I8AC
User Requirements Document
Software Requirements Document
Architectural Design Document
Software Design Document
Use Cases, Test Cases

The ZSAC-Team
isac@ist.tugraz.at
www.ist.tugraz.at/projects/isac

Revision



Contents

(I User Requirements Document|

|2 General requirements|

|3__Requirements of the visitor|
3.1  DBrowsers: overview — detaild . . . . .

3.2 Do some examples:| . . . . ... ...

|4 _Requirements of the learner|

4.3 Help in the specify phasel . . . . ..
4.4 Views into the knowledgel . . . . . .

[ Requirements of the math author]

6 Requirements of the dialog author|
6.1 User Profilingl . . . . ... ... ...
6.2 Flexible Dialog Behaviour| . . . . . .
6.3 Adaptation to Individual Users| . . .

7 Requirements of the course admin|
[7.1  Groups of learners| . . .. ... ...

11
13

15
15
16
17

19
19
19

21
21
22
23
24
24
25

30

32
32
33
33



I8 Requirements of the course designer| 40

BI Generall . . . . . . . oo 40
8.2 Appearance of example collections| . . . . . ... ... ... ... 40
8.3 The structure of example collections| . . . . . . . ... ... ... 41
[8.4 Edit examples in the example collection| . . . . . . ... ... .. 41
8.5 Checks for example collections| . . . ... ... .. ... ..... 42
R5I Checkofformall . ... ... ... ... .. ........ 42

8.5.2  Check of solvability] . . ... ... ... ... .. ..., 42

8.6 Edit explanations in the knowledge base| . . . . . . . ... .. .. 43
[8.7 A knowledge profile]. . . ... ..o 43
3.8 ialog profile] . . . . . ... o 44

19  Requirements of the administrator| 45
9.1 Install and monitor the system| . . . . .. .. ... ... ..... 45

9.2 ustomize the appearance in the web| . . . . .. ... ... ... 45

(I Software Requirements Document| 47
110 General requirements| 49
[10.1 Delopment environment,|. . . . . .. .. ... .. ... 49
[10.2 Decisions for underlying systems| . . . . ... ... ... ... .. 49
10.3 The connection between Java and SMIJ 49
110.4 System requirements for the users:| . . . . . ... ... ... ... 50
110.5 Communication in the distributed system| . . . . . . . . .. ... 50
110.5.1 Choosing a Means of Communication| . . . ... ... .. 50

110.5.2 The Dinopolis Middleware project| . . . . . ... ... .. 51

M053 Java-BMI . . . . . o o oo e e e e e 52

11 The worksheetl 56
112 Views on Examples and Knowledge Items| 57
[12.1 General Requirements| . . . . . ... .. ... .. ... ... .. 57
[12.2 The Knowledge Browsers| . . . .. ... ... ... ... ... 58
[12.3 The example browser|. . . . . . . . ... .. ... ... .. ... 59
|13 The dialog guide| 61
[13.1 Components of the dialog guide| . . . . . .. ... ... ... ... 61
|13.2 | he dialogstate] . . . . . . ... ... oo 62
33 Theusermodell . . . . . . . oo vttt 62
(III  Architectural Design Document| 65
14 Surveys 66
[14.1 Survey on the components|. . . . . ... ... ... ... ... .. 66
14.2 Basic Concepts for Separable User Interfaces . . . ... ... .. 68




14.2.2 The MVC Architecturel . . .. ... ... ... ... ... 69
114.2.3 Comparing the approaches| . . . . . .. .. ... .. ... 69
114.2.4 Tmplications for Z&AC| . . . . . . . . . . ... 69

|14.3 Survey on the architecture. . . . . . .. ... ... .. 71
L5 Session Management| 76
[15.1 The Dialogs| . . . . .. ... ... ... ... ... ... ..., 76
[[5171 Session-Dialog . ... .................... 77
[15.1.2 Browser-Dialog and Worksheet-Dialogg. . . . . . .. . .. 77

15.2 User Data and Access Rights| . . . . . ... ... ... ... .. 77
115.2.1 Dialog Guide and User Model| . . . . . . .. ... ... .. 77
[15.2.2 User-Administrationl . . . . . . . .. .. ... ... .... 7
[15.2.3 Permissions-modulel . . . . . ... ... ... ... 79

16 Dialog Guide 80
116.1 Browser Dialogs and WorkSheet Dialogl . . . .. .. ... .. .. 80
[16.2 Location of the Dialog Guide} . . . . . ... ... ... ... ... 81
16.3 e Interfaces to the WorkSheet Dialog Component| . . . . . . . 82
16. ontrolling the Course of Interaction|. . . . . . . ... ... ... 84
116.4.1 Dialog Phases|. . . . . .. .. ... ... 0. 84

85

86

.D. 86

16.5.2 Representing the Path to the Solution| . . . . . . . . . .. 87
116.5.3 Treating Subproblems| . . . . . .. ... ... ... 87
116.5.4 Accessing Calculation Datal . . . . . .. ... ... .. .. 88
116.5.5 Communicating Changes in the State of Calculation| . . . 88

[16.6 Configuring the User-Interface. . . . . ... ... ... ... ... 89
[16.6.1 The Presentation Layer in Controll . . . . . . .. ..... 90
116.6.2 The WorkSheet Dialog in Control|. . . . . . . .. ... .. 90
116.6.3 Splitting up Responsibilities and Providing for Interaction| 90

116.7 Obtaining and Storing Configuration Data). . . . . . ... .. .. 91
[16.7.1 'The User Settings| . . . . ... ... .. ... ....... 91
[16.7.2 Permissions and Security Issues/. . . . . .. ... ... .. 91
[6.73 The User Modell . . .. ... .. ... ... 91

116.8 Browser Dialog| . . . . . . ... ... o oL 92
116.8.1 Browser Dialog and Worksheet Dialog:| . . . . . . ... .. 93
[16.8.2 burvey on requirements| . . . . ... ... L L 93

16.9 Dialog Guide and User Model| . . . . . . .. ... ... ... ... 94
17 Worksheet 95
[[71I The Presentation Modell . . . . . . ... ... ... ....... 95
|17.2 Communication between the Presentation and Dialogue Control |
................................. 95
[17.2.1 User Interface Fventsl . . . .. ... ... ... ... ... 96



173 Calculation viewsl . . . . . . .. ... ... .. .. .. ... ... 97
[17.4 Calchead Panell . . . . . . ... ... ... ... ... .. ..... 97
118 Knowledge Browser| 101
[18.1 Survey on the requirements| . . . . . .. .. ... ... ... 101
18.2 Kinds of browsers and their differences . . . . . ... ... .. .. 102
118.3 Browsers and dialogs| . . . . . . .. ... . o000 102
|18.3.1 Communication between Browsers and Dialogs| . . . . . . 102

18.3.2 Binding a Browser to a Dialog| . . . ... ... ... ... 103

18.3.3 e Processing of Links| . . . . . . . ... ... ... ... 103

@19 KE-Store 106
19.T Notes WNI. . . . . . . . . . e 106
19.2 The initial structure with xml- and html-files] . . . . . ... ... 107
119.3 Some old design considerations| . . . . . .. ... ... ... ... 107
[19.3.1 XML-Import/Export|. . . . ... .............. 108

[19.3.2 Communication with the dialog] . . . . . . ... ... ... 109

MO33 Relationd . . . . . . . ..o 110

[[9.3.4 Presentationl . .. ... ... ... .. ... ... ..... 110

119.3.5 Example Collections and composite examples| . . . . . . . 111

119.3.6 Object structure] . . . . . . .. ... ... ... ... .. 112

[[93.7 Metadatal . . . ... ... ... ... ... ... ...... 115

119.4 KE-Objects and external Informations| . . . . . . .. ... .. .. 116
120 Bridge Java — SML) 118
[20.1 Design der Klassenhierarchie| . . . . ... ... ... ... ... . 118
20.1.1 MathEngine|. . . . . . .. ... ... o000 118

BOT2 CalcHeadl . . . . . v o v oo 118
............................ 118
............................. 118

2015 CalcElement] . . . ... ... ... ... .. ... . ... 118

2016 CalcTred. . . . . . . . . . . .. 119

20.1.7 Calclteratorl. . . . . . . ... .. ... ... ... ... . 120

20.1.8 BridgeMain| . . . . . ... oo 120

20.1.9 SMUThreadl . . . . . . ... . ... ... .. ... ..., 121
ROTIOXMLParser] . . . . .. ... . ... .. ... .. 121

IV " Software Design Document)| 123
|21 Session Management| 124
21.1 Logging into the System and Bootstrapping| . . . . . . . ... .. 124
121.2 SessionDialog, BrowserDialog and WorksheetDialog|. . . . . . . . 126
21.3 Starting a session| . . . . . . ... Lo 127
RT3 Communication with the InformafionProcessod . . . . . . 127



[21.3.2 Communication with the SessionDialogl . . . . . . .. .. 127

21.3.3 XMLHierarchyParser|. . . . . .. ... ... ... .. ... 128

PLAUser Datal « - - - o v voooeee 129

21.4.1 The hierarchy of datal . . . . . .. ... .. ... .. ... 129

[21.4.2 Dataofasingleuser] . . . .. ... ... ... ....... 129

21.5 Window fcation] . . .. ... ... ... 131

PL51 Internationalization] . . . . . . v v oo v e 131

21.5.2 Window Management| . . . . . . . . .. .. ... ... .. 132

21.5.3 XMLHierarchyParser|. . . . . ... .. ... ... ... .. 132

122 Browser Dialogs| 137

22.1 Communication with the Browsersl . . . . .. .. ... ... ... 141

[22.2 Communication with the Worksheet Dialogs|. . . . . . . . .. .. 141

22.3 Communication with the KEStorel . . . ... ... ... ... .. 141

123 Worksheet Dialog] 142

23.1 Storing Enumeration Types| . . . . . ... .. ... 142

[23.2 The Hierarchy of Mathematical Objects] . . . . . .. ... .. .. 143

23271 CalcElementl . . . . . . .. . ... .. ... .. ... . 143

23.2.2 Classes Derived from CalcElement| . . . . . ... .. ... 144

2323 Subtermsl . . . ... ... 146

123.3 Iterators for Navigating the CalcTree: ICalcIterator|. . . . . . 146

[23.4 Data Types Used for Communication|. . . . . . . ... ... ... 146

............................. 147

23.4.2 Exceptions| . . . . ... .. ... ... .. ... 148

123.5 Interfaces used by the Dialog Guide| . . . . . .. ... ... ... 149

23.5.1 Communicating Towards the Calculation: IToCalc|. . . . 149

[23.5.2 Communicating Towards the User: IToUser|. . . . . . .. 150

23.5.3 e Presentation Layer as Seen from the Dialog Guide: |

[ IToUser| . . . . . . . . . . . . . . . . . 151
[23.5.4 The WorkSheetDialog as Seen from the Presentation: IWorkSheetDialogflh1

[23.6 Communicating with the UserModel| . . . . . . . .. .. ... .. 152

123.7 The important classes| . . . . ... ... ... ... 0. 153

24 Worksheet] 154

24.1 Communication with the WorkSheetDialog| . . . . . . ... . .. 154

24.2 The classes or the WorkSheet] . . . . . . .. ... ... ... ... 155

421 TreeModell. . . . . . . . . ... 155

24.2.2 CalcModelHierarchy| . . . . . ... .. ... ... .. ... 155

24.2.3 CustomTreeCellRendererf . . . ... ... ... ... ... 157

24.2.4 CustomTreeCellbditor] . . . . . . .. ... ... ... 158

24.2.5 CalcHeadPanel . . . . .. .. ... ..o 159

25 KEStorel 162



126 Knowledge Browser| 163

26.1 The relation between the browsers . . . ... ... ... ... .. 163
26.2 The classes for a browser. . . . . . . .. ... ... ... ..... 163
26.2.1 TabPanell . . .. ... ... .. ... .. ... ... ..., 164

2622 BrowserTreeModell . . . . . .. .. ... ... ... .. .. 164

2623 BrowserPanell . . . . . . ... ... L. 165

126.3 Implementation details|. . . . . ... ... ... ... ....... 166
26.3.1 HierarchyNodes|. . . . . . . .. ... ... ... .. ... 166

26.3.2 Hierarchy| . . . . . .. .. ... .. ... ... .. ... . 166

26.4 Minibrowserl . . . . . . . .. ... 166
[26.4.1 'The Processing of Links| . . . . .. ... .. ... ..... 167

[26.4.2 Dynamic Modification of the Static HIML Content] . . . 167

[27 Bridge Java — SML) 173
27.1 Klassen und Methoden! 173
27.1.1 BridgeMain| . . . . .. ... ... ... . 0L, 173

B7.02 BrdgeRMI] . . . o o oo 174

27.1.3 MathEngine|. . . . .. . ... ... ... ... ... .. 175

[27.1.4 BridgeLogger| . . . . . . ... ... ... ... ... . ... 175

RTI5 CHentlast] . « « o o v v oo e e e e 175

PTIT6 SMIThreadl . . . - . . ¢ o v v et 176

27.1.7 TimeChecker'Threadl . . . . .. .. ... .. ... .. ... 176

R7.1.8 CalcTreel. . . . . . . . . . 176

R7.1.9 Calclteratorl. . . . . . .. .. ... ... ... ... .... 177

[27.1.10 ClientOutputWorker| . . . . .. .. ... .. ... .. ... 177
RPTIITClients2KernelServer . . . . . . . . ... ... ... .... 177
27.1.12 Kernel2ClientsServer| . . . . . . . . ... .. ... 177

27.2 XML-Parser Digester|. . . . . . . .. .. ... L. 177
27.2.1 Arbeitsweise des Parsers| . . . . . . .. ... ... ... .. 177

2722 Einrichten und Initialisierenl . . . . . . . . . . .. ... .. 177
............................. 178

27.3 Starten der Bridge-Komponentel. . . . . . . . ... ... ... 179
[28 Implementation Details| 180
................................ 180
V__Usecases| 183
29 Visit an 7OAC site 185
[29.1 Browse the knowledge:| . . . . . ... ... ... ... ... 185
[29.2 Browse the example collection]. . . . . . . . . .. .. ... .... 187




|30 Learn interactively with ZSAC| 188

BO.1 Start a Calculation| . . . . . . . .. ... ... ... ... 188
130.1.1 Initialising Session and Dialogf. . . . . . . ... ... ... 188

80.1.2 Choosing a Starting Pont| . . . . . .. ... ... .. ... 189

[30.2 Model and Specify an bixample| . . . ... ... ... ... 192
BO2T Edit the CalcHeadl . . . . . . . . oo v 192

130.2.2 Obtaining Help from Z&AC| . . . . . . ... ... ... .. 193

130.2.3 Contextual Access to the Knowledgel . . . . . . . ... .. 194

180.2.4 Starting the Solving Phase| . . . . . . ... ... ... .. 197

30.3 Calculating a Result |. . . . . ... ... ... .. ... ...... 197
|30.3.1 Moving the Active Formulaf . . . .. ... ... ... ... 197

30.3.2 Taking Single Steps Interactively |. . . . . . . . .. .. .. 198

80.3.3 Automatic Calculation| . . . . ... ... ... ... ... 199

80.3.4 Showing and Hiding Data|. . . . . .. ... ... ... .. 200

30.3.5 Obtaining Help and Extra Information| . . .. ... ... 201

30.3.6 Solving problems with subproblems|. . . . . . . ... ... 202

31 Authoring] 203
[31.1 Author the knowledge base| . . . .. ... ... ... ... ... . 203
31.2 Author the example collection|. . . . . . .. ... ... ... ... 205
[VI  System View of the UCs and Test Cases| 207
209
[33 Learn interactively with Z8AC| 210
[33.1 Tnifializing the Session] . . . . v v v v v v v e e 210
133.1.1 Identifying the User, UC[30.1.1.1} . . . . . .. .. ... .. 210

