Polynomials in Isabelle for
the Working Mathematician

Wolfgang Schreiner, RISC Linz
Walther Neuper, TU Graz

May 16, 2014

Computer Theorem Proving is becoming indispensable for complicated or
for tedious proofs, for instance for the proof of the Four Colour Theorem
(Gonthier 2005) or for verification of safety-critical software components.
Isabelle belongs to the provers closest to industrial use.

Nevertheless, the dominating majority of mathematicians still are working
without provers, because proofs are even more demanding if done mechani-
cally and this would slow down evolution of mathematics, effectively.

The present paper describes the proof-of-concept prototype for a polyno-
mial package in Isabelle. The prototype is being developed in cooperation
with the Isabelle team at TU Munich and with an expert at ETH Zurich.
The description takes the point of view of a working mathematician, intro-
duces Isabelle’s concepts and technologies gently and gives an impression
of strengths and limitations at the state-of-the-art in Computer Theorem
Proving.

The planned polynomial package addresses an area, where the gap between
working mathematicians and Computer Theorem Proving seems rather nar-
row and evidently is most urgent: Computer Algebra proves properties of
algorithms by hand, still, while respective implementations in software are
not verified at all.

Contents

1 Introduction 2
2 An abstract polynomial for concise proofs 5
2.1 Type definitions and invariants oo 6
2.2 Polynomial algebra over algebraic structures 8
2.3 Proofs about abstract algorithms 10
3 Specific representations and efficient code 11
3.1 Distributive and recursive representation for specific algorithms 12
3.2 Automated generation of verified and efficient code 13
3.3 Readable input and output formatso 15
4 Details: logical relations between executable representations 16
4.1 Abstract representations types 16
4.2 TImplementation types 17
4.3 Monomial orders e 18
5 Conclusions for a working mathematician 18

1 Introduction

Computer Algebra (CA) is related to computer software by existence, the relation be-
tween the academic discipline and the respective software is remarkable: Academic math-
ematicians make major efforts to prove mathematical properties of algorithms. But they
do these proofs (almost) exclusively by hand and not by Computer Theorem Provers
(TPs). And then, the state-of-the-art CA software products are derived from the proved
properties without verification, that the proved properties still hold for respective imple-
mentations.

Altogether, academic CA together with CA software development are large-scale ven-
tures with great impact on science, technology and engineering; from research and con-
ception to development and optimisation a chain of human experts is involved; with
ongoing evolution of CA the chain becomes longer, the links more numerous. This
evolution increases the issue to

achieve a coherent conceptual framework and a gap-less chain of tools
from proving properties of algorithms to generation of efficient code.

The present introduction starts from the assumption, that recent releases of the the-
orem prover Isabelle [NPWO02] ! already provide both, a logical base for a framework
covering theories and algorithms in CA, as well as core technologies for the tool chain,
in particular automated code generation:

Thttp://isabelle.in.tum.de/

Mechanisation of mathematical theories TP started as an esoteric discipline with au-
tomated provers using various logical formalisms half a century ago. Today leading TPs
like Isabelle are interactive proof assistants, include a variety of automated provers and
wrap the respective formalisms uniformly. Since Formal Methods extended their scope
to hybrid systems including physical phenomena, TPs extended discrete mathematics
for computer science to various theories of mathematics. Isabelle’s standard distribution
includes theories? up to, for instance, multivariate analysis, Taylor series or Kurzweil-
Henstock Gauge Integration. For additional theory developments there is an archive of
formal proofs® .

Isabelle/Isar [Mak07] is a specification and proof language close to traditional math-
ematical notation and featuring human readable proofs?. Isabelle’s front-end already
incorporates many features expected in an IDE called PIDE[Wen12]° here. It provides a
metaphor of continuous proof checking of a versioned collection of theory sources, with
instantaneous feedback in real-time and rich semantic markup for the formal text. In
particular, the key-bindings are standard and need no adaption like good old emacs.

Isabelle is a generic framework for developing various kinds of formal logic®. For
modelling program languages most appropriate is Higher-Order Logic (HOL); thus HOL
is used for prototyping polynomials.

Abstract development of algorithms One part of the prototype’s focus is investigation,
how CA theories are applied in proofs of properties of respective algorithms. For for
such proofs an algorithm needs to be described on the same level of abstraction as
the mathematical theories. Isabelle provides a function package [Kra06]” for defining

functions in Isabelle/HOL.
The following is an abstract formulation of the Euclidean algorithm in the simplest
form (neglecting primitive polynomials etc):

function euclid :: "’a::ring_div => ’a => ’a"
where "euclid a b = (if b = 0 then a else euclid b (a mod b))"

This algorithm is particularly abstract with respect to the type constraints in the first
line: it works on type ’a::ring div which only requires division on rings, i.e. on int as
well as on ’a mpoly::ring div, a univariate polynomial with some type of coefficients.
Type polymorphism allows that 0 either denotes the integer or a polynomial; and mod

must be available for integers as well as for polynomials.

