src/HOL/Finite_Set.thy
author Rafal Kolanski <rafal.kolanski@nicta.com.au>
Wed, 20 Jun 2012 16:54:08 +0200
changeset 49124 0a58f7eefba2
parent 49078 f02b4302d5dd
child 49137 f479f36ed2ff
child 49139 87c831e30f0a
permissions -rw-r--r--
Integrated set comprehension pointfree simproc.
wenzelm@12396
     1
(*  Title:      HOL/Finite_Set.thy
wenzelm@12396
     2
    Author:     Tobias Nipkow, Lawrence C Paulson and Markus Wenzel
avigad@16775
     3
                with contributions by Jeremy Avigad
wenzelm@12396
     4
*)
wenzelm@12396
     5
wenzelm@12396
     6
header {* Finite sets *}
wenzelm@12396
     7
nipkow@15131
     8
theory Finite_Set
haftmann@38626
     9
imports Option Power
rafal@49124
    10
uses ("Tools/set_comprehension_pointfree.ML")
nipkow@15131
    11
begin
wenzelm@12396
    12
haftmann@35817
    13
subsection {* Predicate for finite sets *}
wenzelm@12396
    14
haftmann@42525
    15
inductive finite :: "'a set \<Rightarrow> bool"
berghofe@22262
    16
  where
berghofe@22262
    17
    emptyI [simp, intro!]: "finite {}"
haftmann@42525
    18
  | insertI [simp, intro!]: "finite A \<Longrightarrow> finite (insert a A)"
haftmann@42525
    19
rafal@49124
    20
use "Tools/set_comprehension_pointfree.ML"
rafal@49124
    21
rafal@49124
    22
simproc_setup finite_Collect ("finite (Collect P)") =
rafal@49124
    23
  {* Set_Comprehension_Pointfree.simproc *}
rafal@49124
    24
rafal@49124
    25
haftmann@42525
    26
lemma finite_induct [case_names empty insert, induct set: finite]:
haftmann@42525
    27
  -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
haftmann@42525
    28
  assumes "finite F"
haftmann@42525
    29
  assumes "P {}"
haftmann@42525
    30
    and insert: "\<And>x F. finite F \<Longrightarrow> x \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert x F)"
haftmann@42525
    31
  shows "P F"
wenzelm@47770
    32
using `finite F`
wenzelm@47770
    33
proof induct
haftmann@42525
    34
  show "P {}" by fact
haftmann@42525
    35
  fix x F assume F: "finite F" and P: "P F"
haftmann@42525
    36
  show "P (insert x F)"
haftmann@42525
    37
  proof cases
haftmann@42525
    38
    assume "x \<in> F"
haftmann@42525
    39
    hence "insert x F = F" by (rule insert_absorb)
haftmann@42525
    40
    with P show ?thesis by (simp only:)
haftmann@42525
    41
  next
haftmann@42525
    42
    assume "x \<notin> F"
haftmann@42525
    43
    from F this P show ?thesis by (rule insert)
haftmann@42525
    44
  qed
haftmann@42525
    45
qed
haftmann@42525
    46
haftmann@42525
    47
haftmann@42525
    48
subsubsection {* Choice principles *}
wenzelm@12396
    49
nipkow@13737
    50
lemma ex_new_if_finite: -- "does not depend on def of finite at all"
wenzelm@14661
    51
  assumes "\<not> finite (UNIV :: 'a set)" and "finite A"
wenzelm@14661
    52
  shows "\<exists>a::'a. a \<notin> A"
wenzelm@14661
    53
proof -
haftmann@28823
    54
  from assms have "A \<noteq> UNIV" by blast
haftmann@42525
    55
  then show ?thesis by blast
wenzelm@14661
    56
qed
wenzelm@12396
    57
haftmann@42525
    58
text {* A finite choice principle. Does not need the SOME choice operator. *}
wenzelm@12396
    59
nipkow@29860
    60
lemma finite_set_choice:
haftmann@42525
    61
  "finite A \<Longrightarrow> \<forall>x\<in>A. \<exists>y. P x y \<Longrightarrow> \<exists>f. \<forall>x\<in>A. P x (f x)"
haftmann@42525
    62
proof (induct rule: finite_induct)
haftmann@42525
    63
  case empty then show ?case by simp
nipkow@29860
    64
next
nipkow@29860
    65
  case (insert a A)
nipkow@29860
    66
  then obtain f b where f: "ALL x:A. P x (f x)" and ab: "P a b" by auto
nipkow@29860
    67
  show ?case (is "EX f. ?P f")
nipkow@29860
    68
  proof
nipkow@29860
    69
    show "?P(%x. if x = a then b else f x)" using f ab by auto
nipkow@29860
    70
  qed
nipkow@29860
    71
qed
nipkow@29860
    72
haftmann@23878
    73
haftmann@42525
    74
subsubsection {* Finite sets are the images of initial segments of natural numbers *}
nipkow@15392
    75
paulson@15510
    76
lemma finite_imp_nat_seg_image_inj_on:
haftmann@42525
    77
  assumes "finite A" 
haftmann@42525
    78
  shows "\<exists>(n::nat) f. A = f ` {i. i < n} \<and> inj_on f {i. i < n}"
wenzelm@47770
    79
using assms
wenzelm@47770
    80
proof induct
nipkow@15392
    81
  case empty
haftmann@42525
    82
  show ?case
haftmann@42525
    83
  proof
haftmann@42525
    84
    show "\<exists>f. {} = f ` {i::nat. i < 0} \<and> inj_on f {i. i < 0}" by simp 
paulson@15510
    85
  qed
nipkow@15392
    86
next
nipkow@15392
    87
  case (insert a A)
wenzelm@23389
    88
  have notinA: "a \<notin> A" by fact
paulson@15510
    89
  from insert.hyps obtain n f
paulson@15510
    90
    where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast
paulson@15510
    91
  hence "insert a A = f(n:=a) ` {i. i < Suc n}"
paulson@15510
    92
        "inj_on (f(n:=a)) {i. i < Suc n}" using notinA
paulson@15510
    93
    by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq)
nipkow@15392
    94
  thus ?case by blast
nipkow@15392
    95
qed
nipkow@15392
    96
nipkow@15392
    97
lemma nat_seg_image_imp_finite:
haftmann@42525
    98
  "A = f ` {i::nat. i < n} \<Longrightarrow> finite A"
haftmann@42525
    99
proof (induct n arbitrary: A)
nipkow@15392
   100
  case 0 thus ?case by simp
nipkow@15392
   101
next
nipkow@15392
   102
  case (Suc n)
nipkow@15392
   103
  let ?B = "f ` {i. i < n}"
nipkow@15392
   104
  have finB: "finite ?B" by(rule Suc.hyps[OF refl])
nipkow@15392
   105
  show ?case
nipkow@15392
   106
  proof cases
nipkow@15392
   107
    assume "\<exists>k<n. f n = f k"
nipkow@15392
   108
    hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq)
nipkow@15392
   109
    thus ?thesis using finB by simp
nipkow@15392
   110
  next
nipkow@15392
   111
    assume "\<not>(\<exists> k<n. f n = f k)"
nipkow@15392
   112
    hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq)
nipkow@15392
   113
    thus ?thesis using finB by simp
nipkow@15392
   114
  qed
nipkow@15392
   115
qed
nipkow@15392
   116
nipkow@15392
   117
lemma finite_conv_nat_seg_image:
haftmann@42525
   118
  "finite A \<longleftrightarrow> (\<exists>(n::nat) f. A = f ` {i::nat. i < n})"
haftmann@42525
   119
  by (blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on)
nipkow@15392
   120
nipkow@32988
   121
lemma finite_imp_inj_to_nat_seg:
haftmann@42525
   122
  assumes "finite A"
haftmann@42525
   123
  shows "\<exists>f n::nat. f ` A = {i. i < n} \<and> inj_on f A"
nipkow@32988
   124
proof -
nipkow@32988
   125
  from finite_imp_nat_seg_image_inj_on[OF `finite A`]
nipkow@32988
   126
  obtain f and n::nat where bij: "bij_betw f {i. i<n} A"
nipkow@32988
   127
    by (auto simp:bij_betw_def)
nipkow@33057
   128
  let ?f = "the_inv_into {i. i<n} f"
nipkow@32988
   129
  have "inj_on ?f A & ?f ` A = {i. i<n}"
nipkow@33057
   130
    by (fold bij_betw_def) (rule bij_betw_the_inv_into[OF bij])
nipkow@32988
   131
  thus ?thesis by blast
nipkow@32988
   132
qed
nipkow@32988
   133
haftmann@42525
   134
lemma finite_Collect_less_nat [iff]:
haftmann@42525
   135
  "finite {n::nat. n < k}"
nipkow@45761
   136
  by (fastforce simp: finite_conv_nat_seg_image)
nipkow@29857
   137
haftmann@42525
   138
lemma finite_Collect_le_nat [iff]:
haftmann@42525
   139
  "finite {n::nat. n \<le> k}"
haftmann@42525
   140
  by (simp add: le_eq_less_or_eq Collect_disj_eq)
nipkow@15392
   141
wenzelm@12396
   142
haftmann@42525
   143
subsubsection {* Finiteness and common set operations *}
haftmann@42525
   144
haftmann@42525
   145
lemma rev_finite_subset:
haftmann@42525
   146
  "finite B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> finite A"
haftmann@42525
   147
proof (induct arbitrary: A rule: finite_induct)
haftmann@42525
   148
  case empty
haftmann@42525
   149
  then show ?case by simp
haftmann@42525
   150
next
haftmann@42525
   151
  case (insert x F A)
haftmann@42525
   152
  have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F \<Longrightarrow> finite (A - {x})" by fact+
haftmann@42525
   153
  show "finite A"
haftmann@42525
   154
  proof cases
haftmann@42525
   155
    assume x: "x \<in> A"
haftmann@42525
   156
    with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
haftmann@42525
   157
    with r have "finite (A - {x})" .
haftmann@42525
   158
    hence "finite (insert x (A - {x}))" ..
haftmann@42525
   159
    also have "insert x (A - {x}) = A" using x by (rule insert_Diff)
haftmann@42525
   160
    finally show ?thesis .
wenzelm@12396
   161
  next
haftmann@42525
   162
    show "A \<subseteq> F ==> ?thesis" by fact
haftmann@42525
   163
    assume "x \<notin> A"
haftmann@42525
   164
    with A show "A \<subseteq> F" by (simp add: subset_insert_iff)
wenzelm@12396
   165
  qed
wenzelm@12396
   166
qed
wenzelm@12396
   167
haftmann@42525
   168
lemma finite_subset:
haftmann@42525
   169
  "A \<subseteq> B \<Longrightarrow> finite B \<Longrightarrow> finite A"
haftmann@42525
   170
  by (rule rev_finite_subset)
huffman@34109
   171
haftmann@42525
   172
lemma finite_UnI:
haftmann@42525
   173
  assumes "finite F" and "finite G"
haftmann@42525
   174
  shows "finite (F \<union> G)"
haftmann@42525
   175
  using assms by induct simp_all
nipkow@29838
   176
haftmann@42525
   177
lemma finite_Un [iff]:
haftmann@42525
   178
  "finite (F \<union> G) \<longleftrightarrow> finite F \<and> finite G"
haftmann@42525
   179
  by (blast intro: finite_UnI finite_subset [of _ "F \<union> G"])
wenzelm@12396
   180
haftmann@42525
   181
lemma finite_insert [simp]: "finite (insert a A) \<longleftrightarrow> finite A"
wenzelm@12396
   182
proof -
haftmann@42525
   183
  have "finite {a} \<and> finite A \<longleftrightarrow> finite A" by simp
haftmann@42525
   184
  then have "finite ({a} \<union> A) \<longleftrightarrow> finite A" by (simp only: finite_Un)
wenzelm@23389
   185
  then show ?thesis by simp
wenzelm@12396
   186
qed
wenzelm@12396
   187
haftmann@42525
   188
lemma finite_Int [simp, intro]:
haftmann@42525
   189
  "finite F \<or> finite G \<Longrightarrow> finite (F \<inter> G)"
haftmann@42525
   190
  by (blast intro: finite_subset)
haftmann@42525
   191
haftmann@42525
   192
lemma finite_Collect_conjI [simp, intro]:
haftmann@42525
   193
  "finite {x. P x} \<or> finite {x. Q x} \<Longrightarrow> finite {x. P x \<and> Q x}"
haftmann@42525
   194
  by (simp add: Collect_conj_eq)
haftmann@42525
   195
haftmann@42525
   196
lemma finite_Collect_disjI [simp]:
haftmann@42525
   197
  "finite {x. P x \<or> Q x} \<longleftrightarrow> finite {x. P x} \<and> finite {x. Q x}"
haftmann@42525
   198
  by (simp add: Collect_disj_eq)
haftmann@42525
   199
haftmann@42525
   200
lemma finite_Diff [simp, intro]:
haftmann@42525
   201
  "finite A \<Longrightarrow> finite (A - B)"
haftmann@42525
   202
  by (rule finite_subset, rule Diff_subset)
nipkow@29838
   203
nipkow@29838
   204
lemma finite_Diff2 [simp]:
haftmann@42525
   205
  assumes "finite B"
haftmann@42525
   206
  shows "finite (A - B) \<longleftrightarrow> finite A"
nipkow@29838
   207
proof -
haftmann@42525
   208
  have "finite A \<longleftrightarrow> finite((A - B) \<union> (A \<inter> B))" by (simp add: Un_Diff_Int)
haftmann@42525
   209
  also have "\<dots> \<longleftrightarrow> finite (A - B)" using `finite B` by simp
nipkow@29838
   210
  finally show ?thesis ..
nipkow@29838
   211
qed
nipkow@29838
   212
haftmann@42525
   213
lemma finite_Diff_insert [iff]:
haftmann@42525
   214
  "finite (A - insert a B) \<longleftrightarrow> finite (A - B)"
haftmann@42525
   215
proof -
haftmann@42525
   216
  have "finite (A - B) \<longleftrightarrow> finite (A - B - {a})" by simp
haftmann@42525
   217
  moreover have "A - insert a B = A - B - {a}" by auto
haftmann@42525
   218
  ultimately show ?thesis by simp
haftmann@42525
   219
qed
haftmann@42525
   220
nipkow@29838
   221
lemma finite_compl[simp]:
haftmann@42525
   222
  "finite (A :: 'a set) \<Longrightarrow> finite (- A) \<longleftrightarrow> finite (UNIV :: 'a set)"
haftmann@42525
   223
  by (simp add: Compl_eq_Diff_UNIV)
wenzelm@12396
   224
nipkow@29853
   225
lemma finite_Collect_not[simp]:
haftmann@42525
   226
  "finite {x :: 'a. P x} \<Longrightarrow> finite {x. \<not> P x} \<longleftrightarrow> finite (UNIV :: 'a set)"
haftmann@42525
   227
  by (simp add: Collect_neg_eq)
nipkow@29840
   228
haftmann@42525
   229
lemma finite_Union [simp, intro]:
haftmann@42525
   230
  "finite A \<Longrightarrow> (\<And>M. M \<in> A \<Longrightarrow> finite M) \<Longrightarrow> finite(\<Union>A)"
haftmann@42525
   231
  by (induct rule: finite_induct) simp_all
wenzelm@12396
   232
haftmann@42525
   233
lemma finite_UN_I [intro]:
haftmann@42525
   234
  "finite A \<Longrightarrow> (\<And>a. a \<in> A \<Longrightarrow> finite (B a)) \<Longrightarrow> finite (\<Union>a\<in>A. B a)"
haftmann@42525
   235
  by (induct rule: finite_induct) simp_all
wenzelm@12396
   236
haftmann@42525
   237
lemma finite_UN [simp]:
haftmann@42525
   238
  "finite A \<Longrightarrow> finite (UNION A B) \<longleftrightarrow> (\<forall>x\<in>A. finite (B x))"
haftmann@42525
   239
  by (blast intro: finite_subset)
paulson@13825
   240
haftmann@42525
   241
lemma finite_Inter [intro]:
haftmann@42525
   242
  "\<exists>A\<in>M. finite A \<Longrightarrow> finite (\<Inter>M)"
haftmann@42525
   243
  by (blast intro: Inter_lower finite_subset)
haftmann@42525
   244
haftmann@42525
   245
lemma finite_INT [intro]:
haftmann@42525
   246
  "\<exists>x\<in>I. finite (A x) \<Longrightarrow> finite (\<Inter>x\<in>I. A x)"
haftmann@42525
   247
  by (blast intro: INT_lower finite_subset)
haftmann@42525
   248
haftmann@42525
   249
lemma finite_imageI [simp, intro]:
haftmann@42525
   250
  "finite F \<Longrightarrow> finite (h ` F)"
haftmann@42525
   251
  by (induct rule: finite_induct) simp_all
paulson@13825
   252
haftmann@31764
   253
lemma finite_image_set [simp]:
haftmann@31764
   254
  "finite {x. P x} \<Longrightarrow> finite { f x | x. P x }"
haftmann@31764
   255
  by (simp add: image_Collect [symmetric])
haftmann@31764
   256
haftmann@42525
   257
lemma finite_imageD:
haftmann@43073
   258
  assumes "finite (f ` A)" and "inj_on f A"
haftmann@43073
   259
  shows "finite A"
wenzelm@47770
   260
using assms
wenzelm@47770
   261
proof (induct "f ` A" arbitrary: A)
haftmann@43073
   262
  case empty then show ?case by simp
haftmann@43073
   263
next
haftmann@43073
   264
  case (insert x B)
haftmann@43073
   265
  then have B_A: "insert x B = f ` A" by simp
haftmann@43073
   266
  then obtain y where "x = f y" and "y \<in> A" by blast
haftmann@43073
   267
  from B_A `x \<notin> B` have "B = f ` A - {x}" by blast
haftmann@43073
   268
  with B_A `x \<notin> B` `x = f y` `inj_on f A` `y \<in> A` have "B = f ` (A - {y})" by (simp add: inj_on_image_set_diff)
haftmann@43073
   269
  moreover from `inj_on f A` have "inj_on f (A - {y})" by (rule inj_on_diff)
haftmann@43073
   270
  ultimately have "finite (A - {y})" by (rule insert.hyps)
haftmann@43073
   271
  then show "finite A" by simp
haftmann@43073
   272
qed
wenzelm@12396
   273
haftmann@42525
   274
lemma finite_surj:
haftmann@42525
   275
  "finite A \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> finite B"
haftmann@42525
   276
  by (erule finite_subset) (rule finite_imageI)
wenzelm@12396
   277
haftmann@42525
   278
lemma finite_range_imageI:
haftmann@42525
   279
  "finite (range g) \<Longrightarrow> finite (range (\<lambda>x. f (g x)))"
haftmann@42525
   280
  by (drule finite_imageI) (simp add: range_composition)
paulson@13825
   281
haftmann@42525
   282
lemma finite_subset_image:
haftmann@42525
   283
  assumes "finite B"
haftmann@42525
   284
  shows "B \<subseteq> f ` A \<Longrightarrow> \<exists>C\<subseteq>A. finite C \<and> B = f ` C"
wenzelm@47770
   285
using assms
wenzelm@47770
   286
proof induct
haftmann@42525
   287
  case empty then show ?case by simp
haftmann@42525
   288
next
haftmann@42525
   289
  case insert then show ?case
haftmann@42525
   290
    by (clarsimp simp del: image_insert simp add: image_insert [symmetric])
haftmann@42525
   291
       blast
haftmann@42525
   292
qed
haftmann@42525
   293
hoelzl@44862
   294
lemma finite_vimage_IntI:
hoelzl@44862
   295
  "finite F \<Longrightarrow> inj_on h A \<Longrightarrow> finite (h -` F \<inter> A)"
haftmann@42525
   296
  apply (induct rule: finite_induct)
wenzelm@21575
   297
   apply simp_all
paulson@14430
   298
  apply (subst vimage_insert)
hoelzl@44862
   299
  apply (simp add: finite_subset [OF inj_on_vimage_singleton] Int_Un_distrib2)
paulson@13825
   300
  done
paulson@13825
   301
hoelzl@44862
   302
lemma finite_vimageI:
hoelzl@44862
   303
  "finite F \<Longrightarrow> inj h \<Longrightarrow> finite (h -` F)"
hoelzl@44862
   304
  using finite_vimage_IntI[of F h UNIV] by auto
hoelzl@44862
   305
huffman@34109
   306
lemma finite_vimageD:
huffman@34109
   307
  assumes fin: "finite (h -` F)" and surj: "surj h"
huffman@34109
   308
  shows "finite F"
huffman@34109
   309
proof -
huffman@34109
   310
  have "finite (h ` (h -` F))" using fin by (rule finite_imageI)
huffman@34109
   311
  also have "h ` (h -` F) = F" using surj by (rule surj_image_vimage_eq)
huffman@34109
   312
  finally show "finite F" .