33.1.2 Doing an Example from an Example Collection, UC|30.1.2.1210

133.2 Initializing a Calculation|. . . . . . ... ... ... ... ..... 212
[33.2.1 Go into the problem hierarchy with a particular model, |

[ UC30231 . . . . . o e 212
133.2.2 Matching the Problem, UC|30.2.3.1) . . .. ... ... .. 212

183.2.3 Having Z8AC Refine the Problem, UC[30.2.3.4] . . . . .. 214

133.2.4 Transtfer a selected problem to the worksheet, UC|30.2.3.8] 215

34 Authoring 217
[VII  Appendices| 218
|IA° The example for reference| 219
[A-T Description, formalization and modeling phasg . . . . . . . . . . 219
A2 Knowledgebase and specification phase|. . . . . . . . . ... ... 220
IA.3 Interaction on the worksheet and the browsers| . . ... ... .. 222
|A.4 The solving phase and subproblems|. . . . . ... ... ... ... 224




[B_7SACs tactics|

|IC Development environment|

ID List of terms used in the Z&AC-project|

I[EE__Abbrevations|

226

228

230

238



List of Figures

114.1 Z8ACs components| . . . . . . . . ... o oL 66
Seeheim Architecture . . . . . .. ... . 73

> Architecturel . . . . .. ..o 74

.............. 74

[14.5 The current design of the Z&AC system|. . . . . . . . .. ... .. 75
6.1 The first sketch for Z8AC's architecturel. . . . . . . . .. ... .. 81
116.2 Design based on the Seeheim model and showing the separation |
| of browsing the knowledge and calculating| . . . . ... ... ... 82
16.3 A state machine for the Dialog Phases| . . . . . . . ... ... .. 85
[17.1 Worksheet as a part of Seeheim Application Model . . . . . . .. 99
72 User Interface Eventsl. . . . . . . . . .o oo i 100
|[18.1 The Design of the Browsers| . . . . .. ... ... .. ... .... 104
|18.2 The design of the Browserdialogs| . . . . . . ... ... ... ... 105
119.1 parts of the KE-Store modulel . . . . . ... ... ... ... ... 109
[19.2 nested presentation|. . . . . . . ... ... L 111
[19.3 composite examples| . . . . . .o e 112
21.1 Adding session management and a shared user model|. . . . . . . 125
[21.2 "The overall design of the ZSAC system| . . . . . . . ... ... .. 126
|21.3 The dialoges I & SESSION] . . « o v v v v v e e e e 134
[2T.4 Sequence diagram about the required initialization steps to build |
| up the communication with ZsAC|. . . . . .. . .. .. ... ... 135

121.5 Abstract class XMLHierarchyParser acts as superclass for the
| XMULParser that parses the different knowledge base hierarchies.| 136

[22.1 The class diagram for the browser dialoges|. . . . . . . . .. ... 137
[23.1 The hierarchy of mathematical objects| . . . ... ... ... ... 144

[23.2 The WorkSheetDialog(TODO.rename.DialogGuide) and the Math
| Engine communicating updates in a calculation using the Ob-
server pattern| . . . . .. ..o Lo 150




[23.3 The WorkSheetDialog(TODO.rename.DialogGuide) intercepting

communication between the Math Engine and the Presentation

Layer using the Decorator and Mediator patterns| . . . . . . . .. 150

123.4 The WorkSheetDialog and the Presentation Layer communicat- |

ing user interaction FIXME.WNO0512 DialogGuid —;, WorkSheet+Browsers:

| UlActionl . . . . . . . . . 152
123.5 The dialoges in a session| . . . . .. ... ... ... ........ 153
[24.1 The worksheet class and its dependencies.| . . . . . . .. ... .. 156
24.2 e Tree Model class diagram.] . . . . . . . ..o v v .. 157
[24.3 Communication How necessary to propagate the node inserting |

| event from the calculation tree to the presentation component.| . 158
124.4 Communication flow necessary to propagate the change of the |

L node in the presentation component to the calculation tree.| . . . 159
[24.5 Communication flow necessary to propagate the change of the |

| node 1n the presentation component to the calculation tree| . . . 160
26.1 The class diagram for the browsers| . . . . . ... ... ... ... 169
26.2 HierarchyBrowser using a more conventional MVC (model-view- |

controller) architecture|. . . . . . .. ... o 0oL 170
[26.3 Communication flow that is necessary to propagate changes in |
| the structure of the data to the rendering component| . . . . . . 171

126.4 The problem hierarchy converted from XML representation and |

| rendered by JTree| . . . . . .. ... ... ... L. 172

[26.5 The Use of an EditorKit to Manipulate the Representation| . . . 172
129.1 The 3 dimensions of ZSACs knowledge base|. . . . . . . . ... .. 186
131.1 Structure generation| . . . . . . . . . ... ... 204
133.1 Usecase UCI30.1.1.1[identify user.|. . . . . . . ... ... ... .. 211
133.2 Usecase UCI30.1.2.1[start from expl-coll.|. . . . . . ... ... .. 212
B3.3 Usecase UCI30.2.3.11 . . . . . . . .. ... .. ... .. ...... 213
[33.4 Usecase UC 77 match problem, . . . ... ... ... .. ... .. 214
33.5 30.2.3.8[ transfer pbl to worksheet]. . . . . . . . . .. .. ... 215

7 0 217
|A.1 Figure for the maximum example| . . . . . . . .. .. ... 219

10



Part 1

User Requirements
Document

11



This document describes the user requirements for the ZSAC-system.

By now the document captures at least those requirements in detail, which
are a prerequisite for the first phase of development, i.e. the development of the
kernel of the math knowledgebase, of the indispensible tools for interaction on
the knowledge, and of the tools for authoring the example collection.

The design will try to meet these requirements while accepting the structure
of the ZSAC-math-engine, which is defined by mathematical reasons, and offers
new functionality (calculations are done stepwise, the learner can input a for-
mula or a tactic and receive feedback from the engine, the math-engine usually
"knows’ the next step).

The User Requirements Document is structured along the different kinds
of users envisaged. The Software Requirements Document, on the other hand,
will be structured along the modules implementing the functionality. In order
to establish comfortable tracing, the m : n relation between user requirements
and software requirements will be accurrately recorded in a double-linked way.

Terms marked by — are briefly described in appendix

12



Chapter 1

Kinds of Z&AC users

There are several kinds of ZSAC users which set the respective sections of re-
quirements:

visitor (Besucher): occasionally drops into an ZSAC-site and browses the
respective math knowledge base and the example collection. May try
to calculate some examples. Or some scientific content provider (wiki,
scientific branding in an institution or an enterprise) includes occasional
Z8AC-services, in particular the possibility to interactively explore some
specific calculations.

learner (Lernender): uses ZSAC for learning and exercising, i.e. primarily
calculates examples in the example collection by use of the math knowledge
base. As a member of courses the learner is called a student.

math author (Mathematik-Autor): is an expert in computer mathematics
who adapts and extends the mathematics knowledge base.

dialog author (Dialog-Autor): is an expert in learning theory who adapts
and extends the dialog guide.

course designer (Kurs-Designer): adapts and extends the example col-
lection which can be solved by a given math knowledge base, and adds
explanations to items in the knowledge base. These tasks do not require
special knowledge in computer mathematics.

course admin (Kurs-Administrator): is a person administering the use of
Z8AC for learning within a group of learners. This person is also regarded
as a legal representative of the institution consuming ZSAC services.

administrator (Administrator): this réle combines the system adminis-
trator installing the software, and the person who implements the overall
design of an Z8AC-site (introductory pages etc.). This person is also re-
garded as a legal representative of the institution hosting ZSAC services.

These kinds of users are distinguished by the respective access-rights.

13



Table 1.1: Survey on the roles of ZSAC users

task math author dialog author course designer course admin
determine by theories by impl. of by impl. by setting
interaction problems dialog patterns of examples, content
in an expl. methods of explanations delivery,

to knowl.items  assessments

14



Chapter 2

General requirements

This section describes the requirements common to all users.

2.1 Users of Z8&AC

UR 2.1.1 Z8AC is a multi-user system.

UR 2.1.2 The users access ISAC via internet.

The computing resources needed to run such a complex application exceed the
computing-resources presently available to the average user. Moreover, organ-
isation of centralised courses and curricula suggests separation of application
and user-interface. An additional requirement is to keep expenses and effort for
the average user at a minimum, in terms of computing power needed and in-
stallation effort. (Ideally, a standard web browser would suffice, but interaction
required for the worksheet cannot be managed by a browser yet.)

UR 2.1.3 Z8AC’s data storage supports simultaneous access
Data storage has to support locking and versioning.

UR 2.1.4 Users access ISAC with different roles
Several possible roles when accessing ZSAC dictate different rights and access to
different modules of ZSAC see pl13]

UR 2.1.5 Learners can be grouped into courses.

There are groups of learners in order to support the adminstration of courses.
The membership w.r.t. these groups determines the selections of examples in the
example collecton (see UR, the selection of explanations in the knowledge
(see UR[RB.6.3)) and the initial setting of the dialog as captured in UR[.4.1]]
and URI42.8

UR 2.1.6 One learner may be member in different groups

One learner may be member in different groups but the settings for a session
depend on exactly one group. This implies that multiple memberships have to
be resolved at login time.

15



2.2 Calculations and Data Involved

UR 2.2.1 I8AC’s math engine is given as an already-implemented mod-
ule.

ISACs mathematics engine(ME) is already given. Thus several requirements,
looking like software requirements, are listed here. A calculation (see terms
in the ZSAC-project [iT02b]) undergoes three phases: the modelling phase, the
specification phase and the solving phase, where the latter may contain these
phases recursively (see the demonstration example in the usecases document
[IT02d]).

Calculations are created interactively in steps. A step is initiated by the
input of a learner: input of a tactic, of a formula or of a ’go-on’ command.
A tactic is applied to a formula and generates another (the derived) formula.
The tactics specified so far are listed in appendix [E] An input formula during
modelling phase completes a model, and during the solving phase an input
formula is considered a derivation of the previous formula.

UR 2.2.2 ZSAC stores 4 kinds of Mathematical Knowledge
Theories
Problems
Methods
Examples

See [NeuOT] for a detailed explanation.

UR 2.2.3 A Calculation undergoes 2 Phases

A calculation undergoes two phases: the Specification Phase and the Solving
Phase, where the latter may contain these phases recursively (see the demon-
stration example in appendix E[)

UR 2.2.4 Specifying constructs a Model and a Specification.
See UR22.l and UR2.2.6

UR 2.2.5 A Model consists of fields and items

A Model consists of the fields ’given’ containing the input-items, 'where’ con-
taining the pre-condition on the input-items, ’find’ containing the output-items
and ’relate’ containing parts of the post-condition.

UR 2.2.6 A Specification consists of theory, Problem, Method
Theory, Problem and Method provide for 3 pointers into the knowledge base
(see Fig[29.1] on p[186) referencing the knowledge required to solve the example
specified by a model.

16



UR 2.2.7 Solutions are calculated interactively in steps.

Stepwise calculation is done in the Solving Phase. A step is initiated by the
input of a learner: input of a tactic, of a formula or of a request that ZSAC take
over the calculation. A tactic is applied to a formula and generates another (the
derived) formula.

UR 2.2.8 In the Solving Phase, every formula is justified by a tactic.
UR 2.2.9 ISAC uses tactics as listed in appendix [E]

UR 2.2.10 A calculation has a tree-like structure

UR 2.2.11 A Tactic may contain Error Schemes

UR 2.2.12 There are fill-in patterns for Tactics. In addition to a Tactic
being applied manually by the user or automatically by ZSAC, a Tactic can be
presented with parts left blank to be filled in by the user.

UR 2.2.13 There are fill-in patterns for items of the Model.

UR 2.2.14 I8AC guarantees correct results.

I8AC’s display of a Calculation reflects the state of the Math Engine. The Math
Engine does not produce any inconsistent state of calculation. Thus everything
displayed by ZSAC (apart from lines being edited by the user right now) is proven
to be consistent with the Specification and the Knowledge Base. User input will
be accepted only if it can be proven to be correct by a check with the underlying
Math Engine.

UR 2.2.15 The the mode of the ME is one of the following:

step is applicable, result guaranteed
step is applicable, result is not guaranteed
(because the learner has input some strange step previously)
the ME is helpless, i.e. it cannot propose a next step
the step is not applicable, plus an error message, why not applicable.

UR 2.2.16 Consistent “look € feel” for all users.

As long as the deductive part is left to Isabelle, the same is with the theory
browser. ZSAC will develop the “look & feel” of its own, and thus violate uni-
formity w.r.t. the theory browser.

2.3 Miscellaneous

UR 2.3.1 ISAC supports internationalization.

The mother language should be used by the student. The language of math
formulas is independent from other languages. Thus the names used in the
knowledge base can simply be changed for each language (scriptures with dif-
ferent structure like Japanese will not be considered here). But there are other
texts delivered by the system, like error messages, or the fields ’given,...” in a
model; these should be implemented multilinqual.

17



UR 2.3.2 Z8AC supports cross-linking calculations and knowledge
Calculations may contain links into the Knowledge Base, e.g. to the definitions
or proofs of tactics applied in the course of calculation or into underlying theo-
ries. The Knowledge Base may contain links to examples illustrating theoretical
concepts. More specific requirements are in sect 4.4

UR 2.3.3 ZSAC is open to data exchange with other tools.
To facilitate interfacing with other tools, ZSAC’s objects support being exported
to and imported from open data formats. XML formats are preferred.

UR 2.3.4 Several users can watch the progress of one calculation.
Several users may watch the progress of a calculation, but there is exactly
one user controlling the calculation and taking actions. This can be useful for
instruction situations, especially teleteaching.

UR 2.3.5 A calculation can be edited with other tools Editing in ZSAC
is limited by URJ2.3.6] For publishing purposes, ZSAC’s calculations can be
exported for editing with standard publishing tools.

Guarantee of correct results is given by ZSACs calc-state in the ME.
This guarantee can only be given, when each editing on the worksheet is mirrored
in the calc-tree (eventually cutting certain branches, if an intermediate step is
redone). Sometimes the learner might want to edit a calulation (shorten the
calculation by cutting intermediate steps, etc.) without affecting the calc-tree
any more.

UR 2.3.6 ZSAC guarantees correct results. In this case the worksheet re-
flects the calc-state, which shall be indicated on the screen and on the printout;
in the latter case this indication should be certificate which cannot be manipu-
lated.

18



Chapter 3

Requirements of the visitor

Each user approaching an ZSAC-site first time wants to know about the purpose
of ZSAC and about the contents of the site.

3.1 Browsers: overview — detail:

The contents of the knowledgebase and of the example collection are expected to
become very large. Thus there need to be facilities to switch from an overview
to a detail and vice versa. These facilities should be handled similarly for all the
browsers. Primarily, there is no direct interaction between the visitor and the
ME. Information for the visitor should be provided in statical HTML-Pages.

Visitors should get an overview over all the knowledge available at an ZSAC-
site, and all the explanations, and all the examples. Therefore, access to addi-
tional information should be gained if available.

UR 3.1.1 There are 4 kinds of data to be browsed: theories, problems,
methods, examples.

UR 3.1.2 All 4 kinds of data need a table of contents of variable
detail.

UR 3.1.3 Browse through statical HTML-Pages without e.g. matching
a model with a problem.