Given the above algorithm, proving the post-condition would require a lemma on
polynomials analogous to this one on integers (using a specific prover metis and several
theorems like add_commute for the proof):

lemma gcd_add_mult_int: "gcd (m::int) (k * m + n) = gcd m n"
by (metis gcd_commute_int gcd_red_int mod_mult_selfl add_commute)

http://isabelle.in.tum.de/dist/library /HOL/

3http://afp.sourceforge.net/

“http://isabelle.in.tum.de/overview.html

Shttp://isabelle.in.tum.de/dist /doc/jedit.pdf

6See the list of theory libraries at http://isabelle.in.tum.de/documentation.html.
"http://isabelle.in.tum.de/dist/Isabelle2013-2/doc/functions.pdf

The above lemma is already contained in the Isabelle distribution, the proof is optimised
with respect to shortness and not to readability.

Optimisation by specific data representations CA systems use recursive polynomial
representation for calculations in general, for instance for calculating the GCD using
Euclid’s algorithm.

Specific algorithms require specific polynomial representations for efficiency reasons.
For instance, the Grobnerbases algorithm requires distributive representation; further
optimisation of this algorithm involves specific monomial orders. Special polynomial
packages, for instance Singular [DGPS12] or SAGE® meet these requirements and allow

to select appropriate representations.

Isabelle provides a datatype package [BW99]® for datatypes as usual in functional
languages; these datatypes are perfect for modelling polynomials on different levels of
abstractions; the package is being re-implemented presently. The prototype under con-
sideration uses the new datatype package already. This is an example (which would have
worked with the old package similarly):

datatype ’a raw_poly_rec = Coeff_raw ’a | Powers_raw "(’a raw_poly_rec) list"

The above example shows an initial, “raw” version of a recursive polynomial represen-
tation, discussed more closely below.

In case verification is not the only requirement for CA algorithms, but also efficiency,
Isabelle needs to meet efficiency requirement as well; these requirements are approached
by Isabelle by automated code generation.

Mechanised generation of efficient code Functions defined by the function package as
described above are appropriate for proving their properties, but evaluation (if possible
at all) is very inefficient. This kind of evaluation within the prover would never achieve
acceptable efficiency.

Isabelle’s way to provide efficiency in computational speed or in large data-structures is
automated code generation [HN10]!°, where the proved properties of algorithms transfers
to the generated code — this is the second part of the prototype’s focus.

Present target languages of Isabelle’s code generator are SML, OCaml, Haskell and
Scala. The present introduction focuses generation to SML, because this language can
easily executed within the Isabelle PIDE. This line in an Isabelle theory produces SML
code from the function defined above as an example:

export_code gcd in SML module_name Gcd

The generated module Ged includes all auxiliary functions required by ged. If the type of
the function is specified to "int poly", the code for polynomials with integer coefficients
is generated; the module then includes a library for arbitrary precision integers.

Shttp://www.sagemath.org/doc/reference/polynomial\ rings/index.html
“http://isabelle.in.tum.de/dist /Isabelle2013-2/doc/datatypes.pdf
Ohttp://isabelle.in.tum.de/dist /Tsabelle2013-2/doc/codegen.pdf

The structure of this paper is as follows. §2 describes the prototype of an abstract poly-
nomial, which serves proofs of mathematical properties of algorithms. The description is
such, that also Isabelle’s respective mechanisms are introduced in a gentle way. §3 shows
how different polynomial representations can be used for defining specific algorithms in
order to optimise certain kinds of efficiency; it also shows how the representations inherit
properties proved for the abstract polynomial; §3.2 demonstrates automated generation
of code from different kinds of algorithms, leading to efficient code for specific purposes.
Finally §5 gives some conclusions about the present state of the prototype development
and a preview to steps planned to achieve full usability for the working mathematician.

For readers interested in hands-on experience we recommend to download Isabelle
from http://isabelle.in.tum.de and the theories of the prototype development from http:
//www.ist.tugraz.at /projects/isac/www/download /poly-proto-140506.tgz. The latter can also
be cloned from the Mercurial repository by
hg clone https://hg.risc.uni-linz.ac.at/wneuper/poly.

2 An abstract polynomial for concise proofs

In Abstract Algebra polynomials are defined as mapping from the natural numbers to
some ring. In the sequel we introduce the prototyped polynomials following a standard
book on polynomial algorithms [Win96] which defines on p.17:

Definition 1 An n-variate polynomial over the ring R is a mapping p : N — R,
(41, ,%n) = D1,y - - -, D1, Such that p1,,...,p1, =0 nearly everywhere.

The prototype definition resembles this abstract approach. Instead of “ = 0 nearly
everywhere” , Isabelle’s type of finite set models the mapping, ’a => ’b::zero denotes
a mapping from some “type” (or “set”) ’a to type ’b::zero, a type containing at least
0, “= denotes “not equal”:

typedef (’a, ’b) poly_mapping =
"{f :: ’a => ’b::zero. finite {x. f x "= O0}}"

The above mapping, confined to finitely many images not equal zero, is nested in the
definition for polynomial >a mpoly with some coefficient type ’a below: the first nat is for
a number designating a variable, the second nat designates the value of an exponent for
this variable; the inner mapping is the first argument of the outer poly mapping, where
the second argument ’a::zero concerns the coefficients of arbitrary type (confined to
contain at least zero '), UNIV is the universal set constrained by type poly mapping
(please, regard the first two lines only; the other two lines will be addressed in §2.2):

typedef ’a mpoly =
"UNIV :: ((nat, nat) poly_mapping, ’a::zero) poly_mapping set"
morphisms mapping_of MPoly

"Enhancing the structure of polynomials towards a ring will impose further assumptions on the type
of coefficients, as we shall see in §2.2 below.

