src/HOL/Divides.thy
author huffman
Tue, 27 Mar 2012 20:19:23 +0200
changeset 48038 099397de21e3
parent 48037 108bf76ca00c
child 48088 501b9bbd0d6e
permissions -rw-r--r--
remove more redundant lemmas
paulson@3366
     1
(*  Title:      HOL/Divides.thy
paulson@3366
     2
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
paulson@6865
     3
    Copyright   1999  University of Cambridge
huffman@18154
     4
*)
paulson@3366
     5
haftmann@27651
     6
header {* The division operators div and mod *}
paulson@3366
     7
nipkow@15131
     8
theory Divides
haftmann@33301
     9
imports Nat_Numeral Nat_Transfer
haftmann@33335
    10
uses "~~/src/Provers/Arith/cancel_div_mod.ML"
nipkow@15131
    11
begin
paulson@3366
    12
haftmann@25942
    13
subsection {* Syntactic division operations *}
haftmann@25942
    14
haftmann@27651
    15
class div = dvd +
haftmann@27651
    16
  fixes div :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "div" 70)
haftmann@27651
    17
    and mod :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "mod" 70)
haftmann@21408
    18
haftmann@25942
    19
haftmann@27651
    20
subsection {* Abstract division in commutative semirings. *}
haftmann@25942
    21
haftmann@30930
    22
class semiring_div = comm_semiring_1_cancel + no_zero_divisors + div +
haftmann@25942
    23
  assumes mod_div_equality: "a div b * b + a mod b = a"
haftmann@27651
    24
    and div_by_0 [simp]: "a div 0 = 0"
haftmann@27651
    25
    and div_0 [simp]: "0 div a = 0"
haftmann@27651
    26
    and div_mult_self1 [simp]: "b \<noteq> 0 \<Longrightarrow> (a + c * b) div b = c + a div b"
haftmann@30930
    27
    and div_mult_mult1 [simp]: "c \<noteq> 0 \<Longrightarrow> (c * a) div (c * b) = a div b"
haftmann@25942
    28
begin
haftmann@25942
    29
haftmann@26100
    30
text {* @{const div} and @{const mod} *}
haftmann@26100
    31
haftmann@26062
    32
lemma mod_div_equality2: "b * (a div b) + a mod b = a"
haftmann@26062
    33
  unfolding mult_commute [of b]
haftmann@26062
    34
  by (rule mod_div_equality)
haftmann@26062
    35
huffman@29400
    36
lemma mod_div_equality': "a mod b + a div b * b = a"
huffman@29400
    37
  using mod_div_equality [of a b]
huffman@29400
    38
  by (simp only: add_ac)
huffman@29400
    39
haftmann@26062
    40
lemma div_mod_equality: "((a div b) * b + a mod b) + c = a + c"
haftmann@30934
    41
  by (simp add: mod_div_equality)
haftmann@26062
    42
haftmann@26062
    43
lemma div_mod_equality2: "(b * (a div b) + a mod b) + c = a + c"
haftmann@30934
    44
  by (simp add: mod_div_equality2)
haftmann@26062
    45
haftmann@27651
    46
lemma mod_by_0 [simp]: "a mod 0 = a"
haftmann@30934
    47
  using mod_div_equality [of a zero] by simp
haftmann@26100
    48
haftmann@27651
    49
lemma mod_0 [simp]: "0 mod a = 0"
haftmann@30934
    50
  using mod_div_equality [of zero a] div_0 by simp
haftmann@26062
    51
haftmann@27651
    52
lemma div_mult_self2 [simp]:
haftmann@27651
    53
  assumes "b \<noteq> 0"
haftmann@27651
    54
  shows "(a + b * c) div b = c + a div b"
haftmann@27651
    55
  using assms div_mult_self1 [of b a c] by (simp add: mult_commute)
haftmann@26062
    56
haftmann@27651
    57
lemma mod_mult_self1 [simp]: "(a + c * b) mod b = a mod b"
haftmann@27651
    58
proof (cases "b = 0")
haftmann@27651
    59
  case True then show ?thesis by simp
haftmann@27651
    60
next
haftmann@27651
    61
  case False
haftmann@27651
    62
  have "a + c * b = (a + c * b) div b * b + (a + c * b) mod b"
haftmann@27651
    63
    by (simp add: mod_div_equality)
haftmann@27651
    64
  also from False div_mult_self1 [of b a c] have
haftmann@27651
    65
    "\<dots> = (c + a div b) * b + (a + c * b) mod b"
nipkow@29667
    66
      by (simp add: algebra_simps)
haftmann@27651
    67
  finally have "a = a div b * b + (a + c * b) mod b"
haftmann@27651
    68
    by (simp add: add_commute [of a] add_assoc left_distrib)
haftmann@27651
    69
  then have "a div b * b + (a + c * b) mod b = a div b * b + a mod b"
haftmann@27651
    70
    by (simp add: mod_div_equality)
haftmann@27651
    71
  then show ?thesis by simp
haftmann@27651
    72
qed
haftmann@27651
    73
haftmann@27651
    74
lemma mod_mult_self2 [simp]: "(a + b * c) mod b = a mod b"
haftmann@30934
    75
  by (simp add: mult_commute [of b])
haftmann@27651
    76
haftmann@27651
    77
lemma div_mult_self1_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> b * a div b = a"
haftmann@27651
    78
  using div_mult_self2 [of b 0 a] by simp
haftmann@27651
    79
haftmann@27651
    80
lemma div_mult_self2_is_id [simp]: "b \<noteq> 0 \<Longrightarrow> a * b div b = a"
haftmann@27651
    81
  using div_mult_self1 [of b 0 a] by simp
haftmann@27651
    82
haftmann@27651
    83
lemma mod_mult_self1_is_0 [simp]: "b * a mod b = 0"
haftmann@27651
    84
  using mod_mult_self2 [of 0 b a] by simp
haftmann@27651
    85
haftmann@27651
    86
lemma mod_mult_self2_is_0 [simp]: "a * b mod b = 0"
haftmann@27651
    87
  using mod_mult_self1 [of 0 a b] by simp
haftmann@27651
    88
haftmann@27651
    89
lemma div_by_1 [simp]: "a div 1 = a"
haftmann@27651
    90
  using div_mult_self2_is_id [of 1 a] zero_neq_one by simp
haftmann@27651
    91
haftmann@27651
    92
lemma mod_by_1 [simp]: "a mod 1 = 0"
haftmann@27651
    93
proof -
haftmann@27651
    94
  from mod_div_equality [of a one] div_by_1 have "a + a mod 1 = a" by simp
haftmann@27651
    95
  then have "a + a mod 1 = a + 0" by simp
haftmann@27651
    96
  then show ?thesis by (rule add_left_imp_eq)
haftmann@27651
    97
qed
haftmann@27651
    98
haftmann@27651
    99
lemma mod_self [simp]: "a mod a = 0"
haftmann@27651
   100
  using mod_mult_self2_is_0 [of 1] by simp
haftmann@27651
   101
haftmann@27651
   102
lemma div_self [simp]: "a \<noteq> 0 \<Longrightarrow> a div a = 1"
haftmann@27651
   103
  using div_mult_self2_is_id [of _ 1] by simp
haftmann@27651
   104
haftmann@27676
   105
lemma div_add_self1 [simp]:
haftmann@27651
   106
  assumes "b \<noteq> 0"
haftmann@27651
   107
  shows "(b + a) div b = a div b + 1"
haftmann@27651
   108
  using assms div_mult_self1 [of b a 1] by (simp add: add_commute)
haftmann@27651
   109
haftmann@27676
   110
lemma div_add_self2 [simp]:
haftmann@27651
   111
  assumes "b \<noteq> 0"
haftmann@27651
   112
  shows "(a + b) div b = a div b + 1"
haftmann@27651
   113
  using assms div_add_self1 [of b a] by (simp add: add_commute)
haftmann@27651
   114
haftmann@27676
   115
lemma mod_add_self1 [simp]:
haftmann@27651
   116
  "(b + a) mod b = a mod b"
haftmann@27651
   117
  using mod_mult_self1 [of a 1 b] by (simp add: add_commute)
haftmann@27651
   118
haftmann@27676
   119
lemma mod_add_self2 [simp]:
haftmann@27651
   120
  "(a + b) mod b = a mod b"
haftmann@27651
   121
  using mod_mult_self1 [of a 1 b] by simp
haftmann@27651
   122
haftmann@27651
   123
lemma mod_div_decomp:
haftmann@27651
   124
  fixes a b
haftmann@27651
   125
  obtains q r where "q = a div b" and "r = a mod b"
haftmann@27651
   126
    and "a = q * b + r"
haftmann@27651
   127
proof -
haftmann@27651
   128
  from mod_div_equality have "a = a div b * b + a mod b" by simp
haftmann@27651
   129
  moreover have "a div b = a div b" ..
haftmann@27651
   130
  moreover have "a mod b = a mod b" ..
haftmann@27651
   131
  note that ultimately show thesis by blast
haftmann@27651
   132
qed
haftmann@27651
   133
bulwahn@46100
   134
lemma dvd_eq_mod_eq_0 [code]: "a dvd b \<longleftrightarrow> b mod a = 0"
haftmann@25942
   135
proof
haftmann@25942
   136
  assume "b mod a = 0"
haftmann@25942
   137
  with mod_div_equality [of b a] have "b div a * a = b" by simp
haftmann@25942
   138
  then have "b = a * (b div a)" unfolding mult_commute ..
haftmann@25942
   139
  then have "\<exists>c. b = a * c" ..
haftmann@25942
   140
  then show "a dvd b" unfolding dvd_def .
haftmann@25942
   141
next
haftmann@25942
   142
  assume "a dvd b"
haftmann@25942
   143
  then have "\<exists>c. b = a * c" unfolding dvd_def .
haftmann@25942
   144
  then obtain c where "b = a * c" ..
haftmann@25942
   145
  then have "b mod a = a * c mod a" by simp
haftmann@25942
   146
  then have "b mod a = c * a mod a" by (simp add: mult_commute)
haftmann@27651
   147
  then show "b mod a = 0" by simp
haftmann@25942
   148
qed
haftmann@25942
   149
huffman@29400
   150
lemma mod_div_trivial [simp]: "a mod b div b = 0"
huffman@29400
   151
proof (cases "b = 0")
huffman@29400
   152
  assume "b = 0"
huffman@29400
   153
  thus ?thesis by simp
huffman@29400
   154
next
huffman@29400
   155
  assume "b \<noteq> 0"
huffman@29400
   156
  hence "a div b + a mod b div b = (a mod b + a div b * b) div b"
huffman@29400
   157
    by (rule div_mult_self1 [symmetric])
huffman@29400
   158
  also have "\<dots> = a div b"
huffman@29400
   159
    by (simp only: mod_div_equality')
huffman@29400
   160
  also have "\<dots> = a div b + 0"
huffman@29400
   161
    by simp
huffman@29400
   162
  finally show ?thesis
huffman@29400
   163
    by (rule add_left_imp_eq)
huffman@29400
   164
qed
huffman@29400
   165
huffman@29400
   166
lemma mod_mod_trivial [simp]: "a mod b mod b = a mod b"
huffman@29400
   167
proof -
huffman@29400
   168
  have "a mod b mod b = (a mod b + a div b * b) mod b"
huffman@29400
   169
    by (simp only: mod_mult_self1)
huffman@29400
   170
  also have "\<dots> = a mod b"
huffman@29400
   171
    by (simp only: mod_div_equality')
huffman@29400
   172
  finally show ?thesis .
huffman@29400
   173
qed
huffman@29400
   174
nipkow@29862
   175
lemma dvd_imp_mod_0: "a dvd b \<Longrightarrow> b mod a = 0"
nipkow@29885
   176
by (rule dvd_eq_mod_eq_0[THEN iffD1])
nipkow@29862
   177
nipkow@29862
   178
lemma dvd_div_mult_self: "a dvd b \<Longrightarrow> (b div a) * a = b"
nipkow@29862
   179
by (subst (2) mod_div_equality [of b a, symmetric]) (simp add:dvd_imp_mod_0)
nipkow@29862
   180
haftmann@33274
   181
lemma dvd_mult_div_cancel: "a dvd b \<Longrightarrow> a * (b div a) = b"
haftmann@33274
   182
by (drule dvd_div_mult_self) (simp add: mult_commute)
haftmann@33274
   183
nipkow@29989
   184
lemma dvd_div_mult: "a dvd b \<Longrightarrow> (b div a) * c = b * c div a"
nipkow@29989
   185
apply (cases "a = 0")
nipkow@29989
   186
 apply simp
nipkow@29989
   187
apply (auto simp: dvd_def mult_assoc)
nipkow@29989
   188
done
nipkow@29989
   189
nipkow@29862
   190
lemma div_dvd_div[simp]:
nipkow@29862
   191
  "a dvd b \<Longrightarrow> a dvd c \<Longrightarrow> (b div a dvd c div a) = (b dvd c)"
nipkow@29862
   192
apply (cases "a = 0")
nipkow@29862
   193
 apply simp
nipkow@29862
   194
apply (unfold dvd_def)
nipkow@29862
   195
apply auto
nipkow@29862
   196
 apply(blast intro:mult_assoc[symmetric])
nipkow@45761
   197
apply(fastforce simp add: mult_assoc)
nipkow@29862
   198
done
nipkow@29862
   199
huffman@30015
   200
lemma dvd_mod_imp_dvd: "[| k dvd m mod n;  k dvd n |] ==> k dvd m"
huffman@30015
   201
  apply (subgoal_tac "k dvd (m div n) *n + m mod n")
huffman@30015
   202
   apply (simp add: mod_div_equality)
huffman@30015
   203
  apply (simp only: dvd_add dvd_mult)
huffman@30015
   204
  done
huffman@30015
   205
huffman@29400
   206
text {* Addition respects modular equivalence. *}
huffman@29400
   207
huffman@29400
   208
lemma mod_add_left_eq: "(a + b) mod c = (a mod c + b) mod c"
huffman@29400
   209
proof -
huffman@29400
   210
  have "(a + b) mod c = (a div c * c + a mod c + b) mod c"
huffman@29400
   211
    by (simp only: mod_div_equality)
huffman@29400
   212
  also have "\<dots> = (a mod c + b + a div c * c) mod c"
huffman@29400
   213
    by (simp only: add_ac)
huffman@29400
   214
  also have "\<dots> = (a mod c + b) mod c"
huffman@29400
   215
    by (rule mod_mult_self1)
huffman@29400
   216
  finally show ?thesis .
huffman@29400
   217
qed
huffman@29400
   218
huffman@29400
   219
lemma mod_add_right_eq: "(a + b) mod c = (a + b mod c) mod c"
huffman@29400
   220
proof -
huffman@29400
   221
  have "(a + b) mod c = (a + (b div c * c + b mod c)) mod c"
huffman@29400
   222
    by (simp only: mod_div_equality)
huffman@29400
   223
  also have "\<dots> = (a + b mod c + b div c * c) mod c"
huffman@29400
   224
    by (simp only: add_ac)
huffman@29400
   225
  also have "\<dots> = (a + b mod c) mod c"
huffman@29400
   226
    by (rule mod_mult_self1)
huffman@29400
   227
  finally show ?thesis .
huffman@29400
   228
qed
huffman@29400
   229
huffman@29400
   230
lemma mod_add_eq: "(a + b) mod c = (a mod c + b mod c) mod c"
huffman@29400
   231
by (rule trans [OF mod_add_left_eq mod_add_right_eq])
huffman@29400
   232
huffman@29400
   233
lemma mod_add_cong:
huffman@29400
   234
  assumes "a mod c = a' mod c"
huffman@29400
   235
  assumes "b mod c = b' mod c"
huffman@29400
   236
  shows "(a + b) mod c = (a' + b') mod c"
huffman@29400
   237
proof -
huffman@29400
   238
  have "(a mod c + b mod c) mod c = (a' mod c + b' mod c) mod c"
huffman@29400
   239
    unfolding assms ..
huffman@29400
   240
  thus ?thesis
huffman@29400
   241
    by (simp only: mod_add_eq [symmetric])
huffman@29400
   242
qed
huffman@29400
   243
haftmann@30923
   244
lemma div_add [simp]: "z dvd x \<Longrightarrow> z dvd y
nipkow@30837
   245
  \<Longrightarrow> (x + y) div z = x div z + y div z"
haftmann@30923
   246
by (cases "z = 0", simp, unfold dvd_def, auto simp add: algebra_simps)
nipkow@30837
   247
huffman@29400
   248
text {* Multiplication respects modular equivalence. *}
huffman@29400
   249
huffman@29400
   250
lemma mod_mult_left_eq: "(a * b) mod c = ((a mod c) * b) mod c"
huffman@29400
   251
proof -
huffman@29400
   252
  have "(a * b) mod c = ((a div c * c + a mod c) * b) mod c"
huffman@29400
   253
    by (simp only: mod_div_equality)
huffman@29400
   254
  also have "\<dots> = (a mod c * b + a div c * b * c) mod c"
nipkow@29667
   255
    by (simp only: algebra_simps)
huffman@29400
   256
  also have "\<dots> = (a mod c * b) mod c"
huffman@29400
   257
    by (rule mod_mult_self1)
huffman@29400
   258
  finally show ?thesis .
huffman@29400
   259
qed
huffman@29400
   260
huffman@29400
   261
lemma mod_mult_right_eq: "(a * b) mod c = (a * (b mod c)) mod c"
huffman@29400
   262
proof -
huffman@29400
   263
  have "(a * b) mod c = (a * (b div c * c + b mod c)) mod c"
huffman@29400
   264
    by (simp only: mod_div_equality)
huffman@29400
   265
  also have "\<dots> = (a * (b mod c) + a * (b div c) * c) mod c"
nipkow@29667
   266
    by (simp only: algebra_simps)
huffman@29400
   267
  also have "\<dots> = (a * (b mod c)) mod c"
huffman@29400
   268
    by (rule mod_mult_self1)
huffman@29400
   269
  finally show ?thesis .
huffman@29400
   270
qed
huffman@29400
   271
huffman@29400
   272
lemma mod_mult_eq: "(a * b) mod c = ((a mod c) * (b mod c)) mod c"
huffman@29400
   273
by (rule trans [OF mod_mult_left_eq mod_mult_right_eq])
huffman@29400
   274
huffman@29400
   275
lemma mod_mult_cong:
huffman@29400
   276
  assumes "a mod c = a' mod c"
huffman@29400
   277
  assumes "b mod c = b' mod c"
huffman@29400
   278
  shows "(a * b) mod c = (a' * b') mod c"
huffman@29400
   279
proof -
huffman@29400
   280
  have "(a mod c * (b mod c)) mod c = (a' mod c * (b' mod c)) mod c"
huffman@29400
   281
    unfolding assms ..
huffman@29400
   282
  thus ?thesis
huffman@29400
   283
    by (simp only: mod_mult_eq [symmetric])
huffman@29400
   284
qed
huffman@29400
   285
huffman@48035
   286
text {* Exponentiation respects modular equivalence. *}
huffman@48035
   287
huffman@48035
   288
lemma power_mod: "(a mod b)^n mod b = a^n mod b"
huffman@48035
   289
apply (induct n, simp_all)
huffman@48035
   290
apply (rule mod_mult_right_eq [THEN trans])
huffman@48035
   291
apply (simp (no_asm_simp))
huffman@48035
   292
apply (rule mod_mult_eq [symmetric])
huffman@48035
   293
done
huffman@48035
   294
huffman@29401
   295
lemma mod_mod_cancel:
huffman@29401
   296
  assumes "c dvd b"
huffman@29401
   297
  shows "a mod b mod c = a mod c"
huffman@29401
   298
proof -
huffman@29401
   299
  from `c dvd b` obtain k where "b = c * k"
huffman@29401
   300
    by (rule dvdE)
huffman@29401
   301
  have "a mod b mod c = a mod (c * k) mod c"
huffman@29401
   302
    by (simp only: `b = c * k`)
huffman@29401
   303
  also have "\<dots> = (a mod (c * k) + a div (c * k) * k * c) mod c"
huffman@29401
   304
    by (simp only: mod_mult_self1)
huffman@29401
   305
  also have "\<dots> = (a div (c * k) * (c * k) + a mod (c * k)) mod c"
huffman@29401
   306
    by (simp only: add_ac mult_ac)
huffman@29401
   307
  also have "\<dots> = a mod c"
huffman@29401
   308
    by (simp only: mod_div_equality)
huffman@29401
   309
  finally show ?thesis .
