doc-src/TutorialI/basics.tex
author nipkow
Tue, 25 Apr 2000 08:09:10 +0200
changeset 8771 026f37a86ea7
parent 8743 3253c6046d57
child 9541 d17c0b34d5c8
permissions -rw-r--r--
*** empty log message ***
nipkow@8743
     1
\chapter{Basic Concepts}
nipkow@8743
     2
nipkow@8743
     3
\section{Introduction}
nipkow@8743
     4
nipkow@8743
     5
This is a tutorial on how to use Isabelle/HOL as a specification and
nipkow@8743
     6
verification system. Isabelle is a generic system for implementing logical
nipkow@8743
     7
formalisms, and Isabelle/HOL is the specialization of Isabelle for
nipkow@8743
     8
HOL, which abbreviates Higher-Order Logic. We introduce HOL step by step
nipkow@8743
     9
following the equation
nipkow@8743
    10
\[ \mbox{HOL} = \mbox{Functional Programming} + \mbox{Logic}. \]
nipkow@8743
    11
We assume that the reader is familiar with the basic concepts of both fields.
nipkow@8743
    12
For excellent introductions to functional programming consult the textbooks
nipkow@8743
    13
by Bird and Wadler~\cite{Bird-Wadler} or Paulson~\cite{paulson-ml2}.  Although
nipkow@8743
    14
this tutorial initially concentrates on functional programming, do not be
nipkow@8743
    15
misled: HOL can express most mathematical concepts, and functional
nipkow@8743
    16
programming is just one particularly simple and ubiquitous instance.
nipkow@8743
    17
nipkow@8743
    18
This tutorial introduces HOL via Isabelle/Isar~\cite{isabelle-isar-ref},
nipkow@8743
    19
which is an extension of Isabelle~\cite{paulson-isa-book} with structured
nipkow@8743
    20
proofs.\footnote{Thus the full name of the system should be
nipkow@8743
    21
  Isabelle/Isar/HOL, but that is a bit of a mouthful.} The most noticeable
nipkow@8743
    22
difference to classical Isabelle (which is the basis of another version of
nipkow@8743
    23
this tutorial) is the replacement of the ML level by a dedicated language for
nipkow@8743
    24
definitions and proofs.
nipkow@8743
    25
nipkow@8743
    26
A tutorial is by definition incomplete.  Currently the tutorial only
nipkow@8743
    27
introduces the rudiments of Isar's proof language. To fully exploit the power
nipkow@8743
    28
of Isar you need to consult the Isabelle/Isar Reference
nipkow@8743
    29
Manual~\cite{isabelle-isar-ref}. If you want to use Isabelle's ML level
nipkow@8743
    30
directly (for example for writing your own proof procedures) see the Isabelle
nipkow@8743
    31
Reference Manual~\cite{isabelle-ref}; for details relating to HOL see the
nipkow@8743
    32
Isabelle/HOL manual~\cite{isabelle-HOL}. All manuals have a comprehensive
nipkow@8743
    33
index.
nipkow@8743
    34
nipkow@8743
    35
\section{Theories}
nipkow@8743
    36
\label{sec:Basic:Theories}
nipkow@8743
    37
nipkow@8743
    38
Working with Isabelle means creating theories. Roughly speaking, a
nipkow@8743
    39
\bfindex{theory} is a named collection of types, functions, and theorems,
nipkow@8743
    40
much like a module in a programming language or a specification in a
nipkow@8743
    41
specification language. In fact, theories in HOL can be either. The general
nipkow@8743
    42
format of a theory \texttt{T} is
nipkow@8743
    43
\begin{ttbox}
nipkow@8743
    44
theory T = B\(@1\) + \(\cdots\) + B\(@n\):
nipkow@8743
    45
\(\textit{declarations, definitions, and proofs}\)
nipkow@8743
    46
end
nipkow@8743
    47
\end{ttbox}
nipkow@8743
    48
where \texttt{B}$@1$, \dots, \texttt{B}$@n$ are the names of existing
nipkow@8743
    49
theories that \texttt{T} is based on and \texttt{\textit{declarations,
nipkow@8743
    50
    definitions, and proofs}} represents the newly introduced concepts
nipkow@8771
    51
(types, functions etc.) and proofs about them. The \texttt{B}$@i$ are the
nipkow@8743
    52
direct \textbf{parent theories}\indexbold{parent theory} of \texttt{T}.