huffman@34109
   313
qed
huffman@34109
   314
huffman@34109
   315
lemma finite_vimage_iff: "bij h \<Longrightarrow> finite (h -` F) \<longleftrightarrow> finite F"
huffman@34109
   316
  unfolding bij_def by (auto elim: finite_vimageD finite_vimageI)
huffman@34109
   317
haftmann@42525
   318
lemma finite_Collect_bex [simp]:
haftmann@42525
   319
  assumes "finite A"
haftmann@42525
   320
  shows "finite {x. \<exists>y\<in>A. Q x y} \<longleftrightarrow> (\<forall>y\<in>A. finite {x. Q x y})"
haftmann@42525
   321
proof -
haftmann@42525
   322
  have "{x. \<exists>y\<in>A. Q x y} = (\<Union>y\<in>A. {x. Q x y})" by auto
haftmann@42525
   323
  with assms show ?thesis by simp
haftmann@42525
   324
qed
paulson@13825
   325
haftmann@42525
   326
lemma finite_Collect_bounded_ex [simp]:
haftmann@42525
   327
  assumes "finite {y. P y}"
haftmann@42525
   328
  shows "finite {x. \<exists>y. P y \<and> Q x y} \<longleftrightarrow> (\<forall>y. P y \<longrightarrow> finite {x. Q x y})"
haftmann@42525
   329
proof -
haftmann@42525
   330
  have "{x. EX y. P y & Q x y} = (\<Union>y\<in>{y. P y}. {x. Q x y})" by auto
haftmann@42525
   331
  with assms show ?thesis by simp
haftmann@42525
   332
qed
wenzelm@12396
   333
haftmann@42525
   334
lemma finite_Plus:
haftmann@42525
   335
  "finite A \<Longrightarrow> finite B \<Longrightarrow> finite (A <+> B)"
haftmann@42525
   336
  by (simp add: Plus_def)
nipkow@17022
   337
nipkow@31080
   338
lemma finite_PlusD: 
nipkow@31080
   339
  fixes A :: "'a set" and B :: "'b set"
nipkow@31080
   340
  assumes fin: "finite (A <+> B)"
nipkow@31080
   341
  shows "finite A" "finite B"
nipkow@31080
   342
proof -
nipkow@31080
   343
  have "Inl ` A \<subseteq> A <+> B" by auto
haftmann@42525
   344
  then have "finite (Inl ` A :: ('a + 'b) set)" using fin by (rule finite_subset)
haftmann@42525
   345
  then show "finite A" by (rule finite_imageD) (auto intro: inj_onI)
nipkow@31080
   346
next
nipkow@31080
   347
  have "Inr ` B \<subseteq> A <+> B" by auto
haftmann@42525
   348
  then have "finite (Inr ` B :: ('a + 'b) set)" using fin by (rule finite_subset)
haftmann@42525
   349
  then show "finite B" by (rule finite_imageD) (auto intro: inj_onI)
nipkow@31080
   350
qed
nipkow@31080
   351
haftmann@42525
   352
lemma finite_Plus_iff [simp]:
haftmann@42525
   353
  "finite (A <+> B) \<longleftrightarrow> finite A \<and> finite B"
haftmann@42525
   354
  by (auto intro: finite_PlusD finite_Plus)
nipkow@31080
   355
haftmann@42525
   356
lemma finite_Plus_UNIV_iff [simp]:
haftmann@42525
   357
  "finite (UNIV :: ('a + 'b) set) \<longleftrightarrow> finite (UNIV :: 'a set) \<and> finite (UNIV :: 'b set)"
haftmann@42525
   358
  by (subst UNIV_Plus_UNIV [symmetric]) (rule finite_Plus_iff)
wenzelm@12396
   359
nipkow@41030
   360
lemma finite_SigmaI [simp, intro]:
haftmann@42525
   361
  "finite A \<Longrightarrow> (\<And>a. a\<in>A \<Longrightarrow> finite (B a)) ==> finite (SIGMA a:A. B a)"
nipkow@41030
   362
  by (unfold Sigma_def) blast
wenzelm@12396
   363
haftmann@42525
   364
lemma finite_cartesian_product:
haftmann@42525
   365
  "finite A \<Longrightarrow> finite B \<Longrightarrow> finite (A \<times> B)"
nipkow@15402
   366
  by (rule finite_SigmaI)
nipkow@15402
   367
wenzelm@12396
   368
lemma finite_Prod_UNIV:
haftmann@42525
   369
  "finite (UNIV :: 'a set) \<Longrightarrow> finite (UNIV :: 'b set) \<Longrightarrow> finite (UNIV :: ('a \<times> 'b) set)"
haftmann@42525
   370
  by (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product)
wenzelm@12396
   371
paulson@15409
   372
lemma finite_cartesian_productD1:
haftmann@43074
   373
  assumes "finite (A \<times> B)" and "B \<noteq> {}"
haftmann@43074
   374
  shows "finite A"
haftmann@43074
   375
proof -
haftmann@43074
   376
  from assms obtain n f where "A \<times> B = f ` {i::nat. i < n}"
haftmann@43074
   377
    by (auto simp add: finite_conv_nat_seg_image)
haftmann@43074
   378
  then have "fst ` (A \<times> B) = fst ` f ` {i::nat. i < n}" by simp
haftmann@43074
   379
  with `B \<noteq> {}` have "A = (fst \<circ> f) ` {i::nat. i < n}"
haftmann@43074
   380
    by (simp add: image_compose)
haftmann@43074
   381
  then have "\<exists>n f. A = f ` {i::nat. i < n}" by blast
haftmann@43074
   382
  then show ?thesis
haftmann@43074
   383
    by (auto simp add: finite_conv_nat_seg_image)
haftmann@43074
   384
qed
paulson@15409
   385
paulson@15409
   386
lemma finite_cartesian_productD2:
haftmann@43074
   387
  assumes "finite (A \<times> B)" and "A \<noteq> {}"
haftmann@43074
   388
  shows "finite B"
haftmann@43074
   389
proof -
haftmann@43074
   390
  from assms obtain n f where "A \<times> B = f ` {i::nat. i < n}"
haftmann@43074
   391
    by (auto simp add: finite_conv_nat_seg_image)
haftmann@43074
   392
  then have "snd ` (A \<times> B) = snd ` f ` {i::nat. i < n}" by simp
haftmann@43074
   393
  with `A \<noteq> {}` have "B = (snd \<circ> f) ` {i::nat. i < n}"
haftmann@43074
   394
    by (simp add: image_compose)
haftmann@43074
   395
  then have "\<exists>n f. B = f ` {i::nat. i < n}" by blast
haftmann@43074
   396
  then show ?thesis
haftmann@43074
   397
    by (auto simp add: finite_conv_nat_seg_image)
haftmann@43074
   398
qed
paulson@15409
   399
haftmann@42525
   400
lemma finite_Pow_iff [iff]:
haftmann@42525
   401
  "finite (Pow A) \<longleftrightarrow> finite A"
wenzelm@12396
   402
proof
wenzelm@12396
   403
  assume "finite (Pow A)"
haftmann@42525
   404
  then have "finite ((%x. {x}) ` A)" by (blast intro: finite_subset)
haftmann@42525
   405
  then show "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp
wenzelm@12396
   406
next
wenzelm@12396
   407
  assume "finite A"
haftmann@42525
   408
  then show "finite (Pow A)"
huffman@35208
   409
    by induct (simp_all add: Pow_insert)
wenzelm@12396
   410
qed
wenzelm@12396
   411
haftmann@42525
   412
corollary finite_Collect_subsets [simp, intro]:
haftmann@42525
   413
  "finite A \<Longrightarrow> finite {B. B \<subseteq> A}"
haftmann@42525
   414
  by (simp add: Pow_def [symmetric])
nipkow@29855
   415
nipkow@15392
   416
lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A"
haftmann@42525
   417
  by (blast intro: finite_subset [OF subset_Pow_Union])
nipkow@15392
   418
nipkow@15392
   419
haftmann@42525
   420
subsubsection {* Further induction rules on finite sets *}
haftmann@42525
   421
haftmann@42525
   422
lemma finite_ne_induct [case_names singleton insert, consumes 2]:
haftmann@42525
   423
  assumes "finite F" and "F \<noteq> {}"
haftmann@42525
   424
  assumes "\<And>x. P {x}"
haftmann@42525
   425
    and "\<And>x F. finite F \<Longrightarrow> F \<noteq> {} \<Longrightarrow> x \<notin> F \<Longrightarrow> P F  \<Longrightarrow> P (insert x F)"
haftmann@42525
   426
  shows "P F"
wenzelm@47770
   427
using assms
wenzelm@47770
   428
proof induct
haftmann@42525
   429
  case empty then show ?case by simp
nipkow@31427
   430
next
haftmann@42525
   431
  case (insert x F) then show ?case by cases auto
haftmann@42525
   432
qed
haftmann@42525
   433
haftmann@42525
   434
lemma finite_subset_induct [consumes 2, case_names empty insert]:
haftmann@42525
   435
  assumes "finite F" and "F \<subseteq> A"
haftmann@42525
   436
  assumes empty: "P {}"
haftmann@42525
   437
    and insert: "\<And>a F. finite F \<Longrightarrow> a \<in> A \<Longrightarrow> a \<notin> F \<Longrightarrow> P F \<Longrightarrow> P (insert a F)"
haftmann@42525
   438
  shows "P F"
wenzelm@47770
   439
using `finite F` `F \<subseteq> A`
wenzelm@47770
   440
proof induct
haftmann@42525
   441
  show "P {}" by fact
haftmann@42525
   442
next
haftmann@42525
   443
  fix x F
haftmann@42525
   444
  assume "finite F" and "x \<notin> F" and
haftmann@42525
   445
    P: "F \<subseteq> A \<Longrightarrow> P F" and i: "insert x F \<subseteq> A"
haftmann@42525
   446
  show "P (insert x F)"
haftmann@42525
   447
  proof (rule insert)
haftmann@42525
   448
    from i show "x \<in> A" by blast
haftmann@42525
   449
    from i have "F \<subseteq> A" by blast
haftmann@42525
   450
    with P show "P F" .
haftmann@42525
   451
    show "finite F" by fact
haftmann@42525
   452
    show "x \<notin> F" by fact
haftmann@42525
   453
  qed
haftmann@42525
   454
qed
haftmann@42525
   455
haftmann@42525
   456
lemma finite_empty_induct:
haftmann@42525
   457
  assumes "finite A"
haftmann@42525
   458
  assumes "P A"
haftmann@42525
   459
    and remove: "\<And>a A. finite A \<Longrightarrow> a \<in> A \<Longrightarrow> P A \<Longrightarrow> P (A - {a})"
haftmann@42525
   460
  shows "P {}"
haftmann@42525
   461
proof -
haftmann@42525
   462
  have "\<And>B. B \<subseteq> A \<Longrightarrow> P (A - B)"
haftmann@42525
   463
  proof -
haftmann@42525
   464
    fix B :: "'a set"
haftmann@42525
   465
    assume "B \<subseteq> A"
haftmann@42525
   466
    with `finite A` have "finite B" by (rule rev_finite_subset)
haftmann@42525
   467
    from this `B \<subseteq> A` show "P (A - B)"
haftmann@42525
   468
    proof induct
haftmann@42525
   469
      case empty
haftmann@42525
   470
      from `P A` show ?case by simp
haftmann@42525
   471
    next
haftmann@42525
   472
      case (insert b B)
haftmann@42525
   473
      have "P (A - B - {b})"
haftmann@42525
   474
      proof (rule remove)
haftmann@42525
   475
        from `finite A` show "finite (A - B)" by induct auto
haftmann@42525
   476
        from insert show "b \<in> A - B" by simp
haftmann@42525
   477
        from insert show "P (A - B)" by simp
haftmann@42525
   478
      qed
haftmann@42525
   479
      also have "A - B - {b} = A - insert b B" by (rule Diff_insert [symmetric])
haftmann@42525
   480
      finally show ?case .
haftmann@42525
   481
    qed
haftmann@42525
   482
  qed
haftmann@42525
   483
  then have "P (A - A)" by blast
haftmann@42525
   484
  then show ?thesis by simp
nipkow@31427
   485
qed
nipkow@31427
   486
nipkow@31427
   487
haftmann@26441
   488
subsection {* Class @{text finite}  *}
haftmann@26041
   489
haftmann@29734
   490
class finite =
haftmann@26041
   491
  assumes finite_UNIV: "finite (UNIV \<Colon> 'a set)"
huffman@27430
   492
begin
huffman@27430
   493
huffman@27430
   494
lemma finite [simp]: "finite (A \<Colon> 'a set)"
haftmann@26441
   495
  by (rule subset_UNIV finite_UNIV finite_subset)+
haftmann@26041
   496
haftmann@44737
   497
lemma finite_code [code]: "finite (A \<Colon> 'a set) \<longleftrightarrow> True"
bulwahn@41166
   498
  by simp
bulwahn@41166
   499
huffman@27430
   500
end
huffman@27430
   501
wenzelm@47770
   502
instance prod :: (finite, finite) finite
wenzelm@47770
   503
  by default (simp only: UNIV_Times_UNIV [symmetric] finite_cartesian_product finite)
haftmann@35715
   504
haftmann@26041
   505
lemma inj_graph: "inj (%f. {(x, y). y = f x})"
nipkow@39535
   506
  by (rule inj_onI, auto simp add: set_eq_iff fun_eq_iff)
haftmann@26041
   507
haftmann@26146
   508
instance "fun" :: (finite, finite) finite
haftmann@26146
   509
proof
haftmann@26041
   510
  show "finite (UNIV :: ('a => 'b) set)"
haftmann@26041
   511
  proof (rule finite_imageD)
haftmann@26041
   512
    let ?graph = "%f::'a => 'b. {(x, y). y = f x}"
berghofe@26792
   513
    have "range ?graph \<subseteq> Pow UNIV" by simp
berghofe@26792
   514
    moreover have "finite (Pow (UNIV :: ('a * 'b) set))"
berghofe@26792
   515
      by (simp only: finite_Pow_iff finite)
berghofe@26792
   516
    ultimately show "finite (range ?graph)"
berghofe@26792
   517
      by (rule finite_subset)
haftmann@26041
   518
    show "inj ?graph" by (rule inj_graph)
haftmann@26041
   519
  qed
haftmann@26041
   520
qed
haftmann@26041
   521
wenzelm@47770
   522
instance bool :: finite
wenzelm@47770
   523
  by default (simp add: UNIV_bool)
haftmann@45702
   524
haftmann@46833
   525
instance set :: (finite) finite
haftmann@46833
   526
  by default (simp only: Pow_UNIV [symmetric] finite_Pow_iff finite)
haftmann@46833
   527
wenzelm@47770
   528
instance unit :: finite
wenzelm@47770
   529
  by default (simp add: UNIV_unit)
haftmann@45702
   530
wenzelm@47770
   531
instance sum :: (finite, finite) finite
wenzelm@47770
   532
  by default (simp only: UNIV_Plus_UNIV [symmetric] finite_Plus finite)
haftmann@27981
   533
haftmann@45702
   534
lemma finite_option_UNIV [simp]:
haftmann@45702
   535
  "finite (UNIV :: 'a option set) = finite (UNIV :: 'a set)"
haftmann@45702
   536
  by (auto simp add: UNIV_option_conv elim: finite_imageD intro: inj_Some)
haftmann@45702
   537
wenzelm@47770
   538
instance option :: (finite) finite
wenzelm@47770
   539
  by default (simp add: UNIV_option_conv)
haftmann@45702
   540
haftmann@26041
   541
haftmann@35817
   542
subsection {* A basic fold functional for finite sets *}
nipkow@15392
   543
nipkow@15392
   544
text {* The intended behaviour is
wenzelm@31910
   545
@{text "fold f z {x\<^isub>1, ..., x\<^isub>n} = f x\<^isub>1 (\<dots> (f x\<^isub>n z)\<dots>)"}
nipkow@28853
   546
if @{text f} is ``left-commutative'':
nipkow@15392
   547
*}
nipkow@15392
   548
haftmann@43740
   549
locale comp_fun_commute =
nipkow@28853
   550
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
haftmann@43740
   551
  assumes comp_fun_commute: "f y \<circ> f x = f x \<circ> f y"
nipkow@28853
   552
begin
nipkow@28853
   553
haftmann@43670
   554
lemma fun_left_comm: "f x (f y z) = f y (f x z)"
haftmann@43740
   555
  using comp_fun_commute by (simp add: fun_eq_iff)
nipkow@28853
   556
nipkow@28853
   557
end
nipkow@28853
   558
nipkow@28853
   559
inductive fold_graph :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool"
nipkow@28853
   560
for f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b" and z :: 'b where
nipkow@28853
   561
  emptyI [intro]: "fold_graph f z {} z" |
nipkow@28853
   562
  insertI [intro]: "x \<notin> A \<Longrightarrow> fold_graph f z A y
nipkow@28853
   563
      \<Longrightarrow> fold_graph f z (insert x A) (f x y)"
nipkow@28853
   564
nipkow@28853
   565
inductive_cases empty_fold_graphE [elim!]: "fold_graph f z {} x"
nipkow@28853
   566
nipkow@28853
   567
definition fold :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b" where
haftmann@37767
   568
  "fold f z A = (THE y. fold_graph f z A y)"
nipkow@15392
   569
paulson@15498
   570
text{*A tempting alternative for the definiens is
nipkow@28853
   571
@{term "if finite A then THE y. fold_graph f z A y else e"}.