Conceded, this two-step definition looks different from Def.1; in §3 and §4 we shall
discuss further challenges for Isabelle’s type system in modelling N'. However, to the
prototype developers this definition seems most appropriate for further mechanisation of
books like [Win96]. And we shall see, how these technicalities are covered in the sequel
by notations, which can immediately be understood by mathematicians.

2.1 Type definitions and invariants

The keyword typedef used above abbreviates “type definition” and has formal founda-
tions in HOL: In this logic, the definition of a new type like ’a mpoly requires a proof,
that the new type (seen as a set) is not empty. An empty type would make HOL in-
consistent. So, Isabelle proves non-emptiness of type ’a mpoly in the forth line of the
definition above, indicated by .. . In an interactive Isabelle session the cursor on the
the three lines above .. shows this proof obligation:

goal (1 subgoal):
1. 7 x. x : UNIV

Auto solve_direct: The current goal can be solved directly with
Set.UNIV_witness: 7 x. x : UNIV

For this proof obligation Isabelle finds a proof by one theorem already proved, by ? x.
x : UNIV, where ? is 3 and : is €. Thus Isabelle allows to shortcut the proof by ..

“Safe reasoning in HOL is ensured by two very restricted mechanisms for extending
the logic: one is the definition of new constants in terms of existing ones (for instance
finite); the other is the introduction of new types by identifying non-empty subsets in
existing types (for instance ’a mpoly)” [KU11].

13

Traditional textbooks like [Win96] “forget” textual preliminaries like “ = 0 nearly
everywhere” in order to reach the required level of abstraction, for instance polynomial
algebra using +, -, etc. In analogy, TP “covers” logical details like finite or poly mapping
by abstraction mechanisms like typedef. For this purpose Isabelle provides convenient
mechanisms supported by much automation. The general situation is as follows:

Rep existing
new ;—b O Type
type Abs (set of
non-empty raw elements)
subset

Figure 1: “Lifting” a new type from an existing one.

In Fig.2.1 a new type, for instance ’a mpoly, is abstracted from an existing raw type,
for instance ((nat, nat) poly mapping, ’a::zero) poly mapping. The raw type must

be proved non-empty as shown above. Between the raw type and the new type two
morphisms Rep and Abs are established; these morphisms can be named specifically, for
instance by mapping of and MPoly in ’a mpoly. The respective naming is intuitive: The
Representation of an ’a mpoly is created by mapping of, and the Abstraction of the raw
type is an MPoly (where the capital letters indicate a constructor according to Isabelle’s
coding standards).

The respective abstraction mechanism in Isabelle/HOL is called “lifting”, a mechanism
which can be generalised to so-called “quotient types” [Hom05, KU11]. The morphisms
are used to automate plenty of tedious proving by the following setup:

setup_lifting (no_code) type_definition_mpoly

This kind of setup automatically generates a series of theorems behind the scenes
(MPoly_inverse, mapping_of-inverse, MPoly_inject, mapping-of-inject, MPoly_induct, map-
ping_of-induct, MPoly_cases, mapping_of_cases, etc.) which in turn provide a high degree
of automation.

As an example, let’s see how addition is introduced in the current prototype. The
two-step definition of ’a mpoly via poly mapping is the result of attempts with respec-
tive proofs; these were confusingly complicated with a one-step definition. Now the
introduction of plus is the following, first attacking the first step on poly mapping:

lift_definition plus_poly_mapping :: "(’a::type, ’b::monoid_add) poly_mapping =>
(’a, ’b) poly_mapping => (’a, ’b) poly_mapping"
is "%f1 f2 k. f1 k + f2 k"
proof -
fix f1 £2 :: "’a => ’b"
assume "finite {k. f1 k "= O}"
and "finite {k. f2 k "= O}"
then have "finite ({k. f1 k "= 0} union {k. £f2 k "= 0})" by auto
moreover have "{x. fl1 x + f2 x "= 0} subset {k. f1 k "= 0} union {k. f2 k ~= O}"
by auto
ultimately show "finite {x. f1 x + f2 x "= 0}" by (blast intro: finite_subset)
qed

This proof is read as follows: Given is a function plus_poly mapping with two arguments
of type poly mapping returning the same type. The types of the two arguments of poly_-
mapping are constrained to (’a::type, ’b::monoid_add), i.e. the first argument is the
most general type and the second is an additive monoid. And the function is defined by
%f1 £2 k. f1 k + £2 k (where % is \), i.e. two functions applied to the same argument
k (a set of naturals denoting variables mapped with their respective exponents) and the
values £1 k and £2 k (the respective coefficients) added by +. The + can be used due to
’b: :monoid_add; the respective mechanism will be introduced in §2.2.

As soon as the proof obligation is clear, the proof itself is self-explanatory: one has
to show that the the raw type of mappings meets the type constraint, i.e. that the set
{x. f1 x + £2 x ~= 0} is finite. The proof calls two automated provers, auto and

blast; in an interactive Isabelle session the proof states can be inspected by clicking the
respective parts of the proof.