3.2 Do some examples:

Visitors should get an overview over all the features available at an ZSAC-site,
and the most exciting feature is stepwise interactive calculating and reasoning
guided by the system. This should be demonstrated by some examples, which
also the visitor can execute.

However, the possibility for any visitor to start an interactive calculation,
i.e. a Worksheet from a browser would have resulted in a too complicated and

19



unstable system. A respective architecture see [Gri03]. Now a visitor has to
choices:

UR 3.2.1 A visitor can view a calculation.

These calculations are displayed a a whole, with the possibility of folding and
unfolding the hierarchical structure. There is no possibility of interactive step-
wise construction of the calculation as described in sect 4l

UR 3.2.2 A wvisitor can download and run an interactive Worksheet.

After downloading the launched front-end (containing the Worksheet) there is
a possibility to connect to a server running the ZSAC back-end performing the
calculation and user guidance.

20



Chapter 4

Requirements of the learner

[

4.1 Start a calculation

There are two different ways for users to approach ZSACs facilities for learn-
ing: (a) the user may browse the knowledge base, and eventually calculate an
example (illustrating a definition, a problem, etc.) and (b) the user calculates
examples from the example collection, and while asking for justifications of steps
in the calculation enters knowledge browsers.

UR 4.1.1 A calculation can be started for a pre-defined example from
an example collection

UR 4.1.2 A calculation can be started for a pre-defined example from
the Knowledge Base This is to illustrate knowledge from the Knowledge Base
by typical examples stored with the knowledge.

UR 4.1.3 A calculation can be started from scratch. In this case, the
calculation must start with specifying, and ZSAC’s support is limited as described

in URK42.2

UR 4.1.4 A calculation can start with specifying or solving. In order
to emphasize exercising specifying or solving, which are very different tasks.

UR 4.1.5 A calculation can be done like in an algebra system by simple
input of a function call like solve, simplify, integrate or the like. In this
case the specifying phase is skipped.

1 Begin of copy from [Kre05| p.36-38

21



4.2 User Guidance

UR 4.2.1 IS8AC provides User Guidance if the problem to be solved has
been specified. A problem known to the system implies that the system knows
a method to solve the problem. Thus ZSAC can solve the problem automatically
or propose the next step to be done.

UR 4.2.2 Z8AC can assist in calculating examples unknown to the sys-
tem Without knowing the Problem, ZSAC cannot propose steps or solve the
Problem automatically. Still, ZSAC can apply Tactics chosen by the user to a
formula. With a theory specified, ZSAC can check formulas input by the user for
correctness and consistency with previous steps in the calculation. At all times,
Z8AC ensures the calculation displayed is consistent and error-free as detailed in
2.3.6

UR 4.2.3 ZSAC can offer a list of actions meaningful in the current
state of the calculation. 'Meaningful’ is weaker than ’applicable’, see UR

UR 4.2.4 ZSAC can offer a list of actions applicable to the current
state of the calculation.

UR 4.2.5 Z8AC can propose the next action to be taken.

UR 4.2.6 Z8SAC can do one or more steps automatically.

The flow of interaction shall be adapted to the learner. The learner
might be bored because the system offers too little challenge (by using less active
dialog atoms — see UR or by proceeding in too little steps of calculation) —
or, in contrary, the user might be frustrated by too high challenges (in activity
and/or stepwidth).

UR 4.2.7 The ’activity’ of the dialog atoms adapts to the learner.

UR 4.2.8 Varying stepwidth with tactics, rule sets and subproblems.

The dialog regards presettings of the course admin (see Sect[7] below),
when guiding the flow of interaction, and the dialog regards the ongoing inter-
action with the student.

UR 4.2.9 The system records examples done/not done by a learner
regardless which course the learner is logged in.

UR 4.2.10 The dialog regards the performance in calculations done by
the learner in the current session. The performance is measured by response
times, errors, difficulty of examples done, requests into the knowledge base,
active-passive behaviour. E]

2The completion of this list is up to a future phase of development, and the evaluation of
these data as well.

22



UR 4.2.11 The dialog regards the knowledge touched by the learner in
the current session.

UR 4.2.12 The dialog regards the history of performance and knowledge
touched in previous sessions.

UR 4.2.13 The amount of user guidance is configurable. The amount
can be set by the user according to his preferences or by a course designer
to match requirements of the course. For exam purposes, the amount of user
guidance can be limited.

UR 4.2.14 The learner can override the Dialog behaviour chosen by
the system. This includes the settings for dialog activity, stepwidth and display
filtering rules. The conflicts between this UR and UR[4:2.13 need to be resolved
by an indepth design lateron.

4.3 Help in the specify phase

According to UR this phase comprises modeling (i.e. translating an exam-
ple into a formal representation, the so-called Model) and specifying (i.e. relat-
ing the model to the mathematics knowledge available — that means, identify
an appropriate theory, a problem and a method).

In the model phase the learner generally has to input the —items of a
—model (see the example for reference in chapter p: input and output
items can be ’correct’, 'incomplete’, 'missing’, ’superfluous’ or have a ’syntax
error’; preconditions can be ’correct’ or 'false’ (see UR — these properties
should be clearly indicated. This help is only possible, if the learner choose an
example (with a hidden —formalization and —specification) from an —example
collection, or if he had specified a problem.

If users want to calculate an example unknown to the system they have two
choices:

1. specify a problem in order to get help from the system. Again, there are
two possibilities:

(a) first specify the appropriate problem (which contains the —item-
descriptions), and then input the items. The item-descriptions help
the user to provide the appropriate item-data.

(b) first input the items (the item-descriptions are to be looked up in a
specific theory), and then specify the problem — already assisted by

the system (see UR and URJM.3.3).

2. do the calculation independently and without relying on assistance by the
system (i.e. without specifying a problem, thus the system cannot check
for completeness, and cannot assign a —method). In this case the input of
items in the ’given’-field is sufficient; the users can calculate the example
by applying tactics (after manual input).

23



UR 4.3.1 Visualization of the feedback on input to a model. The user
gets immediate feedback on data entered into the Model by means of an item-
status. The item-status can be: 'correct’, 'incomplete’, 'missing’, ’superfluous’,
‘syntax error’ or ’false’.

Retrieve a matching problem: Given a model initiating a calculation,
or as a subproblem within a calculation, the learner has to determine a problem
matching this model. This involves information retrieval from a large problem-
hierarchy. There the learner may get lost, and thus he should get help: make
the math-engine find a matching problem; visualize the problem found within
the hierarchy.

In case of an exam, the user is forced to find the correct problem with no
or limited help. Therefore it is nessesary to adjust the amount of help given by
the browsers (e.g. only “match” or “nomatch” instead of a detailed listing of
all conditions)

UR 4.3.2 Z8AC can retrieve and match a model to a problem.

UR 4.3.3 ZSAC can help by automated refinement of a problem.

4.4 Views into the knowledge

ZS8AC is a ’transparent system’ by providing access to all the knowledge the
system requires for (automated) problem solving. The knowledge is structured
within a 3-dimension universe as stated in UR[2:2.2] on p[I6] Needless to say
that the knowledge has a highly complex structure, and that it is a demanding
challenge to help the student not to get lost in this structure.

Principally, there are two ways to acces the knowledge, (1) access along the
structure inherent to the respective knowledge, and (2) access from a concrete
calculation, where the knowledge is required for solving the problem. These two
kinds of access are separated below.

4.4.1 Surveys on related knowledge

As example collections (respective requirements see sect[8.2] sect [8.3]and sect[8.4))
are very close to the other three parts of knowledge, theories, problems and
methods, we include them in this subsection.

UR 4.4.1 FEach element of the knowledge belongs to either theories,
problems or a methods, or to the erample collection. The elements of
belonging to theories are

e theorems

e rule sets, i.e. sets of theorems or other rule sets, which are applied as long
as they can be applied to a certain formula.

24



e rewrite orders which are required to terminate rule sets which contain
theorems on commutativity etc. TODO

e computations involving sml-code (the only exception to rewriting). TODO

UR 4.4.2 Examples, theories, problems and methods all have a hi-
erarchical structure and each element of the knowledge base has a unique
position in this hierarchy.

UR 4.4.3 FEach element of the knowledge base is displayed in the re-
lated browser. This requirement has to be met in particular, if such an element
is referenced by a link from another browser: where-ever such a link is located,
the element is displayed in the browser it belongs to, a theory-element in the
theory-browser etc.

UR 4.4.4 Links can go from any element to any element. That means,
an explanation for a problem can have a link to a method solving it, or to a
theorem (in a theory) important for this problem; an explanation for a theorem
can have a link to a problem, which uses the theorem in a certain way, etc.

UR 4.4.5 There are specific links which start an example. Such a link
may be located in any part of the knowledge; if the link is activated, the re-
spective example is displayed in the example-browser (UR together with
the examples location in the example hierarchy (UR and a worksheet is
opened for this example.

UR 4.4.6 Links outside ISAC’s knowledge base open the standard browser.
i.e. links within the knowledge base may point anywhere, and if the destination
is outside ZSAC’s knowledge, it is displayed outside ZSAC, too.

UR 4.4.7 An element is always displayed togehter with the respective
location in the hierarchy.. This requirement has to be met in particular, if
the element is displayed following a link (indenpendently, from which browser).

UR 4.4.8 FEach element has a certain position in the respective hier-
archy. The hierarchy is the means for systematic search by the user. This does
not mean, that this position can serve as a unique identification over time, see
URR.G.A!

UR 4.4.9 With each element in the knowledge base, exrplanations can
be stored. Every element in the Knowledge Base can provide explanations
illustrating its meaning, giving theoretical background information, referencing
related topics or giving examples of use. See sect[7.1] p[35] and also UR[:6.2]

4.4.2 Context-related views

The context is given by the state of a calculation (the so-called ’calc-state’) on a
Worksheet. UR[.3:2]and UR[4.3.3]is one case, the other is displaying a method
with the tactic marked which just has been applied in a calculation (this is well-
known from debuggers). And there are other dynamic views into the knowledge
base.

25



Context to all parts of the math-knowledge

UR 4.4.10 I8AC’s use of math knowledge can be watched by the user.
The user can look up the elements of the Knowledge Base currently used by
Z8AC to do a certain step in a calculation. This includes showing

e Tactics used in the calculation in their context in the Knowledge Base;
particularly interesting are rewrite-tactics. The context to the calculation
allows to display the rewrite, the assumptions generated, the rewrite-order
used etc.

e Methods being applied to solve the current problem with indication of the
tactic being currently applied, of the method’s guard etc.

e Problems currently being solved in their context in the hierarchy of prob-
lems. This particularily helpful just before and after having ZSAC refine a
problem.

UR 4.4.11 On request, ZSAC provides additional information on parts
of the calculation.

Additional information in a calculation can be provided at any time on request
of the learner. This feature comprises more detailed views onto the calc-state,
as well as explanations according to the following table:

’detail’ on element yields

whole formula
whole formula
whole formula
whole formula,
whole formula

intermediate steps

tactic applied or applicable
applicable tactics
associated assumptions
accumulated assumptions

formula function-constant  definition in the theory
formula floatingpoint-no precision of this no
evaluated predicate // derivation

evaluated assumption // derivation

tactic theorem theorem instantiated

theorem instantiated  // animation of matching

calchead yields
file of the respective theory

’detail’ on
specification theory

specification problem model instant. this problem
specification problem inst. problem in the hierarchy
specification method guard instantiated by the model
specification method script in the hierarchy

UR 4.4.12 The context is a certain formula in a certain calculation
as displayed on the respective 'worksheet’.

g##################### WNO060704 end update! 77 ## #H HHH HHHHHHH A7

3Begin of work extracted from [Kom07].

26



UR 4.4.13 A context is the current position on the worksheet last
touched. The formula at this position is highlighted.

UR 4.4.14 Usually there is a context to any of the 3 parts of the
math-knowledge for a position. See also UR[{.4.15 and URJ[}.7.16|

UR 4.4.15 If there is no Worksheet open, then there is no context.

UR 4.4.16 There may be NO context for an element of the math-
knowledge. The reasons are specific to theories, problems and methods.

UR 4.4.17 The default for <Context on/off> is <on> - as soon as a
Worksheet has been opened.

UR 4.4.18 If the KnowledgeBrowser is opened the first time and there
s no context, it displays the element at the root of the respective
hierarchy..

UR 4.4.19 Any formula in a calculation has a context (with different
details to different parts of the math-knowledge).

UR 4.4.20 The user can switch the context to a calculation on or off.

UR 4.4.21 The context of an element is displayed in the respective
browser-window. This is analoguous to UR

UR 4.4.22 A context is displayed as soon as the window is activated or
the respective button <theory> <problem> <method> is pushed — if the user
has NOT decided for .

UR 4.4.23 The contents of the hierarchy can be filtered (due to a
UserModel).

UR 4.4.24 The content of the hierarchy remains unchanged during a
session (SR: thus the hierarchy is loaded once at the beginning of a
session)

Context to examples

UR 4.4.25 The context of an example is the respective worksheet. If
<Context on> is set and a worksheet is brought to top, the respective example
(i.e. the description of the example) is displayed in the example browser.

UR 4.4.26 A worksheet started by < New> has no context. It is handled
according to UR4.4.1§

UR 4.4.27 <Context on/off> is the only choice for eramples. This
choice is always available. It is never changed by the system.

UR 4.4.28 A example may be displayed and not be allowed to calcu-
late (according to the UserModel).

27



Context to elements of theories

UR 4.4.29 The context comes exactly from the current position on
the worksheet.

UR 4.4.30 <Context on/off> is always available.
UR 4.4.31 <To Worksheet> is available if:

1. <Context on> is selected and

2. the worksheet on top is in the specify phase (and a CalcheadPanel is open)
UR 4.4.32 <To Worksheet> is not available:

1. if <Context off> is selected, as described in UR[4.4.36|

2. if no worksheet is open

3. if the worksheet on top is in the solve phase (and no CalcheadPanel is

open)

Context to problems

UR 4.4.33 The context of a formula to the problems is given by the
headline of the calc-head on the next higher level in the calculation.

UR 4.4.34 The context of problem concerns the model of the current
position and the modelpattern of a problem. Thus there is always a

context, only exception is UR4.4.18
UR 4.4.35 <Context on/off> is always available.

UR 4.4.36 If <Context off> is selected, then <Refine> and <To Worksheet>
are not available.

UR 4.4.37 <Refine> is available if <Context on> is selected.
UR 4.4.38 <Refine> is not awvailable:
1. if <Context off> is selected, as described in URM.4.36]
2. if no worksheet is open
UR 4.4.39 <To Worksheet> is available if:
1. <Context on> is selected and
2. the worksheet on top is in the specify phase (and a CalcheadPanel is open)
UR 4.4.40 <To Worksheet> is not available:
1. if <Context off> is selected, as described in URM.4.36]
2. if no worksheet is open

3. if the worksheet on top is in the solve phase (and no CalcheadPanel is
open)

28



Context to methods

UR 4.4.41 The context of a formula to the methods is given by the
headline of the calc-head on the next higher level in the calculation.

UR 4.4.42 The context of a method concerns the guard and the script.
The script in context show the tactic which calculated the currents position; the
guard is matched with the model of the problem at the current position.

UR 4.4.43 <Context on/off> is always available.
UR 4.4.44 <To Worksheet> is available if:

1. <Context on> is selected and

2. the worksheet on top is in the specify phase (and a CalcheadPanel is open)
UR 4.4.45 <To Worksheet> is not available:

1. if <Context off> is selected, as described in URM.4.36]

2. if no worksheet is open

3. if the worksheet on top is in the solve phase (and no CalcheadPanel is
open)

4End of work extracted from [Kom07].