paulson@15498
   572
It allows the removal of finiteness assumptions from the theorems
nipkow@28853
   573
@{text fold_comm}, @{text fold_reindex} and @{text fold_distrib}.
nipkow@28853
   574
The proofs become ugly. It is not worth the effort. (???) *}
nipkow@28853
   575
nipkow@28853
   576
lemma finite_imp_fold_graph: "finite A \<Longrightarrow> \<exists>x. fold_graph f z A x"
haftmann@42525
   577
by (induct rule: finite_induct) auto
nipkow@28853
   578
nipkow@28853
   579
nipkow@28853
   580
subsubsection{*From @{const fold_graph} to @{term fold}*}
nipkow@15392
   581
haftmann@43740
   582
context comp_fun_commute
haftmann@26041
   583
begin
haftmann@26041
   584
huffman@36045
   585
lemma fold_graph_insertE_aux:
huffman@36045
   586
  "fold_graph f z A y \<Longrightarrow> a \<in> A \<Longrightarrow> \<exists>y'. y = f a y' \<and> fold_graph f z (A - {a}) y'"
huffman@36045
   587
proof (induct set: fold_graph)
huffman@36045
   588
  case (insertI x A y) show ?case
huffman@36045
   589
  proof (cases "x = a")
huffman@36045
   590
    assume "x = a" with insertI show ?case by auto
nipkow@28853
   591
  next
huffman@36045
   592
    assume "x \<noteq> a"
huffman@36045
   593
    then obtain y' where y: "y = f a y'" and y': "fold_graph f z (A - {a}) y'"
huffman@36045
   594
      using insertI by auto
haftmann@43744
   595
    have "f x y = f a (f x y')"
huffman@36045
   596
      unfolding y by (rule fun_left_comm)
haftmann@43744
   597
    moreover have "fold_graph f z (insert x A - {a}) (f x y')"
huffman@36045
   598
      using y' and `x \<noteq> a` and `x \<notin> A`
huffman@36045
   599
      by (simp add: insert_Diff_if fold_graph.insertI)
haftmann@43744
   600
    ultimately show ?case by fast
nipkow@15392
   601
  qed
huffman@36045
   602
qed simp
huffman@36045
   603
huffman@36045
   604
lemma fold_graph_insertE:
huffman@36045
   605
  assumes "fold_graph f z (insert x A) v" and "x \<notin> A"
huffman@36045
   606
  obtains y where "v = f x y" and "fold_graph f z A y"
huffman@36045
   607
using assms by (auto dest: fold_graph_insertE_aux [OF _ insertI1])
nipkow@28853
   608
nipkow@28853
   609
lemma fold_graph_determ:
nipkow@28853
   610
  "fold_graph f z A x \<Longrightarrow> fold_graph f z A y \<Longrightarrow> y = x"
huffman@36045
   611
proof (induct arbitrary: y set: fold_graph)
huffman@36045
   612
  case (insertI x A y v)
huffman@36045
   613
  from `fold_graph f z (insert x A) v` and `x \<notin> A`
huffman@36045
   614
  obtain y' where "v = f x y'" and "fold_graph f z A y'"
huffman@36045
   615
    by (rule fold_graph_insertE)
huffman@36045
   616
  from `fold_graph f z A y'` have "y' = y" by (rule insertI)
huffman@36045
   617
  with `v = f x y'` show "v = f x y" by simp
huffman@36045
   618
qed fast
nipkow@15392
   619
nipkow@28853
   620
lemma fold_equality:
nipkow@28853
   621
  "fold_graph f z A y \<Longrightarrow> fold f z A = y"
nipkow@28853
   622
by (unfold fold_def) (blast intro: fold_graph_determ)
nipkow@15392
   623
haftmann@43136
   624
lemma fold_graph_fold:
haftmann@43136
   625
  assumes "finite A"
haftmann@43136
   626
  shows "fold_graph f z A (fold f z A)"
haftmann@43136
   627
proof -
haftmann@43136
   628
  from assms have "\<exists>x. fold_graph f z A x" by (rule finite_imp_fold_graph)
haftmann@43136
   629
  moreover note fold_graph_determ
haftmann@43136
   630
  ultimately have "\<exists>!x. fold_graph f z A x" by (rule ex_ex1I)
haftmann@43136
   631
  then have "fold_graph f z A (The (fold_graph f z A))" by (rule theI')
haftmann@43136
   632
  then show ?thesis by (unfold fold_def)
haftmann@43136
   633
qed
huffman@36045
   634
nipkow@15392
   635
text{* The base case for @{text fold}: *}
nipkow@15392
   636
nipkow@28853
   637
lemma (in -) fold_empty [simp]: "fold f z {} = z"
nipkow@28853
   638
by (unfold fold_def) blast
nipkow@28853
   639
nipkow@28853
   640
text{* The various recursion equations for @{const fold}: *}
nipkow@28853
   641
haftmann@26041
   642
lemma fold_insert [simp]:
haftmann@43744
   643
  assumes "finite A" and "x \<notin> A"
haftmann@43744
   644
  shows "fold f z (insert x A) = f x (fold f z A)"
haftmann@43744
   645
proof (rule fold_equality)
haftmann@43744
   646
  from `finite A` have "fold_graph f z A (fold f z A)" by (rule fold_graph_fold)
haftmann@43744
   647
  with `x \<notin> A`show "fold_graph f z (insert x A) (f x (fold f z A))" by (rule fold_graph.insertI)
haftmann@43744
   648
qed
nipkow@28853
   649
nipkow@28853
   650
lemma fold_fun_comm:
nipkow@28853
   651
  "finite A \<Longrightarrow> f x (fold f z A) = fold f (f x z) A"
nipkow@28853
   652
proof (induct rule: finite_induct)
nipkow@28853
   653
  case empty then show ?case by simp
nipkow@28853
   654
next
nipkow@28853
   655
  case (insert y A) then show ?case
nipkow@28853
   656
    by (simp add: fun_left_comm[of x])
nipkow@28853
   657
qed
nipkow@28853
   658
nipkow@28853
   659
lemma fold_insert2:
nipkow@28853
   660
  "finite A \<Longrightarrow> x \<notin> A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A"
huffman@35208
   661
by (simp add: fold_fun_comm)
nipkow@15392
   662
haftmann@26041
   663
lemma fold_rec:
haftmann@43744
   664
  assumes "finite A" and "x \<in> A"
haftmann@43744
   665
  shows "fold f z A = f x (fold f z (A - {x}))"
nipkow@28853
   666
proof -
nipkow@28853
   667
  have A: "A = insert x (A - {x})" using `x \<in> A` by blast
nipkow@28853
   668
  then have "fold f z A = fold f z (insert x (A - {x}))" by simp
nipkow@28853
   669
  also have "\<dots> = f x (fold f z (A - {x}))"
nipkow@28853
   670
    by (rule fold_insert) (simp add: `finite A`)+
nipkow@15535
   671
  finally show ?thesis .
nipkow@15535
   672
qed
nipkow@15535
   673
nipkow@28853
   674
lemma fold_insert_remove:
nipkow@28853
   675
  assumes "finite A"
nipkow@28853
   676
  shows "fold f z (insert x A) = f x (fold f z (A - {x}))"
nipkow@28853
   677
proof -
nipkow@28853
   678
  from `finite A` have "finite (insert x A)" by auto
nipkow@28853
   679
  moreover have "x \<in> insert x A" by auto
nipkow@28853
   680
  ultimately have "fold f z (insert x A) = f x (fold f z (insert x A - {x}))"
nipkow@28853
   681
    by (rule fold_rec)
nipkow@28853
   682
  then show ?thesis by simp
nipkow@28853
   683
qed
nipkow@28853
   684
haftmann@26041
   685
end
nipkow@15392
   686
nipkow@15480
   687
text{* A simplified version for idempotent functions: *}
nipkow@15480
   688
haftmann@43740
   689
locale comp_fun_idem = comp_fun_commute +
haftmann@43740
   690
  assumes comp_fun_idem: "f x o f x = f x"
haftmann@26041
   691
begin
haftmann@26041
   692
haftmann@43738
   693
lemma fun_left_idem: "f x (f x z) = f x z"
haftmann@43740
   694
  using comp_fun_idem by (simp add: fun_eq_iff)
nipkow@28853
   695
haftmann@26041
   696
lemma fold_insert_idem:
nipkow@28853
   697
  assumes fin: "finite A"
nipkow@28853
   698
  shows "fold f z (insert x A) = f x (fold f z A)"
nipkow@15480
   699
proof cases
nipkow@28853
   700
  assume "x \<in> A"
nipkow@28853
   701
  then obtain B where "A = insert x B" and "x \<notin> B" by (rule set_insert)
nipkow@28853
   702
  then show ?thesis using assms by (simp add:fun_left_idem)
nipkow@15480
   703
next
nipkow@28853
   704
  assume "x \<notin> A" then show ?thesis using assms by simp
nipkow@15480
   705
qed
nipkow@15480
   706
nipkow@28853
   707
declare fold_insert[simp del] fold_insert_idem[simp]
nipkow@28853
   708
nipkow@28853
   709
lemma fold_insert_idem2:
nipkow@28853
   710
  "finite A \<Longrightarrow> fold f z (insert x A) = fold f (f x z) A"
nipkow@28853
   711
by(simp add:fold_fun_comm)
nipkow@15484
   712
haftmann@26041
   713
end
haftmann@26041
   714
nipkow@31992
   715
haftmann@35817
   716
subsubsection {* Expressing set operations via @{const fold} *}
haftmann@31453
   717
haftmann@43740
   718
lemma (in comp_fun_commute) comp_comp_fun_commute:
haftmann@43740
   719
  "comp_fun_commute (f \<circ> g)"
haftmann@31453
   720
proof
haftmann@43740
   721
qed (simp_all add: comp_fun_commute)
haftmann@31453
   722
haftmann@43740
   723
lemma (in comp_fun_idem) comp_comp_fun_idem:
haftmann@43740
   724
  "comp_fun_idem (f \<circ> g)"
haftmann@43740
   725
  by (rule comp_fun_idem.intro, rule comp_comp_fun_commute, unfold_locales)
haftmann@43740
   726
    (simp_all add: comp_fun_idem)
haftmann@31453
   727
haftmann@43740
   728
lemma comp_fun_idem_insert:
haftmann@43740
   729
  "comp_fun_idem insert"
haftmann@31453
   730
proof
haftmann@31453
   731
qed auto
haftmann@31453
   732
haftmann@43740
   733
lemma comp_fun_idem_remove:
haftmann@47017
   734
  "comp_fun_idem Set.remove"
haftmann@31453
   735
proof
haftmann@31453
   736
qed auto
haftmann@31453
   737
haftmann@43740
   738
lemma (in semilattice_inf) comp_fun_idem_inf:
haftmann@43740
   739
  "comp_fun_idem inf"
haftmann@31453
   740
proof
haftmann@33998
   741
qed (auto simp add: inf_left_commute)
haftmann@33998
   742
haftmann@43740
   743
lemma (in semilattice_sup) comp_fun_idem_sup:
haftmann@43740
   744
  "comp_fun_idem sup"
haftmann@31453
   745
proof
haftmann@33998
   746
qed (auto simp add: sup_left_commute)
haftmann@31453
   747
haftmann@31453
   748
lemma union_fold_insert:
haftmann@31453
   749
  assumes "finite A"
haftmann@31453
   750
  shows "A \<union> B = fold insert B A"
haftmann@31453
   751
proof -
haftmann@43740
   752
  interpret comp_fun_idem insert by (fact comp_fun_idem_insert)
haftmann@31453
   753
  from `finite A` show ?thesis by (induct A arbitrary: B) simp_all
haftmann@31453
   754
qed
haftmann@31453
   755
haftmann@31453
   756
lemma minus_fold_remove:
haftmann@31453
   757
  assumes "finite A"
haftmann@47017
   758
  shows "B - A = fold Set.remove B A"
haftmann@31453
   759
proof -
haftmann@47017
   760
  interpret comp_fun_idem Set.remove by (fact comp_fun_idem_remove)
haftmann@47017
   761
  from `finite A` have "fold Set.remove B A = B - A" by (induct A arbitrary: B) auto
haftmann@47017
   762
  then show ?thesis ..
haftmann@31453
   763
qed
haftmann@31453
   764
haftmann@33998
   765
context complete_lattice
haftmann@33998
   766
begin
haftmann@33998
   767
haftmann@33998
   768
lemma inf_Inf_fold_inf:
haftmann@31453
   769
  assumes "finite A"
haftmann@33998
   770
  shows "inf B (Inf A) = fold inf B A"
haftmann@31453
   771
proof -
haftmann@43740
   772
  interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
haftmann@31453
   773
  from `finite A` show ?thesis by (induct A arbitrary: B)
noschinl@45790
   774
    (simp_all add: inf_commute fold_fun_comm)
haftmann@31453
   775
qed
haftmann@31453
   776
haftmann@33998
   777
lemma sup_Sup_fold_sup:
haftmann@31453
   778
  assumes "finite A"
haftmann@33998
   779
  shows "sup B (Sup A) = fold sup B A"
haftmann@31453
   780
proof -
haftmann@43740
   781
  interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
haftmann@31453
   782
  from `finite A` show ?thesis by (induct A arbitrary: B)
noschinl@45790
   783
    (simp_all add: sup_commute fold_fun_comm)
haftmann@31453
   784
qed
haftmann@31453
   785
haftmann@33998
   786
lemma Inf_fold_inf:
haftmann@31453
   787
  assumes "finite A"
haftmann@33998
   788
  shows "Inf A = fold inf top A"
haftmann@33998
   789
  using assms inf_Inf_fold_inf [of A top] by (simp add: inf_absorb2)
haftmann@33998
   790
haftmann@33998
   791
lemma Sup_fold_sup:
haftmann@31453
   792
  assumes "finite A"
haftmann@33998
   793
  shows "Sup A = fold sup bot A"
haftmann@33998
   794
  using assms sup_Sup_fold_sup [of A bot] by (simp add: sup_absorb2)
haftmann@33998
   795
haftmann@47017
   796
lemma inf_INF_fold_inf:
haftmann@31453
   797
  assumes "finite A"
haftmann@43742
   798
  shows "inf B (INFI A f) = fold (inf \<circ> f) B A" (is "?inf = ?fold") 
haftmann@31453
   799
proof (rule sym)
haftmann@43740
   800
  interpret comp_fun_idem inf by (fact comp_fun_idem_inf)
haftmann@43740
   801
  interpret comp_fun_idem "inf \<circ> f" by (fact comp_comp_fun_idem)
haftmann@43742
   802
  from `finite A` show "?fold = ?inf"
haftmann@43738
   803
    by (induct A arbitrary: B)
hoelzl@45799
   804
      (simp_all add: INF_def inf_left_commute)
haftmann@31453
   805
qed
haftmann@31453
   806
haftmann@47017
   807
lemma sup_SUP_fold_sup:
haftmann@31453
   808
  assumes "finite A"
haftmann@43742
   809
  shows "sup B (SUPR A f) = fold (sup \<circ> f) B A" (is "?sup = ?fold") 
haftmann@31453
   810
proof (rule sym)
haftmann@43740
   811
  interpret comp_fun_idem sup by (fact comp_fun_idem_sup)
haftmann@43740
   812
  interpret comp_fun_idem "sup \<circ> f" by (fact comp_comp_fun_idem)
haftmann@43742
   813
  from `finite A` show "?fold = ?sup"
haftmann@43738
   814
    by (induct A arbitrary: B)
hoelzl@45799
   815
      (simp_all add: SUP_def sup_left_commute)
haftmann@31453
   816
qed
haftmann@31453
   817
haftmann@47017
   818
lemma INF_fold_inf:
haftmann@31453
   819
  assumes "finite A"
haftmann@43742
   820
  shows "INFI A f = fold (inf \<circ> f) top A"
haftmann@47017
   821
  using assms inf_INF_fold_inf [of A top] by simp
haftmann@33998
   822
haftmann@47017
   823
lemma SUP_fold_sup:
haftmann@31453
   824
  assumes "finite A"
haftmann@43742
   825
  shows "SUPR A f = fold (sup \<circ> f) bot A"
haftmann@47017
   826
  using assms sup_SUP_fold_sup [of A bot] by simp
haftmann@31453
   827
haftmann@25571
   828
end
haftmann@33998
   829
haftmann@35715
   830
haftmann@35817
   831
subsection {* The derived combinator @{text fold_image} *}
haftmann@35817
   832
haftmann@35817
   833
definition fold_image :: "('b \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b"
haftmann@43744
   834
  where "fold_image f g = fold (\<lambda>x y. f (g x) y)"
haftmann@35817
   835
haftmann@35817
   836
lemma fold_image_empty[simp]: "fold_image f g z {} = z"
haftmann@43744
   837
  by (simp add:fold_image_def)
haftmann@35817
   838
haftmann@35817
   839
context ab_semigroup_mult
haftmann@35817
   840
begin
haftmann@35817
   841
haftmann@35817
   842
lemma fold_image_insert[simp]:
haftmann@43744
   843
  assumes "finite A" and "a \<notin> A"
haftmann@43744
   844
  shows "fold_image times g z (insert a A) = g a * (fold_image times g z A)"
haftmann@35817
   845
proof -
wenzelm@47770
   846
  interpret comp_fun_commute "%x y. (g x) * y"
wenzelm@47770
   847
    by default (simp add: fun_eq_iff mult_ac)
wenzelm@47770
   848
  from assms show ?thesis by (simp add: fold_image_def)
haftmann@35817
   849
qed
haftmann@35817
   850
haftmann@35817
   851
lemma fold_image_reindex:
haftmann@43744
   852
  assumes "finite A"
haftmann@43744
   853
  shows "inj_on h A \<Longrightarrow> fold_image times g z (h ` A) = fold_image times (g \<circ> h) z A"
haftmann@43744
   854
  using assms by induct auto
haftmann@35817
   855
haftmann@35817
   856
lemma fold_image_cong:
haftmann@43744
   857
  assumes "finite A" and g_h: "\<And>x. x\<in>A \<Longrightarrow> g x = h x"
haftmann@43744
   858
  shows "fold_image times g z A = fold_image times h z A"
haftmann@43744
   859
proof -
haftmann@43744
   860
  from `finite A`
haftmann@43744
   861
  have "\<And>C. C <= A --> (ALL x:C. g x = h x) --> fold_image times g z C = fold_image times h z C"
haftmann@43744
   862
  proof (induct arbitrary: C)
haftmann@43744
   863
    case empty then show ?case by simp
haftmann@43744
   864
  next
haftmann@43744
   865
    case (insert x F) then show ?case apply -
haftmann@43744
   866
    apply (simp add: subset_insert_iff, clarify)
haftmann@43744
   867
    apply (subgoal_tac "finite C")
haftmann@43744
   868
      prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
haftmann@43744
   869
    apply (subgoal_tac "C = insert x (C - {x})")
haftmann@43744
   870
      prefer 2 apply blast
haftmann@43744
   871
    apply (erule ssubst)
haftmann@43744
   872
    apply (simp add: Ball_def del: insert_Diff_single)
haftmann@43744
   873
    done
haftmann@43744