From plus_poly mapping the addition for ’a mpoly is a simple definition, where the
proof involved can be done by one point at the end:

lift_definition plus_mpoly :: "’a mpoly => ’a mpoly => ’a mpoly"
is "Groups.plus :: ((nat, nat) poly_mapping, ’a) poly_mapping => _"

A general remark on the design of basic definitions: careful design is crucial for elegance
of derived definitions and proofs. For instance, the addition as introduced above, had
only to care about the interesting case, addition of equal monomials, while all other
cases are automatically covered by the datastructure chosen for the basic definition —
just set union (which is accompanied with lots of lemmas shortening further proofs), as
seen in the proof of 1ift definition plus_poly mapping above.

And a final remark on principal benefits from typedef: this mechanism includes new
types into Isabelle/HOL’s type inference, it hides details distracting from a high-level
view (e.g. finite x. f x ~= 0 distracting from polynomial algebra) and at the same
time enforces these details as invariants: One can write concrete mappings, but no
poly mapping or ’a mpoly without proving at the same time, that the invariant holds.

2.2 Polynomial algebra over algebraic structures

A mathematician working with CA systems sees oneself bound to computation: poly-
nomials, for instance, are written in such a system in order to compute sums, products,
roots, etc. Now, polynomials defined in Isabelle are not executable per se, i.e. one
cannot compute sums of polynomials — this seems evident from the above proof of
lift_definition plus_poly_mapping.

Rather, ’a mpoly is designed for concise proofs on a level as abstract as possible. So,
the type variable ’a allows to investigate properties of polynomials with respect to the
type of their coefficients. As we have seen in 1ift_definition plus_poly mapping, these
can be constrained to abstract types like monoid_add. And what a mathematician wants
to have proved first is, that polynomials form a ring.

Isabelle’s mechanism for modelling abstract algebra are “axiomatic type classes” [NP95,
HWO7]. Some of such classes have been mentioned above already, zero and monoid_add.
The implementation of classes relevant for polynomials is found in two theories called
Groups.thy and Rings.thy '2. This is a small selection of basic classes:

class zero =
fixes zero :: ’a ("O")

class plus =

2http:/ /isabelle.in.tum.de/dist /library /HOL/Groups.html and http://isabelle.in.tum.de/dist/library/
HOL/Rings.html

fixes plus :: "’a => ’a => ’a" (infixl "+" 65)

class semigroup_add = plus +
assumes add_assoc: "(a +b) +c=a+ (b + c)"

class monoid_add = zero + semigroup_add +
assumes add_O_left: "0 + a = a"
and add_O_right: "a + 0 = a"

class cancel_semigroup_add = semigroup_add +
assumes add_left_imp_eq: "a + b=a + c =>Db = c"
assumes add_right_imp_eq: "b + a = c + a ==> Db = c"

The first two classes zero and plus introduce new syntax: zero can be written as
0 and plus can be written as infix + associating to the left. The other three classes,
semigroup_add, monoid_add and cancel _semigroup_add add logical properties as expected.

The last class cancel_semigroup_add might appear unusual. Isabelle/HOL development
introduces this class and many others as a means to group the many many lemmas.
Already from the axioms of monoid add follows the lemma 0 = x < x = 0. From
cancel semigroup_add follow a+b=a+c< b=c¢, b+ a =c+ a < b = ¢ and many
others, already proved in the Isabelle/HOL distribution.

Now, how can polynomials take profit from algebraic notation with 0, +, etc as well
as from the many many lemmas proved for the many classes? This is done by combining
lift_definition, already introduced above, with instantiation. A first example is
introduction of the zero polynomial, which is in two steps according to the two-step
definition of ’a mpoly as follows:

instantiation poly_mapping :: (type, zero) zero
begin
lift_definition zero_poly_mapping :: "(’a, ’b) poly_mapping" is "%k. 0"
by simp
instance ..
end
instantiation mpoly :: (zero) zero
begin
lift_definition zero_mpoly :: "’a mpoly"
is "0 :: ((nat, nat) poly_mapping, ’a) poly_mapping"
instance ..
end

From now on we can state that some polynomial is zero, i.e. (p::’a::zero mpoly) = 0.
Due to setup_lifting the proofs above are done automatically. For plus the respective
proof can not be done automatically, we know the proof from above p.7:

instantiation poly_mapping :: (type, monoid_add) monoid_add

begin
lift_definition plus_poly_mapping :: "(’a, ’b) poly_mapping =>
(’a, ’b) poly_mapping => (’a, ’b) poly_mapping"
is "%f1 f2 k. f1 k + £2 k"
proof -
fix f1 £2 :: "’a => ’b"
assume "finite {k. f1 k "= 0}"
and "finite {k. f2 k "= 0}"
then have "finite ({k. f1 k "= 0} union {k. f2 k "= 0})" by auto
moreover have "{x. f1 x + f2 x "= 0} subset {k. f1 k "= 0} union {k. f2 k "= O}"

by auto
ultimately show "finite {x. f1 x + £f2 x "= 0}" by (blast intro: finite_subset)
qed
instance
by intro_classes (transfer, simp add: fun_eq_iff ac_simps)+
end
instantiation mpoly :: (monoid_add) monoid_add
begin
lift_definition plus_mpoly :: "’a mpoly => ’a mpoly => ’a mpoly"
is "Groups.plus :: ((nat, nat) poly_mapping, ’a) poly_mapping => _"
instance
by intro_classes (transfer, simp add: fun_eq_iff add.assoc)+
end