29



Chapter 5

Requirements of the math
author

All the authoring of math knowledge is still be done on the SML toplevel, i.e.
immediately on the datastructures holding the knowledge. This part of the task
is described in the ’interfaces for authors of math knowledge’ [iT02d].

UR 5.0.46 Remote access to the sml-kernel is required. However, knowl-
edge modfied need not yet imported to the production (i.e. tutoring) system.

Another result of authoring math knowledge, however, will be tools for the
visitor and the learner to view the knowledge generated. This part of the task
is described here.

UR 5.0.47 Automatic linking-tool supports setting links to other occur-
rences of an item: the system suggests links, the author accepts or rejects.
Automated linking is done between the following items:

item in... linked to occurrence in
predicate theorem definition in theory

pre/postcondition  definition in theory
theorem  tactic definition in theory
TODO [

UR 5.0.48 Exchange data with other ISAC sites.
TODO

UR 5.0.49 Exzchange data with other knowledge bases.
TODO

Copyright is important as ZSAC’s development will depend on the efforts
of many, many authors.

30



UR 5.0.50 Copyright on any substantial item or part of math knowl-
edge. Such items are

e a theory, and within theories
— a rule set

e a problem

e method

See URB.1.3

UR 5.0.51 An item can have more than author according to the ZSAC-
charta.

Authoring theories

The generation of the theory browser is already implemented by Isabelle.
Within phase 1 of development, ZSAC will take this component without any
change.

Authoring problems
TODO

Authoring methods
TODO

31



Chapter 6

Requirements of the dialog
author

The dialog author focuses on learning theory; administrative aspects of dialogs
are discussed in chapl7] for the course admin.

[

6.1 User Profiling

UR 6.1.1 ZSAC records examples done by the user ZSAC keeps a per-user
record of examples done and the user’s performance in doing the example. The
record is independent of the course the user has been logged into when doing
the example.

UR 6.1.2 ZSAC records items in the Knowledge Base viewed by the
user. This information can be used to base the Dialog Guide’s behaviour on
information supposedly known to the user.

UR 6.1.3 ZSAC records the user’s success and errors. This extends to
application of single Tactics, fill-in patters and error-patterns as well as whole
examples or courses.

UR 6.1.4 ZSAC records the user’s time performance. In the future, as-
sumptions about the user’s familiarity with certain topics could be derived from
these data.

UR 6.1.5 ZSAC records the user’s activity. In this context, activity means
the ratio of steps done by the user to the steps the user had done by ZSAC.

1Begin of copy from [Kre05] p.38-40

32



6.2 Flexible Dialog Behaviour

UR 6.2.1 Z8AC’s Dialog behaviour is constructed from Dialog Atoms
We hope that it is possible to develop a language which allows to define Dia-
log Patterns as combinations of Dialog Atoms already implemented and Dialog
Strategies sequencing these atoms. By means of such a language learning strate-
gies could be described, and this description could be interpreted in reaction to
a dynamic dialog state and according to a knowledge profile.

To do such ’dialog programming’ is considered a comprehensive task, which
in general exceeds the knowledge of a course designer or a course admin. On
the other hand, a course admin can be expected to associate courses with dialog
profiles, and a course designer can be expected to select Dialog Strategies within
process of time in a course.

UR 6.2.2 The Dialog’s behaviour can be configured. The Dialog’s be-
haviour in terms of Dialog Atoms to be used can be preset by the course designer
and the user to match the requirements of the situation in style and complexity.
The probability of asking the user a question is an example of such a preset.

UR 6.2.3 The number of calculation steps taken at a time can be
configured. This extends to taking several steps at a time and doing whole
rulesets or subproblems in one step.

UR 6.2.4 The amount of information displayed can be configured. As
with the Dialog’s behaviour, the amount of information can be preset to meet
the requirements of the learning situation. This could mean displaying or not
displaying the Tactics used in the calculation or hiding specific steps in the
calculation considered too complex or too trivial.

6.3 Adaptation to Individual Users

UR 6.3.1 The activity of the Dialog Guide adapts to the learner. In
a learning situation, active participation of the student is one key to acquiring
and consolidating knowledge and skills. The Dialog Guide will support this by
asking questions or letting the user decide what to do in the next step. On
the other hand, with growing expertise, once thrilling questions become trivial
and boring. The Dialog Guide adapts his strategy by dropping challenges the
user has alredy mastered a few times. Whenever possible, the dialog adapts
its behaviour, i.e. the choice of Dialog Atoms, to challenge the user without
frustrating him. The choice is based on the present and past actions of the
individual user.

UR 6.3.2 The Dialog adapts the amount of information displayed to
the learning situation. As with the Dialog’s behaviour, the amount of infor-
mation displayed adapts to the requirements of the current situation.

33



UR 6.3.3 The Dialog regards the performance of the user. The per-
formance is measured by response times, errors, difficulty of examples done,
requests into the Knowledge Base and Dialog Activity.

UR 6.3.4 The D:ialog regards the knowledge touched by the user in
the current session.

UR 6.3.5 The Dialog regards the history of the user. In addition to the
of performance and knowledge touched in the current session, the history of the
user’s previous sessions is regarded as well.

A

2End of copy from [Kre05] p.38-40.

34



Chapter 7

Requirements of the course
admin

Authoring in ZSAC comprises various tasks: authoring mathematics knowledge
and authoring the dialog have been described in Chapt[5| and Chapt[6} these
both tasks require more special knowledge than the others. Chapt.[8| describes
a kind of knowledge (’explanations’) which may change from one course to the
other, and wich does not require special knowledge on computer mathematics
or dialog design.

The latter part of authoring is done by the course designer preparing as
course in advance (see Chapt. Some of the knowledge prepared in advance
underlies time constraints, which are managed by the course admin. The re-
quirements of the course admin are separated in this section (despite the fact
that the course designer and the course admin are one and the same person, the
lecturer or teacher of the course).

7.1 Groups of learners

There are groups of learners in order to support the adminstration of courses.
The membership w.r.t. these groups determines the selections of examples in the
example collecton (see UR[8.7.1)), the selection of explanations in the knowledge
(see UR[3.6.3)) and the initial setting of the dialog as captured in UR[6.2.4] and
URMA2Y

UR 7.1.1 Learners can be grouped into courses. There are groups of
learners in order to support the adminstration of courses. The membership in
these groups determines the selections of examples in the example collecton (see
UR[B.7.1)), the selection of explanations in the knowledge (see URIB.6.3)) and
the initial setting of the dialog as captured in UR[4.4.11] and UR[4.2.8]

UR 7.1.2 One learner may belong to different groups but only to one
group within a session. For instance, a student of TUG can be member of

35



Analysis semester 1, of Signal Processing semester 5, Analysis semester 2.

UR 7.1.3 Administrative information for groups is part of any login,
and should be available to the course admin for review at any time during a
session. [

B

7.2 Restrictions

Restrictions will apply when using ZSAC as a learning or tutoring tool, especially
during exams. When being used as a calculation tool, restrictions are relaxed
to gain access to the full power of the Math Engine.

UR 7.2.1 Restrictions are individual to a user or group.

UR 7.2.2 Groups of examples may be invisible. Parts of the example
collection may be inaccessible for specific groups of learners.

UR 7.2.3 Access to items in the Knowledge Base can be restricted.
UR 7.2.4 The amount of User Guidance may be restricted.
UR 7.2.5 The use of Dialog Patterns may be restricted.

UR 7.2.6 Restrictions may be overridden. Depending on the settings
provided by the course-designer and the user’s access rights, some restriction
may be overridden by the user. Overriding e.g. allows to look at explanations
and examples for other courses.

UR 7.2.7 Restrictions may apply within time limits. Some restrictions
may apply only within certain time limits, e.g. during an exam or during class.
Time limits can be given by start and finish or by their duration.

UR 7.2.8 Restrictions may depend on the user’s learning progress.
Some restrictions may apply until certain examples have been solved or the
user has mastered certain aspects of knowledge.

El

Time limits for delivering course material are a general requirement
for educational systems, and it applies for example collections as well. This
requirement provides the course admin to distribute workload over time and
to focus the attention of the learners. Sometimes it may be desirable to have
some examples finished within a certain time limit. Also examples (for instance
prepared for an examination) may be invisible for learners.

'End of copy from [Kre05] p.38-40
2Begin of copy from [Kre05] p.41
3End of copy from [Kre05] p.41

36



UR 7.2.9 There are 2 kinds of time limits: (1) given by start and finish,
and (2) given by a duration (where start and finish are recorded with the user).

UR 7.2.10 Groups of examples may be locked for groups of learners for
certain time limits. (SR: attention with links from the KB !)

UR 7.2.11 Groups of examples may be invisible for all users except the
example author for certain time limits. (SR: examples have an author !)

UR 7.2.12 Restricted help for the learners during a exami.e. particular
links into the knowledge base are restricted for a particular group for a limited
time.

UR 7.2.13 Access-rights during an exam-session are particularily re-
stricted (a user might get unwanted information by opening another session as
a member of another group).

UR 7.2.14 Restrictions may be overridden or not depending on the set-
ting by the course-designer. Overriding e.g. allows to look at explanations and
examples for other courses.

7.3 Survey on the progress of the learners

i.e. of the students in a course. Such surveys are indispensable requirements for
a course admin. Thus all the surveys below are related to a specific course.

UR 7.3.1 There is a statistics-tool for the learners progress

UR 7.3.2 Statistics are drawn from the following data: TODO
Examples for statistics:

e Which examples have been done by whom with which performance

e Sorts w.r.t. the examples: frequency of touched, not touched, solved,
unsolved (, evaluation of performance, as soon as evaluation functions
have been designed) over all students of a course

e Sort w.r.t. the students: likewise over all examples in specified groups
e Which lookups into the knowledge have been done
e Sorts w.r.t. the destination: likewise over students

e Sorts w.r.t. the students: likewise over the knowledge.

For preliminarily checking the usage of the system (as well as for preliminary
monitoring of the system — see sect9.1]) the following requirement is stated, until
the respective requirements analyses are done.

37



UR 7.3.3 A text-file records the usage of the system. The records con-
tain the following basic data for each user logging in during the life-time of the
session-manager.

e at login
— user name (if there are anonymous users, record the mail address)
— time of login

e for each example called (no recording of access to the knowledge base !)

— example-ID
— time of starting the example (i.e. the respective worksheet)

— time of removing the example (i.e. the respective worksheet)
e at logout

— user name (if there are anonymous users, record the mail address)
— number of examples
— time of login and logout

Special requirements may be raised by field studies on learning mathematics.

ZSAC shall be open for such special research. I.e. queries over examples, lookups,
students and courses. Anonymous evaluation has to be regarded.

UR 7.3.4 Anonymous evaluation of statistics.

7.4 Written examinations

can be done due to requirements stated elsewhere: hidden examples UR[7.2.11]
restricted access to knowledge URJ7.2.12] and adapted dialog UR

UR 7.4.1 The course admin can force a student to exam-mode: That
includes, that there is no way for this user, to open a session with a user-model
which would undermine the exam-mode. A student, in spite of being a member
of a group (or several groups), might be examined separated from other members
of the group (in case of illness at the time of the group’s exam etc.)

UR 7.4.2 The course admin can force a group of users to exam-mode:
Sideconditions as in UR[Z.4.1l

UR 7.4.3 The exam-mode is described as follows: Preliminarily, the but-
tons <next> and <auto> are not available, neither in the specification phase
nor in the solve phase.

UR 7.4.4 The exam-mode can be quitted in several ways:

1. by the learner any time

38



2. predifined by settings (given by the course admin) the system closes the
exam-mode due to the time constraints set (and kindly warning the learner
in time)

3. by the course admin at any time (in case of cheating, etc)

UR 7.4.5 The couse admin gets several views on the results of an
exam: Required are views to individual results (“Priifungseinsicht”), to groups,

to several groups for comparison, etc. These views can be printed out (“Priifungsliste”
only with “Matrikelnummer” for public announcement, etc).

39



Chapter 8

Requirements of the course
designer

8.1 General

A course desinger prepares the learning materials and exercises for a course
according to the goals of that course, or according to the learners’ level. If ZSAC
is being used for a course, specific explanations may be added to the knowledge
E] and examples will be prepared within the example collection.

UR 8.1.1 Explanations from other ISAC-sites can be imported.

UR 8.1.2 Examples from other ISAC-sites can be imported.

These requirements are important, because ZSAC will be an open system in
all respects. In particular, each ZSAC-site shall go public with the knowledge
and the examples available at this site — for information of individual learners
as well as a starting point for exchange of course-content between educational
institutions.

UR 8.1.3 Copyright for the author of explanations. See UR/J5.0.50
UR 8.1.4 Copyright for the author of examples.

8.2 Appearance of example collections

One application of ZSAC will be to mechanize tutoring on existing example
collections, as found for instance in traditional textbooks. Thus the example
collection must copy the structure already given (the enumerations, page breaks,
assembly on a page etc.) in order to allow the learner to find a particular

11t is the task of a mathematics author, however, to edit the contents of a math knowl-
edgebase !

40



example (e.g. given as homework). Traditional textbooks use arbitrary labels
for their chapters and sections, the levels are nested arbitrarily deep, and there
are arbitrary labels for the examples.

For copy-right reasons it also may happen, that the example itself (i.e. text,
formulas, figures) is not displayed, only the respective label. In this case the
label should be located exactly at the same position on a virtual ’page’ on the
screen as the original position in the page of the textbook.

UR 8.2.1 The labels of examples are defined by the author

UR 8.2.2 The layout can model textsbooks. i.e. the structure of the un-
derlying system must be strong enough to model the structure of textbooks (but
also exceeds this structure, e.g. with links)

8.3 The structure of example collections

is a hierarchy of groups of examples. A group of examples consists of the part
visible to the learner (which may be copied from a textbook) and meta data for
ISAC to suggest examples of a level appropriate to an individual learner. There

are already requirements concerning examples, UR{7.2.10{and URJ7.2.11} which
apply to groups of examples for convenience.

UR 8.3.1 There is only one example collection in the system in anal-
ogy to one problem-hierarchy and one method hierarchy, see UR[4.2] This
collection, however, even may comprise several textbooks.

UR 8.3.2 There are groups of examples with common properties, see

URI[T210 and UR[T2.111

UR 8.3.3 A group and/or an example are weighted w.r.t. properties to
be defined in a later phase of development (at least the properties ’difficulty’
and ’length’).

UR 8.3.4 A tool for selecting examples w.r.t. the weights (and the user-

model etc.) is required. There may be also administrative concerns:

e A limit of the number of solved examples may be defined for a group; if the
limit is touched, this group has been mastered successfully by a student
within a certain course. An evaluation-function for the performance will
be advantageous here in the future.

e There might be obligatory examples in a group; i.e. such an example must
be solved by a student in order to have the group mastered successfully.

8.4 Edit examples in the example collection
An example can be described by verbal text, by formulas, and by figures (and

eventual by movies). Additionally, each example contains data hidden from the
visitor and the learner.

41



UR 8.4.1 Explanatory data can be embedded into eramples An exam-
ple can be described by verbal text, by formulas, by figures and possibly by
movies. Additionally, each example contains data hidden from the visitor and
the learner.

UR 8.4.2 A formalization is a list of formulas.

UR 8.4.3 A specification is a triple of three pointers to a theory, a problem
and a method respectively.

UR 8.4.4 Each example is combined with a list of pairs of a formaliza-
tion and a specification respectively. The pairs of Formalization and Specifica-
tion are used for user guidance while specifying a calculation and are remain to
users in a learning situation.