nipkow@8743
    53
Everything defined in the parent theories (and their parents \dots) is
nipkow@8743
    54
automatically visible. To avoid name clashes, identifiers can be
nipkow@8743
    55
\textbf{qualified} by theory names as in \texttt{T.f} and
nipkow@8743
    56
\texttt{B.f}.\indexbold{identifier!qualified} Each theory \texttt{T} must
nipkow@8771
    57
reside in a \bfindex{theory file} named \texttt{T.thy}.
nipkow@8743
    58
nipkow@8743
    59
This tutorial is concerned with introducing you to the different linguistic
nipkow@8743
    60
constructs that can fill \textit{\texttt{declarations, definitions, and
nipkow@8743
    61
    proofs}} in the above theory template.  A complete grammar of the basic
nipkow@8743
    62
constructs is found in the Isabelle/Isar Reference Manual.
nipkow@8743
    63
nipkow@8743
    64
HOL's theory library is available online at
nipkow@8743
    65
\begin{center}\small
nipkow@8743
    66
    \url{http://isabelle.in.tum.de/library/}
nipkow@8743
    67
\end{center}
nipkow@8743
    68
and is recommended browsing.
nipkow@8743
    69
\begin{warn}
nipkow@8743
    70
  HOL contains a theory \ttindexbold{Main}, the union of all the basic
nipkow@8743
    71
  predefined theories like arithmetic, lists, sets, etc.\ (see the online
nipkow@8743
    72
  library).  Unless you know what you are doing, always include \texttt{Main}
nipkow@8743
    73
  as a direct or indirect parent theory of all your theories.
nipkow@8743
    74
\end{warn}
nipkow@8743
    75
nipkow@8743
    76
nipkow@8743
    77
\section{Types, terms and formulae}
nipkow@8743
    78
\label{sec:TypesTermsForms}
nipkow@8743
    79
\indexbold{type}
nipkow@8743
    80
nipkow@8771
    81
Embedded in a theory are the types, terms and formulae of HOL. HOL is a typed
nipkow@8771
    82
logic whose type system resembles that of functional programming languages
nipkow@8771
    83
like ML or Haskell. Thus there are
nipkow@8743
    84
\begin{description}
nipkow@8771
    85
\item[base types,] in particular \isaindex{bool}, the type of truth values,
nipkow@8771
    86
and \isaindex{nat}, the type of natural numbers.
nipkow@8771
    87
\item[type constructors,] in particular \isaindex{list}, the type of
nipkow@8771
    88
lists, and \isaindex{set}, the type of sets. Type constructors are written
nipkow@8771
    89
postfix, e.g.\ \isa{(nat)list} is the type of lists whose elements are
nipkow@8743
    90
natural numbers. Parentheses around single arguments can be dropped (as in
nipkow@8771
    91
\isa{nat list}), multiple arguments are separated by commas (as in
nipkow@8771
    92
\isa{(bool,nat)ty}).
nipkow@8743
    93
\item[function types,] denoted by \isasymFun\indexbold{$IsaFun@\isasymFun}.
nipkow@8771
    94
  In HOL \isasymFun\ represents \emph{total} functions only. As is customary,
nipkow@8771
    95
  \isa{$\tau@1$ \isasymFun~$\tau@2$ \isasymFun~$\tau@3$} means
nipkow@8771
    96
  \isa{$\tau@1$ \isasymFun~($\tau@2$ \isasymFun~$\tau@3$)}. Isabelle also
nipkow@8771
    97
  supports the notation \isa{[$\tau@1,\dots,\tau@n$] \isasymFun~$\tau$}
nipkow@8771
    98
  which abbreviates \isa{$\tau@1$ \isasymFun~$\cdots$ \isasymFun~$\tau@n$
nipkow@8743
    99
    \isasymFun~$\tau$}.