Further proofs on this way are, as often, done almost automatically (explaining the
details below like (transfer, simp add: fun_ eq iff)+ is out of scope of this introduc-
tion):

instance poly_mapping :: (type, "{monoid_add, cancel_semigroup_add}") cancel_semigroup_add
by intro_classes (transfer, simp add: fun_eq_iff)+

instance mpoly :: ("{monoid_add, cancel_semigroup_add}") cancel_semigroup_add
by intro_classes (transfer, simp add: fun_eq_iff)+

Continuing this way leads to a series of mechanised proofs that polynomials form a
ring; having proved this, makes available hundreds of lemmas for rings also for polynomial
rings. And since Isabelle’s rings are associated with traditional algebraic notation one
then can write a = g*b + r also for polynomials.

2.3 Proofs about abstract algorithms

The previous section introduced Isabelle’s mechanisms for implementing the ring of
polynomials and for proving respective properties; these mechanisms also introduced
the algebraic notation on rings.

On this level of abstraction also algorithms can be defined as shown in the introduction
on p.3. Which notions are further required for algorithms on this level of abstraction, this
question is not yet closed. One basic notion is “coefficients”; so a function coeffs seems

10

useful, which extracts a respective set (see primitive below). The following notions
already have been determined as indispensable, although they are closely related to
representations: The notion “main variable” is related to recursive representation and
the notion “leading term” is related to distributive representation. These notions are
not yet implemented in the prototype, also the operations of the polynomial ring are
not all implemented. But the following notion is easily implemented by use of Isabelle’s
existing knowledge:

definition primitive :: "’a::{ring_div,Gcd} mpoly => bool"
where "primitive p <--> Gcd (coeffs p) = 1"

The introduction above in §2.1 and in §2.2 used polynomial addition as an example;
so the following simple example for an abstract algorithm uses addition, too:

definition double :: "’a::monoid_add mpoly => ’a mpoly"
where "double p = p + p"

The code above requires no hint on details of implementation or code generation, there
is no distraction from design and development of an algorithm. If a developer wants to
experiment with execution of an algorithm, some executable representation of a polyno-
mial must be input, see §3 below. In case a “wrong” representation is chosen, execution
might be inefficient but nevertheless operable.

We continue the example with the algorithm double and prove a simple theorem for
demonstration purposes:

lemma double_not_primitive:
assumes "q = double p"
shows "neg primitive q"
proof
assume "primitive q"
then have *: "Gcd (coeffs q) = 1" by (simp add: primitive_def)
from assms have "coeffs q = coeffs (double p)" by simp
then have "coeffs q = coeffs (p + p)" by (simp add: double_def)
then have "coeffs q = Groups.times 2 ¢ coeffs p" sorry
then have "Gcd (coeffs q) = 2 * Gecd (coeffs p)" sorry
then have "Gcd (coeffs q) “= 1" sorry
with * show False by simp
qed

This proof is not yet finished (which is indicated by sorry); but the proof shows, that
typedef ’a mpoly abstracted away from mappings successfully and traditional notation
can be used.

3 Specific representations and efficient code

As mentioned in the introduction on p.4, specific algorithms can enormously be optimised
by using specific data representations. Another promise for efficient code is the affinity

11

to parallelisation within the functional paradigm; Isabelle has been parallelised already,
and extension to parallelised algorithms seems straight forward; so far the prototype
development under consideration did not yet tackle this issue.

The focus of the present proof-of-concept prototype was the question, how the known
polynomial representations, the distributive and the representative, both in dense and
sparse variants respectively, the distributive with specific monomial orders, can be mod-
elled such, that

1. mathematical properties proved for abstract algorithms transfer to representations

2. representations can be selected in simple ways for code generation.

Point (1.) should be guaranteed to users of the envisaged polynomial package without
further ado; details on how this guarantee is achieved are described in §4 below.

In the sequel we describe the current state of prototyping with respect to point (2.).
The state can be called a successful proof-of-concept, but still shows bare bones of
Isabelle’s mechanisms. How these internals can be hidden by convenient notation will
be described in §3.3.

3.1 Distributive and recursive representation for specific algorithms

Given an abstract definition of an algorithm one might want to do trials with execu-
tion, without bothering with efficiency. For execution of an algorithms an executable
representations of polynomials are required for input.

Below we give four different kinds of representations, distributive dense, distributive
sparse, recursive dense and recursive sparse for one and the same polynomial, 2-x+3- 2%

definition pl :: "int mpoly" --{* distributive dense *}
where "pl = monom’ (DISTR RLEX) (Nat_Mapping.single’ DENSE 0 1) 2 +
monom’ (DISTR RLEX) (Nat_Mapping.single’ DENSE 2 4) 3"

definition p2 :: "int mpoly" --{* distributive sparse *}
where "p2 = monom’ (DISTR RLEX) (Nat_Mapping.single’ SPARSE 0 1) 2 +
monom’ (DISTR RLEX) (Nat_Mapping.single’ SPARSE 2 4) 3"

definition p3 :: "int mpoly" --{* recursive dense *}
where "p3 = monom’ (REC (%_. DENSE)) (Nat_Mapping.single’ DENSE 0 1) 2 +
monom’ (REC (%_. DENSE)) (Nat_Mapping.single’ DENSE 2 4) 3"

definition p4 :: "int mpoly" --{* recursive sparse *}
where "p4 = monom’ (REC (%_. SPARSE)) (Nat_Mapping.single’ DENSE 0 1) 2 +
monom’ (REC (%_. SPARSE)) (Nat_Mapping.single’ DENSE 2 4) 3"