UR 8.4.5 Formalizations and specifications are hidden from the learner.

UR 8.4.6 An example may contain Error Schemes An Error Scheme
modelling typical errors and providing explanations and specific user guidance
for resolving the errors may be stored with an example.An Error Scheme may
be paired with an explanation (see UR8.6.1] .. URJ8.6.2| below).

8.5 Checks for example collections

For each example or for groups of examples is necessary to run particular checks
before delivery to the learners.

8.5.1 Check of format

Like the other items of ZSACs knowledge base, examples are stored in XML-
format. The data in the XML-files are filtered and converted to HTML for
presentation to the user.

UR 8.5.1 A tool for checks on the conversion from XML to HTML
for groups of examples is required, and also for particular examples found to be

buggy.

8.5.2 Check of solvability

The course designer addresses items of the mathematics knowledge (theories,
problems, methods) prepared by math authors. It may be, that particular
examples cannot be solved automatically by means of the knowledge addressed.

UR 8.5.2 A tool for batch-processing examples is required.
UR 8.5.3 Errors for batch-processing are: TODO

42



8.6 Edit explanations in the knowledge base

As already mentioned, explanations are multi-media add-ons to the math-contents
of the knowledge base. The latter is generated automatically from the SML-
representation in the SML-kernel (where the knowledge in the SMIL-kernel is
due to authoring by math-authors, see chap).

UR 8.6.1 An explanation may consist of text, formulas, figures, movies,
and links into Z8SAC’s knowledge base itself, into the web, to an example in the
resident site. Most HTML-editors, as presently available, meet the requirements
for editing explanations.

UR 8.6.2 Fach item in a knowledge base can have an explanation.
This should also be possible within formulas, e.g. an explanation to a predicate
in a 'where’-field of a model etc. . See also URM.4.9

UR 8.6.3 Explanations are course-specific. Each course might have
different explanations according to the contents of the course, according to the
specific example collection, and according to the learners’ level.

UR 8.6.4 The location of an item in the hierarchy is not persistent
over time. For instance, a problem like ’linear equation’ (together with its
children) can be shifted around in the hierarchy of equations. As the knowledge
comes from 2 sources, (1) exported from the SML-kernel after authoring by
math-authors and (2) manually addition of explanations by course-designers,
the identification of a primary key requires particular attention.

UR 8.6.5 There are tools to shift hundreds of explanations together
with their items. This may happen with the above example for ’linear equa-
tion’ together with its children, and with explanations for several user groups.

UR 8.6.6 There are tools for searching the knowledge base. Not only
the learner (see sect4.4) but also the author depends on requirements for search-
ing the knowledge; these requirements are different.

8.7 A knowledge profile

for each course results from the explanations following the requirements from
above, plus from the detail knowledge is used in, from error schemes and from
fill-in patterns for theorems.

UR 8.7.1 An example group and/or an example specifies the details
as defined in URI4TT]

UR 8.7.2 There are error schemes, eventually several for one theorem in
a particular method, or for specific tactics in a particular method. An error
scheme is paired with an explanation (UR8.6.1] .. URJ8.6.2)).

An Error Scheme modelling typical errors and providing explanations and
specific User Guidance for resolving the errors

43



UR 8.7.3 There are fill-in patterns for theorems, eventually several for one
theorem in a particular method. Such patterns are used for the dialog atoms
UR[6:2] e.g. 2 or

In addition to a tactic being applied manually by the user or automatically
by ZSAC, a tactic can be presented with parts left blank to be filled in by the
user.

8.8 A dialog profile

can be preset according to the students’ level. These predefined setting can be
overridden by the students in most cases, but not in all cases. The dialog profile
will be more elaborated as soon the ’dialog programming’ and the user model
habe been clarified in a future development phase.

UR 8.8.1 A dialog mode restricts the dialog atoms (URJ6.2.1)) to be used
by the learner within certain time limits (e.g. during the time of a written
examination).

44



Chapter 9

Requirements of the
administrator

The administrator has to install the system and to monitor it. Moreover his duty
is to implement the overall design of an ZSAC-site. This includes introductory
pages as well as an basic overall design (Corporate Design, links to “home”...)

9.1 Install and monitor the system

TODO

preliminary requirements:

UR 9.1.1 A text-file records the data exchange with the sml-kernel.
This file serves as a primitive way to check if the sml-kernel is alive as well as
for debugging.

UR 9.1.2 The system can be asked for the number of users logged in.

UR 9.1.3 The system can be asked for the number of calculations
under construction.

9.2 Customize the appearance in the web

TODO
preliminary requirement:

UR 9.2.1 Basic parameters to adapt the HTML-outtput to a corpo-
rate design (e.g. colors, font, ...)

45



46



Part 11

Software Requirements
Document

47



This Software Requirements Document is structured along the modules ab-
stracted from the functionality defined in the User Requirements Document.
The User Requirements Document, however, is structured along the different
kinds of users envisaged. In order to establish comfortable tracing, the m : n re-
lation between user requirements and software requirements will be accurrately
recorded in a double-linked way.

48



Chapter 10

General requirements

10.1 Delopment environment,

standards and components, documentation and revision control are described
in appendix [C}

10.2 Decisions for underlying systems

have been done already. As this requirements document shows, ZSAC is a large
system: thus it cannot be done from scratch, rather is has to use as much as
components already available. The theorem prover Isabelle provides for both,
a comprehensive frontend for interactive deduction (i.e. for definitions, axioms
and proving theorems), and a hughe mathematics knowledge base. Both are
under rapid development, which ZSAC shall take advantage of. The kernel of
Isabelle, however is relatively stable already, and thus the interfaces to ZSACs
math engine (ME) are sufficiently stable.

SR 10.2.1 The deductive part is left to Isabelle.

SR 10.2.2 ZS8ACs math engine closely cooperates with Isabelle
Thus the math engine is already implemented in the same program language as
Isabelle, SML.

10.3 The connection between Java and SML

has to be ’hand-made’. During the next few years there will be several changes
at the interfaces between the ZSAC-components belonging to these two language
environments.

SR 10.3.1 The SML-kernel is started by a java thread which controls
the time-out eventuall resulting from non-terminating loops in the knowledge
interpreter.

49



SR 10.3.2 The SML standard-output channel is read by parsers, one
for the SML-structures, and one for the mathematics formulas embedded in the
SML-structures.

10.4 System requirements for the users:

Users (with exception of the math authors, which work directly on the SML-
kernel) are expected to work on standard-browsers (UR[D]) and some additional
software components.

SR 10.4.1 On the client-side a Java virtual machine version .... must
reside on the local computer of the learners and authors.

SR 10.4.2 On the server there is a Linux or Unix operating system,
Linux version ..., Unix ...

10.5 Communication in the distributed system
[

10.5.1 Choosing a Means of Communication

For integration of the various components across several machines an off-the-
shelf solution was sought with the following criteria in mind:

Speed Many of the user’s requests originating on the Worksheet require pro-
cessing in the Math Engine. With ZSAC being an interactive system, we
need response times near the response times in normal human interaction.

Security With many of the features of ZSAC depending on the identity of the
user and the enforcement of access rights, basic security features are a
necessity.

Mobility Users might want to use ZSAC at work, in class or at home, even on
computers they use only occasionally. This asks for communication robust
against changing addresses of client and server computers, but still secure.

Conformity to Standards is especially important for the Worksheet, which
runs on the user’s machine. An ideal solution would build on standard
resources available on the user’s machine without the need of additional
installation. If installation is required, it must be kept as simple as possi-
ble.

With the goal of being open to cooperation with the tools of other projects,
a standard solution would ease integration of the different systems.

In addition to that, a standard solution is preferred with the limited re-
sources of the Z8AC project in mind.

1Begin of copy from [Kre05| p.58-61.

50



Several options were reviewed to find a suitable means of communication,
among them Java-RMI ] XML-RPC ] SOAP [ and Dinopolis [[]

While the Dinopolis approach looked most promising with respect to the
aforementioned criteria, it was not yet available in a stable implementation.
Java-RMI was chosen for the implementation of the ZSAC prototype. The
strongest arguments for Java-RMI were the seamless integration into the Java
programming environment and the widespread use and accepted stability.

10.5.2 The Dinopolis Middleware project

Dinopolis [Sch02a] is an object management middleware system aiming at object
and component retrieval, security and run-time polymorphism. While not part
of the current implementation of ZSAC, Dinopolis still played an important role
during the design phase.

The main features of Dinopolis include:

Component and object management Extending the traditional data-and-
operations view, Dinopolis objects have the following aspects, all handled
by the middleware:

Content is the traditional data content.

Meta-Data can be used for administrative purposes which are not nec-
essarily reflected by the content.

Interrelations associate several objects, of equal or different types, in a
m:n manner.

Operations manipulate the content of an object.

Services are GUI building blocks offered by an object to facilitate data
manipulation by the user. Services can be viewed as the View and
Controller parts of a MVC triple.

All of these aspects are handled transparently by the Dinopolis middleware
according to the current run-time context, which not only takes burden
from the programmer, but also allows for run-time dynamic typing as a
key feature.

Objects and components are accessed through Globally Unique Handles
(GUH), a mechanism allowing for unambiguous retrieval of objects inde-
pendent of their physical locations [Sch02b].

Role-based security Dinopolis takes control over access to components, ob-
jects, their data and operations. Access control is based on the user and
his role as opposed to the user’s identity alone. With Dinopolis, the same
user would have different access rights and therefore see different aspects

2http://java.sun.com/products/jdk/rmi/
Shttp:/ /www.xmlrpc.com/spec
4http://www.w3.org/TR/SOAP
Shttp://www.dinopolis.org/

o1



and different behaviour of objects depending on whether he accesses ZSAC
as administrator, teacher or student. All security-relevant operations are
handled transparently by the Dinopolis middleware, so the only task left
to Z&AC is to identify the user. As far as objects are concerned, the trans-
parent security system may be considered a special case of dynamic typing
described above.

Ability to embed existing systems Existing systems can easily be integrated
into Dinopolis by writing embedders for existing objects such as databases.
This could ease integrating Z8SAC with other projects without the need to
define common data structures. In addition to that, the SML part of ZSAC
could easily be integrated this way.

Platform-independency At present, Dinopolis is being implemented in C++
and Java, but the protocols and algorithms are open to arbitrary program-
ming languages.

The features mentioned above make Dinopolis ideally suited for the needs of
Z8AC, for communication of the various distributed components as well as for
security and role-dependent behaviour of the system. Unfortunately, Dinopolis
is still being developed and was not finished in time to base the current prototype
of Z8SAC on. The ZSAC team still hope to use the features of Dinopolis in future
versions.

10.5.3 Java-RMI

Java Remote Method Invocation provides for communication of processes run-
ning in different Virtual Machines, even if the VMs run on different computers.
Basically, RMI provides invoking methods on remote objects and passing pa-
rameters to remote methods. RMI cannot be compared directly to Dinopolis,
because RMI’s purpose is communication between remote objects, but not ob-
ject retrieval, system security or dynamic typing.

To invoke methods on a remote object, the remote object has to implement
a public remote interface extending java.rmi.Remote. Every method in the
remote interface has to declare to throw RemoteException. The remote object
may implement other methods in addition to the remote interface, but only the
methods in the remote interface can be invoked remotely.

Any objects implementing the java.io.Serializable interface can be passed
as parameter. Unlike other distributed component systems, this is the only con-
dition imposed on parameters.

Apart from the non-restrictive conditions listed, remote objects can be used
like local objects once a connection is established.

This tight integration into the Java programming environment is the key
advantage of Java-RMI and one of its few drawbacks, as it is limited to Java as
a programming language.

SEnd of copy from [Kre05] p.58-61.

92



———————— Original Message ———————-

Subject: Re: RK noch eine Bitte

Date: Thu, 31 May 2007 18:56:28 +0200

From: Walther Neuper <neuperQist.tugraz.at>

To: isac@ist.tugraz.at

References: <465DA1BD.506Qist.tugraz.at> <465DECBF.5030607@sbox.tugraz.at><465EE077.9000504(

Robert Knighofer wrote:

> Zitat von Walther Neuper <neuperQist.tugraz.at>:

>

>> _noch_ eine Frage zu Eurer, Deiner und Nelles, Arbeit an der HTL: laut
>>

>> http://java.sun.com/developer/onlineTraining/rmi/RMI.html

>>

>> sollte RMI bei Firewallproblemen _automatisch_ auf http-tunneling

>> schalten (..it is blocked by the firewall. When this happens, the RMI
>> transport layer automatically retries by encapsulating the JRMP call
>> data within an HTTP POST request. etc..)

>>

>> Habt Ihr bei Eurer Arbeit davon bemerkt 7
>

> Nein, leider.

>

Ah, sehr interessant, dass das nicht so luft

> Die einleitenden Worte wrden schon irgendwie darauf hindeuten, dass das
> alles automatisch passiert. Davon haben wir allerdings leider nichts

> bemerkt. Vielleicht haben wir uns dieses feature auch unabsichtlich

> selbst deaktiviert, als wir anstelle der Default Sockets zur

> Kommunikation unsere eigenen Sockets mit fixierten Ports aktiviert haben.
>
?

> [...]

> "If a client is behind a firewall, it is important that you also set the
> system property http.proxyHost appropriately. Since almost all firewalls
> recognize the HTTP protocol, the specified proxy server should be able

> to forward the call directly to the port on which the remote server is

> listening on the outside."

>

das gilt fr die Firewall auf der Serverseite; wir brauchen aber nur

die Firewall auf der Clientseite beachten, da der isacserver am IST
_vor_ der Firewall (in der dmz) luft !

> [...]

Vielleicht ist das Ganze einfacher, als wir denken !7!

93



>

> 1lg RK

>

lg Walther

Walther Neuper Mailto: neuper@ist.tugraz.at
Institute for Software Technology Tel: +43-(0)316/873-5728

TUG University of Technology, Fax: +43-(0)316/873-5706

and HTL Ortweinschule, Graz, Austria Home: www.ist.tugraz.at/neuper

———————— Original Message ——————---

Subject: Re: RK noch eine Bitte

Date: Fri, 01 Jun 2007 12:35:28 +0200

From: Nebojsa Simic <nelle@sbox.tugraz.at>

To: Walther Neuper <neuper@ist.tugraz.at>

References: <465DA1BD.506Qist.tugraz.at> <465DECBF.5030607@sbox.tugraz.at><465EE077.9000504«

Quoting Walther Neuper <neuper@ist.tugraz.at>:

> Robert Knighofer wrote:

>> Zitat von Walther Neuper <neuperQist.tugraz.at>:

>>

>>> _noch_ eine Frage zu Eurer, Deiner und Nelles, Arbeit an der HTL: laut
>>>

>>> http://java.sun.com/developer/onlineTraining/rmi/RMI.html

>>>

>>> sollte RMI bei Firewallproblemen _automatisch_ auf http-tunneling
>>> schalten (..it is blocked by the firewall. When this happens, the
>>> RMI transport layer automatically retries by encapsulating the
>>> JRMP call data within an HTTP POST request. etc..)

>>>

>>

> ... das gilt fr die Firewall auf der Serverseite; wir brauchen aber
> nur die Firewall auf der Clientseite beachten, da der isacserver am
> IST _vor_ der Firewall (in der dmz) luft !