huffman@29401
   310
qed
huffman@29401
   311
haftmann@30930
   312
lemma div_mult_div_if_dvd:
haftmann@30930
   313
  "y dvd x \<Longrightarrow> z dvd w \<Longrightarrow> (x div y) * (w div z) = (x * w) div (y * z)"
haftmann@30930
   314
  apply (cases "y = 0", simp)
haftmann@30930
   315
  apply (cases "z = 0", simp)
haftmann@30930
   316
  apply (auto elim!: dvdE simp add: algebra_simps)
nipkow@30472
   317
  apply (subst mult_assoc [symmetric])
nipkow@30472
   318
  apply (simp add: no_zero_divisors)
haftmann@30930
   319
  done
nipkow@30472
   320
haftmann@35367
   321
lemma div_mult_swap:
haftmann@35367
   322
  assumes "c dvd b"
haftmann@35367
   323
  shows "a * (b div c) = (a * b) div c"
haftmann@35367
   324
proof -
haftmann@35367
   325
  from assms have "b div c * (a div 1) = b * a div (c * 1)"
haftmann@35367
   326
    by (simp only: div_mult_div_if_dvd one_dvd)
haftmann@35367
   327
  then show ?thesis by (simp add: mult_commute)
haftmann@35367
   328
qed
haftmann@35367
   329
   
haftmann@30930
   330
lemma div_mult_mult2 [simp]:
haftmann@30930
   331
  "c \<noteq> 0 \<Longrightarrow> (a * c) div (b * c) = a div b"
haftmann@30930
   332
  by (drule div_mult_mult1) (simp add: mult_commute)
haftmann@30930
   333
haftmann@30930
   334
lemma div_mult_mult1_if [simp]:
haftmann@30930
   335
  "(c * a) div (c * b) = (if c = 0 then 0 else a div b)"
haftmann@30930
   336
  by simp_all
haftmann@30930
   337
haftmann@30930
   338
lemma mod_mult_mult1:
haftmann@30930
   339
  "(c * a) mod (c * b) = c * (a mod b)"
haftmann@30930
   340
proof (cases "c = 0")
haftmann@30930
   341
  case True then show ?thesis by simp
haftmann@30930
   342
next
haftmann@30930
   343
  case False
haftmann@30930
   344
  from mod_div_equality
haftmann@30930
   345
  have "((c * a) div (c * b)) * (c * b) + (c * a) mod (c * b) = c * a" .
haftmann@30930
   346
  with False have "c * ((a div b) * b + a mod b) + (c * a) mod (c * b)
haftmann@30930
   347
    = c * a + c * (a mod b)" by (simp add: algebra_simps)
haftmann@30930
   348
  with mod_div_equality show ?thesis by simp 
haftmann@30930
   349
qed
haftmann@30930
   350
  
haftmann@30930
   351
lemma mod_mult_mult2:
haftmann@30930
   352
  "(a * c) mod (b * c) = (a mod b) * c"
haftmann@30930
   353
  using mod_mult_mult1 [of c a b] by (simp add: mult_commute)
haftmann@30930
   354
huffman@48030
   355
lemma mult_mod_left: "(a mod b) * c = (a * c) mod (b * c)"
huffman@48030
   356
  by (fact mod_mult_mult2 [symmetric])
huffman@48030
   357
huffman@48030
   358
lemma mult_mod_right: "c * (a mod b) = (c * a) mod (c * b)"
huffman@48030
   359
  by (fact mod_mult_mult1 [symmetric])
huffman@48030
   360
huffman@31662
   361
lemma dvd_mod: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m mod n)"
huffman@31662
   362
  unfolding dvd_def by (auto simp add: mod_mult_mult1)
huffman@31662
   363
huffman@31662
   364
lemma dvd_mod_iff: "k dvd n \<Longrightarrow> k dvd (m mod n) \<longleftrightarrow> k dvd m"
huffman@31662
   365
by (blast intro: dvd_mod_imp_dvd dvd_mod)
huffman@31662
   366
haftmann@31009
   367
lemma div_power:
huffman@31661
   368
  "y dvd x \<Longrightarrow> (x div y) ^ n = x ^ n div y ^ n"
nipkow@30472
   369
apply (induct n)
nipkow@30472
   370
 apply simp
nipkow@30472
   371
apply(simp add: div_mult_div_if_dvd dvd_power_same)
nipkow@30472
   372
done
nipkow@30472
   373
haftmann@35367
   374
lemma dvd_div_eq_mult:
haftmann@35367
   375
  assumes "a \<noteq> 0" and "a dvd b"  
haftmann@35367
   376
  shows "b div a = c \<longleftrightarrow> b = c * a"
haftmann@35367
   377
proof
haftmann@35367
   378
  assume "b = c * a"
haftmann@35367
   379
  then show "b div a = c" by (simp add: assms)
haftmann@35367
   380
next
haftmann@35367
   381
  assume "b div a = c"
haftmann@35367
   382
  then have "b div a * a = c * a" by simp
haftmann@35367
   383
  moreover from `a dvd b` have "b div a * a = b" by (simp add: dvd_div_mult_self)
haftmann@35367
   384
  ultimately show "b = c * a" by simp
haftmann@35367
   385
qed
haftmann@35367
   386
   
haftmann@35367
   387
lemma dvd_div_div_eq_mult:
haftmann@35367
   388
  assumes "a \<noteq> 0" "c \<noteq> 0" and "a dvd b" "c dvd d"
haftmann@35367
   389
  shows "b div a = d div c \<longleftrightarrow> b * c = a * d"
haftmann@35367
   390
  using assms by (auto simp add: mult_commute [of _ a] dvd_div_mult_self dvd_div_eq_mult div_mult_swap intro: sym)
haftmann@35367
   391
huffman@31661
   392
end
huffman@31661
   393
haftmann@35668
   394
class ring_div = semiring_div + comm_ring_1
huffman@29402
   395
begin
huffman@29402
   396
haftmann@36622
   397
subclass ring_1_no_zero_divisors ..
haftmann@36622
   398
huffman@29402
   399
text {* Negation respects modular equivalence. *}
huffman@29402
   400
huffman@29402
   401
lemma mod_minus_eq: "(- a) mod b = (- (a mod b)) mod b"
huffman@29402
   402
proof -
huffman@29402
   403
  have "(- a) mod b = (- (a div b * b + a mod b)) mod b"
huffman@29402
   404
    by (simp only: mod_div_equality)
huffman@29402
   405
  also have "\<dots> = (- (a mod b) + - (a div b) * b) mod b"
huffman@29402
   406
    by (simp only: minus_add_distrib minus_mult_left add_ac)
huffman@29402
   407
  also have "\<dots> = (- (a mod b)) mod b"
huffman@29402
   408
    by (rule mod_mult_self1)
huffman@29402
   409
  finally show ?thesis .
huffman@29402
   410
qed
huffman@29402
   411
huffman@29402
   412
lemma mod_minus_cong:
huffman@29402
   413
  assumes "a mod b = a' mod b"
huffman@29402
   414
  shows "(- a) mod b = (- a') mod b"
huffman@29402
   415
proof -
huffman@29402
   416
  have "(- (a mod b)) mod b = (- (a' mod b)) mod b"
huffman@29402
   417
    unfolding assms ..
huffman@29402
   418
  thus ?thesis
huffman@29402
   419
    by (simp only: mod_minus_eq [symmetric])
huffman@29402
   420
qed
huffman@29402
   421
huffman@29402
   422
text {* Subtraction respects modular equivalence. *}
huffman@29402
   423
huffman@29402
   424
lemma mod_diff_left_eq: "(a - b) mod c = (a mod c - b) mod c"
huffman@29402
   425
  unfolding diff_minus
huffman@29402
   426
  by (intro mod_add_cong mod_minus_cong) simp_all
huffman@29402
   427
huffman@29402
   428
lemma mod_diff_right_eq: "(a - b) mod c = (a - b mod c) mod c"
huffman@29402
   429
  unfolding diff_minus
huffman@29402
   430
  by (intro mod_add_cong mod_minus_cong) simp_all
huffman@29402
   431
huffman@29402
   432
lemma mod_diff_eq: "(a - b) mod c = (a mod c - b mod c) mod c"
huffman@29402
   433
  unfolding diff_minus
huffman@29402
   434
  by (intro mod_add_cong mod_minus_cong) simp_all
huffman@29402
   435
huffman@29402
   436
lemma mod_diff_cong:
huffman@29402
   437
  assumes "a mod c = a' mod c"
huffman@29402
   438
  assumes "b mod c = b' mod c"
huffman@29402
   439
  shows "(a - b) mod c = (a' - b') mod c"
huffman@29402
   440
  unfolding diff_minus using assms
huffman@29402
   441
  by (intro mod_add_cong mod_minus_cong)
huffman@29402
   442
nipkow@30180
   443
lemma dvd_neg_div: "y dvd x \<Longrightarrow> -x div y = - (x div y)"
nipkow@30180
   444
apply (case_tac "y = 0") apply simp
nipkow@30180
   445
apply (auto simp add: dvd_def)
nipkow@30180
   446
apply (subgoal_tac "-(y * k) = y * - k")
nipkow@30180
   447
 apply (erule ssubst)
nipkow@30180
   448
 apply (erule div_mult_self1_is_id)
nipkow@30180
   449
apply simp
nipkow@30180
   450
done
nipkow@30180
   451
nipkow@30180
   452
lemma dvd_div_neg: "y dvd x \<Longrightarrow> x div -y = - (x div y)"
nipkow@30180
   453
apply (case_tac "y = 0") apply simp
nipkow@30180
   454
apply (auto simp add: dvd_def)
nipkow@30180
   455
apply (subgoal_tac "y * k = -y * -k")
nipkow@30180
   456
 apply (erule ssubst)
nipkow@30180
   457
 apply (rule div_mult_self1_is_id)
nipkow@30180
   458
 apply simp
nipkow@30180
   459
apply simp
nipkow@30180
   460
done
nipkow@30180
   461
huffman@48030
   462
lemma div_minus_minus [simp]: "(-a) div (-b) = a div b"
huffman@48030
   463
  using div_mult_mult1 [of "- 1" a b]
huffman@48030
   464
  unfolding neg_equal_0_iff_equal by simp
huffman@48030
   465
huffman@48030
   466
lemma mod_minus_minus [simp]: "(-a) mod (-b) = - (a mod b)"
huffman@48030
   467
  using mod_mult_mult1 [of "- 1" a b] by simp
huffman@48030
   468
huffman@48030
   469
lemma div_minus_right: "a div (-b) = (-a) div b"
huffman@48030
   470
  using div_minus_minus [of "-a" b] by simp
huffman@48030
   471
huffman@48030
   472
lemma mod_minus_right: "a mod (-b) = - ((-a) mod b)"
huffman@48030
   473
  using mod_minus_minus [of "-a" b] by simp
huffman@48030
   474
huffman@48031
   475
lemma div_minus1_right [simp]: "a div (-1) = -a"
huffman@48031
   476
  using div_minus_right [of a 1] by simp
huffman@48031
   477
huffman@48031
   478
lemma mod_minus1_right [simp]: "a mod (-1) = 0"
huffman@48031
   479
  using mod_minus_right [of a 1] by simp
huffman@48031
   480
huffman@29402
   481
end
huffman@29402
   482
haftmann@25942
   483
haftmann@26100
   484
subsection {* Division on @{typ nat} *}
haftmann@26100
   485
haftmann@26100
   486
text {*
haftmann@26100
   487
  We define @{const div} and @{const mod} on @{typ nat} by means
haftmann@26100
   488
  of a characteristic relation with two input arguments
haftmann@26100
   489
  @{term "m\<Colon>nat"}, @{term "n\<Colon>nat"} and two output arguments
haftmann@26100
   490
  @{term "q\<Colon>nat"}(uotient) and @{term "r\<Colon>nat"}(emainder).
haftmann@26100
   491
*}
haftmann@26100
   492
haftmann@33335
   493
definition divmod_nat_rel :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat \<Rightarrow> bool" where
haftmann@33335
   494
  "divmod_nat_rel m n qr \<longleftrightarrow>
haftmann@30923
   495
    m = fst qr * n + snd qr \<and>
haftmann@30923
   496
      (if n = 0 then fst qr = 0 else if n > 0 then 0 \<le> snd qr \<and> snd qr < n else n < snd qr \<and> snd qr \<le> 0)"
haftmann@26100
   497
haftmann@33335
   498
text {* @{const divmod_nat_rel} is total: *}
haftmann@26100
   499
haftmann@33335
   500
lemma divmod_nat_rel_ex:
haftmann@33335
   501
  obtains q r where "divmod_nat_rel m n (q, r)"
haftmann@26100
   502
proof (cases "n = 0")
haftmann@30923
   503
  case True  with that show thesis
haftmann@33335
   504
    by (auto simp add: divmod_nat_rel_def)
haftmann@26100
   505
next
haftmann@26100
   506
  case False
haftmann@26100
   507
  have "\<exists>q r. m = q * n + r \<and> r < n"
haftmann@26100
   508
  proof (induct m)
haftmann@26100
   509
    case 0 with `n \<noteq> 0`
haftmann@26100
   510
    have "(0\<Colon>nat) = 0 * n + 0 \<and> 0 < n" by simp
haftmann@26100
   511
    then show ?case by blast
haftmann@26100
   512
  next
haftmann@26100
   513
    case (Suc m) then obtain q' r'
haftmann@26100
   514
      where m: "m = q' * n + r'" and n: "r' < n" by auto
haftmann@26100
   515
    then show ?case proof (cases "Suc r' < n")
haftmann@26100
   516
      case True
haftmann@26100
   517
      from m n have "Suc m = q' * n + Suc r'" by simp
haftmann@26100
   518
      with True show ?thesis by blast
haftmann@26100
   519
    next
haftmann@26100
   520
      case False then have "n \<le> Suc r'" by auto
haftmann@26100
   521
      moreover from n have "Suc r' \<le> n" by auto
haftmann@26100
   522
      ultimately have "n = Suc r'" by auto
haftmann@26100
   523
      with m have "Suc m = Suc q' * n + 0" by simp
haftmann@26100
   524
      with `n \<noteq> 0` show ?thesis by blast
haftmann@26100
   525
    qed
haftmann@26100
   526
  qed
haftmann@26100
   527
  with that show thesis
haftmann@33335
   528
    using `n \<noteq> 0` by (auto simp add: divmod_nat_rel_def)
haftmann@26100
   529
qed
haftmann@26100
   530
haftmann@33335
   531
text {* @{const divmod_nat_rel} is injective: *}
haftmann@26100
   532
haftmann@33335
   533
lemma divmod_nat_rel_unique:
haftmann@33335
   534
  assumes "divmod_nat_rel m n qr"
haftmann@33335
   535
    and "divmod_nat_rel m n qr'"
haftmann@30923
   536
  shows "qr = qr'"
haftmann@26100
   537
proof (cases "n = 0")
haftmann@26100
   538
  case True with assms show ?thesis
haftmann@30923
   539
    by (cases qr, cases qr')
haftmann@33335
   540
      (simp add: divmod_nat_rel_def)
haftmann@26100
   541
next
haftmann@26100
   542
  case False
haftmann@26100
   543
  have aux: "\<And>q r q' r'. q' * n + r' = q * n + r \<Longrightarrow> r < n \<Longrightarrow> q' \<le> (q\<Colon>nat)"
haftmann@26100
   544
  apply (rule leI)
haftmann@26100
   545
  apply (subst less_iff_Suc_add)
haftmann@26100
   546
  apply (auto simp add: add_mult_distrib)
haftmann@26100
   547
  done
haftmann@30923
   548
  from `n \<noteq> 0` assms have "fst qr = fst qr'"
haftmann@33335
   549
    by (auto simp add: divmod_nat_rel_def intro: order_antisym dest: aux sym)
haftmann@30923
   550
  moreover from this assms have "snd qr = snd qr'"
haftmann@33335
   551
    by (simp add: divmod_nat_rel_def)
haftmann@30923
   552
  ultimately show ?thesis by (cases qr, cases qr') simp
haftmann@26100
   553
qed
haftmann@26100
   554
haftmann@26100
   555
text {*
haftmann@26100
   556
  We instantiate divisibility on the natural numbers by
haftmann@33335
   557
  means of @{const divmod_nat_rel}:
haftmann@26100
   558
*}
haftmann@25942
   559
haftmann@33335
   560
definition divmod_nat :: "nat \<Rightarrow> nat \<Rightarrow> nat \<times> nat" where
haftmann@37767
   561
  "divmod_nat m n = (THE qr. divmod_nat_rel m n qr)"
haftmann@30923
   562
haftmann@33335
   563
lemma divmod_nat_rel_divmod_nat:
haftmann@33335
   564
  "divmod_nat_rel m n (divmod_nat m n)"
haftmann@30923
   565
proof -
haftmann@33335
   566
  from divmod_nat_rel_ex
haftmann@33335
   567
    obtain qr where rel: "divmod_nat_rel m n qr" .