The above representations still reveal internals of the rapid prototype; of course, these
will be hidden from the user in the future, see §3.3 below. These four representations
can, without any logical conflict, be input to the simple example algorithm from p.11:

value [code] "double pl" --{*result is distributive dense *}
value [code] "double p2" --{*result is distributive sparse *}

12

value [code] "double p3" --{*result is recursive dense *}
value [code] "double p4" --{#result is recursive sparse *}

The command value [code] executes double with the respective polynomial representa-
tions as arguments; execution within Isabelle sufficiently efficient for rapid prototyping),
the results are shown in an output window.

In case the developer decides, some part of an algorithm should work on a specific
representation for some reason, this can be done with very little code. For instance,
double can be determined to work on recursive representation as follows:

definition double :: "’a::monoid_add mpoly => ’a mpoly"
where "double p = rec_cast DENSE p + rec_cast DENSE p"

The cast function rec_cast performs conversion from distributive to recursive represen-
tation, in case the input is distributive (in case the input is already recursive, the cast
is the identity function). Two constants DENSE and SPARSE determine respective details
of representation.

3.2 Automated generation of verified and efficient code

In the introduction on p.4 has been mentioned, that development of algorithms is done
within the logical framework of Isabelle/HOL. Then, for gaining efficiency, from the
definitions within the logic automatically code is generated.

Isabelle’s code generator [Hafl2, HN10] is proved to preserve partial correctness: if
evaluation of a term ¢ in the target language (SML in our examples) terminates with
value v, then t = v is derivable from the respective definitions in Isabelle/HOL.

Code from an abstract algorithm is generated within one line:
export_code double in SML module_name Double

The above line exports code for executing the example function double to the target
language SML wrapped into a module Double and lists it in the output window (if no file
is specified). Inspection of the exported code is instructive, because code generation is
nicely conservative and preserves readability of the original definitions:

fun double (Al1_, A2_, A3_) p = plus_mpoly (Al_, A2_, A3_) p p;

So in the SML code the + in the original definition of double is replaced by plus_mpoly,
the 1lift_definition given on p.9 above. The additional arguments (A1_, A2_, A3.) are
best understood when comparing with the code generated from double_int shown on
p.14 below!3: A1_ becomes one_int, A2_ becomes equal_int, A3_ becomes ring_int — all
the logical properties are forwarded as arguments for appropriate implementation.

Module Double is filled with all code for checking logical properties, where type classes
as introduced in §2.2 are managed by dictionaries [HN10]. However, without specifying
the polynomial representation the code is not executable, so not further interesting here.

13Comparison of the modules Double and Double_Int is particularly interesting if done with a diff-tool.

13

Specific code for specific coefficient domains Given an algorithm with a signature
containing type variables, these can easily be fixed. For instance, the example function
double can be fixed to polynomials over int, rat and complex respectively:

definition double_int :: "int mpoly => int mpoly" --{* integers x}
where "double_int p = p + p"
export_code double_int in SML module_name Double_Int

definition double_rat :: "rat mpoly => rat mpoly" --{* rational numbers *}
where "double_rat p = p + p"
export_code double_rat in SML module_name Double_Rat

definition double_complex :: "complex mpoly => complex mpoly" --{* complex numbers *}
where "double_complex p = p + p"
export_code double_complex in SML module_name Double_Complex

The simplicity of the above procedure raises the question: what is easier to handle:
(1) an all-embracing compiled system with lots of arguments, switches etc for detailed
specification, or (2) a code generator which generates the specified code on the fly.

As already mentioned, generated code is readable such that also logical details can be
investigated. For instance, from the above definition double_int the following code is
generated:

fun double_int p = plus_mpoly (one_int, equal_int, ring_int) p p;

Above the final function double_int in the module Double_Int the following definitions
can be found within the more than thousand lines:

type ’a ring =
{ab_group_add_ring : ’a ab_group_add,
semiring O_cancel_ring : ’a semiring_O_cancel};

val ring_int =
{ab_group_add_ring = ab_group_add_int,
semiring O_cancel_ring = semiring_O_cancel_int}
int ring;

This way all the logical facts are checked. And executability is provided by Isabelle/HOL’s
own integers:

datatype int = Zero_int | Pos of num | Neg of num;

fun plus_inta (Neg m) (Neg n)
| plus_inta (Pos m) (Pos n)

Neg (plus_num m n)

Pos (plus_num m n)

In recent Isabelle versions there are mechanism to invoke arbitrary precision integers
available in some systems (like PolyML).