nipkow@8771
   100
\item[type variables,]\indexbold{type variable}\indexbold{variable!type}
nipkow@8771
   101
  denoted by \isaindexbold{'a}, \isa{'b} etc., just like in ML. They give rise
nipkow@8771
   102
  to polymorphic types like \isa{'a \isasymFun~'a}, the type of the identity
nipkow@8771
   103
  function.
nipkow@8743
   104
\end{description}
nipkow@8743
   105
\begin{warn}
nipkow@8743
   106
  Types are extremely important because they prevent us from writing
nipkow@8743
   107
  nonsense.  Isabelle insists that all terms and formulae must be well-typed
nipkow@8743
   108
  and will print an error message if a type mismatch is encountered. To
nipkow@8743
   109
  reduce the amount of explicit type information that needs to be provided by
nipkow@8743
   110
  the user, Isabelle infers the type of all variables automatically (this is
nipkow@8743
   111
  called \bfindex{type inference}) and keeps quiet about it. Occasionally
nipkow@8743
   112
  this may lead to misunderstandings between you and the system. If anything
nipkow@8743
   113
  strange happens, we recommend to set the \rmindex{flag}
nipkow@8743
   114
  \ttindexbold{show_types} that tells Isabelle to display type information
nipkow@8743
   115
  that is usually suppressed: simply type
nipkow@8743
   116
\begin{ttbox}
nipkow@8743
   117
ML "set show_types"
nipkow@8743
   118
\end{ttbox}
nipkow@8743
   119
nipkow@8743
   120
\noindent
nipkow@8743
   121
This can be reversed by \texttt{ML "reset show_types"}. Various other flags
nipkow@8771
   122
can be set and reset in the same manner.\indexbold{flag!(re)setting}
nipkow@8743
   123
\end{warn}
nipkow@8743
   124
nipkow@8743
   125
nipkow@8743
   126
\textbf{Terms}\indexbold{term} are formed as in functional programming by
nipkow@8771
   127
applying functions to arguments. If \isa{f} is a function of type
nipkow@8771
   128
\isa{$\tau@1$ \isasymFun~$\tau@2$} and \isa{t} is a term of type
nipkow@8771
   129
$\tau@1$ then \isa{f~t} is a term of type $\tau@2$. HOL also supports
nipkow@8771
   130
infix functions like \isa{+} and some basic constructs from functional
nipkow@8743
   131
programming:
nipkow@8743
   132
\begin{description}
nipkow@8771
   133
\item[\isa{if $b$ then $t@1$ else $t@2$}]\indexbold{*if}
nipkow@8743
   134
means what you think it means and requires that
nipkow@8771
   135
$b$ is of type \isa{bool} and $t@1$ and $t@2$ are of the same type.
nipkow@8771
   136
\item[\isa{let $x$ = $t$ in $u$}]\indexbold{*let}
nipkow@8743
   137
is equivalent to $u$ where all occurrences of $x$ have been replaced by
nipkow@8743
   138
$t$. For example,
nipkow@8771
   139
\isa{let x = 0 in x+x} is equivalent to \isa{0+0}. Multiple bindings are separated
nipkow@8771
   140
by semicolons: \isa{let $x@1$ = $t@1$; \dots; $x@n$ = $t@n$ in $u$}.
nipkow@8771
   141
\item[\isa{case $e$ of $c@1$ \isasymFun~$e@1$ |~\dots~| $c@n$ \isasymFun~$e@n$}]
nipkow@8743
   142
\indexbold{*case}
nipkow@8771
   143
evaluates to $e@i$ if $e$ is of the form $c@i$.
nipkow@8743
   144
\end{description}
nipkow@8743
   145
nipkow@8743
   146
Terms may also contain
nipkow@8743
   147
\isasymlambda-abstractions\indexbold{$Isalam@\isasymlambda}. For example,
nipkow@8771
   148
\isa{\isasymlambda{}x.~x+1} is the function that takes an argument \isa{x} and
nipkow@8771
   149
returns \isa{x+1}. Instead of
nipkow@8771
   150
\isa{\isasymlambda{}x.\isasymlambda{}y.\isasymlambda{}z.~$t$} we can write
nipkow@8771
   151
\isa{\isasymlambda{}x~y~z.~$t$}.