Das grosste Problem ist dass ISAC Client gleichzeitig ein RMI Server ist
Un die Events (CalcChanged + doUIAction) die von Dialog->Worksheet
gehen, der ISAC Client registriert einen RMI Server auf der Client
Machine ... Und wenn der Server versucht, die Verbindung aufzubauen,
dann scheitert das ganze am Client Firewall

o4



Das alles schaut grob so aus

WindowApplication ISAC Server
RMI Client = =  --——--———-———- > RMI Server( 1040, 1050 , ... )
RMI Server (3113) <-—-—-—=————-—- RMI Client

Wir haben das ganze so umgeschrieben dass die RMI Sockets umgekehrt
funktionieren ... Das ist eigentlich schwer zu erklren, aber es
schaut das ganze so aus

RMI Client @ —————————————— > RMI Server( 1040, 1050 ,
Quasi RMI Server (3113) --———————————- > Quasi RMI Client
Das Problem da ist, dass ganze sehr empfindlich ist ... Falls die

Verbindung aufgebrochen wird, gibt es kein mechanismus um die wieder
aufzubauen und das System wartet ewig darauf

Beim letzten versuch im HTL war die kommunikation zwischen Client und
Server schon aufgebaut (wir konnten alle browser fenster aufmachen),
aber es war, wie schon gesagt, sehr instabil bzw. hat das System oft
abgesturzt

Meine vermutung ist dass im ReverseClientSocket und

ReverseServerSocket ein bug liegt oder dass man diese klassen
irgendwie umbauen muss

1G,
Nelle

99



Chapter 11

The worksheet

A worksheet is the protocol of a more or less interactive calculation of an ex-
ample, and it offers access to all services necessary to calculate the result of the
example.

A calculation mirrors the structure of the prooftree.

SR 11.0.1 The structure of a calculation is given by the ME. Conse-
quently any editing in a calculation affects the parts depending on the edited
formula or tactic. Edit the worksheet w.r.t. UR for publication etc. is
done outside ZSAC after having exported the calculation.

SR 11.0.2 Ezxport a calculation to a standard format preferably XML
plus MathML.

96



Chapter 12

Views on Examples and
Knowledge Items

[

This chapter describes the software requirements for the browsers and the
browserdialogs controlling these browsers.

All browsers (Example-Browser and Knowledge-Browsers) present their out-
put in a similar way. Textual descriptions have to be combined with images,
formulas, formalisations, problems, ...and links to further informations. All
items of information might be interlinked with each other.

12.1 General Requirements

SR 12.1.1 Unique identification by a GUH. Each item of the examples
collection or the knowledge base is uniquely identified by a GUH (Global Unique
Identifier). The GUH is a String starting with ’thy_’ for theory elements,
’pbl_’ for problem elements, met_’ for method elements and ’exp_’ for ex-
amples.

SR 12.1.2 Presentation in a standard browser and in the ZSAC-browsers.
The knowledge elements and examples can be viewed in a standard browser as
well as in the ZSAC-browsers. Thus, knowledge elements have to be available in
HTML form in some way.

SR 12.1.3 GUH:s as links. Links between elements of the knowledge base are
defined by the GUH of the link target. To make the links work in a standard
browser, some path information has to be added to the URL in the HMTL
representation of the knowledge elements.

1Begin of [KO6| p....— p....

o7



SR 12.1.4 Asynchronous load of content. The ZSAC-browsers load the
content to be displayed asynchronously. That means, that the user interface
does not block until the page is loaded. The page is loaded in an extra thread
instead.

SR 12.1.5 The hierarchy is displayed in a frame in order to have it
visible all the time.

SR 12.1.6 The hierarchy has arbitrary levels.

SR 12.1.7 The hierarchy shows the position of the related element dis-
played in the browser-window.

12.2 The Knowledge Browsers

The following enumerations do not show all items contained in the respective
sml datastructure; rather it shows the 'most important’ ones — a preliminary
decision, which will be overlayed by filtering due to the dialog-guide.

SR 12.2.1 A problem page consists of:

1. name of the problem or the ’‘CAS-command’ (a short command similar to
an algebra system; e.g. solve)

2. a model consisting of the fields ’given’, 'where’, ’find’” and ’relate’
explanations

the authors

ook W

the position within the problem-hierarchy displayed in the hierarchy-frame)
SR 12.2.2 A method page consists of:
1. the script

2. a name (only displayed in the hierarchy-frame)

©w

a guard consisting of the fields 'given’; 'where’, find’ and ’relate’

i

explanations

5. the authors

6. the position within the method-hierarchy displayed in the hierarchy-frame
SR 12.2.3 A theorem page (within theories) consists of:

1. the name of the theorem

2. the formula of the theorem

98



3. a link to the proof of the theorem within Isabelle
4. explanations

5. the authors (math authors and course designers)

SR 12.2.4 A ruleset page (within theories) consists of:
1. the identifier of the ruleset
2. the type of the ruleset (R1ls, Seq, Rrls)

3. a list of rules and links to the rules. Rules can be theorems other rulesets
or operations.

. a rewrite order

4

5. explanations
6. the authors (math authors and course designers)
7

. the position within the theory-hierarchy displayed in the hierarchy-frame

SR 12.2.5 A htmldata theory page consists of:
1. explanations

2. the authors

SR 12.2.6 Similar representation for static and dynamic content. If
elements of the knowledge base are shown in the ZSAC-browser, the content can
be enriched with dynamically generated context dependent information. Any
selected formula in the worksheet has a context to an element of the knowledge
base. This context information is inserted into the HTML content displayed in
the browser if the feature is activated.

SR 12.2.7 Data and representation separated. The knowledge data and
its representation should be separated well.

SR 12.2.8 Easy generation of different representations. SR[I2.2.7 The
system must provide an easy way of generating different representations of the
same knowledge data. SR{12.2.7]is a precondition to make this possible.

12.3 The example browser
In contrary to the knowledge browsers, the presentation of the contents of a
browser-window is not generated automatically. UR requests for a lay-

out ’handmade’ by the course designer; there are, however, a lot of attributes
invisible for the learner to be added by the course designer, too.

99



SR 12.3.1 The headlines of the example-hierarchy: The hierarchy com-
prises the labels of the chapters, sections, subsections etc. plus the respective
head line, and the blocks of examples with the respective labels — all defined by

the user (see UR[8.2).

SR 12.3.2 Metadata for selecting examples:

Attributes of examples and collections are numerous, and thus de-
faults help to safe space.

SR 12.3.3 Visubility of examples: Visibility of the examples is defined in
two levels: (1) ’locked’ displays the text of the example, but doesn’t allow to
calculate it; and (2) ’invisible’ doesn’t display the example at all.

SR 12.3.4 Only wvisible examples are checked for being locked.

&l

2End of [K06| p....— p....

60



Chapter 13

The dialog guide

As of 2012, the dialog is still a stub which just passes input from the learner
on to the math engine, and results of calculation from the math engine back to
the learner. Presently, replacement of Java code by a rule-based system in the
dialog is under construction. A UserLogger is being re-engineered in order to
serve dialog guidance planned for the future.

13.1 Components of the dialog guide

SR 13.1.1 A dialog consists of
1. a dialog profile which initializes the dialog
2. a dialog history which records each step in problem solving
3. dialog rules which which determine the flow of interaction

4. a dialog guide which selects the dialog rules;
these rules determine what is called a ’dialog mode’

ot

. a dialog state which comprises the data from the current session
6. a learner model which abstracts from the dialog states during a course.

The above notions will be used without the initial ’dialog’ in a respective context.

SR 13.1.2 A dialog profile determines initialisation of the dialog guide
at the first registration and also in case of an 'exclusive’ profile (in exams etc). A
dialog profile can be ’exclusive’ in order to feature assessments: within explicit
time limits an exclusive profile inhibits all other sessions of this student.

SR 13.1.3 The dialog history records dialog atoms , i.e. steps of problem
solving (an input by the learner together with the reaction of the math engine)
or look-ups in the knowledge base.

61



SR 13.1.4 A set of dialog rules comprises dialog patterns which in turn
are composed from dialog atoms.

SR 13.1.5 The dialog guide selects dialog patterns according to the user
model from previous sessions, from the dialog profile at start of the current
session and from the dialog state modified during the current session.

SR 13.1.6 The dialog state comprises current data, i.e. the dialog history
of the current session and the sets of dialog rules employed in the current session.

SR 13.1.7 The learner model abstracts over all sessions in a course such
that the next session can be started adapting to the personal needs of the learner.

13.2 The dialogstate

is read and updated during one session. A dialog resumes the dialogstate from
the previous session done as a member of the same student-group.

SR 13.2.1 The last dialogstate is stored at the end of a student’s session
for each group the student is a member of. When storing and replacing the pre-
vious dialogstate, this dialogstate is transferred to the history of the usermodel
(eventually after compression).

SR 13.2.2 The dialogstate has the attributes

begin timestamp of begin of session
provided-end e.g. for examinations
actual-end empty, or timestamp of end of session
group the user has started the session with
interactions, for each:
timestamp
label of example empty if ZSAC entered via KB
input tactic, formula, command or label in KB
response 77?7 of which part of system 777
pattern of dialog
activity
stepwidt
... TODO ...

The use of these fields is shown by use-case UC TODO.

13.3 The usermodel

consists of two parts: the settings of the personal preferences and the history
of (condensed) dialogstates. The history is constructed from the dialogstates:

62



before a dialogstate is being replaced at the start of a new session, its data are
restructured and appended to the history.

SR 13.3.1 The usermodel has the attributes

settings
patterns, for each:
activity
stepwidt
...TODO ...

history, for each session:

begin_end

group

kb_touchs, for each:
label of KB item
timestamps

examples, for each:
label of example
begin_end
finished

performance

of dialog

2 timestamps
the user has started the session with

2 timestamps

yes/no

from example.evaluation. TODO and
from dialog.interactions

The use of these fields is shown by use-case UC TODO.

63



legend to the reader’s marks:

64



Part 111

Architectural Design
Document

65



Chapter 14

Surveys

14.1 Survey on the components

Below there is a short description of the role of the modules shown in Fig[T4.1]

standard g | knowledge/ » GenHiml cxplanaiton ‘ math
browser examples authoring authoring
HTML- [ [ i
" Files
- L
browsers | hmwsa— ™ KEStore |y knowledge/
dialogs examples o knowledge (g—p
i XML-Files
. S
ses85i0n-
management Izabelle
h 4
worksheets g |p| "OTksheC | o bridge  lqip math ]
dialogs engine
ry
l—4 T *—l ¢
dialog user dialog cale-
state® madel* editor® state
Java
* not implemented yet (Oct. 2006) KML SML

Figure 14.1: Z8ACs components

Browsers (Example Browser, Knowledge Browser) allow to browse through
the content of ZSACs knowledge base. The browsers also allow dynamic
views onto the knowledge, where an actual example is the starting point
to find appropriate (types of) problem(s), theorems in use, etc.

Worksheet is the learners main working place when calculating an example in
interaction with ZSAC. A calculation on this worksheet is intended to be
like traditional paper-and-pencil work.

66



Dialog-guide consists of two parts, the worksheet-dialog and the browser-
dialog. The former is responsible for the interaction with the math-engine
(appropriately detailed steps etc.), the latter for the views into the knowl-
edge base (which might depend of which course the learner is member of,
etc.)

Dialog editor allows to define dialog patterns and strategies, and to preset
dialog states.

User-model holds settings for the dialog-state and a (compressed) history of
dialog-states.

Dialog-settings are given for each learner in order to preset the dialog appro-
priately to the respective preferences (graphical representation etc.).

Explanation Editor is used by a course designer or a teacher (no specific
exptertise in computermathematics is required !) (1) to prepare examples
and (2) to extend ZSACs knowledge base with explanations.

Examples are provided with with hidden formalisations for automated solving
as ZS8ACs prerequisite for user guidance. They can exactly be formatted
like example collections in traditional textbooks.

Knowledge + explanations is what the learner sees during problem solving:

1. Theories with axioms, definitions and theorems (proven with Isabelle)
2. Problems like types of equations, or problems of applied math
3. Methods to solve the problems.

These three parts of knowledge have been imported from SML in a batch
process, and this raw material can be augmented with multimedia expla-
nations by the explanation editor, presumerably specific to courses.

Math authoring tools provide for the compilation of the knowledge, which
TSAC requires for automated problem solving (as the prerequisite for user
guidance). This task requires more or less expertise in computermathe-
matics.

Knowledge comprises theories, problems and methods, and is held in the SML-
core for efficient access by the math engine. This knowledge is exported
to XML (in a batch process) for augmentation with explanations using
the explanation editor.

Math engine is a fairly small knowledge interpreter, which depends on the
knowledge and some of Isabelles services (matching, parsing, pretty-printing
etc.). Thus the math engine is written in the same language as Isabelle,
in SML.

Calc-state (short for state of a calculation) is held in a calc-tree for each
calculation.

67



Isabelle is an interactive theoremprover which lays the deductive foundation
of Z8AC.

Bridge wraps the SML-process of the math-engine as a Java-object, i.e. it
provides for data-exchange between SML and Java, for multi-user facilities
and for distributing work-load to several instances of the math-engine.

|

14.2 Basic Concepts for Separable User Inter-
faces

Apart from the benefits of structuring complex systems, separable user interfaces
provide adaptability of look-and-feel without the need of reworking the entire
system. For our analysis, we will concentrate on the Seeheim and Model-View-
Controller (MVC) basic architectures.

14.2.1 The Seeheim Model

The Seeheim Model [Pfag85] splits the entire system into three components as
follows:

The Presentation Layer is responsible for translation of physical representa-
tions, such as images, sounds, key-presses or mouse events into the logical
concepts of the system and vice versa. Typical tasks of the Presentation
Layer include rendering data on the display and parsing user input.

The Dialogue Controller defines the structure of the interaction between
user and system. Typical tasks of the Dialogue Controller include accept-
ing events the user triggered on the Presentation Layer, routing events to
appropriate destinations and making decisions whether and how to notify
the user of changes in the state of the system. In other words, the Dialogue
Controller defines (and enforces the use of) a language for the interaction
between user and application.

The Application Interface is an abstraction of the application’s data and
procedures from the user interface’s point of view. It maps objects and
operations on the user interface to actual data objects and code in the
application, thus representing the application’s functionality in a concise
and consistent way.

Note that in figure [[4:2] the messages are named "notify” and "request”
from the user’s point of view. From the Dialogue Controller’s point of view, the
messages are distinguished by their direction in or out of the Dialogue Controller.
Even more so, the Application and the Presentation Layer (representing the

1Begin of copy from [Kre05] p.53-57.

68



user) do not differ in a structural way. Both are merely objects generating events
which might be of interest to other objects and have to be handled according
to the Dialogue Controller’s state and logic. It is the semantic in the Dialogue
Controller’s logic that makes a difference between user and application, if any.

14.2.2 The MVC Architecture

As opposed to the Seeheim Model, which structures the system as a whole, the
MVC architecture [BMR96] is grouped around single data objects as follows:

The Model is any data object in the application requiring user interaction.

The View is an object providing a visual representation of the respective
Model, thus enabling the Model to output its data.

The Controller is an object accepting user input and notifying the Model or
the View accordingly, thus providing the user with a means of controlling
the Model.

In a complex system, the link between application and user can contain
several Model-View-Controller-triples, each grouped around a specific data item.

14.2.3 Comparing the approaches

e Without the need to pass the Dialogue Controller on every interaction,
the MVC model tends to be faster in runtime. This is particularly impor-
tant for giving the user immediate feedback about his current actions and
options.

e Being built around smaller units of single objects, MVC is more flexible
and easier to develop and extend.

e On the other hand, MVC lacks the clear separation between application
and presentation layer, spreading the functionality across a multitude of
interacting MVC triples. While this eases development, the resulting com-
plex dependencies make it harder to understand or debug the system as a
whole.

