line. Already the first line causes the error. 
neuper@42376
  1585
        So we investigate it by
jan@42381
  1586
      \begin{verbatim}
neuper@48761
  1587
      val ctxt = Proof_Context.init_global @{theory "Inverse_Z_Transform"} ;
jan@42381
  1588
      val SOME t = 
jan@42381
  1589
        parseNEW ctxt "(num_orig::real) = 
jan@42381
  1590
                          get_numerator(rhs f_f)";
jan@42381
  1591
      \end{verbatim}
neuper@42376
  1592
        and see a type clash: \ttfamily rhs \normalfont from (1) requires type 
jan@42381
  1593
        \ttfamily bool \normalfont while (2) wants to have \ttfamily (f\_f::real).
neuper@42376
  1594
        \normalfont Of course, we don't need \ttfamily rhs \normalfont anymore.
neuper@42376
  1595
      \item Type-checking can be very tedious. One might even inspect the
jan@42381
  1596
        parse-tree of the program with {\sisac}'s specific debug tools:
jan@42381
  1597
      \begin{verbatim}
neuper@48790
  1598
      val {scr = Prog t,...} = 
jan@42381
  1599
        get_met ["simplification",
jan@42381
  1600
                 "of_rationals",
jan@42381
  1601
                 "to_partial_fraction"];
neuper@42389
  1602
      atomty_thy @{theory "Inverse_Z_Transform"} t ;
jan@42381
  1603
      \end{verbatim}
neuper@42376
  1604
      \item We check if the \textbf{semantics of the program} by stepwise evaluation
neuper@42376
  1605
        of the program. Evaluation is done by the Lucas-Interpreter, which works
neuper@42376
  1606
        using the knowledge in theory Isac; so we have to re-build Isac. And the
neuper@42376
  1607
        test are performed simplest in a file which is loaded with Isac.
jan@42381
  1608
        See \ttfamily tests/../partial\_fractions.sml \normalfont.
neuper@42376
  1609
  \end{enumerate}
wneuper@59472
  1610
\<close>
neuper@42376
  1611
wneuper@59472
  1612
subsection \<open>Transfer to Inverse\_Z\_Transform.thy\<close>
wneuper@59472
  1613
text \<open>
neuper@42388
  1614
  It was not possible to complete this task, because we ran out of time.
wneuper@59472
  1615
\<close>
neuper@42376
  1616
neuper@42376
  1617
neuper@42279
  1618
end
neuper@42279
  1619