nipkow@8743
   152
nipkow@8771
   153
\textbf{Formulae}\indexbold{formula} are terms of type \isaindexbold{bool}.
nipkow@8771
   154
There are the basic constants \isaindexbold{True} and \isaindexbold{False} and
nipkow@8771
   155
the usual logical connectives (in decreasing order of priority):
nipkow@8771
   156
\indexboldpos{\isasymnot}{$HOL0not}, \indexboldpos{\isasymand}{$HOL0and},
nipkow@8771
   157
\indexboldpos{\isasymor}{$HOL0or}, and \indexboldpos{\isasymimp}{$HOL0imp},
nipkow@8743
   158
all of which (except the unary \isasymnot) associate to the right. In
nipkow@8771
   159
particular \isa{A \isasymimp~B \isasymimp~C} means \isa{A \isasymimp~(B
nipkow@8771
   160
  \isasymimp~C)} and is thus logically equivalent to \isa{A \isasymand~B
nipkow@8771
   161
  \isasymimp~C} (which is \isa{(A \isasymand~B) \isasymimp~C}).
nipkow@8743
   162
nipkow@8743
   163
Equality is available in the form of the infix function
nipkow@8771
   164
\isa{=}\indexbold{$HOL0eq@\texttt{=}} of type \isa{'a \isasymFun~'a
nipkow@8771
   165
  \isasymFun~bool}. Thus \isa{$t@1$ = $t@2$} is a formula provided $t@1$
nipkow@8743
   166
and $t@2$ are terms of the same type. In case $t@1$ and $t@2$ are of type
nipkow@8771
   167
\isa{bool}, \isa{=} acts as if-and-only-if. The formula
nipkow@8771
   168
\isa{$t@1$~\isasymnoteq~$t@2$} is merely an abbreviation for
nipkow@8771
   169
\isa{\isasymnot($t@1$ = $t@2$)}.
nipkow@8743
   170
nipkow@8743
   171
The syntax for quantifiers is
nipkow@8771
   172
\isa{\isasymforall{}x.~$P$}\indexbold{$HOL0All@\isasymforall} and
nipkow@8771
   173
\isa{\isasymexists{}x.~$P$}\indexbold{$HOL0Ex@\isasymexists}.  There is
nipkow@8771
   174
even \isa{\isasymuniqex{}x.~$P$}\index{$HOL0ExU@\isasymuniqex|bold}, which
nipkow@8771
   175
means that there exists exactly one \isa{x} that satisfies \isa{$P$}.  Nested
nipkow@8771
   176
quantifications can be abbreviated: \isa{\isasymforall{}x~y~z.~$P$} means
nipkow@8771
   177
\isa{\isasymforall{}x.\isasymforall{}y.\isasymforall{}z.~$P$}.
nipkow@8743
   178
nipkow@8743
   179
Despite type inference, it is sometimes necessary to attach explicit
nipkow@8771
   180
\textbf{type constraints}\indexbold{type constraint} to a term.  The syntax is
nipkow@8771
   181
\isa{$t$::$\tau$} as in \isa{x < (y::nat)}. Note that
nipkow@8771
   182
\ttindexboldpos{::}{$Isalamtc} binds weakly and should therefore be enclosed
nipkow@8771
   183
in parentheses: \isa{x < y::nat} is ill-typed because it is interpreted as
nipkow@8771
   184
\isa{(x < y)::nat}. The main reason for type constraints are overloaded
nipkow@8771
   185
functions like \isa{+}, \isa{*} and \isa{<}. (See \S\ref{sec:TypeClasses} for
nipkow@8771
   186
a full discussion of overloading.)