haftmann@30923
   568
  then show ?thesis
haftmann@33335
   569
  by (auto simp add: divmod_nat_def intro: theI elim: divmod_nat_rel_unique)
haftmann@30923
   570
qed
haftmann@30923
   571
huffman@48006
   572
lemma divmod_nat_unique:
haftmann@33335
   573
  assumes "divmod_nat_rel m n qr" 
haftmann@33335
   574
  shows "divmod_nat m n = qr"
haftmann@33335
   575
  using assms by (auto intro: divmod_nat_rel_unique divmod_nat_rel_divmod_nat)
haftmann@25571
   576
huffman@47419
   577
instantiation nat :: semiring_div
huffman@47419
   578
begin
huffman@47419
   579
haftmann@26100
   580
definition div_nat where
haftmann@33335
   581
  "m div n = fst (divmod_nat m n)"
haftmann@25942
   582
huffman@47419
   583
lemma fst_divmod_nat [simp]:
huffman@47419
   584
  "fst (divmod_nat m n) = m div n"
huffman@47419
   585
  by (simp add: div_nat_def)
huffman@47419
   586
haftmann@26100
   587
definition mod_nat where
haftmann@33335
   588
  "m mod n = snd (divmod_nat m n)"
haftmann@25571
   589
huffman@47419
   590
lemma snd_divmod_nat [simp]:
huffman@47419
   591
  "snd (divmod_nat m n) = m mod n"
huffman@47419
   592
  by (simp add: mod_nat_def)
huffman@47419
   593
haftmann@33335
   594
lemma divmod_nat_div_mod:
haftmann@33335
   595
  "divmod_nat m n = (m div n, m mod n)"
huffman@47419
   596
  by (simp add: prod_eq_iff)
paulson@14267
   597
huffman@48006
   598
lemma div_nat_unique:
haftmann@33335
   599
  assumes "divmod_nat_rel m n (q, r)" 
haftmann@26100
   600
  shows "m div n = q"
huffman@48006
   601
  using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
huffman@48006
   602
huffman@48006
   603
lemma mod_nat_unique:
haftmann@33335
   604
  assumes "divmod_nat_rel m n (q, r)" 
haftmann@26100
   605
  shows "m mod n = r"
huffman@48006
   606
  using assms by (auto dest!: divmod_nat_unique simp add: prod_eq_iff)
paulson@14267
   607
haftmann@33335
   608
lemma divmod_nat_rel: "divmod_nat_rel m n (m div n, m mod n)"
huffman@47419
   609
  using divmod_nat_rel_divmod_nat by (simp add: divmod_nat_div_mod)
paulson@14267
   610
huffman@48007
   611
lemma divmod_nat_zero: "divmod_nat m 0 = (0, m)"
huffman@48007
   612
  by (simp add: divmod_nat_unique divmod_nat_rel_def)
huffman@48007
   613
huffman@48007
   614
lemma divmod_nat_zero_left: "divmod_nat 0 n = (0, 0)"
huffman@48007
   615
  by (simp add: divmod_nat_unique divmod_nat_rel_def)
haftmann@25942
   616
huffman@48008
   617
lemma divmod_nat_base: "m < n \<Longrightarrow> divmod_nat m n = (0, m)"
huffman@48008
   618
  by (simp add: divmod_nat_unique divmod_nat_rel_def)
haftmann@25942
   619
haftmann@33335
   620
lemma divmod_nat_step:
haftmann@26100
   621
  assumes "0 < n" and "n \<le> m"
haftmann@33335
   622
  shows "divmod_nat m n = (Suc ((m - n) div n), (m - n) mod n)"
huffman@48006
   623
proof (rule divmod_nat_unique)
huffman@48005
   624
  have "divmod_nat_rel (m - n) n ((m - n) div n, (m - n) mod n)"
huffman@48005
   625
    by (rule divmod_nat_rel)
huffman@48005
   626
  thus "divmod_nat_rel m n (Suc ((m - n) div n), (m - n) mod n)"
huffman@48005
   627
    unfolding divmod_nat_rel_def using assms by auto
haftmann@26100
   628
qed
haftmann@26100
   629
wenzelm@26300
   630
text {* The ''recursion'' equations for @{const div} and @{const mod} *}
haftmann@26100
   631
haftmann@26100
   632
lemma div_less [simp]:
haftmann@26100
   633
  fixes m n :: nat
haftmann@26100
   634
  assumes "m < n"
haftmann@26100
   635
  shows "m div n = 0"
huffman@47419
   636
  using assms divmod_nat_base by (simp add: prod_eq_iff)
haftmann@26100
   637
haftmann@26100
   638
lemma le_div_geq:
haftmann@26100
   639
  fixes m n :: nat
haftmann@26100
   640
  assumes "0 < n" and "n \<le> m"
haftmann@26100
   641
  shows "m div n = Suc ((m - n) div n)"
huffman@47419
   642
  using assms divmod_nat_step by (simp add: prod_eq_iff)
haftmann@26100
   643
haftmann@26100
   644
lemma mod_less [simp]:
haftmann@26100
   645
  fixes m n :: nat
haftmann@26100
   646
  assumes "m < n"
haftmann@26100
   647
  shows "m mod n = m"
huffman@47419
   648
  using assms divmod_nat_base by (simp add: prod_eq_iff)
haftmann@26100
   649
haftmann@26100
   650
lemma le_mod_geq:
haftmann@26100
   651
  fixes m n :: nat
haftmann@26100
   652
  assumes "n \<le> m"
haftmann@26100
   653
  shows "m mod n = (m - n) mod n"
huffman@47419
   654
  using assms divmod_nat_step by (cases "n = 0") (simp_all add: prod_eq_iff)
haftmann@25942
   655
huffman@48007
   656
instance proof
huffman@48007
   657
  fix m n :: nat
huffman@48007
   658
  show "m div n * n + m mod n = m"
huffman@48007
   659
    using divmod_nat_rel [of m n] by (simp add: divmod_nat_rel_def)
huffman@48007
   660
next
huffman@48007
   661
  fix m n q :: nat
huffman@48007
   662
  assume "n \<noteq> 0"
huffman@48007
   663
  then show "(q + m * n) div n = m + q div n"
huffman@48007
   664
    by (induct m) (simp_all add: le_div_geq)
huffman@48007
   665
next
huffman@48007
   666
  fix m n q :: nat
huffman@48007
   667
  assume "m \<noteq> 0"
huffman@48007
   668
  hence "\<And>a b. divmod_nat_rel n q (a, b) \<Longrightarrow> divmod_nat_rel (m * n) (m * q) (a, m * b)"
huffman@48007
   669
    unfolding divmod_nat_rel_def
huffman@48007
   670
    by (auto split: split_if_asm, simp_all add: algebra_simps)
huffman@48007
   671
  moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" .
huffman@48007
   672
  ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" .
huffman@48007
   673
  thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique)
huffman@48007
   674
next
huffman@48007
   675
  fix n :: nat show "n div 0 = 0"
haftmann@33335
   676
    by (simp add: div_nat_def divmod_nat_zero)
huffman@48007
   677
next
huffman@48007
   678
  fix n :: nat show "0 div n = 0"
huffman@48007
   679
    by (simp add: div_nat_def divmod_nat_zero_left)
haftmann@25942
   680
qed
haftmann@26100
   681
haftmann@25942
   682
end
haftmann@25942
   683
haftmann@33361
   684
lemma divmod_nat_if [code]: "divmod_nat m n = (if n = 0 \<or> m < n then (0, m) else
haftmann@33361
   685
  let (q, r) = divmod_nat (m - n) n in (Suc q, r))"
huffman@47419
   686
  by (simp add: prod_eq_iff prod_case_beta not_less le_div_geq le_mod_geq)
haftmann@33361
   687
haftmann@26100
   688
text {* Simproc for cancelling @{const div} and @{const mod} *}
haftmann@25942
   689
haftmann@30934
   690
ML {*
wenzelm@44467
   691
structure Cancel_Div_Mod_Nat = Cancel_Div_Mod
wenzelm@41798
   692
(
haftmann@30934
   693
  val div_name = @{const_name div};
haftmann@30934
   694
  val mod_name = @{const_name mod};
haftmann@30934
   695
  val mk_binop = HOLogic.mk_binop;
haftmann@30934
   696
  val mk_sum = Nat_Arith.mk_sum;
haftmann@30934
   697
  val dest_sum = Nat_Arith.dest_sum;
haftmann@25942
   698
haftmann@30934
   699
  val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
haftmann@25942
   700
haftmann@30934
   701
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac
haftmann@35050
   702
    (@{thm add_0_left} :: @{thm add_0_right} :: @{thms add_ac}))
wenzelm@41798
   703
)
haftmann@25942
   704
*}
haftmann@25942
   705
wenzelm@44467
   706
simproc_setup cancel_div_mod_nat ("(m::nat) + n") = {* K Cancel_Div_Mod_Nat.proc *}
wenzelm@44467
   707
haftmann@26100
   708
haftmann@26100
   709
subsubsection {* Quotient *}
haftmann@26100
   710
haftmann@26100
   711
lemma div_geq: "0 < n \<Longrightarrow>  \<not> m < n \<Longrightarrow> m div n = Suc ((m - n) div n)"
nipkow@29667
   712
by (simp add: le_div_geq linorder_not_less)
haftmann@26100
   713
haftmann@26100
   714
lemma div_if: "0 < n \<Longrightarrow> m div n = (if m < n then 0 else Suc ((m - n) div n))"
nipkow@29667
   715
by (simp add: div_geq)
haftmann@26100
   716
haftmann@26100
   717
lemma div_mult_self_is_m [simp]: "0<n ==> (m*n) div n = (m::nat)"
nipkow@29667
   718
by simp
haftmann@26100
   719
haftmann@26100
   720
lemma div_mult_self1_is_m [simp]: "0<n ==> (n*m) div n = (m::nat)"
nipkow@29667
   721
by simp
haftmann@26100
   722
haftmann@25942
   723
haftmann@25942
   724
subsubsection {* Remainder *}
haftmann@25942
   725
haftmann@26100
   726
lemma mod_less_divisor [simp]:
haftmann@26100
   727
  fixes m n :: nat
haftmann@26100
   728
  assumes "n > 0"
haftmann@26100
   729
  shows "m mod n < (n::nat)"
haftmann@33335
   730
  using assms divmod_nat_rel [of m n] unfolding divmod_nat_rel_def by auto
haftmann@25942
   731
haftmann@26100
   732
lemma mod_less_eq_dividend [simp]:
haftmann@26100
   733
  fixes m n :: nat
haftmann@26100
   734
  shows "m mod n \<le> m"
haftmann@26100
   735
proof (rule add_leD2)
haftmann@26100
   736
  from mod_div_equality have "m div n * n + m mod n = m" .
haftmann@26100
   737
  then show "m div n * n + m mod n \<le> m" by auto
haftmann@26100
   738
qed
haftmann@26100
   739
haftmann@26100
   740
lemma mod_geq: "\<not> m < (n\<Colon>nat) \<Longrightarrow> m mod n = (m - n) mod n"
nipkow@29667
   741
by (simp add: le_mod_geq linorder_not_less)
paulson@14267
   742
haftmann@26100
   743
lemma mod_if: "m mod (n\<Colon>nat) = (if m < n then m else (m - n) mod n)"
nipkow@29667
   744
by (simp add: le_mod_geq)
haftmann@26100
   745
paulson@14267
   746
lemma mod_1 [simp]: "m mod Suc 0 = 0"
nipkow@29667
   747
by (induct m) (simp_all add: mod_geq)
paulson@14267
   748
paulson@14267
   749
(* a simple rearrangement of mod_div_equality: *)
paulson@14267
   750
lemma mult_div_cancel: "(n::nat) * (m div n) = m - (m mod n)"
huffman@48009
   751
  using mod_div_equality2 [of n m] by arith
paulson@14267
   752
nipkow@15439
   753
lemma mod_le_divisor[simp]: "0 < n \<Longrightarrow> m mod n \<le> (n::nat)"
wenzelm@22718
   754
  apply (drule mod_less_divisor [where m = m])
wenzelm@22718
   755
  apply simp
wenzelm@22718
   756
  done
paulson@14267
   757
haftmann@26100
   758
subsubsection {* Quotient and Remainder *}
paulson@14267
   759
haftmann@33335
   760
lemma divmod_nat_rel_mult1_eq:
bulwahn@47420
   761
  "divmod_nat_rel b c (q, r)
haftmann@33335
   762
   \<Longrightarrow> divmod_nat_rel (a * b) c (a * q + a * r div c, a * r mod c)"
haftmann@33335
   763
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
paulson@14267
   764
haftmann@30923
   765
lemma div_mult1_eq:
haftmann@30923
   766
  "(a * b) div c = a * (b div c) + a * (b mod c) div (c::nat)"
huffman@48006
   767
by (blast intro: divmod_nat_rel_mult1_eq [THEN div_nat_unique] divmod_nat_rel)
paulson@14267
   768
haftmann@33335
   769
lemma divmod_nat_rel_add1_eq:
bulwahn@47420
   770
  "divmod_nat_rel a c (aq, ar) \<Longrightarrow> divmod_nat_rel b c (bq, br)
haftmann@33335
   771
   \<Longrightarrow> divmod_nat_rel (a + b) c (aq + bq + (ar + br) div c, (ar + br) mod c)"
haftmann@33335
   772
by (auto simp add: split_ifs divmod_nat_rel_def algebra_simps)
paulson@14267
   773
paulson@14267
   774
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
paulson@14267
   775
lemma div_add1_eq:
nipkow@25134
   776
  "(a+b) div (c::nat) = a div c + b div c + ((a mod c + b mod c) div c)"
huffman@48006
   777
by (blast intro: divmod_nat_rel_add1_eq [THEN div_nat_unique] divmod_nat_rel)
paulson@14267
   778
paulson@14267
   779
lemma mod_lemma: "[| (0::nat) < c; r < b |] ==> b * (q mod c) + r < b * c"
wenzelm@22718
   780
  apply (cut_tac m = q and n = c in mod_less_divisor)
wenzelm@22718
   781
  apply (drule_tac [2] m = "q mod c" in less_imp_Suc_add, auto)
wenzelm@22718
   782
  apply (erule_tac P = "%x. ?lhs < ?rhs x" in ssubst)
wenzelm@22718
   783
  apply (simp add: add_mult_distrib2)
wenzelm@22718
   784
  done
paulson@14267
   785
haftmann@33335
   786
lemma divmod_nat_rel_mult2_eq:
bulwahn@47420
   787
  "divmod_nat_rel a b (q, r)
haftmann@33335
   788
   \<Longrightarrow> divmod_nat_rel a (b * c) (q div c, b *(q mod c) + r)"
haftmann@33335
   789
by (auto simp add: mult_ac divmod_nat_rel_def add_mult_distrib2 [symmetric] mod_lemma)
paulson@14267
   790
paulson@14267
   791
lemma div_mult2_eq: "a div (b*c) = (a div b) div (c::nat)"
huffman@48006
   792
by (force simp add: divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN div_nat_unique])
paulson@14267
   793
paulson@14267
   794
lemma mod_mult2_eq: "a mod (b*c) = b*(a div b mod c) + a mod (b::nat)"
huffman@48006
   795
by (auto simp add: mult_commute divmod_nat_rel [THEN divmod_nat_rel_mult2_eq, THEN mod_nat_unique])
paulson@14267
   796
paulson@14267
   797
huffman@47419
   798
subsubsection {* Further Facts about Quotient and Remainder *}
paulson@14267
   799
paulson@14267
   800
lemma div_1 [simp]: "m div Suc 0 = m"
nipkow@29667
   801
by (induct m) (simp_all add: div_geq)
paulson@14267
   802
paulson@14267
   803
(* Monotonicity of div in first argument *)
haftmann@30923
   804
lemma div_le_mono [rule_format (no_asm)]:
wenzelm@22718
   805
    "\<forall>m::nat. m \<le> n --> (m div k) \<le> (n div k)"
paulson@14267
   806
apply (case_tac "k=0", simp)
paulson@15251
   807
apply (induct "n" rule: nat_less_induct, clarify)
paulson@14267
   808
apply (case_tac "n<k")
paulson@14267
   809
(* 1  case n<k *)
paulson@14267
   810
apply simp
paulson@14267
   811
(* 2  case n >= k *)
paulson@14267
   812
apply (case_tac "m<k")
paulson@14267
   813
(* 2.1  case m<k *)
paulson@14267
   814
apply simp
paulson@14267
   815
(* 2.2  case m>=k *)
nipkow@15439
   816
apply (simp add: div_geq diff_le_mono)
paulson@14267
   817
done
paulson@14267
   818
paulson@14267
   819
(* Antimonotonicity of div in second argument *)
paulson@14267
   820
lemma div_le_mono2: "!!m::nat. [| 0<m; m\<le>n |] ==> (k div n) \<le> (k div m)"
paulson@14267
   821
apply (subgoal_tac "0<n")
wenzelm@22718
   822
 prefer 2 apply simp
paulson@15251
   823
apply (induct_tac k rule: nat_less_induct)
paulson@14267
   824
apply (rename_tac "k")
paulson@14267
   825
apply (case_tac "k<n", simp)
paulson@14267
   826
apply (subgoal_tac "~ (k<m) ")
wenzelm@22718
   827
 prefer 2 apply simp
paulson@14267
   828
apply (simp add: div_geq)
paulson@15251
   829
apply (subgoal_tac "(k-n) div n \<le> (k-m) div n")
paulson@14267
   830
 prefer 2
paulson@14267
   831
 apply (blast intro: div_le_mono diff_le_mono2)
paulson@14267
   832
apply (rule le_trans, simp)
nipkow@15439
   833
apply (simp)
paulson@14267
   834
done
paulson@14267
   835
paulson@14267
   836
lemma div_le_dividend [simp]: "m div n \<le> (m::nat)"
paulson@14267
   837
apply (case_tac "n=0", simp)
paulson@14267
   838
apply (subgoal_tac "m div n \<le> m div 1", simp)
paulson@14267
   839
apply (rule div_le_mono2)
paulson@14267
   840
apply (simp_all (no_asm_simp))
paulson@14267
   841
done
paulson@14267
   842
wenzelm@22718
   843
(* Similar for "less than" *)
huffman@48009
   844
lemma div_less_dividend [simp]:
huffman@48009
   845
  "\<lbrakk>(1::nat) < n; 0 < m\<rbrakk> \<Longrightarrow> m div n < m"
huffman@48009
   846
apply (induct m rule: nat_less_induct)
paulson@14267
   847
apply (rename_tac "m")
paulson@14267
   848
apply (case_tac "m<n", simp)
paulson@14267
   849
apply (subgoal_tac "0<n")
wenzelm@22718
   850
 prefer 2 apply simp
paulson@14267
   851
apply (simp add: div_geq)
paulson@14267
   852
apply (case_tac "n<m")
paulson@15251
   853
 apply (subgoal_tac "(m-n) div n < (m-n) ")
paulson@14267
   854
  apply (rule impI less_trans_Suc)+
paulson@14267
   855
apply assumption
nipkow@15439
   856
  apply (simp_all)
paulson@14267
   857
done
paulson@14267
   858
paulson@14267
   859
text{*A fact for the mutilated chess board*}
paulson@14267
   860
lemma mod_Suc: "Suc(m) mod n = (if Suc(m mod n) = n then 0 else Suc(m mod n))"
paulson@14267
   861
apply (case_tac "n=0", simp)
paulson@15251
   862
apply (induct "m" rule: nat_less_induct)
paulson@14267
   863
apply (case_tac "Suc (na) <n")
paulson@14267
   864
(* case Suc(na) < n *)
paulson@14267
   865
apply (frule lessI [THEN less_trans], simp add: less_not_refl3)
paulson@14267
   866
(* case n \<le> Suc(na) *)
paulson@16796
   867
apply (simp add: linorder_not_less le_Suc_eq mod_geq)
nipkow@15439
   868
apply (auto simp add: Suc_diff_le le_mod_geq)
paulson@14267
   869
done
paulson@14267
   870
paulson@14267
   871
lemma mod_eq_0_iff: "(m mod d = 0) = (\<exists>q::nat. m = d*q)"
nipkow@29667
   872
by (auto simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
paulson@17084
   873
wenzelm@22718
   874
lemmas mod_eq_0D [dest!] = mod_eq_0_iff [THEN iffD1]
paulson@14267
   875
paulson@14267
   876
(*Loses information, namely we also have r<d provided d is nonzero*)
paulson@14267
   877
lemma mod_eqD: "(m mod d = r) ==> \<exists>q::nat. m = r + q*d"
haftmann@27651
   878
  apply (cut_tac a = m in mod_div_equality)
wenzelm@22718
   879
  apply (simp only: add_ac)
wenzelm@22718
   880
  apply (blast intro: sym)
wenzelm@22718
   881
  done
paulson@14267
   882
nipkow@13152
   883
lemma split_div:
nipkow@13189
   884
 "P(n div k :: nat) =
nipkow@13189
   885
 ((k = 0 \<longrightarrow> P 0) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P i)))"
nipkow@13189
   886
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
   887
proof
nipkow@13189
   888
  assume P: ?P
nipkow@13189
   889
  show ?Q
nipkow@13189
   890
  proof (cases)
nipkow@13189
   891
    assume "k = 0"
haftmann@27651
   892
    with P show ?Q by simp
nipkow@13189
   893
  next
nipkow@13189
   894
    assume not0: "k \<noteq> 0"
nipkow@13189
   895
    thus ?Q
nipkow@13189
   896
    proof (simp, intro allI impI)
nipkow@13189
   897
      fix i j
nipkow@13189
   898
      assume n: "n = k*i + j" and j: "j < k"
nipkow@13189
   899
      show "P i"
nipkow@13189
   900
      proof (cases)
wenzelm@22718
   901
        assume "i = 0"
wenzelm@22718
   902
        with n j P show "P i" by simp
nipkow@13189
   903
      next
wenzelm@22718
   904
        assume "i \<noteq> 0"
wenzelm@22718
   905
        with not0 n j P show "P i" by(simp add:add_ac)
nipkow@13189
   906
      qed
nipkow@13189
   907
    qed
nipkow@13189
   908
  qed
nipkow@13189
   909
next
nipkow@13189
   910
  assume Q: ?Q
nipkow@13189
   911
  show ?P
nipkow@13189
   912
  proof (cases)
nipkow@13189
   913
    assume "k = 0"
haftmann@27651
   914
    with Q show ?P by simp
nipkow@13189
   915
  next
nipkow@13189
   916
    assume not0: "k \<noteq> 0"
nipkow@13189
   917
    with Q have R: ?R by simp
nipkow@13189
   918
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
   919
    show ?P by simp
nipkow@13189
   920
  qed
nipkow@13189
   921
qed
nipkow@13189
   922
berghofe@13882
   923
lemma split_div_lemma:
haftmann@26100
   924
  assumes "0 < n"
haftmann@26100
   925
  shows "n * q \<le> m \<and> m < n * Suc q \<longleftrightarrow> q = ((m\<Colon>nat) div n)" (is "?lhs \<longleftrightarrow> ?rhs")
haftmann@26100
   926
proof
haftmann@26100
   927
  assume ?rhs
haftmann@26100
   928
  with mult_div_cancel have nq: "n * q = m - (m mod n)" by simp
haftmann@26100
   929
  then have A: "n * q \<le> m" by simp
haftmann@26100
   930
  have "n - (m mod n) > 0" using mod_less_divisor assms by auto
haftmann@26100
   931
  then have "m < m + (n - (m mod n))" by simp
haftmann@26100
   932
  then have "m < n + (m - (m mod n))" by simp
haftmann@26100
   933
  with nq have "m < n + n * q" by simp
haftmann@26100
   934
  then have B: "m < n * Suc q" by simp
haftmann@26100
   935
  from A B show ?lhs ..