   874
  qed
haftmann@43744
   875
  with g_h show ?thesis by simp
haftmann@43744
   876
qed
haftmann@35817
   877
haftmann@35817
   878
end
haftmann@35817
   879
haftmann@35817
   880
context comm_monoid_mult
haftmann@35817
   881
begin
haftmann@35817
   882
haftmann@35817
   883
lemma fold_image_1:
haftmann@35817
   884
  "finite S \<Longrightarrow> (\<forall>x\<in>S. f x = 1) \<Longrightarrow> fold_image op * f 1 S = 1"
haftmann@42525
   885
  apply (induct rule: finite_induct)
haftmann@35817
   886
  apply simp by auto
haftmann@35817
   887
haftmann@35817
   888
lemma fold_image_Un_Int:
haftmann@35817
   889
  "finite A ==> finite B ==>
haftmann@35817
   890
    fold_image times g 1 A * fold_image times g 1 B =
haftmann@35817
   891
    fold_image times g 1 (A Un B) * fold_image times g 1 (A Int B)"
haftmann@42525
   892
  apply (induct rule: finite_induct)
haftmann@35817
   893
by (induct set: finite) 
haftmann@35817
   894
   (auto simp add: mult_ac insert_absorb Int_insert_left)
haftmann@35817
   895
haftmann@35817
   896
lemma fold_image_Un_one:
haftmann@35817
   897
  assumes fS: "finite S" and fT: "finite T"
haftmann@35817
   898
  and I0: "\<forall>x \<in> S\<inter>T. f x = 1"
haftmann@35817
   899
  shows "fold_image (op *) f 1 (S \<union> T) = fold_image (op *) f 1 S * fold_image (op *) f 1 T"
haftmann@35817
   900
proof-
haftmann@35817
   901
  have "fold_image op * f 1 (S \<inter> T) = 1" 
haftmann@35817
   902
    apply (rule fold_image_1)
haftmann@35817
   903
    using fS fT I0 by auto 
haftmann@35817
   904
  with fold_image_Un_Int[OF fS fT] show ?thesis by simp
haftmann@35817
   905
qed
haftmann@35817
   906
haftmann@35817
   907
corollary fold_Un_disjoint:
haftmann@35817
   908
  "finite A ==> finite B ==> A Int B = {} ==>
haftmann@35817
   909
   fold_image times g 1 (A Un B) =
haftmann@35817
   910
   fold_image times g 1 A * fold_image times g 1 B"
haftmann@35817
   911
by (simp add: fold_image_Un_Int)
haftmann@35817
   912
haftmann@35817
   913
lemma fold_image_UN_disjoint:
haftmann@35817
   914
  "\<lbrakk> finite I; ALL i:I. finite (A i);
haftmann@35817
   915
     ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
haftmann@35817
   916
   \<Longrightarrow> fold_image times g 1 (UNION I A) =
haftmann@35817
   917
       fold_image times (%i. fold_image times g 1 (A i)) 1 I"
haftmann@42525
   918
apply (induct rule: finite_induct)
haftmann@42525
   919
apply simp
haftmann@42525
   920
apply atomize
haftmann@35817
   921
apply (subgoal_tac "ALL i:F. x \<noteq> i")
haftmann@35817
   922
 prefer 2 apply blast
haftmann@35817
   923
apply (subgoal_tac "A x Int UNION F A = {}")
haftmann@35817
   924
 prefer 2 apply blast
haftmann@35817
   925
apply (simp add: fold_Un_disjoint)
haftmann@35817
   926
done
haftmann@35817
   927
haftmann@35817
   928
lemma fold_image_Sigma: "finite A ==> ALL x:A. finite (B x) ==>
haftmann@35817
   929
  fold_image times (%x. fold_image times (g x) 1 (B x)) 1 A =
haftmann@35817
   930
  fold_image times (split g) 1 (SIGMA x:A. B x)"
haftmann@35817
   931
apply (subst Sigma_def)
haftmann@35817
   932
apply (subst fold_image_UN_disjoint, assumption, simp)
haftmann@35817
   933
 apply blast
haftmann@35817
   934
apply (erule fold_image_cong)
haftmann@35817
   935
apply (subst fold_image_UN_disjoint, simp, simp)
haftmann@35817
   936
 apply blast
haftmann@35817
   937
apply simp
haftmann@35817
   938
done
haftmann@35817
   939
haftmann@35817
   940
lemma fold_image_distrib: "finite A \<Longrightarrow>
haftmann@35817
   941
   fold_image times (%x. g x * h x) 1 A =
haftmann@35817
   942
   fold_image times g 1 A *  fold_image times h 1 A"
haftmann@35817
   943
by (erule finite_induct) (simp_all add: mult_ac)
haftmann@35817
   944
haftmann@35817
   945
lemma fold_image_related: 
haftmann@35817
   946
  assumes Re: "R e e" 
haftmann@35817
   947
  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
haftmann@35817
   948
  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
haftmann@35817
   949
  shows "R (fold_image (op *) h e S) (fold_image (op *) g e S)"
haftmann@35817
   950
  using fS by (rule finite_subset_induct) (insert assms, auto)
haftmann@35817
   951
haftmann@35817
   952
lemma  fold_image_eq_general:
haftmann@35817
   953
  assumes fS: "finite S"
haftmann@35817
   954
  and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" 
haftmann@35817
   955
  and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x"
haftmann@35817
   956
  shows "fold_image (op *) f1 e S = fold_image (op *) f2 e S'"
haftmann@35817
   957
proof-
haftmann@35817
   958
  from h f12 have hS: "h ` S = S'" by auto
haftmann@35817
   959
  {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
haftmann@35817
   960
    from f12 h H  have "x = y" by auto }
haftmann@35817
   961
  hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
haftmann@35817
   962
  from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
haftmann@35817
   963
  from hS have "fold_image (op *) f2 e S' = fold_image (op *) f2 e (h ` S)" by simp
haftmann@35817
   964
  also have "\<dots> = fold_image (op *) (f2 o h) e S" 
haftmann@35817
   965
    using fold_image_reindex[OF fS hinj, of f2 e] .
haftmann@35817
   966
  also have "\<dots> = fold_image (op *) f1 e S " using th fold_image_cong[OF fS, of "f2 o h" f1 e]
haftmann@35817
   967
    by blast
haftmann@35817
   968
  finally show ?thesis ..
haftmann@35817
   969
qed
haftmann@35817
   970
haftmann@35817
   971
lemma fold_image_eq_general_inverses:
haftmann@35817
   972
  assumes fS: "finite S" 
haftmann@35817
   973
  and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
haftmann@35817
   974
  and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x  \<and> g (h x) = f x"
haftmann@35817
   975
  shows "fold_image (op *) f e S = fold_image (op *) g e T"
haftmann@35817
   976
  (* metis solves it, but not yet available here *)
haftmann@35817
   977
  apply (rule fold_image_eq_general[OF fS, of T h g f e])
haftmann@35817
   978
  apply (rule ballI)
haftmann@35817
   979
  apply (frule kh)
haftmann@35817
   980
  apply (rule ex1I[])
haftmann@35817
   981
  apply blast
haftmann@35817
   982
  apply clarsimp
haftmann@35817
   983
  apply (drule hk) apply simp
haftmann@35817
   984
  apply (rule sym)
haftmann@35817
   985
  apply (erule conjunct1[OF conjunct2[OF hk]])
haftmann@35817
   986
  apply (rule ballI)
haftmann@35817
   987
  apply (drule  hk)
haftmann@35817
   988
  apply blast
haftmann@35817
   989
  done
haftmann@35817
   990
haftmann@35817
   991
end
haftmann@35817
   992
haftmann@35817
   993
haftmann@35817
   994
subsection {* A fold functional for non-empty sets *}
haftmann@35817
   995
haftmann@35817
   996
text{* Does not require start value. *}
haftmann@35817
   997
haftmann@35817
   998
inductive
haftmann@35817
   999
  fold1Set :: "('a => 'a => 'a) => 'a set => 'a => bool"
haftmann@35817
  1000
  for f :: "'a => 'a => 'a"
haftmann@35817
  1001
where
haftmann@35817
  1002
  fold1Set_insertI [intro]:
haftmann@35817
  1003
   "\<lbrakk> fold_graph f a A x; a \<notin> A \<rbrakk> \<Longrightarrow> fold1Set f (insert a A) x"
haftmann@35817
  1004
haftmann@35817
  1005
definition fold1 :: "('a => 'a => 'a) => 'a set => 'a" where
haftmann@35817
  1006
  "fold1 f A == THE x. fold1Set f A x"
haftmann@35817
  1007
haftmann@35817
  1008
lemma fold1Set_nonempty:
haftmann@35817
  1009
  "fold1Set f A x \<Longrightarrow> A \<noteq> {}"
haftmann@35817
  1010
by(erule fold1Set.cases, simp_all)
haftmann@35817
  1011
haftmann@35817
  1012
inductive_cases empty_fold1SetE [elim!]: "fold1Set f {} x"
haftmann@35817
  1013
haftmann@35817
  1014
inductive_cases insert_fold1SetE [elim!]: "fold1Set f (insert a X) x"
haftmann@35817
  1015
haftmann@35817
  1016
haftmann@35817
  1017
lemma fold1Set_sing [iff]: "(fold1Set f {a} b) = (a = b)"
haftmann@35817
  1018
by (blast elim: fold_graph.cases)
haftmann@35817
  1019
haftmann@35817
  1020
lemma fold1_singleton [simp]: "fold1 f {a} = a"
haftmann@35817
  1021
by (unfold fold1_def) blast
haftmann@35817
  1022
haftmann@35817
  1023
lemma finite_nonempty_imp_fold1Set:
haftmann@35817
  1024
  "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. fold1Set f A x"
haftmann@35817
  1025
apply (induct A rule: finite_induct)
haftmann@35817
  1026
apply (auto dest: finite_imp_fold_graph [of _ f])
haftmann@35817
  1027
done
haftmann@35817
  1028
haftmann@35817
  1029
text{*First, some lemmas about @{const fold_graph}.*}
haftmann@35817
  1030
haftmann@35817
  1031
context ab_semigroup_mult
haftmann@35817
  1032
begin
haftmann@35817
  1033
wenzelm@47770
  1034
lemma comp_fun_commute: "comp_fun_commute (op *)"
wenzelm@47770
  1035
  by default (simp add: fun_eq_iff mult_ac)
haftmann@35817
  1036
haftmann@35817
  1037
lemma fold_graph_insert_swap:
haftmann@35817
  1038
assumes fold: "fold_graph times (b::'a) A y" and "b \<notin> A"
haftmann@35817
  1039
shows "fold_graph times z (insert b A) (z * y)"
haftmann@35817
  1040
proof -
haftmann@43740
  1041
  interpret comp_fun_commute "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule comp_fun_commute)
haftmann@35817
  1042
from assms show ?thesis
haftmann@35817
  1043
proof (induct rule: fold_graph.induct)
huffman@36045
  1044
  case emptyI show ?case by (subst mult_commute [of z b], fast)
haftmann@35817
  1045
next
haftmann@35817
  1046
  case (insertI x A y)
haftmann@35817
  1047
    have "fold_graph times z (insert x (insert b A)) (x * (z * y))"
haftmann@35817
  1048
      using insertI by force  --{*how does @{term id} get unfolded?*}
haftmann@35817
  1049
    thus ?case by (simp add: insert_commute mult_ac)
haftmann@35817
  1050
qed
haftmann@35817
  1051
qed
haftmann@35817
  1052
haftmann@35817
  1053
lemma fold_graph_permute_diff:
haftmann@35817
  1054
assumes fold: "fold_graph times b A x"
haftmann@35817
  1055
shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> fold_graph times a (insert b (A-{a})) x"
haftmann@35817
  1056
using fold
haftmann@35817
  1057
proof (induct rule: fold_graph.induct)
haftmann@35817
  1058
  case emptyI thus ?case by simp
haftmann@35817
  1059
next
haftmann@35817
  1060
  case (insertI x A y)
haftmann@35817
  1061
  have "a = x \<or> a \<in> A" using insertI by simp
haftmann@35817
  1062
  thus ?case
haftmann@35817
  1063
  proof
haftmann@35817
  1064
    assume "a = x"
haftmann@35817
  1065
    with insertI show ?thesis
haftmann@35817
  1066
      by (simp add: id_def [symmetric], blast intro: fold_graph_insert_swap)
haftmann@35817
  1067
  next
haftmann@35817
  1068
    assume ainA: "a \<in> A"
haftmann@35817
  1069
    hence "fold_graph times a (insert x (insert b (A - {a}))) (x * y)"
haftmann@35817
  1070
      using insertI by force
haftmann@35817
  1071
    moreover
haftmann@35817
  1072
    have "insert x (insert b (A - {a})) = insert b (insert x A - {a})"
haftmann@35817
  1073
      using ainA insertI by blast
haftmann@35817
  1074
    ultimately show ?thesis by simp
haftmann@35817
  1075
  qed
haftmann@35817
  1076
qed
haftmann@35817
  1077
haftmann@35817
  1078
lemma fold1_eq_fold:
haftmann@35817
  1079
assumes "finite A" "a \<notin> A" shows "fold1 times (insert a A) = fold times a A"
haftmann@35817
  1080
proof -
haftmann@43740
  1081
  interpret comp_fun_commute "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule comp_fun_commute)
haftmann@35817
  1082
  from assms show ?thesis
haftmann@35817
  1083
apply (simp add: fold1_def fold_def)
haftmann@35817
  1084
apply (rule the_equality)
haftmann@35817
  1085
apply (best intro: fold_graph_determ theI dest: finite_imp_fold_graph [of _ times])
haftmann@35817
  1086
apply (rule sym, clarify)
haftmann@35817
  1087
apply (case_tac "Aa=A")
haftmann@35817
  1088
 apply (best intro: fold_graph_determ)
haftmann@35817
  1089
apply (subgoal_tac "fold_graph times a A x")
haftmann@35817
  1090
 apply (best intro: fold_graph_determ)
haftmann@35817
  1091
apply (subgoal_tac "insert aa (Aa - {a}) = A")
haftmann@35817
  1092
 prefer 2 apply (blast elim: equalityE)
haftmann@35817
  1093
apply (auto dest: fold_graph_permute_diff [where a=a])
haftmann@35817
  1094
done
haftmann@35817
  1095
qed
haftmann@35817
  1096
haftmann@35817
  1097
lemma nonempty_iff: "(A \<noteq> {}) = (\<exists>x B. A = insert x B & x \<notin> B)"
haftmann@35817
  1098
apply safe
haftmann@35817
  1099
 apply simp
haftmann@35817
  1100
 apply (drule_tac x=x in spec)
haftmann@35817
  1101
 apply (drule_tac x="A-{x}" in spec, auto)
haftmann@35817
  1102
done
haftmann@35817
  1103
haftmann@35817
  1104
lemma fold1_insert:
haftmann@35817
  1105
  assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A"
haftmann@35817
  1106
  shows "fold1 times (insert x A) = x * fold1 times A"
haftmann@35817
  1107
proof -
haftmann@43740
  1108
  interpret comp_fun_commute "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a" by (rule comp_fun_commute)
haftmann@35817
  1109
  from nonempty obtain a A' where "A = insert a A' & a ~: A'"
haftmann@35817
  1110
    by (auto simp add: nonempty_iff)
haftmann@35817
  1111
  with A show ?thesis
haftmann@35817
  1112
    by (simp add: insert_commute [of x] fold1_eq_fold eq_commute)
haftmann@35817
  1113
qed
haftmann@35817
  1114
haftmann@35817
  1115
end
haftmann@35817
  1116
haftmann@35817
  1117
context ab_semigroup_idem_mult
haftmann@35817
  1118
begin
haftmann@35817
  1119
wenzelm@47770
  1120
lemma comp_fun_idem: "comp_fun_idem (op *)"
wenzelm@47770
  1121
  by default (simp_all add: fun_eq_iff mult_left_commute)
haftmann@35817
  1122
haftmann@35817
  1123
lemma fold1_insert_idem [simp]:
haftmann@35817
  1124
  assumes nonempty: "A \<noteq> {}" and A: "finite A" 
haftmann@35817
  1125
  shows "fold1 times (insert x A) = x * fold1 times A"
haftmann@35817
  1126
proof -
haftmann@43740
  1127
  interpret comp_fun_idem "op *::'a \<Rightarrow> 'a \<Rightarrow> 'a"
haftmann@43740
  1128
    by (rule comp_fun_idem)
haftmann@35817
  1129
  from nonempty obtain a A' where A': "A = insert a A' & a ~: A'"
haftmann@35817
  1130
    by (auto simp add: nonempty_iff)
haftmann@35817
  1131
  show ?thesis
haftmann@35817
  1132
  proof cases
wenzelm@41798
  1133
    assume a: "a = x"
wenzelm@41798
  1134
    show ?thesis
haftmann@35817
  1135
    proof cases
haftmann@35817
  1136
      assume "A' = {}"
wenzelm@41798
  1137
      with A' a show ?thesis by simp
haftmann@35817
  1138
    next
haftmann@35817
  1139
      assume "A' \<noteq> {}"
wenzelm@41798
  1140
      with A A' a show ?thesis
haftmann@35817
  1141
        by (simp add: fold1_insert mult_assoc [symmetric])
haftmann@35817
  1142
    qed
haftmann@35817
  1143
  next
haftmann@35817
  1144
    assume "a \<noteq> x"
wenzelm@41798
  1145
    with A A' show ?thesis
haftmann@35817
  1146
      by (simp add: insert_commute fold1_eq_fold)
haftmann@35817
  1147
  qed
haftmann@35817
  1148
qed
haftmann@35817
  1149
haftmann@35817
  1150
lemma hom_fold1_commute:
haftmann@35817
  1151
assumes hom: "!!x y. h (x * y) = h x * h y"
haftmann@35817
  1152
and N: "finite N" "N \<noteq> {}" shows "h (fold1 times N) = fold1 times (h ` N)"
wenzelm@47770
  1153
using N
wenzelm@47770
  1154
proof (induct rule: finite_ne_induct)
haftmann@35817
  1155
  case singleton thus ?case by simp
haftmann@35817
  1156
next
haftmann@35817
  1157
  case (insert n N)
haftmann@35817
  1158
  then have "h (fold1 times (insert n N)) = h (n * fold1 times N)" by simp
haftmann@35817
  1159
  also have "\<dots> = h n * h (fold1 times N)" by(rule hom)
haftmann@35817
  1160
  also have "h (fold1 times N) = fold1 times (h ` N)" by(rule insert)
haftmann@35817
  1161
  also have "times (h n) \<dots> = fold1 times (insert (h n) (h ` N))"
haftmann@35817
  1162
    using insert by(simp)
haftmann@35817
  1163
  also have "insert (h n) (h ` N) = h ` insert n N" by simp
haftmann@35817
  1164
  finally show ?case .