nipkow@8743
   187
nipkow@8743
   188
\begin{warn}
nipkow@8743
   189
In general, HOL's concrete syntax tries to follow the conventions of
nipkow@8743
   190
functional programming and mathematics. Below we list the main rules that you
nipkow@8743
   191
should be familiar with to avoid certain syntactic traps. A particular
nipkow@8743
   192
problem for novices can be the priority of operators. If you are unsure, use
nipkow@8743
   193
more rather than fewer parentheses. In those cases where Isabelle echoes your
nipkow@8743
   194
input, you can see which parentheses are dropped---they were superfluous. If
nipkow@8743
   195
you are unsure how to interpret Isabelle's output because you don't know
nipkow@8743
   196
where the (dropped) parentheses go, set (and possibly reset) the \rmindex{flag}
nipkow@8743
   197
\ttindexbold{show_brackets}:
nipkow@8743
   198
\begin{ttbox}
nipkow@8743
   199
ML "set show_brackets"; \(\dots\); ML "reset show_brackets";
nipkow@8743
   200
\end{ttbox}
nipkow@8743
   201
\end{warn}
nipkow@8743
   202
nipkow@8743
   203
\begin{itemize}
nipkow@8743
   204
\item
nipkow@8771
   205
Remember that \isa{f t u} means \isa{(f t) u} and not \isa{f(t u)}!
nipkow@8743
   206
\item
nipkow@8771
   207
Isabelle allows infix functions like \isa{+}. The prefix form of function
nipkow@8771
   208
application binds more strongly than anything else and hence \isa{f~x + y}
nipkow@8771
   209
means \isa{(f~x)~+~y} and not \isa{f(x+y)}.
nipkow@8743
   210
\item Remember that in HOL if-and-only-if is expressed using equality.  But
nipkow@8743
   211
  equality has a high priority, as befitting a relation, while if-and-only-if
nipkow@8771
   212
  typically has the lowest priority.  Thus, \isa{\isasymnot~\isasymnot~P =
nipkow@8771
   213
    P} means \isa{\isasymnot\isasymnot(P = P)} and not
nipkow@8771
   214
  \isa{(\isasymnot\isasymnot P) = P}. When using \isa{=} to mean
nipkow@8771
   215
  logical equivalence, enclose both operands in parentheses, as in \isa{(A
nipkow@8743
   216
    \isasymand~B) = (B \isasymand~A)}.
nipkow@8743
   217
\item
nipkow@8743
   218
Constructs with an opening but without a closing delimiter bind very weakly
nipkow@8743
   219
and should therefore be enclosed in parentheses if they appear in subterms, as
nipkow@8771
   220
in \isa{f = (\isasymlambda{}x.~x)}. This includes \isaindex{if},
nipkow@8771
   221
\isaindex{let}, \isaindex{case}, \isa{\isasymlambda}, and quantifiers.
nipkow@8743
   222
\item
nipkow@8771
   223
Never write \isa{\isasymlambda{}x.x} or \isa{\isasymforall{}x.x=x}
nipkow@8771
   224
because \isa{x.x} is always read as a single qualified identifier that
nipkow@8771
   225
refers to an item \isa{x} in theory \isa{x}. Write
nipkow@8771
   226
\isa{\isasymlambda{}x.~x} and \isa{\isasymforall{}x.~x=x} instead.
nipkow@8771
   227
\item Identifiers\indexbold{identifier} may contain \isa{_} and \isa{'}.
nipkow@8743
   228
\end{itemize}
nipkow@8743
   229
nipkow@8771
   230
For the sake of readability the usual mathematical symbols are used throughout
nipkow@8771
   231
the tutorial. Their ASCII-equivalents are shown in figure~\ref{fig:ascii} in
nipkow@8771
   232
the appendix.
nipkow@8771
   233
nipkow@8743
   234
nipkow@8743
   235
\section{Variables}
nipkow@8743
   236
\label{sec:variables}
nipkow@8743
   237
\indexbold{variable}
nipkow@8743
   238
nipkow@8743
   239
Isabelle distinguishes free and bound variables just as is customary. Bound
nipkow@8743
   240
variables are automatically renamed to avoid clashes with free variables. In
nipkow@8743
   241
addition, Isabelle has a third kind of variable, called a \bfindex{schematic
nipkow@8743
   242
  variable}\indexbold{variable!schematic} or \bfindex{unknown}, which starts
nipkow@8771
   243
with a \isa{?}.  Logically, an unknown is a free variable. But it may be
nipkow@8743
   244
instantiated by another term during the proof process. For example, the
nipkow@8771
   245
mathematical theorem $x = x$ is represented in Isabelle as \isa{?x = ?x},
nipkow@8743
   246
which means that Isabelle can instantiate it arbitrarily. This is in contrast
nipkow@8743
   247
to ordinary variables, which remain fixed. The programming language Prolog
nipkow@8743
   248
calls unknowns {\em logical\/} variables.