14.2.4 Implications for ZSAC
The design of Z&AC is based on the Seeheim Model, for the following reasons:

e A clear separation of Application, Dialogue Controller and Presentation
layer is a design goal because:

— At present, the Application itself is written in SML, whereas the rest
of the system is being implemented in Java. The necessity to interface
the different worlds of different programming languages implicitly
separates Application from User Interface.

69



— The already-implemented Math Engine with the Isabelle system in
the background uses more computing resources than a typical con-
sumer machine can provide at present. This and the goal to centralise
mathematical knowledge and example collections for groups of users
suggests running the Application on a dedicated server.

— To minimise effort and expenses on the side of the user, the part of
the system running on the user’s machine should be kept as small as
possible, a Java-capable web browser being the aimed-at minimum.
An ideal design would leave only the Presentation Layer running on
the user’s machine.

— The goal to adapt Z8AC’s behaviour to the situation of the individual
user’s situation asks for a well-defined, configurable and exchangeable
Dialogue Controller.

— As it seems foreseeable that the design of ZSAC’s Dialogue Controller
will pose questions going well beyond the scope of a single master’s
thesis, a separable Dialogue Controller component will ease indepen-
dent research. We expect the development of new approaches to
dialogue description languages as practical experience with a ZSAC
prototype becomes available.

e The major drawback of the Seeheim Model, the difficulty to provide im-
mediate feedback to the user, is not relevant to the design of ZSAC, as
the complex mathematical knowledge involved requires consultation of
the Math Engine for even basic feedbacks. With the present speed of the
Math Engine, any additional delays from the use of the Seeheim Model
will not be perceivable by the user.

Any operations not involving mathematical knowledge can be handled
locally by the Presentation Layer, in a MVC manner, if desired.

e The aforementioned goal of adapting ZSAC’s behaviour to the situation
of the individual user can be easily adressed by augmenting a centralised
Dialogue Controller with a User Model. The User Model would store
preferences set by the course designer and the user himself. The Dialog
Guide would report activities to the User Model, which would store these
reports and process them into an abstraction of the user’s preferences,
experience and behaviour. The other way round, the User Model would
be queried by the Dialog Guide for clues how to behave in a specific user-
interaction situation.

Based on these considerations, the top level design of ZSAC looks like this:

Math Engine or Kernel In terms of the Seeheim Model, this is the Appli-
cation. This component is already implementetd in SML and is intended
to run on a centralisad dedicated server. All mathematical knowledge re-
sides in this component, all calculations are done here. The SML system
communicates via the standard input and output text streams.

70



Dialog Guide and User Model In terms of the Seeheim Model, this is the
Dialogue Conroller. This component is being implemented in Java. All
user interaction is controlled by this component, and this is the only com-
ponent aware of the individul user.

Worksheet In terms of the Seeheim Model, this is the Presentation Layer.
This component is being implemented in Java, with the additional goal of
running in standard environments encountered on a consumer PC instal-
lations, as this component is intended to run locally on the user’s machine.
The Worksheet is the only component aware of visual aspects of data, such
as formatting, and the only component with direct user-interaction.

B

14.3 Survey on the architecture

[Hoc04] describes the architecture depictured in Fig. on p as follows.
The system architecture is designed as a distributed system. This means
that the components described below are designed process independently and
they can be executed on different computers concurrently. The thesis covers
the design of the graphical user interface component and the interfaces that are
necessary to connect to the other components of ZSAC.
The components of ZSAC are:

e The backend of ZSAC is responsible for doing the calculation and holding
the mathematical knowledge also known as knowledge base. The mathe-
matical engine can only do one calculation at a time. This is a restriction
that needs to be bypassed.

e Hence, the component called Bridge is designed as a multiuser compo-
nent. Multiuser in this context means that the Bridge distributes the
simultaneous user requests over several instances of the mathematical ma-
chine. A more detailed description can be found in [Gra04]. Note that
in this context the name Bridge has nothing to do with the structural
software pattern “Bridge”, described in Design Patterns by the “Gang of
Four”. Rather, the component Bridge in the ZSAC system architecture can
be described as an “Adapter” in the meaning of a design pattern. It con-
verts the interface of the mathematical engine into another interface that
the other parts of ZSAC, especially the WorksheetDialog, expect. More-
over, the Bridge also “converts” the functional software design paradigm
of the mathematical engine into an object-oriented design paradigm the
other parts of ZSAC expect; therefore, the Bridge lets components work
together that could not otherwise because of incompatible interfaces.

2End of copy from [Kre05] p.53-57.

71



e The WorksheetDialog acts as a middleman between the Worksheet and
the Bridge. It is the central component while solving an example. The
Worksheet provides the user with information during a calculation in co-
operation with the WorksheetDialog. The WorksheetDialog decides how
detailed the user should see the information, depending on the user his-
tory, experience of the user and role of the user. The WorksheetDialog
can also restrict the access to parts of the knowledge to ensure that the
user is not swamped with examples for which his experience level is not
high enough and he is not meant to solve yet.

The design of the WorksheetDialog at the moment concentrates on the
solving part. User history, restricting access and different grades for show-
ing information are scheduled in the design but not yet completely finished.

Worksheet and WorksheetDialog stand in a 1:1 relation, which means that
for each Worksheet a separate WorksheetDialog is necessary.

e The BrowserDialog is the component in charge as far as the knowledge
base is concerned. Strictly speaking, the InformationProcessor provides
information about the knowledge base. Each part of the knowledge base
(problem, method and theory, see section ??) can be accessed and also
the example collection can be accessed. Another task of the Information-
Processor is the authorization of the user that wants to connect to the
ISAC system. Currently a username and a password are used to authorize
the user. Security considerations like encryption have not been included
in the design process so far.

The InformationProcessor provides a well designed interface that can be
used by a client and is described in more detail in section

The SessionDialog, which is also part of the BrowserDialog, is responsible
for the (re-) identification of the user. A user might connect and log in
several times (e.g. with different applications), then the SessionDialog has
to ensure that all WorksheetDialogs for this user work on the same data.
A deeper look into the design of the SessionDialog can be found in [Gri03].

There is only one SessionDialog per ZSAC system.

e The Graphical User Interface is responsible for establishing a connec-
tion to ZSAC. It consists of two components, namely, the HierarchyBrowser
and the Worksheet. The requirements for these components have already
been described in sections ?? and ??. The following sections describe the
design of the graphical user interface and the communication interfaces to
the WorksheetDialog and BrowserDialog.

72



request request
—_——— —_—

notify notify
-t -

Figure 14.2: Interaction in the Seeheim Architecture

73



request

notify

Model

request

notify

Controller

watchUl

actOnUl

User

Figure 14.3: Interaction in the MVC Architecture

request request
confirm confirm
Kemel f — == = = DialogGuide f— == — = Worksheet
-
notify + notify

reportActivity

User Model

1
1 hintOnActivity

watchUI User

Figure 14.4: Basic Z8AC architecture for calculations

74



Information
Processor
SessionDialog

Ma%len}ai:ica] Knowledge Base
ngine

¢ Direct communication

-« Return value

Figure 14.5: The current design of the ZSAC system

(0]



Chapter 15

Session Management

15.1 The Dialogs

The dialog is the “heart” of the system which controls the behavior of the
different modules. It is responsible to adjust the reaction of the system to fit
the learners (and teachers) demands. Among others, these demands contain:

record a learners success by means of solved examples. This record can be
used to create a set of proposed examples for a single user. Furthermore,
the teacher can use this feedback to enhance the quality of his lecture (e.g
if a single example causes problems for most students)

restrict access to parts of the knowledge The set of available examples can
vary depending on the already solved examples or the progress of the lec-
ture to ensure, that the student is not swamped with examples he is not
meant to solve yet. Furthermore, the available information have to be re-
stricted while the learner writes a test. This also implies, that the access
for not authenticated users can be restricted as well (by IP). (The user
may not access the public information)

communication between different applications ZSAC uses different appli-
cations to access the knowledge and mathematical capabilities of the sys-
tem. For example: from the users point of view, the worksheet calculates
while the KnowledgeBrowsers are used to select problems or methods for
use within the calculation. In this case, worksheet and KnowledgeBrowser
are just two access-points for the same application. The dialog establishes
and controls the connection of these access-points.

manage the connected users A user might be connected using several ap-
plications. For instance he can calculate an example and search a related
problem using a browser. The dialog has to ensure, that these applications
work on the same data. Therefore a session is used which is aware of the
different connections of a user.

76



Because of the various duties of the dialog, it is split up into a number of
modules. Applications have an own “peer” which is used to communicate which
them. These peers act as a kind of “border” — informations the user is not meant
to get, may not cross this border but are filtered before. This filtering goes along
with an possible transformation of the data.

15.1.1 Session-Dialog

The session-dialog governs the user-login and performs all necessary actions to
build up a users dialog. It is started on system-startup and waits for connects
by an session-controller. There is only one session-dialog per ZSAC-System.

The session-controller is a client-side program which performs the login and
starts the ZSAC frontend-applications on a users machine. Besides the authen-
tication, the session-dialog is also responsible to instantiate and interlink the
application dependent parts of the dialog-layer as there are the Browser-Dialog
and the WorkSheet-Dialog.

Although one user can log in twice at a time, only one application dialog is
created to ensure that all user-dependent information are up to date. Therefore
the session-dialog has to maintain lists of logged in users and their respective
dialogs.

For the dialogs providing user-guidance see chap[16] below.

15.1.2 Browser-Dialog and Worksheet-Dialogs
Both dialogs are discussed in a separate chapter, in chap[I6} TODO.WN060705

15.2 User Data and Access Rights

15.2.1 Dialog Guide and User Model
15.2.2 User-Administration

The user-administration-module helps the dialog to maintain the users and
control the access for courses.

user

Information stored in an user-module contain personal information like name
and login, as well as important administrative information like the courses he
is member of and a reference to the user-model which contains all information
which are relevant to build up an environment for the user (solved examples,
history, ...)

user:
FirstName:String
LastName:String

7



login: String

password: String (encrypted)
courses: {coursex}
solved_examples, history,
temporary_environ: hierarchy_opt

The field temporary_environ is used in case of an examination. If this field is
set to non-empty, a user has only permissions to the elements of the referenced
hierarchy. This hierarchy typically contains the examples to solve and a few
explanations which are permitted within the exam.

course

A course is a object within ZSAC to define a learning environment for different
users. Typically, a course contains explanations to the mentioned theories and
examples which are organized within an hierarchy. There are tools which help
a course-designer to build up a hierarchy by e.g. copying a part of an other
hierarchy. A typical reason for doing this is to copy a part of the problem-
hierarchy and afterwards enrich the items with explanations and examples fitting
the audience of the course

Additionally, examples and general explanations can be added.

The hierarchy of a course is located within the KFE-Store while the object
describing the actual course is located within the wuser-management-module.
Permissions are handled based on the user and KE-Objects (hierarchies, exam-
ples, explanations, knowledge)

course:
metadata:
name:string
hierarchy: hierarchy-id
members:{user-id, user-id, ...}
admin: user-id

There are tools which perform the tasks of adding an removing users to a
course. While adding a user to a course is relatively simple — ensure the user
has proper rights for all KFE-Objects within the used hierarchy — the task of
removing a user from a course is more complicated: the user might be member
of more than one course which access the same example. Removing access-rights
for such an example might collide with the course the user is still member of.
Therefore, the tool has to check all courses of the user before removing any
permissions.

The data-structure is usable for another set of tools which can act on them
— like hide an example for all members of a course till they are able to solve
them or contact all of the course-members.

8



15.2.3 Permissions-module

The permissions-module stores and maintains informations about which user
might access to which KFE-Objects. The administration of the permissions is
based upon the users stored within the user-administration-module

Permissions are applied, whenever an KE-Object is accessed. When infor-
mations “leave” the dialog — e.g. when they are delivered to the browser, the
(browser-) dialog can remove links whose destinations are not accessible. Note,
that the dialog can decide not to show an example to a user although he has the
proper permissions — in this case, the references are filtered out by an didactic
filter.

Permissions can be set at once to a number of users using tools which can
access the objects within the user-management-module. E.g. a tool is used to
to add and remove users from a course. These tools traverse the members of
the course and set the proper permissions for them. There is a special mode to
limit access, when the user participates to a exam. In this case access is limited
to the environment given in the temporary_environ field of the user-object.

79



Chapter 16

Dialog Guide

1

16.1 Browser Dialogs and WorkSheet Dialog

In contrast to most currently available algebra systems, ZSAC bases its calcula-
tions entirely on rules and knowledge visible to the user. For every step done in
a calculation, there is a justification in ZSAC’s knowledge base, which can be dis-
played on request. Even more importantly, these justifications are meant to be
understood by the user, as they are expressed in terms of human mathematical
reasoning, not in sophisticated and optimised algorithms.

As Z8AC’s knowledge base can be understood by humans, it can be used as
a reference or even as a learning tool. Interaction with the knowlegde base is
moderated by a dialogue controller (see also section , in a way similar to
the interaction with the math engine in an ongoing calculation. Such a dialogue
controller is responsible for the processing of actions coming from the math
engine or the knowledge base and also for the response to user actions.

As it was already discussed in UR[3.1.1] the design took the designers of
ISAC to 4 different browsers and guarantee a well designed abstraction every
browser gets its own dialogue controller. Such a dialogue controller is one of the
basic parts inside of ZSAC. In the following paragraphs the term browsers will
be used to describe the three knowledge browsers and the example browser. So
these browsers with their corresponding dialogue controllers can be seen as one
subsystem.

Mathematical knowledge is normally very static, but with ZSAC you can
also make the current problem, method, theory or example available thru one
of your browsers. So the basic design led to two subsystems which can be used
separately, each with a presentation layer and a dialogue controller, but they
can also access the actual context of each other.

IBegin of copy from Alan Krempler [Kre05] p.61-62 with updates by Georg Kompacher
[Kom07].

80



Knowledge Browser

Knowledge Base

Math-Engine

Figure 16.1: The first sketch for ZSAC’s architecture

The two subsystems interact in the following points:

e Both dialogue controllers share a common User Model, for a inventory
of knowledge supposedly known to the user, be it from browsing the re-
spective knowledge item, be it from having used specific knowledge in a
calculation.

e When browsing thru the knowledge base, an example illustrating the pre-
sented concept can be calculated.

e When doing a calculation, items from the knowledge base justifying the
correctness of the calculation can be displayed. This kind of context-based
access to math knowledge is considered an efficient method of learning in
Z8AC. The other reason for accessing the Knowledge Base from a cal-
culation is, to explore the application of nearby knowledge-items to the
calculation.

e If the user is within a calculation and wants to apply a theorem to the
current formula, he can switch to the theory browser and apply any for-
mula of the knowledge base which matches. This communication between
a browser and an active worksheet is done between their dialogue con-
trollers.

Separate design considerations about the Browser Dialog see chap

B
Bl

2End of copy from [Kre05] p.61-62.
3Begin of copy from [Kre05| p.57-58.

81



Knowledge Presentation

Layer
Warksheet Browser Dialogue
Dialog Dialog Controller

Knowledge

Figure 16.2: Design based on the Seeheim model and showing the separation of
browsing the knowledge and calculating

16.2 Location of the Dialog Guide

With at least two machines involved - the user’s computer with the Worksheet
and the server with the Math engine - the question where to put the Dialog
Guide remains. The Dialog Guide accesses the Math Engine, the Worksheet and
the User Model frequently. For simplicity, mobility, security and centralisation
reasons, the User Model cannot reside on the user’s machine. The same is true
for the Dialog Guide. The Dialog Guide with the persistent data of the User
Models could run on the server together with the Math Engine or on an other
server of his own. The Dialog Guide is designed with the ability to run on a
machine of its own in mind. The final decision on the location of the Dialog
Guide will be based on tests with the prototype implementation.