haftmann@35817
  1165
qed
haftmann@35817
  1166
haftmann@35817
  1167
lemma fold1_eq_fold_idem:
haftmann@35817
  1168
  assumes "finite A"
haftmann@35817
  1169
  shows "fold1 times (insert a A) = fold times a A"
haftmann@35817
  1170
proof (cases "a \<in> A")
haftmann@35817
  1171
  case False
haftmann@35817
  1172
  with assms show ?thesis by (simp add: fold1_eq_fold)
haftmann@35817
  1173
next
haftmann@43740
  1174
  interpret comp_fun_idem times by (fact comp_fun_idem)
haftmann@35817
  1175
  case True then obtain b B
haftmann@35817
  1176
    where A: "A = insert a B" and "a \<notin> B" by (rule set_insert)
haftmann@35817
  1177
  with assms have "finite B" by auto
haftmann@35817
  1178
  then have "fold times a (insert a B) = fold times (a * a) B"
haftmann@35817
  1179
    using `a \<notin> B` by (rule fold_insert2)
haftmann@35817
  1180
  then show ?thesis
haftmann@35817
  1181
    using `a \<notin> B` `finite B` by (simp add: fold1_eq_fold A)
haftmann@35817
  1182
qed
haftmann@35817
  1183
haftmann@35817
  1184
end
haftmann@35817
  1185
haftmann@35817
  1186
haftmann@35817
  1187
text{* Now the recursion rules for definitions: *}
haftmann@35817
  1188
haftmann@35817
  1189
lemma fold1_singleton_def: "g = fold1 f \<Longrightarrow> g {a} = a"
haftmann@35817
  1190
by simp
haftmann@35817
  1191
haftmann@35817
  1192
lemma (in ab_semigroup_mult) fold1_insert_def:
haftmann@35817
  1193
  "\<lbrakk> g = fold1 times; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x * g A"
haftmann@35817
  1194
by (simp add:fold1_insert)
haftmann@35817
  1195
haftmann@35817
  1196
lemma (in ab_semigroup_idem_mult) fold1_insert_idem_def:
haftmann@35817
  1197
  "\<lbrakk> g = fold1 times; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g (insert x A) = x * g A"
haftmann@35817
  1198
by simp
haftmann@35817
  1199
haftmann@35817
  1200
subsubsection{* Determinacy for @{term fold1Set} *}
haftmann@35817
  1201
haftmann@35817
  1202
(*Not actually used!!*)
haftmann@35817
  1203
(*
haftmann@35817
  1204
context ab_semigroup_mult
haftmann@35817
  1205
begin
haftmann@35817
  1206
haftmann@35817
  1207
lemma fold_graph_permute:
haftmann@35817
  1208
  "[|fold_graph times id b (insert a A) x; a \<notin> A; b \<notin> A|]
haftmann@35817
  1209
   ==> fold_graph times id a (insert b A) x"
haftmann@35817
  1210
apply (cases "a=b") 
haftmann@35817
  1211
apply (auto dest: fold_graph_permute_diff) 
haftmann@35817
  1212
done
haftmann@35817
  1213
haftmann@35817
  1214
lemma fold1Set_determ:
haftmann@35817
  1215
  "fold1Set times A x ==> fold1Set times A y ==> y = x"
haftmann@35817
  1216
proof (clarify elim!: fold1Set.cases)
haftmann@35817
  1217
  fix A x B y a b
haftmann@35817
  1218
  assume Ax: "fold_graph times id a A x"
haftmann@35817
  1219
  assume By: "fold_graph times id b B y"
haftmann@35817
  1220
  assume anotA:  "a \<notin> A"
haftmann@35817
  1221
  assume bnotB:  "b \<notin> B"
haftmann@35817
  1222
  assume eq: "insert a A = insert b B"
haftmann@35817
  1223
  show "y=x"
haftmann@35817
  1224
  proof cases
haftmann@35817
  1225
    assume same: "a=b"
haftmann@35817
  1226
    hence "A=B" using anotA bnotB eq by (blast elim!: equalityE)
haftmann@35817
  1227
    thus ?thesis using Ax By same by (blast intro: fold_graph_determ)
haftmann@35817
  1228
  next
haftmann@35817
  1229
    assume diff: "a\<noteq>b"
haftmann@35817
  1230
    let ?D = "B - {a}"
haftmann@35817
  1231
    have B: "B = insert a ?D" and A: "A = insert b ?D"
haftmann@35817
  1232
     and aB: "a \<in> B" and bA: "b \<in> A"
haftmann@35817
  1233
      using eq anotA bnotB diff by (blast elim!:equalityE)+
haftmann@35817
  1234
    with aB bnotB By
haftmann@35817
  1235
    have "fold_graph times id a (insert b ?D) y" 
haftmann@35817
  1236
      by (auto intro: fold_graph_permute simp add: insert_absorb)
haftmann@35817
  1237
    moreover
haftmann@35817
  1238
    have "fold_graph times id a (insert b ?D) x"
haftmann@35817
  1239
      by (simp add: A [symmetric] Ax) 
haftmann@35817
  1240
    ultimately show ?thesis by (blast intro: fold_graph_determ) 
haftmann@35817
  1241
  qed
haftmann@35817
  1242
qed
haftmann@35817
  1243
haftmann@35817
  1244
lemma fold1Set_equality: "fold1Set times A y ==> fold1 times A = y"
haftmann@35817
  1245
  by (unfold fold1_def) (blast intro: fold1Set_determ)
haftmann@35817
  1246
haftmann@35817
  1247
end
haftmann@35817
  1248
*)
haftmann@35817
  1249
haftmann@35817
  1250
declare
haftmann@35817
  1251
  empty_fold_graphE [rule del]  fold_graph.intros [rule del]
haftmann@35817
  1252
  empty_fold1SetE [rule del]  insert_fold1SetE [rule del]
haftmann@35817
  1253
  -- {* No more proofs involve these relations. *}
haftmann@35817
  1254
haftmann@35817
  1255
subsubsection {* Lemmas about @{text fold1} *}
haftmann@35817
  1256
haftmann@35817
  1257
context ab_semigroup_mult
haftmann@35817
  1258
begin
haftmann@35817
  1259
haftmann@35817
  1260
lemma fold1_Un:
haftmann@35817
  1261
assumes A: "finite A" "A \<noteq> {}"
haftmann@35817
  1262
shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow>
haftmann@35817
  1263
       fold1 times (A Un B) = fold1 times A * fold1 times B"
haftmann@35817
  1264
using A by (induct rule: finite_ne_induct)
haftmann@35817
  1265
  (simp_all add: fold1_insert mult_assoc)
haftmann@35817
  1266
haftmann@35817
  1267
lemma fold1_in:
haftmann@35817
  1268
  assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x,y}"
haftmann@35817
  1269
  shows "fold1 times A \<in> A"
haftmann@35817
  1270
using A
haftmann@35817
  1271
proof (induct rule:finite_ne_induct)
haftmann@35817
  1272
  case singleton thus ?case by simp
haftmann@35817
  1273
next
haftmann@35817
  1274
  case insert thus ?case using elem by (force simp add:fold1_insert)
haftmann@35817
  1275
qed
haftmann@35817
  1276
haftmann@35817
  1277
end
haftmann@35817
  1278
haftmann@35817
  1279
lemma (in ab_semigroup_idem_mult) fold1_Un2:
haftmann@35817
  1280
assumes A: "finite A" "A \<noteq> {}"
haftmann@35817
  1281
shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow>
haftmann@35817
  1282
       fold1 times (A Un B) = fold1 times A * fold1 times B"
haftmann@35817
  1283
using A
haftmann@35817
  1284
proof(induct rule:finite_ne_induct)
haftmann@35817
  1285
  case singleton thus ?case by simp
haftmann@35817
  1286
next
haftmann@35817
  1287
  case insert thus ?case by (simp add: mult_assoc)
haftmann@35817
  1288
qed
haftmann@35817
  1289
haftmann@35817
  1290
haftmann@35817
  1291
subsection {* Locales as mini-packages for fold operations *}
haftmann@35817
  1292
haftmann@35817
  1293
subsubsection {* The natural case *}
haftmann@35715
  1294
haftmann@35715
  1295
locale folding =
haftmann@35715
  1296
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'b"
haftmann@35715
  1297
  fixes F :: "'a set \<Rightarrow> 'b \<Rightarrow> 'b"
haftmann@43740
  1298
  assumes comp_fun_commute: "f y \<circ> f x = f x \<circ> f y"
haftmann@35718
  1299
  assumes eq_fold: "finite A \<Longrightarrow> F A s = fold f s A"
haftmann@35715
  1300
begin
haftmann@35715
  1301
haftmann@35715
  1302
lemma empty [simp]:
haftmann@35715
  1303
  "F {} = id"
nipkow@39535
  1304
  by (simp add: eq_fold fun_eq_iff)
haftmann@35715
  1305
haftmann@35715
  1306
lemma insert [simp]:
haftmann@35715
  1307
  assumes "finite A" and "x \<notin> A"
haftmann@35715
  1308
  shows "F (insert x A) = F A \<circ> f x"
haftmann@35715
  1309
proof -
wenzelm@47770
  1310
  interpret comp_fun_commute f
wenzelm@47770
  1311
    by default (insert comp_fun_commute, simp add: fun_eq_iff)
haftmann@35715
  1312
  from fold_insert2 assms
haftmann@35718
  1313
  have "\<And>s. fold f s (insert x A) = fold f (f x s) A" .
nipkow@39535
  1314
  with `finite A` show ?thesis by (simp add: eq_fold fun_eq_iff)
haftmann@35715
  1315
qed
haftmann@35715
  1316
haftmann@35715
  1317
lemma remove:
haftmann@35715
  1318
  assumes "finite A" and "x \<in> A"
haftmann@35715
  1319
  shows "F A = F (A - {x}) \<circ> f x"
haftmann@35715
  1320
proof -
haftmann@35715
  1321
  from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
haftmann@35715
  1322
    by (auto dest: mk_disjoint_insert)
haftmann@35715
  1323
  moreover from `finite A` this have "finite B" by simp
haftmann@35715
  1324
  ultimately show ?thesis by simp
haftmann@35715
  1325
qed
haftmann@35715
  1326
haftmann@35715
  1327
lemma insert_remove:
haftmann@35715
  1328
  assumes "finite A"
haftmann@35715
  1329
  shows "F (insert x A) = F (A - {x}) \<circ> f x"
haftmann@35718
  1330
  using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
haftmann@35715
  1331
haftmann@35817
  1332
lemma commute_left_comp:
haftmann@35817
  1333
  "f y \<circ> (f x \<circ> g) = f x \<circ> (f y \<circ> g)"
haftmann@43740
  1334
  by (simp add: o_assoc comp_fun_commute)
haftmann@35817
  1335
haftmann@43740
  1336
lemma comp_fun_commute':
haftmann@35715
  1337
  assumes "finite A"
haftmann@35715
  1338
  shows "f x \<circ> F A = F A \<circ> f x"
haftmann@35817
  1339
  using assms by (induct A)
haftmann@43740
  1340
    (simp, simp del: o_apply add: o_assoc, simp del: o_apply add: o_assoc [symmetric] comp_fun_commute)
haftmann@35715
  1341
haftmann@35817
  1342
lemma commute_left_comp':
haftmann@35715
  1343
  assumes "finite A"
haftmann@35817
  1344
  shows "f x \<circ> (F A \<circ> g) = F A \<circ> (f x \<circ> g)"
haftmann@43740
  1345
  using assms by (simp add: o_assoc comp_fun_commute')
haftmann@35817
  1346
haftmann@43740
  1347
lemma comp_fun_commute'':
haftmann@35817
  1348
  assumes "finite A" and "finite B"
haftmann@35817
  1349
  shows "F B \<circ> F A = F A \<circ> F B"
haftmann@35817
  1350
  using assms by (induct A)
haftmann@43740
  1351
    (simp_all add: o_assoc, simp add: o_assoc [symmetric] comp_fun_commute')
haftmann@35817
  1352
haftmann@35817
  1353
lemma commute_left_comp'':
haftmann@35817
  1354
  assumes "finite A" and "finite B"
haftmann@35817
  1355
  shows "F B \<circ> (F A \<circ> g) = F A \<circ> (F B \<circ> g)"
haftmann@43740
  1356
  using assms by (simp add: o_assoc comp_fun_commute'')
haftmann@35817
  1357
haftmann@43740
  1358
lemmas comp_fun_commutes = o_assoc [symmetric] comp_fun_commute commute_left_comp
haftmann@43740
  1359
  comp_fun_commute' commute_left_comp' comp_fun_commute'' commute_left_comp''
haftmann@35817
  1360
haftmann@35817
  1361
lemma union_inter:
haftmann@35817
  1362
  assumes "finite A" and "finite B"
haftmann@35817
  1363
  shows "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B"
haftmann@35817
  1364
  using assms by (induct A)
haftmann@43740
  1365
    (simp_all del: o_apply add: insert_absorb Int_insert_left comp_fun_commutes,
haftmann@35817
  1366
      simp add: o_assoc)
haftmann@35715
  1367
haftmann@35715
  1368
lemma union:
haftmann@35715
  1369
  assumes "finite A" and "finite B"
haftmann@35715
  1370
  and "A \<inter> B = {}"
haftmann@35715
  1371
  shows "F (A \<union> B) = F A \<circ> F B"
haftmann@35817
  1372
proof -
haftmann@35817
  1373
  from union_inter `finite A` `finite B` have "F (A \<union> B) \<circ> F (A \<inter> B) = F A \<circ> F B" .