haftmann@26100
   936
next
haftmann@26100
   937
  assume P: ?lhs
haftmann@33335
   938
  then have "divmod_nat_rel m n (q, m - n * q)"
haftmann@33335
   939
    unfolding divmod_nat_rel_def by (auto simp add: mult_ac)
haftmann@33335
   940
  with divmod_nat_rel_unique divmod_nat_rel [of m n]
haftmann@30923
   941
  have "(q, m - n * q) = (m div n, m mod n)" by auto
haftmann@30923
   942
  then show ?rhs by simp
haftmann@26100
   943
qed
berghofe@13882
   944
berghofe@13882
   945
theorem split_div':
berghofe@13882
   946
  "P ((m::nat) div n) = ((n = 0 \<and> P 0) \<or>
paulson@14267
   947
   (\<exists>q. (n * q \<le> m \<and> m < n * (Suc q)) \<and> P q))"
berghofe@13882
   948
  apply (case_tac "0 < n")
berghofe@13882
   949
  apply (simp only: add: split_div_lemma)
haftmann@27651
   950
  apply simp_all
berghofe@13882
   951
  done
berghofe@13882
   952
nipkow@13189
   953
lemma split_mod:
nipkow@13189
   954
 "P(n mod k :: nat) =
nipkow@13189
   955
 ((k = 0 \<longrightarrow> P n) \<and> (k \<noteq> 0 \<longrightarrow> (!i. !j<k. n = k*i + j \<longrightarrow> P j)))"
nipkow@13189
   956
 (is "?P = ?Q" is "_ = (_ \<and> (_ \<longrightarrow> ?R))")
nipkow@13189
   957
proof
nipkow@13189
   958
  assume P: ?P
nipkow@13189
   959
  show ?Q
nipkow@13189
   960
  proof (cases)
nipkow@13189
   961
    assume "k = 0"
haftmann@27651
   962
    with P show ?Q by simp
nipkow@13189
   963
  next
nipkow@13189
   964
    assume not0: "k \<noteq> 0"
nipkow@13189
   965
    thus ?Q
nipkow@13189
   966
    proof (simp, intro allI impI)
nipkow@13189
   967
      fix i j
nipkow@13189
   968
      assume "n = k*i + j" "j < k"
nipkow@13189
   969
      thus "P j" using not0 P by(simp add:add_ac mult_ac)
nipkow@13189
   970
    qed
nipkow@13189
   971
  qed
nipkow@13189
   972
next
nipkow@13189
   973
  assume Q: ?Q
nipkow@13189
   974
  show ?P
nipkow@13189
   975
  proof (cases)
nipkow@13189
   976
    assume "k = 0"
haftmann@27651
   977
    with Q show ?P by simp
nipkow@13189
   978
  next
nipkow@13189
   979
    assume not0: "k \<noteq> 0"
nipkow@13189
   980
    with Q have R: ?R by simp
nipkow@13189
   981
    from not0 R[THEN spec,of "n div k",THEN spec, of "n mod k"]
nipkow@13517
   982
    show ?P by simp
nipkow@13189
   983
  qed
nipkow@13189
   984
qed
nipkow@13189
   985
berghofe@13882
   986
theorem mod_div_equality': "(m::nat) mod n = m - (m div n) * n"
huffman@48009
   987
  using mod_div_equality [of m n] by arith
huffman@48009
   988
huffman@48009
   989
lemma div_mod_equality': "(m::nat) div n * n = m - m mod n"
huffman@48009
   990
  using mod_div_equality [of m n] by arith
huffman@48009
   991
(* FIXME: very similar to mult_div_cancel *)
haftmann@22800
   992
haftmann@22800
   993
huffman@47419
   994
subsubsection {* An ``induction'' law for modulus arithmetic. *}
paulson@14640
   995
paulson@14640
   996
lemma mod_induct_0:
paulson@14640
   997
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
paulson@14640
   998
  and base: "P i" and i: "i<p"
paulson@14640
   999
  shows "P 0"
paulson@14640
  1000
proof (rule ccontr)
paulson@14640
  1001
  assume contra: "\<not>(P 0)"
paulson@14640
  1002
  from i have p: "0<p" by simp
paulson@14640
  1003
  have "\<forall>k. 0<k \<longrightarrow> \<not> P (p-k)" (is "\<forall>k. ?A k")
paulson@14640
  1004
  proof
paulson@14640
  1005
    fix k
paulson@14640
  1006
    show "?A k"
paulson@14640
  1007
    proof (induct k)
paulson@14640
  1008
      show "?A 0" by simp  -- "by contradiction"
paulson@14640
  1009
    next
paulson@14640
  1010
      fix n
paulson@14640
  1011
      assume ih: "?A n"
paulson@14640
  1012
      show "?A (Suc n)"
paulson@14640
  1013
      proof (clarsimp)
wenzelm@22718
  1014
        assume y: "P (p - Suc n)"
wenzelm@22718
  1015
        have n: "Suc n < p"
wenzelm@22718
  1016
        proof (rule ccontr)
wenzelm@22718
  1017
          assume "\<not>(Suc n < p)"
wenzelm@22718
  1018
          hence "p - Suc n = 0"
wenzelm@22718
  1019
            by simp
wenzelm@22718
  1020
          with y contra show "False"
wenzelm@22718
  1021
            by simp
wenzelm@22718
  1022
        qed
wenzelm@22718
  1023
        hence n2: "Suc (p - Suc n) = p-n" by arith
wenzelm@22718
  1024
        from p have "p - Suc n < p" by arith
wenzelm@22718
  1025
        with y step have z: "P ((Suc (p - Suc n)) mod p)"
wenzelm@22718
  1026
          by blast
wenzelm@22718
  1027
        show "False"
wenzelm@22718
  1028
        proof (cases "n=0")
wenzelm@22718
  1029
          case True
wenzelm@22718
  1030
          with z n2 contra show ?thesis by simp
wenzelm@22718
  1031
        next
wenzelm@22718
  1032
          case False
wenzelm@22718
  1033
          with p have "p-n < p" by arith
wenzelm@22718
  1034
          with z n2 False ih show ?thesis by simp
wenzelm@22718
  1035
        qed
paulson@14640
  1036
      qed
paulson@14640
  1037
    qed
paulson@14640
  1038
  qed
paulson@14640
  1039
  moreover
paulson@14640
  1040
  from i obtain k where "0<k \<and> i+k=p"
paulson@14640
  1041
    by (blast dest: less_imp_add_positive)
paulson@14640
  1042
  hence "0<k \<and> i=p-k" by auto
paulson@14640
  1043
  moreover
paulson@14640
  1044
  note base
paulson@14640
  1045
  ultimately
paulson@14640
  1046
  show "False" by blast
paulson@14640
  1047
qed
paulson@14640
  1048
paulson@14640
  1049
lemma mod_induct:
paulson@14640
  1050
  assumes step: "\<forall>i<p. P i \<longrightarrow> P ((Suc i) mod p)"
paulson@14640
  1051
  and base: "P i" and i: "i<p" and j: "j<p"
paulson@14640
  1052
  shows "P j"
paulson@14640
  1053
proof -
paulson@14640
  1054
  have "\<forall>j<p. P j"
paulson@14640
  1055
  proof
paulson@14640
  1056
    fix j
paulson@14640
  1057
    show "j<p \<longrightarrow> P j" (is "?A j")
paulson@14640
  1058
    proof (induct j)
paulson@14640
  1059
      from step base i show "?A 0"
wenzelm@22718
  1060
        by (auto elim: mod_induct_0)
paulson@14640
  1061
    next
paulson@14640
  1062
      fix k
paulson@14640
  1063
      assume ih: "?A k"
paulson@14640
  1064
      show "?A (Suc k)"
paulson@14640
  1065
      proof
wenzelm@22718
  1066
        assume suc: "Suc k < p"
wenzelm@22718
  1067
        hence k: "k<p" by simp
wenzelm@22718
  1068
        with ih have "P k" ..
wenzelm@22718
  1069
        with step k have "P (Suc k mod p)"
wenzelm@22718
  1070
          by blast
wenzelm@22718
  1071
        moreover
wenzelm@22718
  1072
        from suc have "Suc k mod p = Suc k"
wenzelm@22718
  1073
          by simp
wenzelm@22718
  1074
        ultimately
wenzelm@22718
  1075
        show "P (Suc k)" by simp
paulson@14640
  1076
      qed
paulson@14640
  1077
    qed
paulson@14640
  1078
  qed
paulson@14640
  1079
  with j show ?thesis by blast
paulson@14640
  1080
qed
paulson@14640
  1081
haftmann@33296
  1082
lemma div2_Suc_Suc [simp]: "Suc (Suc m) div 2 = Suc (m div 2)"
huffman@48009
  1083
  by (simp add: numeral_2_eq_2 le_div_geq)
huffman@48009
  1084
huffman@48009
  1085
lemma mod2_Suc_Suc [simp]: "Suc (Suc m) mod 2 = m mod 2"
huffman@48009
  1086
  by (simp add: numeral_2_eq_2 le_mod_geq)
haftmann@33296
  1087
haftmann@33296
  1088
lemma add_self_div_2 [simp]: "(m + m) div 2 = (m::nat)"
haftmann@33296
  1089
by (simp add: nat_mult_2 [symmetric])
haftmann@33296
  1090
haftmann@33296
  1091
lemma mod2_gr_0 [simp]: "0 < (m\<Colon>nat) mod 2 \<longleftrightarrow> m mod 2 = 1"
haftmann@33296
  1092
proof -
boehmes@35815
  1093
  { fix n :: nat have  "(n::nat) < 2 \<Longrightarrow> n = 0 \<or> n = 1" by (cases n) simp_all }
haftmann@33296
  1094
  moreover have "m mod 2 < 2" by simp
haftmann@33296
  1095
  ultimately have "m mod 2 = 0 \<or> m mod 2 = 1" .
haftmann@33296
  1096
  then show ?thesis by auto
haftmann@33296
  1097
qed
haftmann@33296
  1098
haftmann@33296
  1099
text{*These lemmas collapse some needless occurrences of Suc:
haftmann@33296
  1100
    at least three Sucs, since two and fewer are rewritten back to Suc again!
haftmann@33296
  1101
    We already have some rules to simplify operands smaller than 3.*}
haftmann@33296
  1102
haftmann@33296
  1103
lemma div_Suc_eq_div_add3 [simp]: "m div (Suc (Suc (Suc n))) = m div (3+n)"
haftmann@33296
  1104
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1105
haftmann@33296
  1106
lemma mod_Suc_eq_mod_add3 [simp]: "m mod (Suc (Suc (Suc n))) = m mod (3+n)"
haftmann@33296
  1107
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1108
haftmann@33296
  1109
lemma Suc_div_eq_add3_div: "(Suc (Suc (Suc m))) div n = (3+m) div n"
haftmann@33296
  1110
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1111
haftmann@33296
  1112
lemma Suc_mod_eq_add3_mod: "(Suc (Suc (Suc m))) mod n = (3+m) mod n"
haftmann@33296
  1113
by (simp add: Suc3_eq_add_3)
haftmann@33296
  1114
huffman@47978
  1115
lemmas Suc_div_eq_add3_div_numeral [simp] = Suc_div_eq_add3_div [of _ "numeral v"] for v
huffman@47978
  1116
lemmas Suc_mod_eq_add3_mod_numeral [simp] = Suc_mod_eq_add3_mod [of _ "numeral v"] for v
haftmann@33296
  1117
haftmann@33361
  1118
haftmann@33361
  1119
lemma Suc_times_mod_eq: "1<k ==> Suc (k * m) mod k = 1" 
haftmann@33361
  1120
apply (induct "m")
haftmann@33361
  1121
apply (simp_all add: mod_Suc)
haftmann@33361
  1122
done
haftmann@33361
  1123
huffman@47978
  1124
declare Suc_times_mod_eq [of "numeral w", simp] for w
haftmann@33361
  1125
huffman@48009
  1126
lemma Suc_div_le_mono [simp]: "n div k \<le> (Suc n) div k"
huffman@48009
  1127
by (simp add: div_le_mono)
haftmann@33361
  1128
haftmann@33361
  1129
lemma Suc_n_div_2_gt_zero [simp]: "(0::nat) < n ==> 0 < (n + 1) div 2"
haftmann@33361
  1130
by (cases n) simp_all
haftmann@33361
  1131
boehmes@35815
  1132
lemma div_2_gt_zero [simp]: assumes A: "(1::nat) < n" shows "0 < n div 2"
boehmes@35815
  1133
proof -
boehmes@35815
  1134
  from A have B: "0 < n - 1" and C: "n - 1 + 1 = n" by simp_all
boehmes@35815
  1135
  from Suc_n_div_2_gt_zero [OF B] C show ?thesis by simp 
boehmes@35815
  1136
qed
haftmann@33361
  1137
haftmann@33361
  1138
  (* Potential use of algebra : Equality modulo n*)
haftmann@33361
  1139
lemma mod_mult_self3 [simp]: "(k*n + m) mod n = m mod (n::nat)"
haftmann@33361
  1140
by (simp add: mult_ac add_ac)
haftmann@33361
  1141
haftmann@33361
  1142
lemma mod_mult_self4 [simp]: "Suc (k*n + m) mod n = Suc m mod n"
haftmann@33361
  1143
proof -
haftmann@33361
  1144
  have "Suc (k * n + m) mod n = (k * n + Suc m) mod n" by simp
haftmann@33361
  1145
  also have "... = Suc m mod n" by (rule mod_mult_self3) 
haftmann@33361
  1146
  finally show ?thesis .
haftmann@33361
  1147
qed
haftmann@33361
  1148
haftmann@33361
  1149
lemma mod_Suc_eq_Suc_mod: "Suc m mod n = Suc (m mod n) mod n"
haftmann@33361
  1150
apply (subst mod_Suc [of m]) 
haftmann@33361
  1151
apply (subst mod_Suc [of "m mod n"], simp) 
haftmann@33361
  1152
done
haftmann@33361
  1153
huffman@47978
  1154
lemma mod_2_not_eq_zero_eq_one_nat:
huffman@47978
  1155
  fixes n :: nat
huffman@47978
  1156
  shows "n mod 2 \<noteq> 0 \<longleftrightarrow> n mod 2 = 1"
huffman@47978
  1157
  by simp
huffman@47978
  1158
haftmann@33361
  1159
haftmann@33361
  1160
subsection {* Division on @{typ int} *}
haftmann@33361
  1161
haftmann@33361
  1162
definition divmod_int_rel :: "int \<Rightarrow> int \<Rightarrow> int \<times> int \<Rightarrow> bool" where
haftmann@33361
  1163
    --{*definition of quotient and remainder*}
huffman@48010
  1164
  "divmod_int_rel a b = (\<lambda>(q, r). a = b * q + r \<and>
huffman@48010
  1165
    (if 0 < b then 0 \<le> r \<and> r < b else if b < 0 then b < r \<and> r \<le> 0 else q = 0))"
haftmann@33361
  1166
haftmann@33361
  1167
definition adjust :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1168
    --{*for the division algorithm*}
huffman@47978
  1169
    "adjust b = (\<lambda>(q, r). if 0 \<le> r - b then (2 * q + 1, r - b)
haftmann@33361
  1170
                         else (2 * q, r))"
haftmann@33361
  1171
haftmann@33361
  1172
text{*algorithm for the case @{text "a\<ge>0, b>0"}*}
haftmann@33361
  1173
function posDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1174
  "posDivAlg a b = (if a < b \<or>  b \<le> 0 then (0, a)
haftmann@33361
  1175
     else adjust b (posDivAlg a (2 * b)))"
haftmann@33361
  1176
by auto
haftmann@33361
  1177
termination by (relation "measure (\<lambda>(a, b). nat (a - b + 1))")
haftmann@33361
  1178
  (auto simp add: mult_2)
haftmann@33361
  1179
haftmann@33361
  1180
text{*algorithm for the case @{text "a<0, b>0"}*}
haftmann@33361
  1181
function negDivAlg :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1182
  "negDivAlg a b = (if 0 \<le>a + b \<or> b \<le> 0  then (-1, a + b)
haftmann@33361
  1183
     else adjust b (negDivAlg a (2 * b)))"
haftmann@33361
  1184
by auto
haftmann@33361
  1185
termination by (relation "measure (\<lambda>(a, b). nat (- a - b))")
haftmann@33361
  1186
  (auto simp add: mult_2)
haftmann@33361
  1187
haftmann@33361
  1188
text{*algorithm for the general case @{term "b\<noteq>0"}*}
haftmann@33361
  1189
haftmann@33361
  1190
definition divmod_int :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@33361
  1191
    --{*The full division algorithm considers all possible signs for a, b
haftmann@33361
  1192
       including the special case @{text "a=0, b<0"} because 
haftmann@33361
  1193
       @{term negDivAlg} requires @{term "a<0"}.*}
haftmann@33361
  1194
  "divmod_int a b = (if 0 \<le> a then if 0 \<le> b then posDivAlg a b
haftmann@33361
  1195
                  else if a = 0 then (0, 0)
huffman@47428
  1196
                       else apsnd uminus (negDivAlg (-a) (-b))
haftmann@33361
  1197
               else 
haftmann@33361
  1198
                  if 0 < b then negDivAlg a b
huffman@47428
  1199
                  else apsnd uminus (posDivAlg (-a) (-b)))"
haftmann@33361
  1200
haftmann@33361
  1201
instantiation int :: Divides.div
haftmann@33361
  1202
begin
haftmann@33361
  1203
huffman@47419
  1204
definition div_int where
haftmann@33361
  1205
  "a div b = fst (divmod_int a b)"
haftmann@33361
  1206
huffman@47419
  1207
lemma fst_divmod_int [simp]:
huffman@47419
  1208
  "fst (divmod_int a b) = a div b"
huffman@47419
  1209
  by (simp add: div_int_def)
huffman@47419
  1210
huffman@47419
  1211
definition mod_int where
huffman@47428
  1212
  "a mod b = snd (divmod_int a b)"
haftmann@33361
  1213
huffman@47419
  1214
lemma snd_divmod_int [simp]:
huffman@47419
  1215
  "snd (divmod_int a b) = a mod b"
huffman@47419
  1216
  by (simp add: mod_int_def)
huffman@47419
  1217
haftmann@33361
  1218
instance ..