nipkow@8743
   249
nipkow@8743
   250
Most of the time you can and should ignore unknowns and work with ordinary
nipkow@8743
   251
variables. Just don't be surprised that after you have finished the proof of
nipkow@8743
   252
a theorem, Isabelle will turn your free variables into unknowns: it merely
nipkow@8743
   253
indicates that Isabelle will automatically instantiate those unknowns
nipkow@8743
   254
suitably when the theorem is used in some other proof.
nipkow@8743
   255
\begin{warn}
nipkow@8771
   256
  If you use \isa{?}\index{$HOL0Ex@\texttt{?}} as an existential
nipkow@8771
   257
  quantifier, it needs to be followed by a space. Otherwise \isa{?x} is
nipkow@8743
   258
  interpreted as a schematic variable.
nipkow@8743
   259
\end{warn}
nipkow@8743
   260
nipkow@8771
   261
\section{Interaction and interfaces}
nipkow@8771
   262
nipkow@8771
   263
Interaction with Isabelle can either occur at the shell level or through more
nipkow@8771
   264
advanced interfaces. To keep the tutorial independent of the interface we
nipkow@8771
   265
have phrased the description of the intraction in a neutral language. For
nipkow@8771
   266
example, the phrase ``to abandon a proof'' means to type \isacommand{oops} at the
nipkow@8771
   267
shell level, which is explained the first time the phrase is used. Other
nipkow@8771
   268
interfaces perform the same act by cursor movements and/or mouse clicks.
nipkow@8771
   269
Although shell-based interaction is quite feasible for the kind of proof
nipkow@8771
   270
scripts currently presented in this tutorial, the recommended interface for
nipkow@8771
   271
Isabelle/Isar is the Emacs-based \bfindex{Proof
nipkow@8771
   272
  General}~\cite{Aspinall:TACAS:2000,proofgeneral}.
nipkow@8771
   273
nipkow@8771
   274
Some interfaces (including the shell level) offer special fonts with
nipkow@8771
   275
mathematical symbols. For those that do not, remember that ASCII-equivalents
nipkow@8771
   276
are shown in figure~\ref{fig:ascii} in the appendix.
nipkow@8771
   277
nipkow@8771
   278
Finally, a word about semicolons.\indexbold{$Isar@\texttt{;}} Some interfaces,
nipkow@8771
   279
for example Proof General, require each command to be terminated by a
nipkow@8771
   280
semicolon, whereas others, for example the shell level, do not. But even at
nipkow@8771
   281
the shell level it is advisable to use semicolons to enforce that a command
nipkow@8771
   282
is executed immediately; otherwise Isabelle may wait for the next keyword
nipkow@8771
   283
before it knows that the command is complete. Note that for readibility
nipkow@8771
   284
reasons we often drop the final semicolon in the text.
nipkow@8771
   285
nipkow@8771
   286
nipkow@8743
   287
\section{Getting started}
nipkow@8743
   288
nipkow@8743
   289
Assuming you have installed Isabelle, you start it by typing \texttt{isabelle
nipkow@8743
   290
  -I HOL} in a shell window.\footnote{Simply executing \texttt{isabelle -I}
nipkow@8743
   291
  starts the default logic, which usually is already \texttt{HOL}.  This is
nipkow@8743
   292
  controlled by the \texttt{ISABELLE_LOGIC} setting, see \emph{The Isabelle
nipkow@8743
   293
    System Manual} for more details.} This presents you with Isabelle's most
nipkow@8743
   294
basic ASCII interface.  In addition you need to open an editor window to
nipkow@8743
   295
create theory files.  While you are developing a theory, we recommend to
nipkow@8743
   296
type each command into the file first and then enter it into Isabelle by
nipkow@8743
   297
copy-and-paste, thus ensuring that you have a complete record of your theory.
nipkow@8771
   298
As mentioned above, Proof General offers a much superior interface.