haftmann@35817
  1374
  with `A \<inter> B = {}` show ?thesis by simp
haftmann@35715
  1375
qed
haftmann@35715
  1376
haftmann@33998
  1377
end
haftmann@35715
  1378
haftmann@35817
  1379
haftmann@35817
  1380
subsubsection {* The natural case with idempotency *}
haftmann@35817
  1381
haftmann@35715
  1382
locale folding_idem = folding +
haftmann@35715
  1383
  assumes idem_comp: "f x \<circ> f x = f x"
haftmann@35715
  1384
begin
haftmann@35715
  1385
haftmann@35817
  1386
lemma idem_left_comp:
haftmann@35817
  1387
  "f x \<circ> (f x \<circ> g) = f x \<circ> g"
haftmann@35817
  1388
  by (simp add: o_assoc idem_comp)
haftmann@35817
  1389
haftmann@35817
  1390
lemma in_comp_idem:
haftmann@35817
  1391
  assumes "finite A" and "x \<in> A"
haftmann@35817
  1392
  shows "F A \<circ> f x = F A"
haftmann@35817
  1393
using assms by (induct A)
haftmann@43740
  1394
  (auto simp add: comp_fun_commutes idem_comp, simp add: commute_left_comp' [symmetric] comp_fun_commute')
haftmann@35817
  1395
haftmann@35817
  1396
lemma subset_comp_idem:
haftmann@35817
  1397
  assumes "finite A" and "B \<subseteq> A"
haftmann@35817
  1398
  shows "F A \<circ> F B = F A"
haftmann@35817
  1399
proof -
haftmann@35817
  1400
  from assms have "finite B" by (blast dest: finite_subset)
haftmann@35817
  1401
  then show ?thesis using `B \<subseteq> A` by (induct B)
haftmann@35817
  1402
    (simp_all add: o_assoc in_comp_idem `finite A`)
haftmann@35817
  1403
qed
haftmann@35817
  1404
haftmann@35715
  1405
declare insert [simp del]
haftmann@35715
  1406
haftmann@35715
  1407
lemma insert_idem [simp]:
haftmann@35715
  1408
  assumes "finite A"
haftmann@35715
  1409
  shows "F (insert x A) = F A \<circ> f x"
haftmann@35817
  1410
  using assms by (cases "x \<in> A") (simp_all add: insert in_comp_idem insert_absorb)
haftmann@35715
  1411
haftmann@35715
  1412
lemma union_idem:
haftmann@35715
  1413
  assumes "finite A" and "finite B"
haftmann@35715
  1414
  shows "F (A \<union> B) = F A \<circ> F B"
haftmann@35817
  1415
proof -
haftmann@35817
  1416
  from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto
haftmann@35817
  1417
  then have "F (A \<union> B) \<circ> F (A \<inter> B) = F (A \<union> B)" by (rule subset_comp_idem)
haftmann@35817
  1418
  with assms show ?thesis by (simp add: union_inter)
haftmann@35715
  1419
qed
haftmann@35715
  1420
haftmann@35715
  1421
end
haftmann@35715
  1422
haftmann@35817
  1423
haftmann@35817
  1424
subsubsection {* The image case with fixed function *}
haftmann@35817
  1425
haftmann@35796
  1426
no_notation times (infixl "*" 70)
haftmann@35796
  1427
no_notation Groups.one ("1")
haftmann@35718
  1428
haftmann@35718
  1429
locale folding_image_simple = comm_monoid +
haftmann@35718
  1430
  fixes g :: "('b \<Rightarrow> 'a)"
haftmann@35718
  1431
  fixes F :: "'b set \<Rightarrow> 'a"
haftmann@35817
  1432
  assumes eq_fold_g: "finite A \<Longrightarrow> F A = fold_image f g 1 A"
haftmann@35718
  1433
begin
haftmann@35718
  1434
haftmann@35718
  1435
lemma empty [simp]:
haftmann@35718
  1436
  "F {} = 1"
haftmann@35817
  1437
  by (simp add: eq_fold_g)
haftmann@35718
  1438
haftmann@35718
  1439
lemma insert [simp]:
haftmann@35718
  1440
  assumes "finite A" and "x \<notin> A"
haftmann@35718
  1441
  shows "F (insert x A) = g x * F A"
haftmann@35718
  1442
proof -
wenzelm@47770
  1443
  interpret comp_fun_commute "%x y. (g x) * y"
wenzelm@47770
  1444
    by default (simp add: ac_simps fun_eq_iff)
wenzelm@47770
  1445
  from assms have "fold_image (op *) g 1 (insert x A) = g x * fold_image (op *) g 1 A"
haftmann@35718
  1446
    by (simp add: fold_image_def)
haftmann@35817
  1447
  with `finite A` show ?thesis by (simp add: eq_fold_g)
haftmann@35718
  1448
qed
haftmann@35718
  1449
haftmann@35718
  1450
lemma remove:
haftmann@35718
  1451
  assumes "finite A" and "x \<in> A"
haftmann@35718
  1452
  shows "F A = g x * F (A - {x})"
haftmann@35718
  1453
proof -
haftmann@35718
  1454
  from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B"
haftmann@35718
  1455
    by (auto dest: mk_disjoint_insert)
haftmann@35718
  1456
  moreover from `finite A` this have "finite B" by simp
haftmann@35718
  1457
  ultimately show ?thesis by simp
haftmann@35718
  1458
qed
haftmann@35718
  1459
haftmann@35718
  1460
lemma insert_remove:
haftmann@35718
  1461
  assumes "finite A"
haftmann@35718
  1462
  shows "F (insert x A) = g x * F (A - {x})"
haftmann@35718
  1463
  using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb)
haftmann@35718
  1464
haftmann@35817
  1465
lemma neutral:
haftmann@35817
  1466
  assumes "finite A" and "\<forall>x\<in>A. g x = 1"
haftmann@35817
  1467
  shows "F A = 1"
haftmann@35817
  1468
  using assms by (induct A) simp_all
haftmann@35817
  1469
haftmann@35718
  1470
lemma union_inter:
haftmann@35718
  1471
  assumes "finite A" and "finite B"
haftmann@35817
  1472
  shows "F (A \<union> B) * F (A \<inter> B) = F A * F B"
haftmann@35718
  1473
using assms proof (induct A)
haftmann@35718
  1474
  case empty then show ?case by simp
haftmann@35718
  1475
next
haftmann@35718
  1476
  case (insert x A) then show ?case
haftmann@35718
  1477
    by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute)
haftmann@35718
  1478
qed
haftmann@35718
  1479
haftmann@35817
  1480
corollary union_inter_neutral:
haftmann@35817
  1481
  assumes "finite A" and "finite B"
haftmann@35817
  1482
  and I0: "\<forall>x \<in> A\<inter>B. g x = 1"
haftmann@35817
  1483
  shows "F (A \<union> B) = F A * F B"
haftmann@35817
  1484
  using assms by (simp add: union_inter [symmetric] neutral)
haftmann@35817
  1485
haftmann@35718
  1486
corollary union_disjoint:
haftmann@35718
  1487
  assumes "finite A" and "finite B"
haftmann@35718
  1488
  assumes "A \<inter> B = {}"
haftmann@35718
  1489
  shows "F (A \<union> B) = F A * F B"
haftmann@35817
  1490
  using assms by (simp add: union_inter_neutral)
haftmann@35718
  1491
haftmann@35715
  1492
end
haftmann@35718
  1493
haftmann@35817
  1494
haftmann@35817
  1495
subsubsection {* The image case with flexible function *}
haftmann@35817
  1496
haftmann@35718
  1497
locale folding_image = comm_monoid +
haftmann@35718
  1498
  fixes F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
haftmann@35718
  1499
  assumes eq_fold: "\<And>g. finite A \<Longrightarrow> F g A = fold_image f g 1 A"
haftmann@35718
  1500
haftmann@35718
  1501
sublocale folding_image < folding_image_simple "op *" 1 g "F g" proof
haftmann@35718
  1502
qed (fact eq_fold)
haftmann@35718
  1503
haftmann@35718
  1504
context folding_image
haftmann@35718
  1505
begin
haftmann@35718
  1506
haftmann@35817
  1507
lemma reindex: (* FIXME polymorhism *)
haftmann@35718
  1508
  assumes "finite A" and "inj_on h A"
haftmann@35718
  1509
  shows "F g (h ` A) = F (g \<circ> h) A"
haftmann@35718
  1510
  using assms by (induct A) auto
haftmann@35718
  1511
haftmann@35718
  1512
lemma cong:
haftmann@35718
  1513
  assumes "finite A" and "\<And>x. x \<in> A \<Longrightarrow> g x = h x"
haftmann@35718
  1514
  shows "F g A = F h A"
haftmann@35718
  1515
proof -
haftmann@35718
  1516
  from assms have "ALL C. C <= A --> (ALL x:C. g x = h x) --> F g C = F h C"
haftmann@35718
  1517
  apply - apply (erule finite_induct) apply simp
haftmann@35718
  1518
  apply (simp add: subset_insert_iff, clarify)
haftmann@35718
  1519
  apply (subgoal_tac "finite C")
haftmann@35718
  1520
  prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl])
haftmann@35718
  1521
  apply (subgoal_tac "C = insert x (C - {x})")
haftmann@35718
  1522
  prefer 2 apply blast
haftmann@35718
  1523
  apply (erule ssubst)
haftmann@35718
  1524
  apply (drule spec)
haftmann@35718
  1525
  apply (erule (1) notE impE)
haftmann@35718
  1526
  apply (simp add: Ball_def del: insert_Diff_single)
haftmann@35718
  1527
  done
haftmann@35718
  1528
  with assms show ?thesis by simp
haftmann@35718
  1529
qed
haftmann@35718
  1530
haftmann@35718
  1531
lemma UNION_disjoint:
haftmann@35718
  1532
  assumes "finite I" and "\<forall>i\<in>I. finite (A i)"
haftmann@35718
  1533
  and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}"
haftmann@35718
  1534
  shows "F g (UNION I A) = F (F g \<circ> A) I"
haftmann@35718
  1535
apply (insert assms)
haftmann@42525
  1536
apply (induct rule: finite_induct)
haftmann@42525
  1537
apply simp
haftmann@42525
  1538
apply atomize
haftmann@35718
  1539
apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i")
haftmann@35718
  1540
 prefer 2 apply blast
haftmann@35718
  1541
apply (subgoal_tac "A x Int UNION Fa A = {}")
haftmann@35718
  1542
 prefer 2 apply blast
haftmann@35718
  1543
apply (simp add: union_disjoint)
haftmann@35718
  1544
done
haftmann@35718
  1545
haftmann@35718
  1546
lemma distrib:
haftmann@35718
  1547
  assumes "finite A"
haftmann@35718
  1548
  shows "F (\<lambda>x. g x * h x) A = F g A * F h A"
haftmann@35718
  1549
  using assms by (rule finite_induct) (simp_all add: assoc commute left_commute)
haftmann@35718
  1550
haftmann@35718
  1551
lemma related: 
haftmann@35718
  1552
  assumes Re: "R 1 1" 
haftmann@35718
  1553
  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
haftmann@35718
  1554
  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
haftmann@35718
  1555
  shows "R (F h S) (F g S)"
haftmann@35718
  1556
  using fS by (rule finite_subset_induct) (insert assms, auto)
haftmann@35718
  1557
haftmann@35718
  1558
lemma eq_general:
haftmann@35718
  1559
  assumes fS: "finite S"
haftmann@35718
  1560
  and h: "\<forall>y\<in>S'. \<exists>!x. x \<in> S \<and> h x = y" 
haftmann@35718
  1561
  and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2 (h x) = f1 x"
haftmann@35718
  1562
  shows "F f1 S = F f2 S'"
haftmann@35718
  1563
proof-
haftmann@35718
  1564
  from h f12 have hS: "h ` S = S'" by blast
haftmann@35718
  1565
  {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
haftmann@35718
  1566
    from f12 h H  have "x = y" by auto }
haftmann@35718
  1567
  hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
haftmann@35718
  1568
  from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
haftmann@35718
  1569
  from hS have "F f2 S' = F f2 (h ` S)" by simp
haftmann@35718
  1570
  also have "\<dots> = F (f2 o h) S" using reindex [OF fS hinj, of f2] .
haftmann@35718
  1571
  also have "\<dots> = F f1 S " using th cong [OF fS, of "f2 o h" f1]
haftmann@35718
  1572
    by blast
haftmann@35718
  1573
  finally show ?thesis ..
haftmann@35718
  1574
qed
haftmann@35718
  1575
haftmann@35718
  1576
lemma eq_general_inverses:
haftmann@35718
  1577
  assumes fS: "finite S" 
haftmann@35718
  1578
  and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y"
haftmann@35718
  1579
  and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = j x"
haftmann@35718
  1580
  shows "F j S = F g T"
haftmann@35718
  1581
  (* metis solves it, but not yet available here *)
haftmann@35718
  1582
  apply (rule eq_general [OF fS, of T h g j])
haftmann@35718
  1583
  apply (rule ballI)
haftmann@35718
  1584
  apply (frule kh)
haftmann@35718
  1585
  apply (rule ex1I[])
haftmann@35718
  1586
  apply blast
haftmann@35718
  1587
  apply clarsimp
haftmann@35718
  1588
  apply (drule hk) apply simp
haftmann@35718
  1589
  apply (rule sym)
haftmann@35718
  1590
  apply (erule conjunct1[OF conjunct2[OF hk]])
haftmann@35718
  1591
  apply (rule ballI)
haftmann@35718
  1592
  apply (drule hk)
haftmann@35718
  1593
  apply blast
haftmann@35718
  1594
  done
haftmann@35718
  1595
haftmann@35718
  1596
end
haftmann@35718
  1597
haftmann@35817
  1598
haftmann@35817
  1599
subsubsection {* The image case with fixed function and idempotency *}
haftmann@35817
  1600
haftmann@35817
  1601
locale folding_image_simple_idem = folding_image_simple +
haftmann@35817
  1602
  assumes idem: "x * x = x"
haftmann@35817
  1603
haftmann@35817
  1604
sublocale folding_image_simple_idem < semilattice proof
haftmann@35817
  1605
qed (fact idem)
haftmann@35817
  1606
haftmann@35817
  1607
context folding_image_simple_idem
haftmann@35817
  1608
begin
haftmann@35817
  1609
haftmann@35817
  1610
lemma in_idem:
haftmann@35817
  1611
  assumes "finite A" and "x \<in> A"
haftmann@35817
  1612
  shows "g x * F A = F A"
haftmann@35817
  1613
  using assms by (induct A) (auto simp add: left_commute)
haftmann@35817
  1614
haftmann@35817
  1615
lemma subset_idem:
haftmann@35817
  1616
  assumes "finite A" and "B \<subseteq> A"
haftmann@35817
  1617
  shows "F B * F A = F A"
haftmann@35817
  1618
proof -
haftmann@35817
  1619
  from assms have "finite B" by (blast dest: finite_subset)
haftmann@35817
  1620
  then show ?thesis using `B \<subseteq> A` by (induct B)
haftmann@35817
  1621
    (auto simp add: assoc in_idem `finite A`)
haftmann@35817
  1622
qed
haftmann@35817
  1623
haftmann@35817
  1624
declare insert [simp del]
haftmann@35817
  1625
haftmann@35817
  1626
lemma insert_idem [simp]:
haftmann@35817
  1627
  assumes "finite A"
haftmann@35817
  1628
  shows "F (insert x A) = g x * F A"
haftmann@35817
  1629
  using assms by (cases "x \<in> A") (simp_all add: insert in_idem insert_absorb)
haftmann@35817
  1630
haftmann@35817
  1631
lemma union_idem:
haftmann@35817
  1632
  assumes "finite A" and "finite B"
haftmann@35817
  1633
  shows "F (A \<union> B) = F A * F B"
haftmann@35817
  1634
proof -
haftmann@35817
  1635
  from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto
haftmann@35817
  1636
  then have "F (A \<inter> B) * F (A \<union> B) = F (A \<union> B)" by (rule subset_idem)
haftmann@35817
  1637
  with assms show ?thesis by (simp add: union_inter [of A B, symmetric] commute)
haftmann@35817
  1638
qed
haftmann@35817
  1639
haftmann@35817
  1640
end
haftmann@35817
  1641
haftmann@35817
  1642
haftmann@35817
  1643
subsubsection {* The image case with flexible function and idempotency *}
haftmann@35817
  1644
haftmann@35817
  1645
locale folding_image_idem = folding_image +
haftmann@35817
  1646
  assumes idem: "x * x = x"
haftmann@35817
  1647
haftmann@35817
  1648
sublocale folding_image_idem < folding_image_simple_idem "op *" 1 g "F g" proof
haftmann@35817
  1649
qed (fact idem)
haftmann@35817
  1650
haftmann@35817
  1651
haftmann@35817
  1652
subsubsection {* The neutral-less case *}
haftmann@35817
  1653
haftmann@35817
  1654
locale folding_one = abel_semigroup +
haftmann@35817
  1655
  fixes F :: "'a set \<Rightarrow> 'a"
haftmann@35817
  1656
  assumes eq_fold: "finite A \<Longrightarrow> F A = fold1 f A"
haftmann@35817
  1657
begin
haftmann@35817
  1658
haftmann@35817
  1659
lemma singleton [simp]:
haftmann@35817
  1660
  "F {x} = x"
haftmann@35817
  1661
  by (simp add: eq_fold)
haftmann@35817
  1662
haftmann@35817
  1663
lemma eq_fold':
haftmann@35817
  1664
  assumes "finite A" and "x \<notin> A"
haftmann@35817
  1665
  shows "F (insert x A) = fold (op *) x A"
haftmann@35817
  1666
proof -
wenzelm@47770
  1667
  interpret ab_semigroup_mult "op *" by default (simp_all add: ac_simps)
wenzelm@47770
  1668
  from assms show ?thesis by (simp add: eq_fold fold1_eq_fold)
haftmann@35817
  1669
qed
haftmann@35817
  1670
haftmann@35817
  1671
lemma insert [simp]:
haftmann@36625
  1672
  assumes "finite A" and "x \<notin> A" and "A \<noteq> {}"
haftmann@36625
  1673
  shows "F (insert x A) = x * F A"
haftmann@36625
  1674
proof -
haftmann@36625
  1675
  from `A \<noteq> {}` obtain b where "b \<in> A" by blast
haftmann@35817
  1676
  then obtain B where *: "A = insert b B" "b \<notin> B" by (blast dest: mk_disjoint_insert)
haftmann@35817
  1677
  with `finite A` have "finite B" by simp
haftmann@35817
  1678
  interpret fold: folding "op *" "\<lambda>a b. fold (op *) b a" proof
nipkow@39535
  1679
  qed (simp_all add: fun_eq_iff ac_simps)
haftmann@43740
  1680
  thm fold.comp_fun_commute' [of B b, simplified fun_eq_iff, simplified]
haftmann@43740
  1681
  from `finite B` fold.comp_fun_commute' [of B x]
haftmann@35817
  1682