haftmann@33361
  1219
paulson@3366
  1220
end
haftmann@33361
  1221
haftmann@33361
  1222
lemma divmod_int_mod_div:
haftmann@33361
  1223
  "divmod_int p q = (p div q, p mod q)"
huffman@47419
  1224
  by (simp add: prod_eq_iff)
haftmann@33361
  1225
haftmann@33361
  1226
text{*
haftmann@33361
  1227
Here is the division algorithm in ML:
haftmann@33361
  1228
haftmann@33361
  1229
\begin{verbatim}
haftmann@33361
  1230
    fun posDivAlg (a,b) =
haftmann@33361
  1231
      if a<b then (0,a)
haftmann@33361
  1232
      else let val (q,r) = posDivAlg(a, 2*b)
haftmann@33361
  1233
               in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
haftmann@33361
  1234
           end
haftmann@33361
  1235
haftmann@33361
  1236
    fun negDivAlg (a,b) =
haftmann@33361
  1237
      if 0\<le>a+b then (~1,a+b)
haftmann@33361
  1238
      else let val (q,r) = negDivAlg(a, 2*b)
haftmann@33361
  1239
               in  if 0\<le>r-b then (2*q+1, r-b) else (2*q, r)
haftmann@33361
  1240
           end;
haftmann@33361
  1241
haftmann@33361
  1242
    fun negateSnd (q,r:int) = (q,~r);
haftmann@33361
  1243
haftmann@33361
  1244
    fun divmod (a,b) = if 0\<le>a then 
haftmann@33361
  1245
                          if b>0 then posDivAlg (a,b) 
haftmann@33361
  1246
                           else if a=0 then (0,0)
haftmann@33361
  1247
                                else negateSnd (negDivAlg (~a,~b))
haftmann@33361
  1248
                       else 
haftmann@33361
  1249
                          if 0<b then negDivAlg (a,b)
haftmann@33361
  1250
                          else        negateSnd (posDivAlg (~a,~b));
haftmann@33361
  1251
\end{verbatim}
haftmann@33361
  1252
*}
haftmann@33361
  1253
haftmann@33361
  1254
huffman@47419
  1255
subsubsection {* Uniqueness and Monotonicity of Quotients and Remainders *}
haftmann@33361
  1256
haftmann@33361
  1257
lemma unique_quotient_lemma:
haftmann@33361
  1258
     "[| b*q' + r'  \<le> b*q + r;  0 \<le> r';  r' < b;  r < b |]  
haftmann@33361
  1259
      ==> q' \<le> (q::int)"
haftmann@33361
  1260
apply (subgoal_tac "r' + b * (q'-q) \<le> r")
haftmann@33361
  1261
 prefer 2 apply (simp add: right_diff_distrib)
haftmann@33361
  1262
apply (subgoal_tac "0 < b * (1 + q - q') ")
haftmann@33361
  1263
apply (erule_tac [2] order_le_less_trans)
haftmann@33361
  1264
 prefer 2 apply (simp add: right_diff_distrib right_distrib)
haftmann@33361
  1265
apply (subgoal_tac "b * q' < b * (1 + q) ")
haftmann@33361
  1266
 prefer 2 apply (simp add: right_diff_distrib right_distrib)
haftmann@33361
  1267
apply (simp add: mult_less_cancel_left)
haftmann@33361
  1268
done
haftmann@33361
  1269
haftmann@33361
  1270
lemma unique_quotient_lemma_neg:
haftmann@33361
  1271
     "[| b*q' + r' \<le> b*q + r;  r \<le> 0;  b < r;  b < r' |]  
haftmann@33361
  1272
      ==> q \<le> (q'::int)"
haftmann@33361
  1273
by (rule_tac b = "-b" and r = "-r'" and r' = "-r" in unique_quotient_lemma, 
haftmann@33361
  1274
    auto)
haftmann@33361
  1275
haftmann@33361
  1276
lemma unique_quotient:
bulwahn@47420
  1277
     "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]  
haftmann@33361
  1278
      ==> q = q'"
haftmann@33361
  1279
apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm)
haftmann@33361
  1280
apply (blast intro: order_antisym
haftmann@33361
  1281
             dest: order_eq_refl [THEN unique_quotient_lemma] 
haftmann@33361
  1282
             order_eq_refl [THEN unique_quotient_lemma_neg] sym)+
haftmann@33361
  1283
done
haftmann@33361
  1284
haftmann@33361
  1285
haftmann@33361
  1286
lemma unique_remainder:
bulwahn@47420
  1287
     "[| divmod_int_rel a b (q, r); divmod_int_rel a b (q', r') |]  
haftmann@33361
  1288
      ==> r = r'"
haftmann@33361
  1289
apply (subgoal_tac "q = q'")
haftmann@33361
  1290
 apply (simp add: divmod_int_rel_def)
haftmann@33361
  1291
apply (blast intro: unique_quotient)
haftmann@33361
  1292
done
haftmann@33361
  1293
haftmann@33361
  1294
huffman@47419
  1295
subsubsection {* Correctness of @{term posDivAlg}, the Algorithm for Non-Negative Dividends *}
haftmann@33361
  1296
haftmann@33361
  1297
text{*And positive divisors*}
haftmann@33361
  1298
haftmann@33361
  1299
lemma adjust_eq [simp]:
huffman@47978
  1300
     "adjust b (q, r) = 
huffman@47978
  1301
      (let diff = r - b in  
huffman@47978
  1302
        if 0 \<le> diff then (2 * q + 1, diff)   
haftmann@33361
  1303
                     else (2*q, r))"
huffman@47978
  1304
  by (simp add: Let_def adjust_def)
haftmann@33361
  1305
haftmann@33361
  1306
declare posDivAlg.simps [simp del]
haftmann@33361
  1307
haftmann@33361
  1308
text{*use with a simproc to avoid repeatedly proving the premise*}
haftmann@33361
  1309
lemma posDivAlg_eqn:
haftmann@33361
  1310
     "0 < b ==>  
haftmann@33361
  1311
      posDivAlg a b = (if a<b then (0,a) else adjust b (posDivAlg a (2*b)))"
haftmann@33361
  1312
by (rule posDivAlg.simps [THEN trans], simp)
haftmann@33361
  1313
haftmann@33361
  1314
text{*Correctness of @{term posDivAlg}: it computes quotients correctly*}
haftmann@33361
  1315
theorem posDivAlg_correct:
haftmann@33361
  1316
  assumes "0 \<le> a" and "0 < b"
haftmann@33361
  1317
  shows "divmod_int_rel a b (posDivAlg a b)"
wenzelm@41798
  1318
  using assms
wenzelm@41798
  1319
  apply (induct a b rule: posDivAlg.induct)
wenzelm@41798
  1320
  apply auto
wenzelm@41798
  1321
  apply (simp add: divmod_int_rel_def)
wenzelm@41798
  1322
  apply (subst posDivAlg_eqn, simp add: right_distrib)
wenzelm@41798
  1323
  apply (case_tac "a < b")
wenzelm@41798
  1324
  apply simp_all
wenzelm@41798
  1325
  apply (erule splitE)
wenzelm@41798
  1326
  apply (auto simp add: right_distrib Let_def mult_ac mult_2_right)
wenzelm@41798
  1327
  done
haftmann@33361
  1328
haftmann@33361
  1329
huffman@47419
  1330
subsubsection {* Correctness of @{term negDivAlg}, the Algorithm for Negative Dividends *}
haftmann@33361
  1331
haftmann@33361
  1332
text{*And positive divisors*}
haftmann@33361
  1333
haftmann@33361
  1334
declare negDivAlg.simps [simp del]
haftmann@33361
  1335
haftmann@33361
  1336
text{*use with a simproc to avoid repeatedly proving the premise*}
haftmann@33361
  1337
lemma negDivAlg_eqn:
haftmann@33361
  1338
     "0 < b ==>  
haftmann@33361
  1339
      negDivAlg a b =       
haftmann@33361
  1340
       (if 0\<le>a+b then (-1,a+b) else adjust b (negDivAlg a (2*b)))"
haftmann@33361
  1341
by (rule negDivAlg.simps [THEN trans], simp)
haftmann@33361
  1342
haftmann@33361
  1343
(*Correctness of negDivAlg: it computes quotients correctly
haftmann@33361
  1344
  It doesn't work if a=0 because the 0/b equals 0, not -1*)
haftmann@33361
  1345
lemma negDivAlg_correct:
haftmann@33361
  1346
  assumes "a < 0" and "b > 0"
haftmann@33361
  1347
  shows "divmod_int_rel a b (negDivAlg a b)"
wenzelm@41798
  1348
  using assms
wenzelm@41798
  1349
  apply (induct a b rule: negDivAlg.induct)
wenzelm@41798
  1350
  apply (auto simp add: linorder_not_le)
wenzelm@41798
  1351
  apply (simp add: divmod_int_rel_def)
wenzelm@41798
  1352
  apply (subst negDivAlg_eqn, assumption)
wenzelm@41798
  1353
  apply (case_tac "a + b < (0\<Colon>int)")
wenzelm@41798
  1354
  apply simp_all
wenzelm@41798
  1355
  apply (erule splitE)
wenzelm@41798
  1356
  apply (auto simp add: right_distrib Let_def mult_ac mult_2_right)
wenzelm@41798
  1357
  done
haftmann@33361
  1358
haftmann@33361
  1359
huffman@47419
  1360
subsubsection {* Existence Shown by Proving the Division Algorithm to be Correct *}
haftmann@33361
  1361
haftmann@33361
  1362
(*the case a=0*)
huffman@48010
  1363
lemma divmod_int_rel_0: "divmod_int_rel 0 b (0, 0)"
haftmann@33361
  1364
by (auto simp add: divmod_int_rel_def linorder_neq_iff)
haftmann@33361
  1365
haftmann@33361
  1366
lemma posDivAlg_0 [simp]: "posDivAlg 0 b = (0, 0)"
haftmann@33361
  1367
by (subst posDivAlg.simps, auto)
haftmann@33361
  1368
huffman@48010
  1369
lemma posDivAlg_0_right [simp]: "posDivAlg a 0 = (0, a)"
huffman@48010
  1370
by (subst posDivAlg.simps, auto)
huffman@48010
  1371
haftmann@33361
  1372
lemma negDivAlg_minus1 [simp]: "negDivAlg -1 b = (-1, b - 1)"
haftmann@33361
  1373
by (subst negDivAlg.simps, auto)
haftmann@33361
  1374
huffman@47428
  1375
lemma divmod_int_rel_neg: "divmod_int_rel (-a) (-b) qr ==> divmod_int_rel a b (apsnd uminus qr)"
huffman@48010
  1376
by (auto simp add: divmod_int_rel_def)
huffman@48010
  1377
huffman@48010
  1378
lemma divmod_int_correct: "divmod_int_rel a b (divmod_int a b)"
huffman@48010
  1379
apply (cases "b = 0", simp add: divmod_int_def divmod_int_rel_def)
haftmann@33361
  1380
by (force simp add: linorder_neq_iff divmod_int_rel_0 divmod_int_def divmod_int_rel_neg
haftmann@33361
  1381
                    posDivAlg_correct negDivAlg_correct)
haftmann@33361
  1382
huffman@48012
  1383
lemma divmod_int_unique:
huffman@48012
  1384
  assumes "divmod_int_rel a b qr" 
huffman@48012
  1385
  shows "divmod_int a b = qr"
huffman@48012
  1386
  using assms divmod_int_correct [of a b]
huffman@48012
  1387
  using unique_quotient [of a b] unique_remainder [of a b]
huffman@48012
  1388
  by (metis pair_collapse)
huffman@48012
  1389
huffman@48012
  1390
lemma divmod_int_rel_div_mod: "divmod_int_rel a b (a div b, a mod b)"
huffman@48012
  1391
  using divmod_int_correct by (simp add: divmod_int_mod_div)
huffman@48012
  1392
huffman@48012
  1393
lemma div_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a div b = q"
huffman@48012
  1394
  by (simp add: divmod_int_rel_div_mod [THEN unique_quotient])
huffman@48012
  1395
huffman@48012
  1396
lemma mod_int_unique: "divmod_int_rel a b (q, r) \<Longrightarrow> a mod b = r"
huffman@48012
  1397
  by (simp add: divmod_int_rel_div_mod [THEN unique_remainder])
huffman@48012
  1398
huffman@48012
  1399
instance int :: ring_div
huffman@48012
  1400
proof
huffman@48012
  1401
  fix a b :: int
huffman@48012
  1402
  show "a div b * b + a mod b = a"
huffman@48012
  1403
    using divmod_int_rel_div_mod [of a b]
huffman@48012
  1404
    unfolding divmod_int_rel_def by (simp add: mult_commute)
huffman@48012
  1405
next
huffman@48012
  1406
  fix a b c :: int
huffman@48012
  1407
  assume "b \<noteq> 0"
huffman@48012
  1408
  hence "divmod_int_rel (a + c * b) b (c + a div b, a mod b)"
huffman@48012
  1409
    using divmod_int_rel_div_mod [of a b]
huffman@48012
  1410
    unfolding divmod_int_rel_def by (auto simp: algebra_simps)
huffman@48012
  1411
  thus "(a + c * b) div b = c + a div b"
huffman@48012
  1412
    by (rule div_int_unique)
huffman@48012
  1413
next
huffman@48012
  1414
  fix a b c :: int
huffman@48012
  1415
  assume "c \<noteq> 0"
huffman@48012
  1416
  hence "\<And>q r. divmod_int_rel a b (q, r)
huffman@48012
  1417
    \<Longrightarrow> divmod_int_rel (c * a) (c * b) (q, c * r)"
huffman@48012
  1418
    unfolding divmod_int_rel_def
huffman@48012
  1419
    by - (rule linorder_cases [of 0 b], auto simp: algebra_simps
huffman@48012
  1420
      mult_less_0_iff zero_less_mult_iff mult_strict_right_mono
huffman@48012
  1421
      mult_strict_right_mono_neg zero_le_mult_iff mult_le_0_iff)
huffman@48012
  1422
  hence "divmod_int_rel (c * a) (c * b) (a div b, c * (a mod b))"
huffman@48012
  1423
    using divmod_int_rel_div_mod [of a b] .
huffman@48012
  1424
  thus "(c * a) div (c * b) = a div b"
huffman@48012
  1425
    by (rule div_int_unique)
huffman@48012
  1426
next
huffman@48012
  1427
  fix a :: int show "a div 0 = 0"
huffman@48012
  1428
    by (rule div_int_unique, simp add: divmod_int_rel_def)
huffman@48012
  1429
next
huffman@48012
  1430
  fix a :: int show "0 div a = 0"
huffman@48012
  1431
    by (rule div_int_unique, auto simp add: divmod_int_rel_def)
huffman@48012
  1432
qed
huffman@48012
  1433
haftmann@33361
  1434
text{*Basic laws about division and remainder*}
haftmann@33361
  1435
haftmann@33361
  1436
lemma zmod_zdiv_equality: "(a::int) = b * (a div b) + (a mod b)"
huffman@48012
  1437
  by (fact mod_div_equality2 [symmetric])
haftmann@33361
  1438
haftmann@33361
  1439
text {* Tool setup *}
haftmann@33361
  1440
huffman@47978
  1441
(* FIXME: Theorem list add_0s doesn't exist, because Numeral0 has gone. *)
huffman@47978
  1442
lemmas add_0s = add_0_left add_0_right
huffman@47978
  1443
haftmann@33361
  1444
ML {*
wenzelm@44467
  1445
structure Cancel_Div_Mod_Int = Cancel_Div_Mod
wenzelm@41798
  1446
(
haftmann@33361
  1447
  val div_name = @{const_name div};
haftmann@33361
  1448
  val mod_name = @{const_name mod};
haftmann@33361
  1449
  val mk_binop = HOLogic.mk_binop;
haftmann@33361
  1450
  val mk_sum = Arith_Data.mk_sum HOLogic.intT;
haftmann@33361
  1451
  val dest_sum = Arith_Data.dest_sum;
haftmann@33361
  1452
huffman@48036
  1453
  val div_mod_eqs = map mk_meta_eq [@{thm div_mod_equality}, @{thm div_mod_equality2}];
haftmann@33361
  1454
haftmann@33361
  1455
  val prove_eq_sums = Arith_Data.prove_conv2 all_tac (Arith_Data.simp_all_tac 
haftmann@33361
  1456
    (@{thm diff_minus} :: @{thms add_0s} @ @{thms add_ac}))
wenzelm@41798
  1457
)
haftmann@33361
  1458
*}
haftmann@33361
  1459
wenzelm@44467
  1460
simproc_setup cancel_div_mod_int ("(k::int) + l") = {* K Cancel_Div_Mod_Int.proc *}
wenzelm@44467
  1461
huffman@48012
  1462
lemma pos_mod_conj: "(0::int) < b \<Longrightarrow> 0 \<le> a mod b \<and> a mod b < b"
huffman@48012
  1463
  using divmod_int_correct [of a b]
huffman@48012
  1464
  by (auto simp add: divmod_int_rel_def prod_eq_iff)
haftmann@33361
  1465
wenzelm@46478
  1466
lemmas pos_mod_sign [simp] = pos_mod_conj [THEN conjunct1]
wenzelm@46478
  1467
   and pos_mod_bound [simp] = pos_mod_conj [THEN conjunct2]
haftmann@33361
  1468
huffman@48012
  1469
lemma neg_mod_conj: "b < (0::int) \<Longrightarrow> a mod b \<le> 0 \<and> b < a mod b"
huffman@48012
  1470
  using divmod_int_correct [of a b]
huffman@48012
  1471
  by (auto simp add: divmod_int_rel_def prod_eq_iff)
haftmann@33361
  1472
wenzelm@46478
  1473
lemmas neg_mod_sign [simp] = neg_mod_conj [THEN conjunct1]
wenzelm@46478
  1474
   and neg_mod_bound [simp] = neg_mod_conj [THEN conjunct2]
haftmann@33361
  1475
haftmann@33361
  1476
huffman@47419
  1477
subsubsection {* General Properties of div and mod *}
haftmann@33361
  1478
haftmann@33361
  1479
lemma div_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a div b = 0"
huffman@48011
  1480
apply (rule div_int_unique)
haftmann@33361
  1481
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1482
done
haftmann@33361
  1483
haftmann@33361
  1484
lemma div_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a div b = 0"
huffman@48011
  1485
apply (rule div_int_unique)
haftmann@33361
  1486
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1487
done
haftmann@33361
  1488
haftmann@33361
  1489
lemma div_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a div b = -1"
huffman@48011
  1490
apply (rule div_int_unique)
haftmann@33361
  1491
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1492
done
haftmann@33361
  1493
haftmann@33361
  1494
(*There is no div_neg_pos_trivial because  0 div b = 0 would supersede it*)
haftmann@33361
  1495
haftmann@33361
  1496
lemma mod_pos_pos_trivial: "[| (0::int) \<le> a;  a < b |] ==> a mod b = a"
huffman@48011
  1497
apply (rule_tac q = 0 in mod_int_unique)
haftmann@33361
  1498
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1499
done
haftmann@33361
  1500
haftmann@33361
  1501
lemma mod_neg_neg_trivial: "[| a \<le> (0::int);  b < a |] ==> a mod b = a"
huffman@48011
  1502
apply (rule_tac q = 0 in mod_int_unique)
haftmann@33361
  1503
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1504
done
haftmann@33361
  1505
haftmann@33361
  1506
lemma mod_pos_neg_trivial: "[| (0::int) < a;  a+b \<le> 0 |] ==> a mod b = a+b"
huffman@48011
  1507
apply (rule_tac q = "-1" in mod_int_unique)
haftmann@33361
  1508
apply (auto simp add: divmod_int_rel_def)
haftmann@33361
  1509
done
haftmann@33361
  1510