14

Algorithms bound to specific representations Some algorithms are particularly effi-
cient on specific polynomial representations; the Grobnerbases algorithm has been men-

tioned with respect to distributive representation.
So specific algorithms could be implemented for a specific representation in the fol-
lowing way:

definition double_int_distr :: "int poly_distr => int poly_distr"
where "double_int_distr p = p + p"
export_code double_int_distr in SML module_name Double_Int_Distr

definition double_int_rec :: "int poly_rec => int poly_rec"
where "double_int_rec p = p + p"
export_code double_int_rec in SML module_name Double_Int_Rec

The reader may note, that ’a poly_distr and ’a poly_rec are logically equivalent with
the abstract type ’a poly, see §4.1 below.

3.3 Readable input and output formats

Rapid prototyping during development of algorithms involves experimental execution;
for that purpose convenient generation of test-data is required, in our case generation of
polynomials. In the prototype executable polynomial representations are implemented
as type classes poly distr and poly rec; these are accompanied with invariants (i.e.
the set of coefficients unequal to zero is finite, etc). So lift_definition is required for
functions generating the input polynomials; these enforce the respective invariants. Such
functions are not yet implemented in the prototype, they will be named Poly Distr_-

Dense, Poly Rec_Dense, Poly Distr_Sparse and Poly Rec_Sparse.
Then execution within Isabelle/jEdit will look like as follows, if we provide double_int
with the recursive representation of 2 -« + 3 - z*:

let p = Poly_Rec_Demnse [:[:[:0, O, O, O, 3:1:1, [:[:2::int:]:]:]
in double_int p

For Poly Distr also a monomial order must be specified, see §4.3 below. While in
CA identifiers for variables usually are omitted, these might be desirable for other uses.
So there might be a representation like the following, which is already available in the
current Isabelle distribution:

lemma
fixes x y z :: "’a::comm_ring_1"
shows "2*xx + 3*z"4 =
poly (poly (poly [:[:[:0, O, O, O, 3:1:1, [:[:2:1:1:1 [:[:x:1:1) [:y:1) 2"
by (simp add: algebra_simps power_numeral_even power_numeral_odd)

What has been mentioned here about readability of input likewise holds for output;
both shall be considered in later phases of prototype development.

15

(nat =¢ nat) =¢ 'a

Al
La==>'a mpoly &=
Rec ,»= .- e e Distr
," .,~"’.7;ec—0f distr—of"*..‘ “‘
’ . . .
[. o
e Sistrofree
‘a poly-rec T a poly-distr

rec-of-distr
Coe
Powers 1 Rep-poly-distr

'a poly-rec nat-mapping (power-product x 'a) list x mo_g‘wm order
Al | rlex' 'lex‘ e

nat nat-mapping K ' '

4 L} A Y

Legend:
— constructor
- ==% pseudo constructor
—— representation function
------- » conversion function

&~ type isomorphism

Figure 2: Overview of the two representations of polynomials (¢ Andreas Lochbihler

4 Details: logical relations between executable representations

GOON .

XXX

XXXXX

4.1 Abstract representations types

XXX ...

16

type_synonym monom = "nat nat_mapping"
type_synonym ’a poly_distr_raw = "(monom * ’a) list * monom_order"
typedef ’a poly_distr =
"{(xs, cmp). c.dsorted_by (compare_vimage fst (monom_compare cmp)) xs /\
0 : snd ¢ set xs} :: ’a :: zero poly_distr_raw set"
setup_lifting type_definition_poly_distr
lift_definition Distr :: "’a :: zero poly_distr => ’a mpoly"
is "%p. Poly_Mapping.map_key Abs_nat_mapping
(let (monom_coeffs, cmp) = Rep_poly_distr p in Abs_poly_mapping (

fmonom. case c.lookup (monom_compare cmp) monom monom_coeffs of None => O | Some v => v))"

code_datatype Distr

datatype ’a raw_poly_rec = Coeff_raw ’a | Powers_raw "(’a raw_poly_rec) list"

typedef ’a poly_rec = "{p :: ’a :: zero raw_poly_rec.
no_trailing_zeros_raw_poly_rec p}"

setup_lifting (no_code) type_definition_poly_rec

function Rec_aux :: "mat => ’a :: {ring,one} poly_rec =>
((nat, nat) poly_mapping, ’a) poly_mapping"
where

"Rec_aux n (Coeff x) =

| "Rec_aux n (Powers ps)
Rec_aux (Suc n) p *
Poly_Mapping.single (Poly_Mapping.single n e) 1) ps O"

Poly_Mapping.single 0 x"
= Nat_Mapping.foldr (e p r. r +

lift_definition Rec :: "’a :: {ring, one} poly_rec => ’a mpoly"
is "Rec_aux O :: ’a poly_rec => _"

code_datatype Rec

4.2 Implementation types

17

nat =q 'b

Al
! .
Lemm? b nat-mapping €. g
Dense ,*° .-~ RSN, parse
4 o ‘.
L4 - N .
V3 . . .
R dense-of sparse-of . 3 Legend:
N)
T IR}
' sparse-of-dense W - ==» pseudo constructor
b dense < b sparse —— representation function
dense-of-sparse | v > conversion function
>~ type isomorphism
Rep-dense Rep-sparse

sparse-of-dense-impl
Ty list ¢ > (nat x 'b) list

dense-of-sparse-impl

Figure 3: Overview of the two implementation types of representations (c)Andreas
Lochbihler

XXX

typedef ’a nat_mapping = "UNIV :: (nat, ’a) poly_mapping set" ..