    have "op * x \<circ> (\<lambda>b. fold op * b B) = (\<lambda>b. fold op * b B) \<circ> op * x" by simp
nipkow@39535
  1683
  then have A: "x * fold op * b B = fold op * (b * x) B" by (simp add: fun_eq_iff commute)
haftmann@35817
  1684
  from `finite B` * fold.insert [of B b]
haftmann@35817
  1685
    have "(\<lambda>x. fold op * x (insert b B)) = (\<lambda>x. fold op * x B) \<circ> op * b" by simp
nipkow@39535
  1686
  then have B: "fold op * x (insert b B) = fold op * (b * x) B" by (simp add: fun_eq_iff)
haftmann@35817
  1687
  from A B assms * show ?thesis by (simp add: eq_fold' del: fold.insert)
haftmann@35817
  1688
qed
haftmann@35817
  1689
haftmann@35817
  1690
lemma remove:
haftmann@35817
  1691
  assumes "finite A" and "x \<in> A"
haftmann@35817
  1692
  shows "F A = (if A - {x} = {} then x else x * F (A - {x}))"
haftmann@35817
  1693
proof -
haftmann@35817
  1694
  from assms obtain B where "A = insert x B" and "x \<notin> B" by (blast dest: mk_disjoint_insert)
haftmann@35817
  1695
  with assms show ?thesis by simp
haftmann@35817
  1696
qed
haftmann@35817
  1697
haftmann@35817
  1698
lemma insert_remove:
haftmann@35817
  1699
  assumes "finite A"
haftmann@35817
  1700
  shows "F (insert x A) = (if A - {x} = {} then x else x * F (A - {x}))"
haftmann@35817
  1701
  using assms by (cases "x \<in> A") (simp_all add: insert_absorb remove)
haftmann@35817
  1702
haftmann@35817
  1703
lemma union_disjoint:
haftmann@35817
  1704
  assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}" and "A \<inter> B = {}"
haftmann@35817
  1705
  shows "F (A \<union> B) = F A * F B"
haftmann@35817
  1706
  using assms by (induct A rule: finite_ne_induct) (simp_all add: ac_simps)
haftmann@35817
  1707
haftmann@35817
  1708
lemma union_inter:
haftmann@35817
  1709
  assumes "finite A" and "finite B" and "A \<inter> B \<noteq> {}"
haftmann@35817
  1710
  shows "F (A \<union> B) * F (A \<inter> B) = F A * F B"
haftmann@35817
  1711
proof -
haftmann@35817
  1712
  from assms have "A \<noteq> {}" and "B \<noteq> {}" by auto
haftmann@35817
  1713
  from `finite A` `A \<noteq> {}` `A \<inter> B \<noteq> {}` show ?thesis proof (induct A rule: finite_ne_induct)
haftmann@35817
  1714
    case (singleton x) then show ?case by (simp add: insert_absorb ac_simps)
haftmann@35817
  1715
  next
haftmann@35817
  1716
    case (insert x A) show ?case proof (cases "x \<in> B")
haftmann@35817
  1717
      case True then have "B \<noteq> {}" by auto
haftmann@35817
  1718
      with insert True `finite B` show ?thesis by (cases "A \<inter> B = {}")
haftmann@35817
  1719
        (simp_all add: insert_absorb ac_simps union_disjoint)
haftmann@35817
  1720
    next
haftmann@35817
  1721
      case False with insert have "F (A \<union> B) * F (A \<inter> B) = F A * F B" by simp
haftmann@35817
  1722
      moreover from False `finite B` insert have "finite (A \<union> B)" "x \<notin> A \<union> B" "A \<union> B \<noteq> {}"
haftmann@35817
  1723
        by auto
haftmann@35817
  1724
      ultimately show ?thesis using False `finite A` `x \<notin> A` `A \<noteq> {}` by (simp add: assoc)
haftmann@35817
  1725
    qed
haftmann@35817
  1726
  qed
haftmann@35817
  1727
qed
haftmann@35817
  1728
haftmann@35817
  1729
lemma closed:
haftmann@35817
  1730
  assumes "finite A" "A \<noteq> {}" and elem: "\<And>x y. x * y \<in> {x, y}"
haftmann@35817
  1731
  shows "F A \<in> A"
haftmann@35817
  1732
using `finite A` `A \<noteq> {}` proof (induct rule: finite_ne_induct)
haftmann@35817
  1733
  case singleton then show ?case by simp
haftmann@35817
  1734
next
haftmann@35817
  1735
  case insert with elem show ?case by force
haftmann@35817
  1736
qed
haftmann@35817
  1737
haftmann@35817
  1738
end
haftmann@35817
  1739
haftmann@35817
  1740
haftmann@35817
  1741
subsubsection {* The neutral-less case with idempotency *}
haftmann@35817
  1742
haftmann@35817
  1743
locale folding_one_idem = folding_one +
haftmann@35817
  1744
  assumes idem: "x * x = x"
haftmann@35817
  1745
haftmann@35817
  1746
sublocale folding_one_idem < semilattice proof
haftmann@35817
  1747
qed (fact idem)
haftmann@35817
  1748
haftmann@35817
  1749
context folding_one_idem
haftmann@35817
  1750
begin
haftmann@35817
  1751
haftmann@35817
  1752
lemma in_idem:
haftmann@35817
  1753
  assumes "finite A" and "x \<in> A"
haftmann@35817
  1754
  shows "x * F A = F A"
haftmann@35817
  1755
proof -
haftmann@35817
  1756
  from assms have "A \<noteq> {}" by auto
haftmann@35817
  1757
  with `finite A` show ?thesis using `x \<in> A` by (induct A rule: finite_ne_induct) (auto simp add: ac_simps)
haftmann@35817
  1758
qed
haftmann@35817
  1759
haftmann@35817
  1760
lemma subset_idem:
haftmann@35817
  1761
  assumes "finite A" "B \<noteq> {}" and "B \<subseteq> A"
haftmann@35817
  1762
  shows "F B * F A = F A"
haftmann@35817
  1763
proof -
haftmann@35817
  1764
  from assms have "finite B" by (blast dest: finite_subset)
haftmann@35817
  1765
  then show ?thesis using `B \<noteq> {}` `B \<subseteq> A` by (induct B rule: finite_ne_induct)
haftmann@35817
  1766
    (simp_all add: assoc in_idem `finite A`)
haftmann@35817
  1767
qed
haftmann@35817
  1768
haftmann@35817
  1769
lemma eq_fold_idem':
haftmann@35817
  1770
  assumes "finite A"
haftmann@35817
  1771
  shows "F (insert a A) = fold (op *) a A"
haftmann@35817
  1772
proof -
wenzelm@47770
  1773
  interpret ab_semigroup_idem_mult "op *" by default (simp_all add: ac_simps)
wenzelm@47770
  1774
  from assms show ?thesis by (simp add: eq_fold fold1_eq_fold_idem)
haftmann@35817
  1775
qed
haftmann@35817
  1776
haftmann@35817
  1777
lemma insert_idem [simp]:
haftmann@36625
  1778
  assumes "finite A" and "A \<noteq> {}"
haftmann@36625
  1779
  shows "F (insert x A) = x * F A"
haftmann@35817
  1780
proof (cases "x \<in> A")
haftmann@36625
  1781
  case False from `finite A` `x \<notin> A` `A \<noteq> {}` show ?thesis by (rule insert)
haftmann@35817
  1782
next
haftmann@36625
  1783
  case True
haftmann@36625
  1784
  from `finite A` `A \<noteq> {}` show ?thesis by (simp add: in_idem insert_absorb True)
haftmann@35817
  1785
qed
haftmann@35817
  1786
  
haftmann@35817
  1787
lemma union_idem:
haftmann@35817
  1788
  assumes "finite A" "A \<noteq> {}" and "finite B" "B \<noteq> {}"
haftmann@35817
  1789
  shows "F (A \<union> B) = F A * F B"
haftmann@35817
  1790
proof (cases "A \<inter> B = {}")
haftmann@35817
  1791
  case True with assms show ?thesis by (simp add: union_disjoint)
haftmann@35817
  1792
next
haftmann@35817
  1793
  case False
haftmann@35817
  1794
  from assms have "finite (A \<union> B)" and "A \<inter> B \<subseteq> A \<union> B" by auto
haftmann@35817
  1795
  with False have "F (A \<inter> B) * F (A \<union> B) = F (A \<union> B)" by (auto intro: subset_idem)
haftmann@35817
  1796
  with assms False show ?thesis by (simp add: union_inter [of A B, symmetric] commute)
haftmann@35817
  1797
qed
haftmann@35817
  1798
haftmann@35817
  1799
lemma hom_commute:
haftmann@35817
  1800
  assumes hom: "\<And>x y. h (x * y) = h x * h y"
haftmann@35817
  1801
  and N: "finite N" "N \<noteq> {}" shows "h (F N) = F (h ` N)"
haftmann@35817
  1802
using N proof (induct rule: finite_ne_induct)
haftmann@35817
  1803
  case singleton thus ?case by simp
haftmann@35817
  1804
next
haftmann@35817
  1805
  case (insert n N)
haftmann@35817
  1806
  then have "h (F (insert n N)) = h (n * F N)" by simp
haftmann@35817
  1807
  also have "\<dots> = h n * h (F N)" by (rule hom)
haftmann@35817
  1808
  also have "h (F N) = F (h ` N)" by(rule insert)
haftmann@35817
  1809
  also have "h n * \<dots> = F (insert (h n) (h ` N))"
haftmann@35817
  1810
    using insert by(simp)
haftmann@35817
  1811
  also have "insert (h n) (h ` N) = h ` insert n N" by simp
haftmann@35817
  1812
  finally show ?case .
haftmann@35817
  1813
qed
haftmann@35817
  1814
haftmann@35817
  1815
end
haftmann@35817
  1816
haftmann@35796
  1817
notation times (infixl "*" 70)
haftmann@35796
  1818
notation Groups.one ("1")
haftmann@35718
  1819
haftmann@35718
  1820
haftmann@35718
  1821
subsection {* Finite cardinality *}
haftmann@35718
  1822
haftmann@35718
  1823
text {* This definition, although traditional, is ugly to work with:
haftmann@35718
  1824
@{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
haftmann@35718
  1825
But now that we have @{text fold_image} things are easy:
haftmann@35718
  1826
*}
haftmann@35718
  1827
haftmann@35718
  1828
definition card :: "'a set \<Rightarrow> nat" where
haftmann@35718
  1829
  "card A = (if finite A then fold_image (op +) (\<lambda>x. 1) 0 A else 0)"
haftmann@35718
  1830
haftmann@37770
  1831
interpretation card: folding_image_simple "op +" 0 "\<lambda>x. 1" card proof
haftmann@35718
  1832
qed (simp add: card_def)
haftmann@35718
  1833
haftmann@35718
  1834
lemma card_infinite [simp]:
haftmann@35718
  1835
  "\<not> finite A \<Longrightarrow> card A = 0"
haftmann@35718
  1836
  by (simp add: card_def)
haftmann@35718
  1837
haftmann@35718
  1838
lemma card_empty:
haftmann@35718
  1839
  "card {} = 0"
haftmann@35718
  1840
  by (fact card.empty)
haftmann@35718
  1841
haftmann@35718
  1842
lemma card_insert_disjoint:
haftmann@35718
  1843
  "finite A ==> x \<notin> A ==> card (insert x A) = Suc (card A)"
haftmann@35718
  1844
  by simp
haftmann@35718
  1845
haftmann@35718
  1846
lemma card_insert_if:
haftmann@35718
  1847
  "finite A ==> card (insert x A) = (if x \<in> A then card A else Suc (card A))"
haftmann@35718
  1848
  by auto (simp add: card.insert_remove card.remove)
haftmann@35718
  1849
haftmann@35718
  1850
lemma card_ge_0_finite:
haftmann@35718
  1851
  "card A > 0 \<Longrightarrow> finite A"
haftmann@35718
  1852
  by (rule ccontr) simp
haftmann@35718
  1853
blanchet@35828
  1854
lemma card_0_eq [simp, no_atp]:
haftmann@35718
  1855
  "finite A \<Longrightarrow> card A = 0 \<longleftrightarrow> A = {}"
haftmann@35718
  1856
  by (auto dest: mk_disjoint_insert)
haftmann@35718
  1857
haftmann@35718
  1858
lemma finite_UNIV_card_ge_0:
haftmann@35718
  1859
  "finite (UNIV :: 'a set) \<Longrightarrow> card (UNIV :: 'a set) > 0"
haftmann@35718
  1860
  by (rule ccontr) simp
haftmann@35718
  1861
haftmann@35718
  1862
lemma card_eq_0_iff:
haftmann@35718
  1863
  "card A = 0 \<longleftrightarrow> A = {} \<or> \<not> finite A"
haftmann@35718
  1864
  by auto
haftmann@35718
  1865
haftmann@35718
  1866
lemma card_gt_0_iff:
haftmann@35718
  1867
  "0 < card A \<longleftrightarrow> A \<noteq> {} \<and> finite A"
haftmann@35718
  1868
  by (simp add: neq0_conv [symmetric] card_eq_0_iff) 
haftmann@35718
  1869
haftmann@35718
  1870
lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
haftmann@35718
  1871
apply(rule_tac t = A in insert_Diff [THEN subst], assumption)
haftmann@35718
  1872
apply(simp del:insert_Diff_single)
haftmann@35718
  1873
done
haftmann@35718
  1874
haftmann@35718
  1875
lemma card_Diff_singleton:
haftmann@35718
  1876
  "finite A ==> x: A ==> card (A - {x}) = card A - 1"
haftmann@35718
  1877
by (simp add: card_Suc_Diff1 [symmetric])
haftmann@35718
  1878
haftmann@35718
  1879
lemma card_Diff_singleton_if:
bulwahn@46037
  1880
  "finite A ==> card (A - {x}) = (if x : A then card A - 1 else card A)"
haftmann@35718
  1881
by (simp add: card_Diff_singleton)
haftmann@35718
  1882
haftmann@35718
  1883
lemma card_Diff_insert[simp]:
haftmann@35718
  1884
assumes "finite A" and "a:A" and "a ~: B"
haftmann@35718
  1885
shows "card(A - insert a B) = card(A - B) - 1"
haftmann@35718
  1886
proof -
haftmann@35718
  1887
  have "A - insert a B = (A - B) - {a}" using assms by blast
haftmann@35718
  1888
  then show ?thesis using assms by(simp add:card_Diff_singleton)
haftmann@35718
  1889
qed
haftmann@35718
  1890
haftmann@35718
  1891
lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
haftmann@35718
  1892
by (simp add: card_insert_if card_Suc_Diff1 del:card_Diff_insert)
haftmann@35718
  1893
haftmann@35718
  1894
lemma card_insert_le: "finite A ==> card A <= card (insert x A)"
haftmann@35718
  1895
by (simp add: card_insert_if)
haftmann@35718
  1896
nipkow@42858
  1897
lemma card_Collect_less_nat[simp]: "card{i::nat. i < n} = n"
nipkow@42858
  1898
by (induct n) (simp_all add:less_Suc_eq Collect_disj_eq)
nipkow@42858
  1899
nipkow@42859
  1900
lemma card_Collect_le_nat[simp]: "card{i::nat. i <= n} = Suc n"
nipkow@42858
  1901
using card_Collect_less_nat[of "Suc n"] by(simp add: less_Suc_eq_le)
nipkow@42858
  1902
haftmann@35718
  1903
lemma card_mono:
haftmann@35718
  1904
  assumes "finite B" and "A \<subseteq> B"
haftmann@35718
  1905
  shows "card A \<le> card B"
haftmann@35718
  1906
proof -
haftmann@35718
  1907
  from assms have "finite A" by (auto intro: finite_subset)
haftmann@35718
  1908
  then show ?thesis using assms proof (induct A arbitrary: B)
haftmann@35718
  1909
    case empty then show ?case by simp
haftmann@35718
  1910
  next
haftmann@35718
  1911
    case (insert x A)
haftmann@35718
  1912
    then have "x \<in> B" by simp
haftmann@35718
  1913
    from insert have "A \<subseteq> B - {x}" and "finite (B - {x})" by auto
haftmann@35718
  1914
    with insert.hyps have "card A \<le> card (B - {x})" by auto
haftmann@35718
  1915
    with `finite A` `x \<notin> A` `finite B` `x \<in> B` show ?case by simp (simp only: card.remove)
haftmann@35718
  1916
  qed
haftmann@35718
  1917
qed
haftmann@35718
  1918
haftmann@35718
  1919
lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)"
haftmann@42525
  1920
apply (induct rule: finite_induct)
haftmann@42525
  1921
apply simp
haftmann@42525
  1922
apply clarify
haftmann@35718
  1923
apply (subgoal_tac "finite A & A - {x} <= F")
haftmann@35718
  1924
 prefer 2 apply (blast intro: finite_subset, atomize)
haftmann@35718
  1925
apply (drule_tac x = "A - {x}" in spec)
haftmann@35718
  1926
apply (simp add: card_Diff_singleton_if split add: split_if_asm)
haftmann@35718
  1927
apply (case_tac "card A", auto)
haftmann@35718
  1928
done
haftmann@35718
  1929
haftmann@35718
  1930
lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B"
haftmann@35718
  1931
apply (simp add: psubset_eq linorder_not_le [symmetric])
haftmann@35718
  1932
apply (blast dest: card_seteq)
haftmann@35718
  1933
done
haftmann@35718
  1934
haftmann@35718
  1935
lemma card_Un_Int: "finite A ==> finite B
haftmann@35718
  1936
    ==> card A + card B = card (A Un B) + card (A Int B)"
haftmann@35817
  1937
  by (fact card.union_inter [symmetric])
haftmann@35718
  1938
haftmann@35718
  1939
lemma card_Un_disjoint: "finite A ==> finite B
haftmann@35718
  1940
    ==> A Int B = {} ==> card (A Un B) = card A + card B"
haftmann@35718
  1941
  by (fact card.union_disjoint)
haftmann@35718
  1942
haftmann@35718
  1943
lemma card_Diff_subset:
haftmann@35718
  1944
  assumes "finite B" and "B \<subseteq> A"
haftmann@35718
  1945
  shows "card (A - B) = card A - card B"
haftmann@35718
  1946
proof (cases "finite A")
haftmann@35718
  1947
  case False with assms show ?thesis by simp
haftmann@35718
  1948
next
haftmann@35718
  1949
  case True with assms show ?thesis by (induct B arbitrary: A) simp_all
haftmann@35718
  1950
qed
haftmann@35718
  1951
haftmann@35718
  1952
lemma card_Diff_subset_Int:
haftmann@35718
  1953
  assumes AB: "finite (A \<inter> B)" shows "card (A - B) = card A - card (A \<inter> B)"
haftmann@35718
  1954
proof -
haftmann@35718
  1955
  have "A - B = A - A \<inter> B" by auto
haftmann@35718
  1956
  thus ?thesis
haftmann@35718
  1957
    by (simp add: card_Diff_subset AB) 
haftmann@35718
  1958
qed
haftmann@35718
  1959
nipkow@40964
  1960
lemma diff_card_le_card_Diff:
nipkow@40964
  1961
assumes "finite B" shows "card A - card B \<le> card(A - B)"
nipkow@40964
  1962
proof-
nipkow@40964
  1963
  have "card A - card B \<le> card A - card (A \<inter> B)"
nipkow@40964
  1964
    using card_mono[OF assms Int_lower2, of A] by arith
nipkow@40964
  1965
  also have "\<dots> = card(A-B)" using assms by(simp add: card_Diff_subset_Int)
nipkow@40964
  1966
  finally show ?thesis .