haftmann@33361
  1511
text{*There is no @{text mod_neg_pos_trivial}.*}
haftmann@33361
  1512
haftmann@33361
  1513
huffman@47419
  1514
subsubsection {* Laws for div and mod with Unary Minus *}
haftmann@33361
  1515
haftmann@33361
  1516
lemma zminus1_lemma:
huffman@48010
  1517
     "divmod_int_rel a b (q, r) ==> b \<noteq> 0
haftmann@33361
  1518
      ==> divmod_int_rel (-a) b (if r=0 then -q else -q - 1,  
haftmann@33361
  1519
                          if r=0 then 0 else b-r)"
haftmann@33361
  1520
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_diff_distrib)
haftmann@33361
  1521
haftmann@33361
  1522
haftmann@33361
  1523
lemma zdiv_zminus1_eq_if:
haftmann@33361
  1524
     "b \<noteq> (0::int)  
haftmann@33361
  1525
      ==> (-a) div b =  
haftmann@33361
  1526
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
huffman@48011
  1527
by (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN div_int_unique])
haftmann@33361
  1528
haftmann@33361
  1529
lemma zmod_zminus1_eq_if:
haftmann@33361
  1530
     "(-a::int) mod b = (if a mod b = 0 then 0 else  b - (a mod b))"
haftmann@33361
  1531
apply (case_tac "b = 0", simp)
huffman@48011
  1532
apply (blast intro: divmod_int_rel_div_mod [THEN zminus1_lemma, THEN mod_int_unique])
haftmann@33361
  1533
done
haftmann@33361
  1534
haftmann@33361
  1535
lemma zmod_zminus1_not_zero:
haftmann@33361
  1536
  fixes k l :: int
haftmann@33361
  1537
  shows "- k mod l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
haftmann@33361
  1538
  unfolding zmod_zminus1_eq_if by auto
haftmann@33361
  1539
haftmann@33361
  1540
lemma zdiv_zminus2_eq_if:
haftmann@33361
  1541
     "b \<noteq> (0::int)  
haftmann@33361
  1542
      ==> a div (-b) =  
haftmann@33361
  1543
          (if a mod b = 0 then - (a div b) else  - (a div b) - 1)"
huffman@48030
  1544
by (simp add: zdiv_zminus1_eq_if div_minus_right)
haftmann@33361
  1545
haftmann@33361
  1546
lemma zmod_zminus2_eq_if:
haftmann@33361
  1547
     "a mod (-b::int) = (if a mod b = 0 then 0 else  (a mod b) - b)"
huffman@48030
  1548
by (simp add: zmod_zminus1_eq_if mod_minus_right)
haftmann@33361
  1549
haftmann@33361
  1550
lemma zmod_zminus2_not_zero:
haftmann@33361
  1551
  fixes k l :: int
haftmann@33361
  1552
  shows "k mod - l \<noteq> 0 \<Longrightarrow> k mod l \<noteq> 0"
haftmann@33361
  1553
  unfolding zmod_zminus2_eq_if by auto 
haftmann@33361
  1554
haftmann@33361
  1555
huffman@47419
  1556
subsubsection {* Computation of Division and Remainder *}
haftmann@33361
  1557
haftmann@33361
  1558
lemma div_eq_minus1: "(0::int) < b ==> -1 div b = -1"
haftmann@33361
  1559
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1560
haftmann@33361
  1561
lemma zmod_minus1: "(0::int) < b ==> -1 mod b = b - 1"
haftmann@33361
  1562
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1563
haftmann@33361
  1564
text{*a positive, b positive *}
haftmann@33361
  1565
haftmann@33361
  1566
lemma div_pos_pos: "[| 0 < a;  0 \<le> b |] ==> a div b = fst (posDivAlg a b)"
haftmann@33361
  1567
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1568
haftmann@33361
  1569
lemma mod_pos_pos: "[| 0 < a;  0 \<le> b |] ==> a mod b = snd (posDivAlg a b)"
haftmann@33361
  1570
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1571
haftmann@33361
  1572
text{*a negative, b positive *}
haftmann@33361
  1573
haftmann@33361
  1574
lemma div_neg_pos: "[| a < 0;  0 < b |] ==> a div b = fst (negDivAlg a b)"
haftmann@33361
  1575
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1576
haftmann@33361
  1577
lemma mod_neg_pos: "[| a < 0;  0 < b |] ==> a mod b = snd (negDivAlg a b)"
haftmann@33361
  1578
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1579
haftmann@33361
  1580
text{*a positive, b negative *}
haftmann@33361
  1581
haftmann@33361
  1582
lemma div_pos_neg:
huffman@47428
  1583
     "[| 0 < a;  b < 0 |] ==> a div b = fst (apsnd uminus (negDivAlg (-a) (-b)))"
haftmann@33361
  1584
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1585
haftmann@33361
  1586
lemma mod_pos_neg:
huffman@47428
  1587
     "[| 0 < a;  b < 0 |] ==> a mod b = snd (apsnd uminus (negDivAlg (-a) (-b)))"
haftmann@33361
  1588
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1589
haftmann@33361
  1590
text{*a negative, b negative *}
haftmann@33361
  1591
haftmann@33361
  1592
lemma div_neg_neg:
huffman@47428
  1593
     "[| a < 0;  b \<le> 0 |] ==> a div b = fst (apsnd uminus (posDivAlg (-a) (-b)))"
haftmann@33361
  1594
by (simp add: div_int_def divmod_int_def)
haftmann@33361
  1595
haftmann@33361
  1596
lemma mod_neg_neg:
huffman@47428
  1597
     "[| a < 0;  b \<le> 0 |] ==> a mod b = snd (apsnd uminus (posDivAlg (-a) (-b)))"
haftmann@33361
  1598
by (simp add: mod_int_def divmod_int_def)
haftmann@33361
  1599
haftmann@33361
  1600
text {*Simplify expresions in which div and mod combine numerical constants*}
haftmann@33361
  1601
huffman@46401
  1602
lemma int_div_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a div b = q"
huffman@48011
  1603
  by (rule div_int_unique [of a b q r]) (simp add: divmod_int_rel_def)
huffman@46401
  1604
huffman@46401
  1605
lemma int_div_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a div b = q"
huffman@48011
  1606
  by (rule div_int_unique [of a b q r],
bulwahn@47420
  1607
    simp add: divmod_int_rel_def)
huffman@46401
  1608
huffman@46401
  1609
lemma int_mod_pos_eq: "\<lbrakk>(a::int) = b * q + r; 0 \<le> r; r < b\<rbrakk> \<Longrightarrow> a mod b = r"
huffman@48011
  1610
  by (rule mod_int_unique [of a b q r],
bulwahn@47420
  1611
    simp add: divmod_int_rel_def)
huffman@46401
  1612
huffman@46401
  1613
lemma int_mod_neg_eq: "\<lbrakk>(a::int) = b * q + r; r \<le> 0; b < r\<rbrakk> \<Longrightarrow> a mod b = r"
huffman@48011
  1614
  by (rule mod_int_unique [of a b q r],
bulwahn@47420
  1615
    simp add: divmod_int_rel_def)
huffman@46401
  1616
haftmann@33361
  1617
(* simprocs adapted from HOL/ex/Binary.thy *)
haftmann@33361
  1618
ML {*
haftmann@33361
  1619
local
huffman@46401
  1620
  val mk_number = HOLogic.mk_number HOLogic.intT
huffman@46401
  1621
  val plus = @{term "plus :: int \<Rightarrow> int \<Rightarrow> int"}
huffman@46401
  1622
  val times = @{term "times :: int \<Rightarrow> int \<Rightarrow> int"}
huffman@46401
  1623
  val zero = @{term "0 :: int"}
huffman@46401
  1624
  val less = @{term "op < :: int \<Rightarrow> int \<Rightarrow> bool"}
huffman@46401
  1625
  val le = @{term "op \<le> :: int \<Rightarrow> int \<Rightarrow> bool"}
huffman@46401
  1626
  val simps = @{thms arith_simps} @ @{thms rel_simps} @
huffman@47978
  1627
    map (fn th => th RS sym) [@{thm numeral_1_eq_1}]
huffman@46401
  1628
  fun prove ctxt goal = Goal.prove ctxt [] [] (HOLogic.mk_Trueprop goal)
huffman@46401
  1629
    (K (ALLGOALS (full_simp_tac (HOL_basic_ss addsimps simps))));
haftmann@33361
  1630
  fun binary_proc proc ss ct =
haftmann@33361
  1631
    (case Thm.term_of ct of
haftmann@33361
  1632
      _ $ t $ u =>
haftmann@33361
  1633
      (case try (pairself (`(snd o HOLogic.dest_number))) (t, u) of
haftmann@33361
  1634
        SOME args => proc (Simplifier.the_context ss) args
haftmann@33361
  1635
      | NONE => NONE)
haftmann@33361
  1636
    | _ => NONE);
haftmann@33361
  1637
in
huffman@46401
  1638
  fun divmod_proc posrule negrule =
huffman@46401
  1639
    binary_proc (fn ctxt => fn ((a, t), (b, u)) =>
huffman@46401
  1640
      if b = 0 then NONE else let
huffman@46401
  1641
        val (q, r) = pairself mk_number (Integer.div_mod a b)
huffman@46401
  1642
        val goal1 = HOLogic.mk_eq (t, plus $ (times $ u $ q) $ r)
huffman@46401
  1643
        val (goal2, goal3, rule) = if b > 0
huffman@46401
  1644
          then (le $ zero $ r, less $ r $ u, posrule RS eq_reflection)
huffman@46401
  1645
          else (le $ r $ zero, less $ u $ r, negrule RS eq_reflection)
huffman@46401
  1646
      in SOME (rule OF map (prove ctxt) [goal1, goal2, goal3]) end)
haftmann@33361
  1647
end
haftmann@33361
  1648
*}
haftmann@33361
  1649
huffman@47978
  1650
simproc_setup binary_int_div
huffman@47978
  1651
  ("numeral m div numeral n :: int" |
huffman@47978
  1652
   "numeral m div neg_numeral n :: int" |
huffman@47978
  1653
   "neg_numeral m div numeral n :: int" |
huffman@47978
  1654
   "neg_numeral m div neg_numeral n :: int") =
huffman@46401
  1655
  {* K (divmod_proc @{thm int_div_pos_eq} @{thm int_div_neg_eq}) *}
haftmann@33361
  1656
huffman@47978
  1657
simproc_setup binary_int_mod
huffman@47978
  1658
  ("numeral m mod numeral n :: int" |
huffman@47978
  1659
   "numeral m mod neg_numeral n :: int" |
huffman@47978
  1660
   "neg_numeral m mod numeral n :: int" |
huffman@47978
  1661
   "neg_numeral m mod neg_numeral n :: int") =
huffman@46401
  1662
  {* K (divmod_proc @{thm int_mod_pos_eq} @{thm int_mod_neg_eq}) *}
haftmann@33361
  1663
huffman@47978
  1664
lemmas posDivAlg_eqn_numeral [simp] =
huffman@47978
  1665
    posDivAlg_eqn [of "numeral v" "numeral w", OF zero_less_numeral] for v w
huffman@47978
  1666
huffman@47978
  1667
lemmas negDivAlg_eqn_numeral [simp] =
huffman@47978
  1668
    negDivAlg_eqn [of "numeral v" "neg_numeral w", OF zero_less_numeral] for v w
haftmann@33361
  1669
haftmann@33361
  1670
haftmann@33361
  1671
text{*Special-case simplification *}
haftmann@33361
  1672
haftmann@33361
  1673
(** The last remaining special cases for constant arithmetic:
haftmann@33361
  1674
    1 div z and 1 mod z **)
haftmann@33361
  1675
huffman@47978
  1676
lemmas div_pos_pos_1_numeral [simp] =
huffman@47978
  1677
  div_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w
huffman@47978
  1678
huffman@47978
  1679
lemmas div_pos_neg_1_numeral [simp] =
huffman@47978
  1680
  div_pos_neg [OF zero_less_one, of "neg_numeral w",
huffman@47978
  1681
  OF neg_numeral_less_zero] for w
huffman@47978
  1682
huffman@47978
  1683
lemmas mod_pos_pos_1_numeral [simp] =
huffman@47978
  1684
  mod_pos_pos [OF zero_less_one, of "numeral w", OF zero_le_numeral] for w
huffman@47978
  1685
huffman@47978
  1686
lemmas mod_pos_neg_1_numeral [simp] =
huffman@47978
  1687
  mod_pos_neg [OF zero_less_one, of "neg_numeral w",
huffman@47978
  1688
  OF neg_numeral_less_zero] for w
huffman@47978
  1689
huffman@47978
  1690
lemmas posDivAlg_eqn_1_numeral [simp] =
huffman@47978
  1691
    posDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w
huffman@47978
  1692
huffman@47978
  1693
lemmas negDivAlg_eqn_1_numeral [simp] =
huffman@47978
  1694
    negDivAlg_eqn [of concl: 1 "numeral w", OF zero_less_numeral] for w
haftmann@33361
  1695
haftmann@33361
  1696
huffman@47419
  1697
subsubsection {* Monotonicity in the First Argument (Dividend) *}
haftmann@33361
  1698
haftmann@33361
  1699
lemma zdiv_mono1: "[| a \<le> a';  0 < (b::int) |] ==> a div b \<le> a' div b"
haftmann@33361
  1700
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  1701
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
haftmann@33361
  1702
apply (rule unique_quotient_lemma)
haftmann@33361
  1703
apply (erule subst)
haftmann@33361
  1704
apply (erule subst, simp_all)
haftmann@33361
  1705
done
haftmann@33361
  1706
haftmann@33361
  1707
lemma zdiv_mono1_neg: "[| a \<le> a';  (b::int) < 0 |] ==> a' div b \<le> a div b"
haftmann@33361
  1708
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  1709
apply (cut_tac a = a' and b = b in zmod_zdiv_equality)
haftmann@33361
  1710
apply (rule unique_quotient_lemma_neg)
haftmann@33361
  1711
apply (erule subst)
haftmann@33361
  1712
apply (erule subst, simp_all)
haftmann@33361
  1713
done
haftmann@33361
  1714
haftmann@33361
  1715
huffman@47419
  1716
subsubsection {* Monotonicity in the Second Argument (Divisor) *}
haftmann@33361
  1717
haftmann@33361
  1718
lemma q_pos_lemma:
haftmann@33361
  1719
     "[| 0 \<le> b'*q' + r'; r' < b';  0 < b' |] ==> 0 \<le> (q'::int)"
haftmann@33361
  1720
apply (subgoal_tac "0 < b'* (q' + 1) ")
haftmann@33361
  1721
 apply (simp add: zero_less_mult_iff)
haftmann@33361
  1722
apply (simp add: right_distrib)
haftmann@33361
  1723
done
haftmann@33361
  1724
haftmann@33361
  1725
lemma zdiv_mono2_lemma:
haftmann@33361
  1726
     "[| b*q + r = b'*q' + r';  0 \<le> b'*q' + r';   
haftmann@33361
  1727
         r' < b';  0 \<le> r;  0 < b';  b' \<le> b |]   
haftmann@33361
  1728
      ==> q \<le> (q'::int)"
haftmann@33361
  1729
apply (frule q_pos_lemma, assumption+) 
haftmann@33361
  1730
apply (subgoal_tac "b*q < b* (q' + 1) ")
haftmann@33361
  1731
 apply (simp add: mult_less_cancel_left)
haftmann@33361
  1732
apply (subgoal_tac "b*q = r' - r + b'*q'")
haftmann@33361
  1733
 prefer 2 apply simp
haftmann@33361
  1734
apply (simp (no_asm_simp) add: right_distrib)
huffman@45637
  1735
apply (subst add_commute, rule add_less_le_mono, arith)
haftmann@33361
  1736
apply (rule mult_right_mono, auto)
haftmann@33361
  1737
done
haftmann@33361
  1738
haftmann@33361
  1739
lemma zdiv_mono2:
haftmann@33361
  1740
     "[| (0::int) \<le> a;  0 < b';  b' \<le> b |] ==> a div b \<le> a div b'"
haftmann@33361
  1741
apply (subgoal_tac "b \<noteq> 0")
haftmann@33361
  1742
 prefer 2 apply arith
haftmann@33361
  1743
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  1744
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
haftmann@33361
  1745
apply (rule zdiv_mono2_lemma)
haftmann@33361
  1746
apply (erule subst)
haftmann@33361
  1747
apply (erule subst, simp_all)
haftmann@33361
  1748
done
haftmann@33361
  1749
haftmann@33361
  1750
lemma q_neg_lemma:
haftmann@33361
  1751
     "[| b'*q' + r' < 0;  0 \<le> r';  0 < b' |] ==> q' \<le> (0::int)"
haftmann@33361
  1752
apply (subgoal_tac "b'*q' < 0")
haftmann@33361
  1753
 apply (simp add: mult_less_0_iff, arith)
haftmann@33361
  1754
done
haftmann@33361
  1755
haftmann@33361
  1756
lemma zdiv_mono2_neg_lemma:
haftmann@33361
  1757
     "[| b*q + r = b'*q' + r';  b'*q' + r' < 0;   
haftmann@33361
  1758
         r < b;  0 \<le> r';  0 < b';  b' \<le> b |]   
haftmann@33361
  1759
      ==> q' \<le> (q::int)"
haftmann@33361
  1760
apply (frule q_neg_lemma, assumption+) 
haftmann@33361
  1761
apply (subgoal_tac "b*q' < b* (q + 1) ")
haftmann@33361
  1762
 apply (simp add: mult_less_cancel_left)
haftmann@33361
  1763
apply (simp add: right_distrib)
haftmann@33361
  1764
apply (subgoal_tac "b*q' \<le> b'*q'")
haftmann@33361
  1765
 prefer 2 apply (simp add: mult_right_mono_neg, arith)
haftmann@33361
  1766
done
haftmann@33361
  1767
haftmann@33361
  1768
lemma zdiv_mono2_neg:
haftmann@33361
  1769
     "[| a < (0::int);  0 < b';  b' \<le> b |] ==> a div b' \<le> a div b"
haftmann@33361
  1770
apply (cut_tac a = a and b = b in zmod_zdiv_equality)
haftmann@33361
  1771
apply (cut_tac a = a and b = b' in zmod_zdiv_equality)
haftmann@33361
  1772
apply (rule zdiv_mono2_neg_lemma)
haftmann@33361
  1773
apply (erule subst)
haftmann@33361
  1774
apply (erule subst, simp_all)
haftmann@33361
  1775
done
haftmann@33361
  1776
haftmann@33361
  1777
huffman@47419
  1778
subsubsection {* More Algebraic Laws for div and mod *}
haftmann@33361
  1779
haftmann@33361
  1780
text{*proving (a*b) div c = a * (b div c) + a * (b mod c) *}
haftmann@33361
  1781
haftmann@33361
  1782
lemma zmult1_lemma:
bulwahn@47420
  1783
     "[| divmod_int_rel b c (q, r) |]  
haftmann@33361
  1784
      ==> divmod_int_rel (a * b) c (a*q + a*r div c, a*r mod c)"
haftmann@33361
  1785
by (auto simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_distrib mult_ac)
haftmann@33361
  1786
haftmann@33361
  1787
lemma zdiv_zmult1_eq: "(a*b) div c = a*(b div c) + a*(b mod c) div (c::int)"
haftmann@33361
  1788
apply (case_tac "c = 0", simp)
huffman@48011
  1789
apply (blast intro: divmod_int_rel_div_mod [THEN zmult1_lemma, THEN div_int_unique])
haftmann@33361
  1790
done
haftmann@33361
  1791
haftmann@33361
  1792
text{*proving (a+b) div c = a div c + b div c + ((a mod c + b mod c) div c) *}
haftmann@33361
  1793