4.3 Monomial orders

5 Conclusions for a working mathematician

This paper is an introduction to the state-of-the-art in Computer Theorem Proving (TP)
from the point of view of a mathematicians working in the field of Computer Algebra.

The introduction proceeded alongside the discussion of a proof-of-concept prototype
for a polynomial package. This prototype has been begun in a collaborative effort be-
tween TU Munich, ETH Zurich and RISC Linz with the question:

Can present Isabelle serve Computer Algebra (CA) in implementing and verifying al-
gorithms such that resulting software is efficient enough to be taken serious in comparison
with libraries like SAGE or Singular?

18

After two months of prototyping and discussing the answer to this question is: No
principal obstacles are in sight but still lots of work is expected until positive answers
might be given by benchmarks.

Polynomials, the focus of prototyping under consideration, are a central concept in
CA and well settled from the side of mathematics. But from the side of TP there lots

of interesting questions, which are being discussed in the Isabelle developer community
[HLS14]:

What definitions of polynomial (above called the “abstract” polynomial) are ap-
propriate for concise proofs? Which lemmas are specifically required for proving
properties of algorithms?

How should the relations between abstract polynomial and representations look
like in detail?

How are representations selected for automated code generation?

Can parallelisation of algorithms compete with mutable data in efficiency? (affinity
to parallelisation is an advantage of the presented functional approach with the
advent of multi-core systems; traditionally functional programs did not compete
with imperative ones, because the latter use mutable data)

What kinds of modularisation is required for generated code of larger develop-
ments?

How can generated code be integrated into other systems such that reliability is
not hampered by technicalities nor by concept?

And already the small prototyping team encountered lots of questions, which require
further interdisciplinary cooperation, for instance:

Which are the application areas of CA most urgently calling for verified software?
And which of them can be served with least development efforts?

Which monomial orders are specifically required in which algorithms?

What is more practicable in which cases: compiled code with wide coverage and
selection of appropriate functions (as usually done in CA systems) or generic code
and ad-hoc generation of functions for specific applications (e.g. for a specific type
of coefficients)?

What are the topics, where mechanised polynomials might reach the frontiers of
research most quickly?

Finally, RISC Linz and the Isabelle experts involved in the development of the proof-of-
concept prototype presented in this paper, appear to be appropriate partners to initialise
the challenging bootstrapping process for verified software in Computer Algebra.

19

References

[BWY9]

[DGPS12]

[Haf12]

[HLS14]

[HN10]

[HomO05]

[HWO7]

[Kra06]

[KU11]

[Mak07]

[NP95]

Stefan Berghofer and Markus Wenzel. Inductive datatypes in hol - lessons
learned in formal-logic engineering. In TPHOLs, pages 19-36, 1999.

Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Schone-
mann. SINGULAR 3-1-6 — A computer algebra system for polynomial com-
putations. http://www.singular.uni-kl.de, 2012.

Florian Haftmann. Code generation from Isabelle/HOL theories. University
of Technology, Munich, 2012. Contained in the Isabelle distribution.

Florian Haftmann, Andreas Lochbihler, and Wolfgang Schreiner. Towards ab-
stract and executable multivariate polynomials in Isabelle. Discussion paper
at the Isabelle Workshop, 2014.

Florian Haftmann and Tobias Nipkow. Code generation via higher-order
rewrite systems. In Matthias Blume, Naoki Kobayashi, and German Vidal,
editors, Functional and Logic Programming, volume 6009 of Lecture Notes in
Computer Science, pages 103-117. Springer Berlin / Heidelberg, 2010.

Peter V. Homeier. A design structure for higher order quotients. In In Proc.
of the 18th International Conference on Theorem Proving in Higher Order
Logics (TPHOLs), volume 3603 of LNCS, pages 130-146, 2005.

Florian Haftmann and Makarius Wenzel. Constructive type classes in isabelle.
In T. Altenkirch and C. McBride, editors, Types for Proofs and Programs,
number 4502 in LNCS. TYPES 2006, Springer, 2007.

Alexander Krauss. Partial recursive functions in higher-order logic. In Ul-
rich Furbach and Natarajan Shankar, editors, Automated Reasoning (IJCAR
2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages 589—603.
Springer Verlag, 2006.

Cezary Kaliszyk and Christian Urban. Quotients revisited for Isabelle/HOL.
In William C. Chu, W. Eric Wong, Mathew J. Palakal, and Chih-Cheng Hung,
editors, Proc. of the 26th ACM Symposium on Applied Computing (SAC’11),
pages 1639-1644. ACM, 2011.

Wenzel Makarius. Isabelle/Isar — a generic framework for human-readable
proof documents. In R. Matuszewski and A. Zalewska, editors, From Insight
to Proof — Festschrift in Honour of Andrzej Trybulec, volume 10 of Studies
in Logic, Grammar, and Rhetoric. University of Bialystok, 2007.

Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201-224, 1995.

20

[NPWO02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL —

[Wen12]

[Win96]

A Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

Makarius Wenzel. Isabelle/jEdit — a Prover IDE within the PIDE framework.
In J. Jeuring et al, editor, Conference on Intelligent Computer Mathematics
(CICM 2012), LNALI. Springer, 2012. to appear.

Franz Winkler. Polynomial algorithms in computer algebra. Springer, 1996.

21