nipkow@40964
  1967
qed
nipkow@40964
  1968
haftmann@35718
  1969
lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
haftmann@35718
  1970
apply (rule Suc_less_SucD)
haftmann@35718
  1971
apply (simp add: card_Suc_Diff1 del:card_Diff_insert)
haftmann@35718
  1972
done
haftmann@35718
  1973
haftmann@35718
  1974
lemma card_Diff2_less:
haftmann@35718
  1975
  "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
haftmann@35718
  1976
apply (case_tac "x = y")
haftmann@35718
  1977
 apply (simp add: card_Diff1_less del:card_Diff_insert)
haftmann@35718
  1978
apply (rule less_trans)
haftmann@35718
  1979
 prefer 2 apply (auto intro!: card_Diff1_less simp del:card_Diff_insert)
haftmann@35718
  1980
done
haftmann@35718
  1981
haftmann@35718
  1982
lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
haftmann@35718
  1983
apply (case_tac "x : A")
haftmann@35718
  1984
 apply (simp_all add: card_Diff1_less less_imp_le)
haftmann@35718
  1985
done
haftmann@35718
  1986
haftmann@35718
  1987
lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B"
haftmann@35718
  1988
by (erule psubsetI, blast)
haftmann@35718
  1989
haftmann@35718
  1990
lemma insert_partition:
haftmann@35718
  1991
  "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
haftmann@35718
  1992
  \<Longrightarrow> x \<inter> \<Union> F = {}"
haftmann@35718
  1993
by auto
haftmann@35718
  1994
haftmann@35718
  1995
lemma finite_psubset_induct[consumes 1, case_names psubset]:
urbanc@36079
  1996
  assumes fin: "finite A" 
urbanc@36079
  1997
  and     major: "\<And>A. finite A \<Longrightarrow> (\<And>B. B \<subset> A \<Longrightarrow> P B) \<Longrightarrow> P A" 
urbanc@36079
  1998
  shows "P A"
urbanc@36079
  1999
using fin
urbanc@36079
  2000
proof (induct A taking: card rule: measure_induct_rule)
haftmann@35718
  2001
  case (less A)
urbanc@36079
  2002
  have fin: "finite A" by fact
urbanc@36079
  2003
  have ih: "\<And>B. \<lbrakk>card B < card A; finite B\<rbrakk> \<Longrightarrow> P B" by fact
urbanc@36079
  2004
  { fix B 
urbanc@36079
  2005
    assume asm: "B \<subset> A"
urbanc@36079
  2006
    from asm have "card B < card A" using psubset_card_mono fin by blast
urbanc@36079
  2007
    moreover
urbanc@36079
  2008
    from asm have "B \<subseteq> A" by auto
urbanc@36079
  2009
    then have "finite B" using fin finite_subset by blast
urbanc@36079
  2010
    ultimately 
urbanc@36079
  2011
    have "P B" using ih by simp
urbanc@36079
  2012
  }
urbanc@36079
  2013
  with fin show "P A" using major by blast
haftmann@35718
  2014
qed
haftmann@35718
  2015
haftmann@35718
  2016
text{* main cardinality theorem *}
haftmann@35718
  2017
lemma card_partition [rule_format]:
haftmann@35718
  2018
  "finite C ==>
haftmann@35718
  2019
     finite (\<Union> C) -->
haftmann@35718
  2020
     (\<forall>c\<in>C. card c = k) -->
haftmann@35718
  2021
     (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->
haftmann@35718
  2022
     k * card(C) = card (\<Union> C)"
haftmann@35718
  2023
apply (erule finite_induct, simp)
haftmann@35718
  2024
apply (simp add: card_Un_disjoint insert_partition 
haftmann@35718
  2025
       finite_subset [of _ "\<Union> (insert x F)"])
haftmann@35718
  2026
done
haftmann@35718
  2027
haftmann@35718
  2028
lemma card_eq_UNIV_imp_eq_UNIV:
haftmann@35718
  2029
  assumes fin: "finite (UNIV :: 'a set)"
haftmann@35718
  2030
  and card: "card A = card (UNIV :: 'a set)"
haftmann@35718
  2031
  shows "A = (UNIV :: 'a set)"
haftmann@35718
  2032
proof
haftmann@35718
  2033
  show "A \<subseteq> UNIV" by simp
haftmann@35718
  2034
  show "UNIV \<subseteq> A"
haftmann@35718
  2035
  proof
haftmann@35718
  2036
    fix x
haftmann@35718
  2037
    show "x \<in> A"
haftmann@35718
  2038
    proof (rule ccontr)
haftmann@35718
  2039
      assume "x \<notin> A"
haftmann@35718
  2040
      then have "A \<subset> UNIV" by auto
haftmann@35718
  2041
      with fin have "card A < card (UNIV :: 'a set)" by (fact psubset_card_mono)
haftmann@35718
  2042
      with card show False by simp
haftmann@35718
  2043
    qed
haftmann@35718
  2044
  qed
haftmann@35718
  2045
qed
haftmann@35718
  2046
haftmann@35718
  2047
text{*The form of a finite set of given cardinality*}
haftmann@35718
  2048
haftmann@35718
  2049
lemma card_eq_SucD:
haftmann@35718
  2050
assumes "card A = Suc k"
haftmann@35718
  2051
shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={})"
haftmann@35718
  2052
proof -
haftmann@35718
  2053
  have fin: "finite A" using assms by (auto intro: ccontr)
haftmann@35718
  2054
  moreover have "card A \<noteq> 0" using assms by auto
haftmann@35718
  2055
  ultimately obtain b where b: "b \<in> A" by auto
haftmann@35718
  2056
  show ?thesis
haftmann@35718
  2057
  proof (intro exI conjI)
haftmann@35718
  2058
    show "A = insert b (A-{b})" using b by blast
haftmann@35718
  2059
    show "b \<notin> A - {b}" by blast
haftmann@35718
  2060
    show "card (A - {b}) = k" and "k = 0 \<longrightarrow> A - {b} = {}"
nipkow@45761
  2061
      using assms b fin by(fastforce dest:mk_disjoint_insert)+
haftmann@35718
  2062
  qed
haftmann@35718
  2063
qed
haftmann@35718
  2064
haftmann@35718
  2065
lemma card_Suc_eq:
haftmann@35718
  2066
  "(card A = Suc k) =
haftmann@35718
  2067
   (\<exists>b B. A = insert b B & b \<notin> B & card B = k & (k=0 \<longrightarrow> B={}))"
haftmann@35718
  2068
apply(rule iffI)
haftmann@35718
  2069
 apply(erule card_eq_SucD)
haftmann@35718
  2070
apply(auto)
haftmann@35718
  2071
apply(subst card_insert)
haftmann@35718
  2072
 apply(auto intro:ccontr)
haftmann@35718
  2073
done
haftmann@35718
  2074
nipkow@45608
  2075
lemma card_le_Suc_iff: "finite A \<Longrightarrow>
nipkow@45608
  2076
  Suc n \<le> card A = (\<exists>a B. A = insert a B \<and> a \<notin> B \<and> n \<le> card B \<and> finite B)"
nipkow@45761
  2077
by (fastforce simp: card_Suc_eq less_eq_nat.simps(2) insert_eq_iff
nipkow@45608
  2078
  dest: subset_singletonD split: nat.splits if_splits)
nipkow@45608
  2079
haftmann@35718
  2080
lemma finite_fun_UNIVD2:
haftmann@35718
  2081
  assumes fin: "finite (UNIV :: ('a \<Rightarrow> 'b) set)"
haftmann@35718
  2082
  shows "finite (UNIV :: 'b set)"
haftmann@35718
  2083
proof -
haftmann@47017
  2084
  from fin have "\<And>arbitrary. finite (range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary))"
haftmann@47017
  2085
    by (rule finite_imageI)
haftmann@47017
  2086
  moreover have "\<And>arbitrary. UNIV = range (\<lambda>f :: 'a \<Rightarrow> 'b. f arbitrary)"
haftmann@47017
  2087
    by (rule UNIV_eq_I) auto
haftmann@35718
  2088
  ultimately show "finite (UNIV :: 'b set)" by simp
haftmann@35718
  2089
qed
haftmann@35718
  2090
huffman@49078
  2091
lemma card_UNIV_unit [simp]: "card (UNIV :: unit set) = 1"
haftmann@35718
  2092
  unfolding UNIV_unit by simp
haftmann@35718
  2093
huffman@48081
  2094
lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2"
huffman@48081
  2095
  unfolding UNIV_bool by simp
huffman@48081
  2096
haftmann@35718
  2097
haftmann@35718
  2098
subsubsection {* Cardinality of image *}
haftmann@35718
  2099
haftmann@35718
  2100
lemma card_image_le: "finite A ==> card (f ` A) <= card A"
haftmann@42525
  2101
apply (induct rule: finite_induct)
haftmann@35718
  2102
 apply simp
haftmann@35718
  2103
apply (simp add: le_SucI card_insert_if)
haftmann@35718
  2104
done
haftmann@35718
  2105
haftmann@35718
  2106
lemma card_image:
haftmann@35718
  2107
  assumes "inj_on f A"
haftmann@35718
  2108
  shows "card (f ` A) = card A"
haftmann@35718
  2109
proof (cases "finite A")
haftmann@35718
  2110
  case True then show ?thesis using assms by (induct A) simp_all
haftmann@35718
  2111
next
haftmann@35718
  2112
  case False then have "\<not> finite (f ` A)" using assms by (auto dest: finite_imageD)
haftmann@35718
  2113
  with False show ?thesis by simp
haftmann@35718
  2114
qed
haftmann@35718
  2115
haftmann@35718
  2116
lemma bij_betw_same_card: "bij_betw f A B \<Longrightarrow> card A = card B"
haftmann@35718
  2117
by(auto simp: card_image bij_betw_def)
haftmann@35718
  2118
haftmann@35718
  2119
lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A"
haftmann@35718
  2120
by (simp add: card_seteq card_image)
haftmann@35718
  2121
haftmann@35718
  2122
lemma eq_card_imp_inj_on:
haftmann@35718
  2123
  "[| finite A; card(f ` A) = card A |] ==> inj_on f A"
haftmann@35718
  2124
apply (induct rule:finite_induct)
haftmann@35718
  2125
apply simp
haftmann@35718
  2126
apply(frule card_image_le[where f = f])
haftmann@35718
  2127
apply(simp add:card_insert_if split:if_splits)
haftmann@35718
  2128
done
haftmann@35718
  2129
haftmann@35718
  2130
lemma inj_on_iff_eq_card:
haftmann@35718
  2131
  "finite A ==> inj_on f A = (card(f ` A) = card A)"
haftmann@35718
  2132
by(blast intro: card_image eq_card_imp_inj_on)
haftmann@35718
  2133
haftmann@35718
  2134
haftmann@35718
  2135
lemma card_inj_on_le:
haftmann@35718
  2136
  "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B"
haftmann@35718
  2137
apply (subgoal_tac "finite A") 
haftmann@35718
  2138
 apply (force intro: card_mono simp add: card_image [symmetric])
haftmann@35718
  2139
apply (blast intro: finite_imageD dest: finite_subset) 
haftmann@35718
  2140
done
haftmann@35718
  2141
haftmann@35718
  2142
lemma card_bij_eq:
haftmann@35718
  2143
  "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A;
haftmann@35718
  2144
     finite A; finite B |] ==> card A = card B"
haftmann@35718
  2145
by (auto intro: le_antisym card_inj_on_le)
haftmann@35718
  2146
hoelzl@40951
  2147
lemma bij_betw_finite:
hoelzl@40951
  2148
  assumes "bij_betw f A B"
hoelzl@40951
  2149
  shows "finite A \<longleftrightarrow> finite B"
hoelzl@40951
  2150
using assms unfolding bij_betw_def
hoelzl@40951
  2151
using finite_imageD[of f A] by auto
haftmann@35718
  2152
haftmann@42525
  2153
nipkow@37441
  2154
subsubsection {* Pigeonhole Principles *}
nipkow@37441
  2155
nipkow@40557
  2156
lemma pigeonhole: "card A > card(f ` A) \<Longrightarrow> ~ inj_on f A "
nipkow@37441
  2157
by (auto dest: card_image less_irrefl_nat)
nipkow@37441
  2158
nipkow@37441
  2159
lemma pigeonhole_infinite:
nipkow@37441
  2160
assumes  "~ finite A" and "finite(f`A)"
nipkow@37441
  2161
shows "EX a0:A. ~finite{a:A. f a = f a0}"
nipkow@37441
  2162
proof -
nipkow@37441
  2163
  have "finite(f`A) \<Longrightarrow> ~ finite A \<Longrightarrow> EX a0:A. ~finite{a:A. f a = f a0}"
nipkow@37441
  2164
  proof(induct "f`A" arbitrary: A rule: finite_induct)
nipkow@37441
  2165
    case empty thus ?case by simp
nipkow@37441
  2166
  next
nipkow@37441
  2167
    case (insert b F)
nipkow@37441
  2168
    show ?case
nipkow@37441
  2169
    proof cases
nipkow@37441
  2170
      assume "finite{a:A. f a = b}"
nipkow@37441
  2171
      hence "~ finite(A - {a:A. f a = b})" using `\<not> finite A` by simp
nipkow@37441
  2172
      also have "A - {a:A. f a = b} = {a:A. f a \<noteq> b}" by blast
nipkow@37441
  2173
      finally have "~ finite({a:A. f a \<noteq> b})" .
nipkow@37441
  2174
      from insert(3)[OF _ this]
nipkow@37441
  2175
      show ?thesis using insert(2,4) by simp (blast intro: rev_finite_subset)
nipkow@37441
  2176
    next
nipkow@37441
  2177
      assume 1: "~finite{a:A. f a = b}"
nipkow@37441
  2178
      hence "{a \<in> A. f a = b} \<noteq> {}" by force
nipkow@37441
  2179
      thus ?thesis using 1 by blast
nipkow@37441
  2180
    qed
nipkow@37441
  2181
  qed
nipkow@37441
  2182
  from this[OF assms(2,1)] show ?thesis .
nipkow@37441
  2183
qed
nipkow@37441
  2184
nipkow@37441
  2185
lemma pigeonhole_infinite_rel:
nipkow@37441
  2186
assumes "~finite A" and "finite B" and "ALL a:A. EX b:B. R a b"
nipkow@37441
  2187
shows "EX b:B. ~finite{a:A. R a b}"
nipkow@37441
  2188
proof -
nipkow@37441
  2189
   let ?F = "%a. {b:B. R a b}"
nipkow@37441
  2190
   from finite_Pow_iff[THEN iffD2, OF `finite B`]
nipkow@37441
  2191
   have "finite(?F ` A)" by(blast intro: rev_finite_subset)
nipkow@37441
  2192
   from pigeonhole_infinite[where f = ?F, OF assms(1) this]
nipkow@37441
  2193
   obtain a0 where "a0\<in>A" and 1: "\<not> finite {a\<in>A. ?F a = ?F a0}" ..
nipkow@37441
  2194
   obtain b0 where "b0 : B" and "R a0 b0" using `a0:A` assms(3) by blast
nipkow@37441
  2195
   { assume "finite{a:A. R a b0}"
nipkow@37441
  2196
     then have "finite {a\<in>A. ?F a = ?F a0}"
nipkow@37441
  2197
       using `b0 : B` `R a0 b0` by(blast intro: rev_finite_subset)
nipkow@37441
  2198
   }
nipkow@37441
  2199
   with 1 `b0 : B` show ?thesis by blast
nipkow@37441
  2200
qed
nipkow@37441
  2201
nipkow@37441
  2202
haftmann@35718
  2203
subsubsection {* Cardinality of sums *}
haftmann@35718
  2204
haftmann@35718
  2205
lemma card_Plus:
haftmann@35718
  2206
  assumes "finite A" and "finite B"
haftmann@35718
  2207
  shows "card (A <+> B) = card A + card B"
haftmann@35718
  2208
proof -
haftmann@35718
  2209
  have "Inl`A \<inter> Inr`B = {}" by fast
haftmann@35718
  2210
  with assms show ?thesis
haftmann@35718
  2211
    unfolding Plus_def
haftmann@35718
  2212
    by (simp add: card_Un_disjoint card_image)
haftmann@35718
  2213
qed
haftmann@35718
  2214
haftmann@35718
  2215
lemma card_Plus_conv_if:
haftmann@35718
  2216
  "card (A <+> B) = (if finite A \<and> finite B then card A + card B else 0)"
haftmann@35718
  2217
  by (auto simp add: card_Plus)
haftmann@35718
  2218
haftmann@35718
  2219
haftmann@35718
  2220
subsubsection {* Cardinality of the Powerset *}
haftmann@35718
  2221
huffman@48092
  2222
lemma card_Pow: "finite A ==> card (Pow A) = 2 ^ card A"
haftmann@42525
  2223
apply (induct rule: finite_induct)
haftmann@35718
  2224
 apply (simp_all add: Pow_insert)
haftmann@35718
  2225
apply (subst card_Un_disjoint, blast)
nipkow@41030
  2226
  apply (blast, blast)
haftmann@35718
  2227
apply (subgoal_tac "inj_on (insert x) (Pow F)")
huffman@48092
  2228
 apply (subst mult_2)
haftmann@35718
  2229
 apply (simp add: card_image Pow_insert)
haftmann@35718
  2230
apply (unfold inj_on_def)
haftmann@35718
  2231
apply (blast elim!: equalityE)
haftmann@35718
  2232
done
haftmann@35718
  2233
nipkow@42858
  2234
text {* Relates to equivalence classes.  Based on a theorem of F. Kamm\"uller.  *}
haftmann@35718
  2235
haftmann@35718
  2236
lemma dvd_partition:
haftmann@35718
  2237
  "finite (Union C) ==>
haftmann@35718
  2238
    ALL c : C. k dvd card c ==>
haftmann@35718
  2239
    (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
haftmann@35718
  2240
  k dvd card (Union C)"
haftmann@42525
  2241
apply (frule finite_UnionD)
haftmann@42525
  2242
apply (rotate_tac -1)
haftmann@42525
  2243
apply (induct rule: finite_induct)
haftmann@42525
  2244
apply simp_all
haftmann@42525
  2245
apply clarify
haftmann@35718
  2246
apply (subst card_Un_disjoint)
haftmann@35718
  2247
   apply (auto simp add: disjoint_eq_subset_Compl)
haftmann@35718
  2248
done
haftmann@35718
  2249
haftmann@35718
  2250
haftmann@35718
  2251
subsubsection {* Relating injectivity and surjectivity *}
haftmann@35718
  2252
haftmann@42525
  2253
lemma finite_surj_inj: "finite A \<Longrightarrow> A \<subseteq> f ` A \<Longrightarrow> inj_on f A"
haftmann@35718
  2254
apply(rule eq_card_imp_inj_on, assumption)
haftmann@35718
  2255
apply(frule finite_imageI)
haftmann@35718
  2256
apply(drule (1) card_seteq)
haftmann@35718
  2257
 apply(erule card_image_le)
haftmann@35718
  2258
apply simp
haftmann@35718
  2259
done
haftmann@35718
  2260
haftmann@35718
  2261
lemma finite_UNIV_surj_inj: fixes f :: "'a \<Rightarrow> 'a"
haftmann@35718
  2262
shows "finite(UNIV:: 'a set) \<Longrightarrow> surj f \<Longrightarrow> inj f"
hoelzl@40950
  2263
by (blast intro: finite_surj_inj subset_UNIV)
haftmann@35718
  2264
haftmann@35718
  2265
lemma finite_UNIV_inj_surj: fixes f :: "'a \<Rightarrow> 'a"
haftmann@35718
  2266
shows "finite(UNIV:: 'a set) \<Longrightarrow> inj f \<Longrightarrow> surj f"
nipkow@45761
  2267
by(fastforce simp:surj_def dest!: endo_inj_surj)
haftmann@35718
  2268
haftmann@35718
  2269
corollary infinite_UNIV_nat[iff]: "~finite(UNIV::nat set)"
haftmann@35718
  2270
proof
haftmann@35718
  2271
  assume "finite(UNIV::nat set)"
haftmann@35718
  2272
  with finite_UNIV_inj_surj[of Suc]
haftmann@35718
  2273
  show False by simp (blast dest: Suc_neq_Zero surjD)
haftmann@35718
  2274
qed
haftmann@35718
  2275
blanchet@35828
  2276
(* Often leads to bogus ATP proofs because of reduced type information, hence no_atp *)
blanchet@35828
  2277
lemma infinite_UNIV_char_0[no_atp]:
haftmann@35718
  2278
  "\<not> finite (UNIV::'a::semiring_char_0 set)"
haftmann@35718
  2279
proof
haftmann@35718
  2280
  assume "finite (UNIV::'a set)"
haftmann@35718
  2281
  with subset_UNIV have "finite (range of_nat::'a set)"
haftmann@35718
  2282
    by (rule finite_subset)
haftmann@35718
  2283
  moreover have "inj (of_nat::nat \<Rightarrow> 'a)"
haftmann@35718
  2284
    by (simp add: inj_on_def)
haftmann@35718
  2285
  ultimately have "finite (UNIV::nat set)"
haftmann@35718
  2286
    by (rule finite_imageD)
haftmann@35718
  2287
  then show "False"
haftmann@35718
  2288
    by simp
haftmann@35718
  2289
qed
haftmann@35718
  2290
haftmann@46904
  2291
hide_const (open) Finite_Set.fold
haftmann@46904
  2292
haftmann@35718
  2293
end