haftmann@33361
  1794
lemma zadd1_lemma:
bulwahn@47420
  1795
     "[| divmod_int_rel a c (aq, ar);  divmod_int_rel b c (bq, br) |]  
haftmann@33361
  1796
      ==> divmod_int_rel (a+b) c (aq + bq + (ar+br) div c, (ar+br) mod c)"
haftmann@33361
  1797
by (force simp add: split_ifs divmod_int_rel_def linorder_neq_iff right_distrib)
haftmann@33361
  1798
haftmann@33361
  1799
(*NOT suitable for rewriting: the RHS has an instance of the LHS*)
haftmann@33361
  1800
lemma zdiv_zadd1_eq:
haftmann@33361
  1801
     "(a+b) div (c::int) = a div c + b div c + ((a mod c + b mod c) div c)"
haftmann@33361
  1802
apply (case_tac "c = 0", simp)
huffman@48011
  1803
apply (blast intro: zadd1_lemma [OF divmod_int_rel_div_mod divmod_int_rel_div_mod] div_int_unique)
haftmann@33361
  1804
done
haftmann@33361
  1805
haftmann@33361
  1806
lemma posDivAlg_div_mod:
haftmann@33361
  1807
  assumes "k \<ge> 0"
haftmann@33361
  1808
  and "l \<ge> 0"
haftmann@33361
  1809
  shows "posDivAlg k l = (k div l, k mod l)"
haftmann@33361
  1810
proof (cases "l = 0")
haftmann@33361
  1811
  case True then show ?thesis by (simp add: posDivAlg.simps)
haftmann@33361
  1812
next
haftmann@33361
  1813
  case False with assms posDivAlg_correct
haftmann@33361
  1814
    have "divmod_int_rel k l (fst (posDivAlg k l), snd (posDivAlg k l))"
haftmann@33361
  1815
    by simp
huffman@48011
  1816
  from div_int_unique [OF this] mod_int_unique [OF this]
haftmann@33361
  1817
  show ?thesis by simp
haftmann@33361
  1818
qed
haftmann@33361
  1819
haftmann@33361
  1820
lemma negDivAlg_div_mod:
haftmann@33361
  1821
  assumes "k < 0"
haftmann@33361
  1822
  and "l > 0"
haftmann@33361
  1823
  shows "negDivAlg k l = (k div l, k mod l)"
haftmann@33361
  1824
proof -
haftmann@33361
  1825
  from assms have "l \<noteq> 0" by simp
haftmann@33361
  1826
  from assms negDivAlg_correct
haftmann@33361
  1827
    have "divmod_int_rel k l (fst (negDivAlg k l), snd (negDivAlg k l))"
haftmann@33361
  1828
    by simp
huffman@48011
  1829
  from div_int_unique [OF this] mod_int_unique [OF this]
haftmann@33361
  1830
  show ?thesis by simp
haftmann@33361
  1831
qed
haftmann@33361
  1832
haftmann@33361
  1833
lemma zmod_eq_0_iff: "(m mod d = 0) = (EX q::int. m = d*q)"
haftmann@33361
  1834
by (simp add: dvd_eq_mod_eq_0 [symmetric] dvd_def)
haftmann@33361
  1835
haftmann@33361
  1836
(* REVISIT: should this be generalized to all semiring_div types? *)
haftmann@33361
  1837
lemmas zmod_eq_0D [dest!] = zmod_eq_0_iff [THEN iffD1]
haftmann@33361
  1838
huffman@47978
  1839
lemma zmod_zdiv_equality':
huffman@47978
  1840
  "(m\<Colon>int) mod n = m - (m div n) * n"
huffman@48012
  1841
  using mod_div_equality [of m n] by arith
huffman@47978
  1842
haftmann@33361
  1843
huffman@47419
  1844
subsubsection {* Proving  @{term "a div (b*c) = (a div b) div c"} *}
haftmann@33361
  1845
haftmann@33361
  1846
(*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
haftmann@33361
  1847
  7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
haftmann@33361
  1848
  to cause particular problems.*)
haftmann@33361
  1849
haftmann@33361
  1850
text{*first, four lemmas to bound the remainder for the cases b<0 and b>0 *}
haftmann@33361
  1851
haftmann@33361
  1852
lemma zmult2_lemma_aux1: "[| (0::int) < c;  b < r;  r \<le> 0 |] ==> b*c < b*(q mod c) + r"
haftmann@33361
  1853
apply (subgoal_tac "b * (c - q mod c) < r * 1")
haftmann@33361
  1854
 apply (simp add: algebra_simps)
haftmann@33361
  1855
apply (rule order_le_less_trans)
haftmann@33361
  1856
 apply (erule_tac [2] mult_strict_right_mono)
haftmann@33361
  1857
 apply (rule mult_left_mono_neg)
huffman@35208
  1858
  using add1_zle_eq[of "q mod c"]apply(simp add: algebra_simps)
haftmann@33361
  1859
 apply (simp)
haftmann@33361
  1860
apply (simp)
haftmann@33361
  1861
done
haftmann@33361
  1862
haftmann@33361
  1863
lemma zmult2_lemma_aux2:
haftmann@33361
  1864
     "[| (0::int) < c;   b < r;  r \<le> 0 |] ==> b * (q mod c) + r \<le> 0"
haftmann@33361
  1865
apply (subgoal_tac "b * (q mod c) \<le> 0")
haftmann@33361
  1866
 apply arith
haftmann@33361
  1867
apply (simp add: mult_le_0_iff)
haftmann@33361
  1868
done
haftmann@33361
  1869
haftmann@33361
  1870
lemma zmult2_lemma_aux3: "[| (0::int) < c;  0 \<le> r;  r < b |] ==> 0 \<le> b * (q mod c) + r"
haftmann@33361
  1871
apply (subgoal_tac "0 \<le> b * (q mod c) ")
haftmann@33361
  1872
apply arith
haftmann@33361
  1873
apply (simp add: zero_le_mult_iff)
haftmann@33361
  1874
done
haftmann@33361
  1875
haftmann@33361
  1876
lemma zmult2_lemma_aux4: "[| (0::int) < c; 0 \<le> r; r < b |] ==> b * (q mod c) + r < b * c"
haftmann@33361
  1877
apply (subgoal_tac "r * 1 < b * (c - q mod c) ")
haftmann@33361
  1878
 apply (simp add: right_diff_distrib)
haftmann@33361
  1879
apply (rule order_less_le_trans)
haftmann@33361
  1880
 apply (erule mult_strict_right_mono)
haftmann@33361
  1881
 apply (rule_tac [2] mult_left_mono)
haftmann@33361
  1882
  apply simp
huffman@35208
  1883
 using add1_zle_eq[of "q mod c"] apply (simp add: algebra_simps)
haftmann@33361
  1884
apply simp
haftmann@33361
  1885
done
haftmann@33361
  1886
bulwahn@47420
  1887
lemma zmult2_lemma: "[| divmod_int_rel a b (q, r); 0 < c |]  
haftmann@33361
  1888
      ==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)"
haftmann@33361
  1889
by (auto simp add: mult_ac divmod_int_rel_def linorder_neq_iff
haftmann@33361
  1890
                   zero_less_mult_iff right_distrib [symmetric] 
huffman@48010
  1891
                   zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm)
haftmann@33361
  1892
haftmann@33361
  1893
lemma zdiv_zmult2_eq: "(0::int) < c ==> a div (b*c) = (a div b) div c"
haftmann@33361
  1894
apply (case_tac "b = 0", simp)
huffman@48011
  1895
apply (force simp add: divmod_int_rel_div_mod [THEN zmult2_lemma, THEN div_int_unique])
haftmann@33361
  1896
done
haftmann@33361
  1897
haftmann@33361
  1898
lemma zmod_zmult2_eq:
haftmann@33361
  1899
     "(0::int) < c ==> a mod (b*c) = b*(a div b mod c) + a mod b"
haftmann@33361
  1900
apply (case_tac "b = 0", simp)
huffman@48011
  1901
apply (force simp add: divmod_int_rel_div_mod [THEN zmult2_lemma, THEN mod_int_unique])
haftmann@33361
  1902
done
haftmann@33361
  1903
huffman@47978
  1904
lemma div_pos_geq:
huffman@47978
  1905
  fixes k l :: int
huffman@47978
  1906
  assumes "0 < l" and "l \<le> k"
huffman@47978
  1907
  shows "k div l = (k - l) div l + 1"
huffman@47978
  1908
proof -
huffman@47978
  1909
  have "k = (k - l) + l" by simp
huffman@47978
  1910
  then obtain j where k: "k = j + l" ..
huffman@47978
  1911
  with assms show ?thesis by simp
huffman@47978
  1912
qed
huffman@47978
  1913
huffman@47978
  1914
lemma mod_pos_geq:
huffman@47978
  1915
  fixes k l :: int
huffman@47978
  1916
  assumes "0 < l" and "l \<le> k"
huffman@47978
  1917
  shows "k mod l = (k - l) mod l"
huffman@47978
  1918
proof -
huffman@47978
  1919
  have "k = (k - l) + l" by simp
huffman@47978
  1920
  then obtain j where k: "k = j + l" ..
huffman@47978
  1921
  with assms show ?thesis by simp
huffman@47978
  1922
qed
huffman@47978
  1923
haftmann@33361
  1924
huffman@47419
  1925
subsubsection {* Splitting Rules for div and mod *}
haftmann@33361
  1926
haftmann@33361
  1927
text{*The proofs of the two lemmas below are essentially identical*}
haftmann@33361
  1928
haftmann@33361
  1929
lemma split_pos_lemma:
haftmann@33361
  1930
 "0<k ==> 
haftmann@33361
  1931
    P(n div k :: int)(n mod k) = (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i j)"
haftmann@33361
  1932
apply (rule iffI, clarify)
haftmann@33361
  1933
 apply (erule_tac P="P ?x ?y" in rev_mp)  
haftmann@33361
  1934
 apply (subst mod_add_eq) 
haftmann@33361
  1935
 apply (subst zdiv_zadd1_eq) 
haftmann@33361
  1936
 apply (simp add: div_pos_pos_trivial mod_pos_pos_trivial)  
haftmann@33361
  1937
txt{*converse direction*}
haftmann@33361
  1938
apply (drule_tac x = "n div k" in spec) 
haftmann@33361
  1939
apply (drule_tac x = "n mod k" in spec, simp)
haftmann@33361
  1940
done
haftmann@33361
  1941
haftmann@33361
  1942
lemma split_neg_lemma:
haftmann@33361
  1943
 "k<0 ==>
haftmann@33361
  1944
    P(n div k :: int)(n mod k) = (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i j)"
haftmann@33361
  1945
apply (rule iffI, clarify)
haftmann@33361
  1946
 apply (erule_tac P="P ?x ?y" in rev_mp)  
haftmann@33361
  1947
 apply (subst mod_add_eq) 
haftmann@33361
  1948
 apply (subst zdiv_zadd1_eq) 
haftmann@33361
  1949
 apply (simp add: div_neg_neg_trivial mod_neg_neg_trivial)  
haftmann@33361
  1950
txt{*converse direction*}
haftmann@33361
  1951
apply (drule_tac x = "n div k" in spec) 
haftmann@33361
  1952
apply (drule_tac x = "n mod k" in spec, simp)
haftmann@33361
  1953
done
haftmann@33361
  1954
haftmann@33361
  1955
lemma split_zdiv:
haftmann@33361
  1956
 "P(n div k :: int) =
haftmann@33361
  1957
  ((k = 0 --> P 0) & 
haftmann@33361
  1958
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P i)) & 
haftmann@33361
  1959
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P i)))"
haftmann@33361
  1960
apply (case_tac "k=0", simp)
haftmann@33361
  1961
apply (simp only: linorder_neq_iff)
haftmann@33361
  1962
apply (erule disjE) 
haftmann@33361
  1963
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P x"] 
haftmann@33361
  1964
                      split_neg_lemma [of concl: "%x y. P x"])
haftmann@33361
  1965
done
haftmann@33361
  1966
haftmann@33361
  1967
lemma split_zmod:
haftmann@33361
  1968
 "P(n mod k :: int) =
haftmann@33361
  1969
  ((k = 0 --> P n) & 
haftmann@33361
  1970
   (0<k --> (\<forall>i j. 0\<le>j & j<k & n = k*i + j --> P j)) & 
haftmann@33361
  1971
   (k<0 --> (\<forall>i j. k<j & j\<le>0 & n = k*i + j --> P j)))"
haftmann@33361
  1972
apply (case_tac "k=0", simp)
haftmann@33361
  1973
apply (simp only: linorder_neq_iff)
haftmann@33361
  1974
apply (erule disjE) 
haftmann@33361
  1975
 apply (simp_all add: split_pos_lemma [of concl: "%x y. P y"] 
haftmann@33361
  1976
                      split_neg_lemma [of concl: "%x y. P y"])
haftmann@33361
  1977
done
haftmann@33361
  1978
webertj@33725
  1979
text {* Enable (lin)arith to deal with @{const div} and @{const mod}
webertj@33725
  1980
  when these are applied to some constant that is of the form
huffman@47978
  1981
  @{term "numeral k"}: *}
huffman@47978
  1982
declare split_zdiv [of _ _ "numeral k", arith_split] for k
huffman@47978
  1983
declare split_zmod [of _ _ "numeral k", arith_split] for k
haftmann@33361
  1984
haftmann@33361
  1985
huffman@48037
  1986
subsubsection {* Computing @{text "div"} and @{text "mod"} with shifting *}
huffman@48037
  1987
huffman@48037
  1988
lemma pos_divmod_int_rel_mult_2:
huffman@48037
  1989
  assumes "0 \<le> b"
huffman@48037
  1990
  assumes "divmod_int_rel a b (q, r)"
huffman@48037
  1991
  shows "divmod_int_rel (1 + 2*a) (2*b) (q, 1 + 2*r)"
huffman@48037
  1992
  using assms unfolding divmod_int_rel_def by auto
huffman@48037
  1993
huffman@48037
  1994
lemma neg_divmod_int_rel_mult_2:
huffman@48037
  1995
  assumes "b \<le> 0"
huffman@48037
  1996
  assumes "divmod_int_rel (a + 1) b (q, r)"
huffman@48037
  1997
  shows "divmod_int_rel (1 + 2*a) (2*b) (q, 2*r - 1)"
huffman@48037
  1998
  using assms unfolding divmod_int_rel_def by auto
haftmann@33361
  1999
haftmann@33361
  2000
text{*computing div by shifting *}
haftmann@33361
  2001
haftmann@33361
  2002
lemma pos_zdiv_mult_2: "(0::int) \<le> a ==> (1 + 2*b) div (2*a) = b div a"
huffman@48037
  2003
  using pos_divmod_int_rel_mult_2 [OF _ divmod_int_rel_div_mod]
huffman@48037
  2004
  by (rule div_int_unique)
haftmann@33361
  2005
boehmes@35815
  2006
lemma neg_zdiv_mult_2: 
boehmes@35815
  2007
  assumes A: "a \<le> (0::int)" shows "(1 + 2*b) div (2*a) = (b+1) div a"
huffman@48037
  2008
  using neg_divmod_int_rel_mult_2 [OF A divmod_int_rel_div_mod]
huffman@48037
  2009
  by (rule div_int_unique)
haftmann@33361
  2010
huffman@47978
  2011
(* FIXME: add rules for negative numerals *)
huffman@47978
  2012
lemma zdiv_numeral_Bit0 [simp]:
huffman@47978
  2013
  "numeral (Num.Bit0 v) div numeral (Num.Bit0 w) =
huffman@47978
  2014
    numeral v div (numeral w :: int)"
huffman@47978
  2015
  unfolding numeral.simps unfolding mult_2 [symmetric]
huffman@47978
  2016
  by (rule div_mult_mult1, simp)
huffman@47978
  2017
huffman@47978
  2018
lemma zdiv_numeral_Bit1 [simp]:
huffman@47978
  2019
  "numeral (Num.Bit1 v) div numeral (Num.Bit0 w) =  
huffman@47978
  2020
    (numeral v div (numeral w :: int))"
huffman@47978
  2021
  unfolding numeral.simps
huffman@47978
  2022
  unfolding mult_2 [symmetric] add_commute [of _ 1]
huffman@47978
  2023
  by (rule pos_zdiv_mult_2, simp)
haftmann@33361
  2024
haftmann@33361
  2025
lemma pos_zmod_mult_2:
haftmann@33361
  2026
  fixes a b :: int
haftmann@33361
  2027
  assumes "0 \<le> a"
haftmann@33361
  2028
  shows "(1 + 2 * b) mod (2 * a) = 1 + 2 * (b mod a)"
huffman@48037
  2029
  using pos_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
huffman@48037
  2030
  by (rule mod_int_unique)
haftmann@33361
  2031
haftmann@33361
  2032
lemma neg_zmod_mult_2:
haftmann@33361
  2033
  fixes a b :: int
haftmann@33361
  2034
  assumes "a \<le> 0"
haftmann@33361
  2035
  shows "(1 + 2 * b) mod (2 * a) = 2 * ((b + 1) mod a) - 1"
huffman@48037
  2036
  using neg_divmod_int_rel_mult_2 [OF assms divmod_int_rel_div_mod]
huffman@48037
  2037
  by (rule mod_int_unique)
haftmann@33361
  2038
huffman@47978
  2039
(* FIXME: add rules for negative numerals *)
huffman@47978
  2040
lemma zmod_numeral_Bit0 [simp]:
huffman@47978
  2041
  "numeral (Num.Bit0 v) mod numeral (Num.Bit0 w) =  
huffman@47978
  2042
    (2::int) * (numeral v mod numeral w)"
huffman@47978
  2043
  unfolding numeral_Bit0 [of v] numeral_Bit0 [of w]
huffman@47978
  2044
  unfolding mult_2 [symmetric] by (rule mod_mult_mult1)
huffman@47978
  2045
huffman@47978
  2046
lemma zmod_numeral_Bit1 [simp]:
huffman@47978
  2047
  "numeral (Num.Bit1 v) mod numeral (Num.Bit0 w) =
huffman@47978
  2048
    2 * (numeral v mod numeral w) + (1::int)"
huffman@47978
  2049
  unfolding numeral_Bit1 [of v] numeral_Bit0 [of w]
huffman@47978
  2050
  unfolding mult_2 [symmetric] add_commute [of _ 1]
huffman@47978
  2051
  by (rule pos_zmod_mult_2, simp)
haftmann@33361
  2052
nipkow@39729
  2053
lemma zdiv_eq_0_iff:
nipkow@39729
  2054
 "(i::int) div k = 0 \<longleftrightarrow> k=0 \<or> 0\<le>i \<and> i<k \<or> i\<le>0 \<and> k<i" (is "?L = ?R")
nipkow@39729
  2055
proof
nipkow@39729
  2056
  assume ?L
nipkow@39729
  2057
  have "?L \<longrightarrow> ?R" by (rule split_zdiv[THEN iffD2]) simp
nipkow@39729
  2058
  with `?L` show ?R by blast
nipkow@39729
  2059
next
nipkow@39729
  2060
  assume ?R thus ?L
nipkow@39729
  2061
    by(auto simp: div_pos_pos_trivial div_neg_neg_trivial)
nipkow@39729
  2062
qed
nipkow@39729
  2063
nipkow@39729
  2064
huffman@47419
  2065
subsubsection {* Quotients of Signs *}
haftmann@33361
  2066
haftmann@33361
  2067
lemma div_neg_pos_less0: "[| a < (0::int);  0 < b |] ==> a div b < 0"
haftmann@33361
  2068
apply (subgoal_tac "a div b \<le> -1", force)
haftmann@33361
  2069
apply (rule order_trans)
haftmann@33361
  2070
apply (rule_tac a' = "-1" in zdiv_mono1)
haftmann@33361
  2071
apply (auto simp add: div_eq_minus1)
haftmann@33361
  2072
done
haftmann@33361
  2073
haftmann@33361
  2074
lemma div_nonneg_neg_le0: "[| (0::int) \<le> a; b < 0 |] ==> a div b \<le> 0"
haftmann@33361
  2075
by (drule zdiv_mono1_neg, auto)
haftmann@33361
  2076
haftmann@33361
  2077
lemma div_nonpos_pos_le0: "[| (a::int) \<le> 0; b > 0 |] ==> a div b \<le> 0"
haftmann@33361
  2078
by (drule zdiv_mono1, auto)
haftmann@33361
  2079
nipkow@33798
  2080
text{* Now for some equivalences of the form @{text"a div b >=< 0 \<longleftrightarrow> \<dots>"}
nipkow@33798
  2081
conditional upon the sign of @{text a} or @{text b}. There are many more.
nipkow@33798
  2082
They should all be simp rules unless that causes too much search. *}
nipkow@33798
  2083
haftmann@33361
  2084
lemma pos_imp_zdiv_nonneg_iff: "(0::int) < b ==> (0 \<le> a div b) = (0 \<le> a)"
haftmann@33361
  2085
apply auto
haftmann@33361
  2086
apply (drule_tac [2] zdiv_mono1)
haftmann@33361
  2087
apply (auto simp add: linorder_neq_iff)
haftmann@33361
  2088
apply (simp (no_asm_use) add: linorder_not_less [symmetric])
haftmann@33361
  2089
apply (blast intro: div_neg_pos_less0)
haftmann@33361
  2090
done
haftmann@33361
  2091
haftmann@33361
  2092
lemma neg_imp_zdiv_nonneg_iff:
nipkow@33798
  2093
  "b < (0::int) ==> (0 \<le> a div b) = (a \<le> (0::int))"
huffman@48030
  2094
apply (subst div_minus_minus [symmetric])
haftmann@33361
  2095
apply (subst pos_imp_zdiv_nonneg_iff, auto)
haftmann@33361
  2096
done
haftmann@33361
  2097
haftmann@33361
  2098
(*But not (a div b \<le> 0 iff a\<le>0); consider a=1, b=2 when a div b = 0.*)
haftmann@33361
  2099
lemma pos_imp_zdiv_neg_iff: "(0::int) < b ==> (a div b < 0) = (a < 0)"
haftmann@33361
  2100
by (simp add: linorder_not_le [symmetric] pos_imp_zdiv_nonneg_iff)
haftmann@33361
  2101
nipkow@39729
  2102
lemma pos_imp_zdiv_pos_iff:
nipkow@39729
  2103
  "0<k \<Longrightarrow> 0 < (i::int) div k \<longleftrightarrow> k \<le> i"
nipkow@39729
  2104
using pos_imp_zdiv_nonneg_iff[of k i] zdiv_eq_0_iff[of i k]
nipkow@39729
  2105
by arith
nipkow@39729
  2106
haftmann@33361
  2107
(*Again the law fails for \<le>: consider a = -1, b = -2 when a div b = 0*)
haftmann@33361
  2108
lemma neg_imp_zdiv_neg_iff: "b < (0::int) ==> (a div b < 0) = (0 < a)"
haftmann@33361
  2109
by (simp add: linorder_not_le [symmetric] neg_imp_zdiv_nonneg_iff)
haftmann@33361
  2110
nipkow@33798
  2111
lemma nonneg1_imp_zdiv_pos_iff:
nipkow@33798
  2112
  "(0::int) <= a \<Longrightarrow> (a div b > 0) = (a >= b & b>0)"
nipkow@33798
  2113
apply rule
nipkow@33798
  2114
 apply rule
nipkow@33798
  2115
  using div_pos_pos_trivial[of a b]apply arith
nipkow@33798
  2116
 apply(cases "b=0")apply simp
nipkow@33798
  2117
 using div_nonneg_neg_le0[of a b]apply arith
nipkow@33798
  2118
using int_one_le_iff_zero_less[of "a div b"] zdiv_mono1[of b a b]apply simp
nipkow@33798
  2119
done
nipkow@33798
  2120
nipkow@39729
  2121
lemma zmod_le_nonneg_dividend: "(m::int) \<ge> 0 ==> m mod k \<le> m"
nipkow@39729
  2122
apply (rule split_zmod[THEN iffD2])
nipkow@45761
  2123
apply(fastforce dest: q_pos_lemma intro: split_mult_pos_le)
nipkow@39729
  2124
done
nipkow@39729
  2125
nipkow@39729
  2126
haftmann@33361
  2127
subsubsection {* The Divides Relation *}
haftmann@33361
  2128
huffman@47978
  2129
lemmas zdvd_iff_zmod_eq_0_numeral [simp] =
huffman@47978
  2130
  dvd_eq_mod_eq_0 [of "numeral x::int" "numeral y::int"]
huffman@47978
  2131
  dvd_eq_mod_eq_0 [of "numeral x::int" "neg_numeral y::int"]
huffman@47978
  2132
  dvd_eq_mod_eq_0 [of "neg_numeral x::int" "numeral y::int"]
huffman@47978
  2133
  dvd_eq_mod_eq_0 [of "neg_numeral x::int" "neg_numeral y::int"] for x y
haftmann@33361
  2134
huffman@47978
  2135
lemmas dvd_eq_mod_eq_0_numeral [simp] =
huffman@47978
  2136
  dvd_eq_mod_eq_0 [of "numeral x" "numeral y"] for x y
huffman@47978
  2137
huffman@47978
  2138
huffman@47978
  2139
subsubsection {* Further properties *}
huffman@47978
  2140
haftmann@33361
  2141
lemma zmult_div_cancel: "(n::int) * (m div n) = m - (m mod n)"
haftmann@33361
  2142
  using zmod_zdiv_equality[where a="m" and b="n"]
huffman@48013
  2143
  by (simp add: algebra_simps) (* FIXME: generalize *)
haftmann@33361
  2144
haftmann@33361
  2145
lemma zdiv_int: "int (a div b) = (int a) div (int b)"
haftmann@33361
  2146
apply (subst split_div, auto)
haftmann@33361
  2147
apply (subst split_zdiv, auto)
haftmann@33361
  2148
apply (rule_tac a="int (b * i) + int j" and b="int b" and r="int j" and r'=ja in unique_quotient)
haftmann@33361
  2149
apply (auto simp add: divmod_int_rel_def of_nat_mult)
haftmann@33361
  2150
done
haftmann@33361
  2151
haftmann@33361
  2152
lemma zmod_int: "int (a mod b) = (int a) mod (int b)"
haftmann@33361
  2153
apply (subst split_mod, auto)
haftmann@33361
  2154
apply (subst split_zmod, auto)
haftmann@33361
  2155
apply (rule_tac a="int (b * i) + int j" and b="int b" and q="int i" and q'=ia 
haftmann@33361
  2156
       in unique_remainder)
haftmann@33361
  2157
apply (auto simp add: divmod_int_rel_def of_nat_mult)
haftmann@33361
  2158
done
haftmann@33361
  2159
haftmann@33361
  2160
lemma abs_div: "(y::int) dvd x \<Longrightarrow> abs (x div y) = abs x div abs y"
haftmann@33361
  2161
by (unfold dvd_def, cases "y=0", auto simp add: abs_mult)
haftmann@33361
  2162
haftmann@33361
  2163
text{*Suggested by Matthias Daum*}
haftmann@33361
  2164
lemma int_power_div_base:
haftmann@33361
  2165
     "\<lbrakk>0 < m; 0 < k\<rbrakk> \<Longrightarrow> k ^ m div k = (k::int) ^ (m - Suc 0)"
haftmann@33361
  2166
apply (subgoal_tac "k ^ m = k ^ ((m - Suc 0) + Suc 0)")
haftmann@33361
  2167
 apply (erule ssubst)
haftmann@33361
  2168
 apply (simp only: power_add)
haftmann@33361
  2169
 apply simp_all
haftmann@33361
  2170
done
haftmann@33361
  2171
haftmann@33361
  2172
text {* by Brian Huffman *}
haftmann@33361
  2173
lemma zminus_zmod: "- ((x::int) mod m) mod m = - x mod m"
haftmann@33361
  2174
by (rule mod_minus_eq [symmetric])
haftmann@33361
  2175
haftmann@33361
  2176
lemma zdiff_zmod_left: "(x mod m - y) mod m = (x - y) mod (m::int)"
haftmann@33361
  2177
by (rule mod_diff_left_eq [symmetric])
haftmann@33361
  2178
haftmann@33361
  2179
lemma zdiff_zmod_right: "(x - y mod m) mod m = (x - y) mod (m::int)"
haftmann@33361
  2180
by (rule mod_diff_right_eq [symmetric])
haftmann@33361
  2181
haftmann@33361
  2182
lemmas zmod_simps =
haftmann@33361
  2183
  mod_add_left_eq  [symmetric]
haftmann@33361
  2184
  mod_add_right_eq [symmetric]
huffman@48013
  2185
  mod_mult_right_eq[symmetric]
haftmann@33361
  2186
  mod_mult_left_eq [symmetric]
huffman@48035
  2187
  power_mod
haftmann@33361
  2188
  zminus_zmod zdiff_zmod_left zdiff_zmod_right
haftmann@33361
  2189
haftmann@33361
  2190
text {* Distributive laws for function @{text nat}. *}
haftmann@33361
  2191
haftmann@33361
  2192
lemma nat_div_distrib: "0 \<le> x \<Longrightarrow> nat (x div y) = nat x div nat y"
haftmann@33361
  2193
apply (rule linorder_cases [of y 0])
haftmann@33361
  2194
apply (simp add: div_nonneg_neg_le0)
haftmann@33361
  2195
apply simp
haftmann@33361
  2196
apply (simp add: nat_eq_iff pos_imp_zdiv_nonneg_iff zdiv_int)
haftmann@33361
  2197
done
haftmann@33361
  2198
haftmann@33361
  2199
(*Fails if y<0: the LHS collapses to (nat z) but the RHS doesn't*)
haftmann@33361
  2200
lemma nat_mod_distrib:
haftmann@33361
  2201
  "\<lbrakk>0 \<le> x; 0 \<le> y\<rbrakk> \<Longrightarrow> nat (x mod y) = nat x mod nat y"
haftmann@33361
  2202
apply (case_tac "y = 0", simp)
haftmann@33361
  2203
apply (simp add: nat_eq_iff zmod_int)
haftmann@33361
  2204
done
haftmann@33361
  2205
haftmann@33361
  2206
text  {* transfer setup *}
haftmann@33361
  2207
haftmann@33361
  2208
lemma transfer_nat_int_functions:
haftmann@33361
  2209
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) div (nat y) = nat (x div y)"
haftmann@33361
  2210
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> (nat x) mod (nat y) = nat (x mod y)"
haftmann@33361
  2211
  by (auto simp add: nat_div_distrib nat_mod_distrib)
haftmann@33361
  2212
haftmann@33361
  2213
lemma transfer_nat_int_function_closures:
haftmann@33361
  2214
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x div y >= 0"
haftmann@33361
  2215
    "(x::int) >= 0 \<Longrightarrow> y >= 0 \<Longrightarrow> x mod y >= 0"
haftmann@33361
  2216
  apply (cases "y = 0")
haftmann@33361
  2217
  apply (auto simp add: pos_imp_zdiv_nonneg_iff)
haftmann@33361
  2218
  apply (cases "y = 0")
haftmann@33361
  2219
  apply auto
haftmann@33361
  2220
done
haftmann@33361
  2221
haftmann@35644
  2222
declare transfer_morphism_nat_int [transfer add return:
haftmann@33361
  2223
  transfer_nat_int_functions
haftmann@33361
  2224
  transfer_nat_int_function_closures
haftmann@33361
  2225
]
haftmann@33361
  2226
haftmann@33361
  2227
lemma transfer_int_nat_functions:
haftmann@33361
  2228
    "(int x) div (int y) = int (x div y)"
haftmann@33361
  2229
    "(int x) mod (int y) = int (x mod y)"
haftmann@33361
  2230
  by (auto simp add: zdiv_int zmod_int)
haftmann@33361
  2231
haftmann@33361
  2232
lemma transfer_int_nat_function_closures:
haftmann@33361
  2233
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x div y)"
haftmann@33361
  2234
    "is_nat x \<Longrightarrow> is_nat y \<Longrightarrow> is_nat (x mod y)"
haftmann@33361
  2235
  by (simp_all only: is_nat_def transfer_nat_int_function_closures)
haftmann@33361
  2236
haftmann@35644
  2237
declare transfer_morphism_int_nat [transfer add return:
haftmann@33361
  2238
  transfer_int_nat_functions
haftmann@33361
  2239
  transfer_int_nat_function_closures
haftmann@33361
  2240
]
haftmann@33361
  2241
haftmann@33361
  2242
text{*Suggested by Matthias Daum*}
haftmann@33361
  2243
lemma int_div_less_self: "\<lbrakk>0 < x; 1 < k\<rbrakk> \<Longrightarrow> x div k < (x::int)"
haftmann@33361
  2244
apply (subgoal_tac "nat x div nat k < nat x")
nipkow@34225
  2245
 apply (simp add: nat_div_distrib [symmetric])
haftmann@33361
  2246
apply (rule Divides.div_less_dividend, simp_all)
haftmann@33361
  2247
done
haftmann@33361
  2248
haftmann@35668
  2249
lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y"
haftmann@35668
  2250
proof
haftmann@35668
  2251
  assume H: "x mod n = y mod n"
haftmann@35668
  2252
  hence "x mod n - y mod n = 0" by simp
haftmann@35668
  2253
  hence "(x mod n - y mod n) mod n = 0" by simp 
haftmann@35668
  2254
  hence "(x - y) mod n = 0" by (simp add: mod_diff_eq[symmetric])
haftmann@35668
  2255
  thus "n dvd x - y" by (simp add: dvd_eq_mod_eq_0)
haftmann@35668
  2256
next
haftmann@35668
  2257
  assume H: "n dvd x - y"
haftmann@35668
  2258
  then obtain k where k: "x-y = n*k" unfolding dvd_def by blast
haftmann@35668
  2259
  hence "x = n*k + y" by simp
haftmann@35668
  2260
  hence "x mod n = (n*k + y) mod n" by simp
haftmann@35668
  2261
  thus "x mod n = y mod n" by (simp add: mod_add_left_eq)
haftmann@35668
  2262
qed
haftmann@35668
  2263
haftmann@35668
  2264
lemma nat_mod_eq_lemma: assumes xyn: "(x::nat) mod n = y  mod n" and xy:"y \<le> x"
haftmann@35668
  2265
  shows "\<exists>q. x = y + n * q"
haftmann@35668
  2266
proof-
haftmann@35668
  2267
  from xy have th: "int x - int y = int (x - y)" by simp 
haftmann@35668
  2268
  from xyn have "int x mod int n = int y mod int n" 
huffman@47419
  2269
    by (simp add: zmod_int [symmetric])
haftmann@35668
  2270
  hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) 
haftmann@35668
  2271
  hence "n dvd x - y" by (simp add: th zdvd_int)
haftmann@35668
  2272
  then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
haftmann@35668
  2273
qed
haftmann@35668
  2274
haftmann@35668
  2275
lemma nat_mod_eq_iff: "(x::nat) mod n = y mod n \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" 
haftmann@35668
  2276
  (is "?lhs = ?rhs")
haftmann@35668
  2277
proof
haftmann@35668
  2278
  assume H: "x mod n = y mod n"
haftmann@35668
  2279
  {assume xy: "x \<le> y"
haftmann@35668
  2280
    from H have th: "y mod n = x mod n" by simp
haftmann@35668
  2281
    from nat_mod_eq_lemma[OF th xy] have ?rhs 
haftmann@35668
  2282
      apply clarify  apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
haftmann@35668
  2283
  moreover
haftmann@35668
  2284
  {assume xy: "y \<le> x"
haftmann@35668
  2285
    from nat_mod_eq_lemma[OF H xy] have ?rhs 
haftmann@35668
  2286
      apply clarify  apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
haftmann@35668
  2287
  ultimately  show ?rhs using linear[of x y] by blast  
haftmann@35668
  2288
next
haftmann@35668
  2289
  assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
haftmann@35668
  2290
  hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
haftmann@35668
  2291
  thus  ?lhs by simp
haftmann@35668
  2292
qed
haftmann@35668
  2293
huffman@47978
  2294
lemma div_nat_numeral [simp]:
huffman@47978
  2295
  "(numeral v :: nat) div numeral v' = nat (numeral v div numeral v')"
haftmann@35668
  2296
  by (simp add: nat_div_distrib)
haftmann@35668
  2297
huffman@47978
  2298
lemma one_div_nat_numeral [simp]:
huffman@47978
  2299
  "Suc 0 div numeral v' = nat (1 div numeral v')"
huffman@47978
  2300
  by (subst nat_div_distrib, simp_all)
huffman@47978
  2301
huffman@47978
  2302
lemma mod_nat_numeral [simp]:
huffman@47978
  2303
  "(numeral v :: nat) mod numeral v' = nat (numeral v mod numeral v')"
haftmann@35668
  2304
  by (simp add: nat_mod_distrib)
haftmann@35668
  2305
huffman@47978
  2306
lemma one_mod_nat_numeral [simp]:
huffman@47978
  2307
  "Suc 0 mod numeral v' = nat (1 mod numeral v')"
huffman@47978
  2308
  by (subst nat_mod_distrib) simp_all
huffman@47978
  2309
huffman@47978
  2310
lemma mod_2_not_eq_zero_eq_one_int:
huffman@47978
  2311
  fixes k :: int
huffman@47978
  2312
  shows "k mod 2 \<noteq> 0 \<longleftrightarrow> k mod 2 = 1"
huffman@47978
  2313
  by auto
huffman@47978
  2314
huffman@47978
  2315
huffman@47978
  2316
subsubsection {* Tools setup *}
huffman@47978
  2317
huffman@47978
  2318
text {* Nitpick *}
haftmann@35668
  2319
blanchet@42663
  2320
lemmas [nitpick_unfold] = dvd_eq_mod_eq_0 mod_div_equality' zmod_zdiv_equality'
haftmann@35668
  2321
haftmann@35668
  2322
haftmann@35668
  2323
subsubsection {* Code generation *}
haftmann@35668
  2324
haftmann@35668
  2325
definition pdivmod :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where
haftmann@35668
  2326
  "pdivmod k l = (\<bar>k\<bar> div \<bar>l\<bar>, \<bar>k\<bar> mod \<bar>l\<bar>)"
haftmann@35668
  2327
haftmann@35668
  2328
lemma pdivmod_posDivAlg [code]:
haftmann@35668
  2329
  "pdivmod k l = (if l = 0 then (0, \<bar>k\<bar>) else posDivAlg \<bar>k\<bar> \<bar>l\<bar>)"
haftmann@35668
  2330
by (subst posDivAlg_div_mod) (simp_all add: pdivmod_def)
haftmann@35668
  2331
haftmann@35668
  2332
lemma divmod_int_pdivmod: "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
haftmann@35668
  2333
  apsnd ((op *) (sgn l)) (if 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0
haftmann@35668
  2334
    then pdivmod k l
haftmann@35668
  2335
    else (let (r, s) = pdivmod k l in
huffman@47978
  2336
       if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
haftmann@35668
  2337
proof -
haftmann@35668
  2338
  have aux: "\<And>q::int. - k = l * q \<longleftrightarrow> k = l * - q" by auto
haftmann@35668
  2339
  show ?thesis
haftmann@35668
  2340
    by (simp add: divmod_int_mod_div pdivmod_def)
haftmann@35668
  2341
      (auto simp add: aux not_less not_le zdiv_zminus1_eq_if
haftmann@35668
  2342
      zmod_zminus1_eq_if zdiv_zminus2_eq_if zmod_zminus2_eq_if)
haftmann@35668
  2343
qed
haftmann@35668
  2344
haftmann@35668
  2345
lemma divmod_int_code [code]: "divmod_int k l = (if k = 0 then (0, 0) else if l = 0 then (0, k) else
haftmann@35668
  2346
  apsnd ((op *) (sgn l)) (if sgn k = sgn l
haftmann@35668
  2347
    then pdivmod k l
haftmann@35668
  2348
    else (let (r, s) = pdivmod k l in
haftmann@35668
  2349
      if s = 0 then (- r, 0) else (- r - 1, \<bar>l\<bar> - s))))"
haftmann@35668
  2350
proof -
haftmann@35668
  2351
  have "k \<noteq> 0 \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> 0 < l \<and> 0 \<le> k \<or> l < 0 \<and> k < 0 \<longleftrightarrow> sgn k = sgn l"
haftmann@35668
  2352
    by (auto simp add: not_less sgn_if)
haftmann@35668
  2353
  then show ?thesis by (simp add: divmod_int_pdivmod)
haftmann@35668
  2354
qed
haftmann@33361
  2355
haftmann@33364
  2356
code_modulename SML
haftmann@33364
  2357
  Divides Arith
haftmann@33364
  2358
haftmann@33364
  2359
code_modulename OCaml
haftmann@33364
  2360
  Divides Arith
haftmann@33364
  2361
haftmann@33364
  2362
code_modulename Haskell
haftmann@33364
  2363
  Divides Arith
haftmann@33364
  2364
haftmann@33361
  2365
end