A

16.3 The Interfaces to the WorkSheet Dialog
Component
Data exchanged at the interfaces of the WorkSheet Dialog component include:

Examples to be started When initialising the Dialog to moderate a process
of calculation, the starting point can be an empty worksheet or an Example

4End of copy from [Kre05] p.57-58.
5Begin of copy from [Kre05| p.65-67.

82



from the example collection. In case of starting from an Example, the
Example has to be passed to the Dialog.

Notifications about updates in a calculation With present technology, cal-
culations done by the Math Engine may take longer than the average user
would wait. Moreover, response times are not easily predictable, so wait-
ing for a call to return would block the WorkSheet Dialog - hence user
interaction - for too long a period of time. Therefore calls to the Math
Engine return immediately, with asynchronous notifications being sent
when the Math Engine completes a request. In addition to continuous
attention to the user, this approach allows for several users watching one
and the same calculation on their respective Worksheets and being even
notified of updates in the calculation requested by other users. For effi-
ciency reasons, the update notifications contain hints about which parts
of the Calc Tree may be affected by the update. These notifications are
passed from the Math Engine to the Dialog and from the Dialog to the
Presentation Layer.

The calculation itself The Dialog needs access to the Calc Tree stored in the
Math Engine and passes a filtered version of the tree to the Worksheet
for display. The Dialog cannot understand the mathematical meaning of
Formulas, but is is interested in identifying Tactics. It is the Tactics which
the user is learning to apply and the WorkSheet Dialog has to provide
appropriate user guidance for.

Calc Head As with the Calc Tree during the Solving Phase, during the Spec-
ifying Phase a Calc Head has to be shared between Math Engine, Work-
Sheet Dialog and Worksheet.

Notifications about user requests The Dialog has to be informed about ac-
tions the user triggers on the Worksheet. The Dialog in turn translates the
user actions into internal state changes or requests to the Math Engine.

Requests to the Math Engine As the Math Engine stores the only instance
of the Calc Tree significant to further processing, all manipulations of the
tree have to be done by the Math Engine. Request to edit the calculation
originating from the user are processed by the WorkSheet Dialog and
execution is requested from the Math Engine.

Information touched Records of the user’s interaction with ZSAC’s knowl-
edge are kept in the User Model and abstracted to ZSAC’s view of the
user’s knowledge and abilities. The User Model is informed about every
interaction of the user with the calculation or the Knowlegde Base. The
User Model’s abstraction is in turn queried by the WorkSheet Dialog to
decide on details of user guidance.

Dialog Atoms Information about the Dialog Atoms involved in user interac-
tion is passed to the User Model to record not only the fact that the user

83



interacted witch certain parts of knowledge but also the nature of the
interaction.

User settings The user’s preferences about the way he wishes to be guided
have to be communicated to the WorkSheet Dialog, whereas preferences
about the visual appearance of the GUI are communicated directly to the
Worksheet.

B
U

16.4 Controlling the Course of Interaction

The WorkSheet Dialog is responsible for guiding the user the way to obtaining
a solution to a problem.

16.4.1 Dialog Phases

On a coarse level, interaction goes through several phases with a fixed sequence,
independent of the particular problem being solved (UR. These so-called
Dialog Phases have been modelled on a state machine with well-defined states
and transitions between the states. During each of these phases, the WorkSheet
Dialog behaves differently and reacts to different requests. Regardless of math-
ematical context, the Dialog Phases provide a certain degree of error-robustness
by recognising out-of-order events.

With the Dialog Phases and their relationships becoming more complex in
future development, providing separate sub-classes for the Dialog’s behaviour in
different states may be appropriate, as described in the State pattern [GHIV95)].

Initialising

To start interaction, the WorkSheet Dialog has to establish connections with the
components it interacts with, a Worksheet representing the Presentation Layer
and a Math Engine representing the application (UC. In addition to
that, the WorkSheet Dialog needs information about the user it deals with,
to be able to adapt its behaviour accordingly (UCJ30.1.1.1} URJ2.1.1). Only
after being provided with a CalcHead to act upon, optionally filled in with a
Formalization of a pre-defined Example (UC7 the Dialog can enter the
Specification Phase.

Specifying

The goal of this phase is to gather enough - and consistent - information to
start solving (UC.??). During this phase, the user can add information to a

SEnd of copy from [Kre05] p.65-67.
"Begin of copy from [Kre05] p.67-76.

84



CalcHead, in arbitrary order. After every item added, the CalcHead is checked
with the Math Engine for consistency and completeness (UCJ30.2.1.1) URM.3.1)).

Requests for help entering items cannot be answered by the WorkSheet Di-
alog because of lacking mathematical knowledge. Such requests are passed to
the Math Engine, if allowed by the user’s settings. The Specifying Phase can
be finished only after the CalcHead is confirmed being complete and consistent

by the Math Engine (UCJ30.2.2.2)).

Solving

To enter the Solving Phase, a valid CalcHead is required. Consequently, the
mathematical situation initially described by the CalcHead is transformed to-
wards a situation called result. The transformation is performed in steps (UR
which are recorded in a CalcTree (UR. As opposed to the Specifying
Phase, the steps are not cumulative, but sequential. This implies that while
it is possible to change steps already taken, such an action is likely to render
subsequent steps invalid (UC. The transformations are not performed
by the WorkSheet Dialog itself but by the Math Engine. Requests to take a step
are passed to the Math Engine and steps entered by the user are checked by
the Math Engine (UR[2.3.6). Note that the WorkSheet Dialog does not know
anything about mathematics, it knows only about the structure of interaction
in problem-solving. As stated before, transformations can be done entirely by
the user or by the Math Engine, or with combined effort of both. This opens
up a spectrum of interactional possibilities how to take a step and the various
possibilities are described as Dialog Atoms (see section ?7).

With the concept of a state machine in mind, additional phases can be added
easily in the course of future development to handle more complex sequences.
Solving Subproblems

Subproblems are calculations within calculations; in principle, they do not differ
from top-level problems.

UI_SPECIFY_CALCULATE_1
UI_SPECIFY_CALCULATE_ALL

startCalculation ()

DialogGuide () Quit

DIALOGPHASE_
IDLE

DIALOGPHASE_
SPECIFY

DIALOGPHASE_
SOLVE

UI_SOLVE_SPECIFY_SUBPROBLEM

Figure 16.3: A state machine for the Dialog Phases

85



16.4.2 Dialog Atoms

As opposed to the high-level Dialog Phases, Dialog Atoms are basic building
blocks of system-user interaction at the level of a single interaction. For con-
figuring the WorkSheet Dialog’s interactional behaviour (URJ6.2.2)), we aim at
developing an abstract language with Dialog Atoms (UR part of the
vocabulary. The WorkSheet Dialog could contain an API for programming
its behaviour, with a lower-level interface implementing an Interpreter pattern
[GHIV95] for Dialog Atoms and a high-level interface implementing the Strat-
egy pattern.
Let us quote [Neu0Ol] again:

The dialog atoms are the following, ordered by descending ’ac-
tivity’ of the learner: All atoms concern a step from the current
formula f applying a tactic tac which yields the resulting formula
f' (the derivation of f), i.e. f —stec f/.

1. given f , input the next formula f’

2. given a partial f (supplied by ZSAC), complete f such that it is
a derivation of f

3. given f | input a tactic tac to be applied to f

4. given f | select tac from a list (supplied by ZSAC) to be applied
to f

5. given f and a partial tac , complete the tac (i.e. a theorem, a
substitution, etc.) such that it can be applied to f

6. given f, tac , and a partial f’, complete f’ such that it is the
result of applying tac to f

7. given f and f’ , input tac such that f’ is the result of f applying
tac

8. given f and f’ | select tac from a list (supplied by ZSAC) such
that f’ is the result of f applying tac

9. given [, f/ and a partial tac , complete tac such that f’is the
result of f applying tac

Note that exchanging the parts of the user and ZSAC in the above proposal
yields another set of Dialog Atoms, which can be treated as equivalent from the
Dialog’s point of view. Taking atom 1 as an example, it is essentially the same
whether f is supplied by ZSAC and f’ is expected to be input by the user or
the user asks ZSAC to derive f’ from f . In abstract terms, in both cases one
part provides f and the other part is expected to supply f’ . For this reason,
the WorkSheet Dialog tries to provide symmetric Dialog Atoms and make use
of this symmetry in the implementation.

86



16.5 Sharing the Calculation with other Com-
ponents

16.5.1 Representing the Model and the Specification

A Model (UR[8.4.2)) storing lists of formulas called Given, Find, Where, Relate
and a Specification (UR storing identifications of a Theory, a Method
and a Problem comprise all data necessary to specify a calculation to the Math
Engine. In the Z8&AC system, this information is called a CalcHead, indicating
that every calculation (a subproblem, too) has a header specifying a starting
point. Once the Solving Phase of a calculation is started, this information does
not change any more.

16.5.2 Representing the Path to the Solution

The path to the result is represented by a tree-like structure (UR, al-
ternating formulas and tactics (UR. There is always exactly one Tactic
being applied to a formula. In the course of calculating a result, the structure
grows as new formulas are added by the user or the Math Engine.

16.5.3 Treating Subproblems

A subproblem is a calculation within a calculation. As such, every subproblem
is preceded by a CalcHead. Once specified by a CalcHead, a subproblem could
be treated as a calculation of its own and solved independently of the enclosing
calculation. Two possibilities for treating subproblems and feeding their results
back into the main calculation were explored.

Independent CalcTrees

Every subproblem could be stored in an independent CalcTree. This would em-
phasise the fact that a subproblem can be solved independently of the enclosing
problem and reflect that fact in the data structure used. As an advantage,
every calculation would have exactly one CalcHead and exactly one CalcTree
associated with it, representing the data involved in the Specifying Phase and
the Solving Phase, respectively. This would allow for clearly separating the
CalcHead from the CalcTree thus reflecting the separation of the Specifying
Phase from the Solving Phase in the storage of data. On the other hand, such
an approach would complicate feeding back the results of a subproblem into the
enclosing calculation.

One Common CalcTree

As an alternative, all data of a calculation, including associated subproblems,
could be stored in a single data structure, subproblems being stored as branches
of the tree. While this approach reflects the fact that a subproblem is part of

87



the enclosing calculation, the distinction between Specifying Phase and Solving
Phase becomes blurred, as the CalcHeads specifying subproblems must be stored
within a CalcTree. Having subproblems tightly integrated into the enclosing
calculation eases using their results.

This approach was chosen for implementation, in part due to the fact that
the already-implemented Math Engine stores calculations in a single tree.

16.5.4 Accessing Calculation Data
CalcHead

With the CalcHead having a fixed number of fields, all members can be accessed
directly. Wherever components share a CalcHead, the object itself is referenced
or passed.

CalcTree

For accessing data in the dynamically growing CalcTree, the Iterator pattern
[GHIV95] was chosen for its main advantage of hiding the internal representa-
tion of the data accessed. Several reasons suggested hiding the internal repre-
sentation:

e An Iterator can serve the additional purpose of referencing elements of a
calculation.

e An Iterator is likely to be a much smaller object than the calculation it
points into.

e Several components residing on different machines imply having to pass
information about the calculation across the network. Using compact Iter-
ators instead of the entire calculation would make efficient use of network
bandwidth and save computing time needed for serializing large objects.

e At an early stage in design, the final structure of a calculation as stored in
the Java-implemented part of ZSAC was not yet decided upon. Using Iter-
ators made it possible to start development of other components without
knowing which data structure would be eventually implemented.

e There was much debate about runtime efficiency versus ease of devel-
opment in representing a calculation. Hiding the internal representation
would allow for implementing efficient data structures at a later time with-
out having to redesign the entire system.

e Neither the WorkSheet Dialog nor the Presentation Layer need to know
how a calculation is actually stored. On the other hand, both components
are interested in the structure of a calculation as presented to the user.
Using Iterators would allow traversing a calculation in a user-oriented
manner independent of the actual implementation.

88



16.5.5 Communicating Changes in the State of Calcula-
tion

As a component sitting between the Application and the Presentation Layer, one
of the tasks of the WorkSheet Dialog is to propagate information about changes
or events in one component to the other. The WorkSheet Dialog intercepts
the flow of information and modifies it by implementing ZSAC’s logic of user-
interaction.

Wrapper-based Design

One approach is wrapping the objects representing the calculation - the Calcu-
lation Tree and associated objects - into objects with the same interfaces but
different behaviour, following the Decorator pattern [GHJIV95]. This way, the
WorkSheet Dialog can filter information considered not appropriate for being
presented to the user by simply removing these data from the representation
accessible to the Presentation Layer. For an example, if the user is not inter-
ested in the Tactics transforming one formula into another, the Tactics simply
do not show up in the representation of the calculation seen by the Presentation
Layer. This has the advantage of simplicity - the Presentation Layer and the
Application need not consider filtering taking place or even know about filtering
at all. Moreover, the same interface can still be used if one would want a sys-
tem without the intervention of a WorkSheet Dialog for direct communication
between the Application and the Presentation Layer.

Event-driven Design

In addition to data representing the state of calculation, there is data repre-
senting changes in time. Many of these changes occur asynchronously at un-
predictable intervals - such as interactions of the user - or with considerable
unpredictable delay after the event that that triggered them - such as results
of a lengthy transformation becoming available. This sort of changes is com-
municated through event messages, with objects interested in such notifications
registering as Observers [GHIV95] with sources of events. The main sources of
events are the Presentation Layer for user actions and the Application for new
information about the calculation becoming available. The WorkSheet Dialog
intercepts and filters these messages using the Mediator pattern [GHIV95].

16.6 Configuring the User-Interface

The WorkSheet Dialog and the Presentation Layer have to cooperate closely in
user interaction. Consider a button on the screen triggering some action. It is
the Presentation Layer’s responsibility to render the button and to notice the
user clicking it. It is the WorkSheet Dialog’s responsibility to decide whether
the user is allowed to request such action and to trigger appropriate action in
the Application.

89



The division is not always so clear-cut. Consider internationalisation of the
user-interface (UR: Is it the Presentation Layer, which is responsible for
rendering in general and the language environment, that decides which text to
set on the button? Or is it the WorkSheet Dialog, which knows the meaning
of the action triggered by the button? For the following considerations, we will
stick to the example of the button.

16.6.1 The Presentation Layer in Control

If the Presentation Layer controls every aspect of a button, such as visual ap-
pearance, placement on screen and the actions triggered, everything seems easy.
Problems arise if we consider buttons which are needed only in special contexts.
A button asking for the next Tactic to be applied to a formula does not make
sense during the Specifying Phase, where no Tactics occur.

We could show the button all the time, with the WorkSheet Dialog simply
ignoring requests when not appropriate. This has the disadvantage of confusing
the user with lots of buttons which can be clicked but make no sense in the
current context.

We could show buttons only if clicking them makes sense. If the Presentation
Layer were to solve this problem, it would need information about the current
phase of the dialog. While this may seem feasible, in other situations the appli-
cability of the button might depend on the user’s role or privileges, or on the
user’s level of expertise, which in turn might change even during a session. Es-
pecially if buttons depend on didactic strategies, this involves knowledge which
has nothing to do with presentation but is clearly part of the WorkSheet Dialog.

16.6.2 The WorkSheet Dialog in Control

If we put the WorkSheet Dialog in control of the buttons, it becomes easy to solve
problems with context, but this would require the WorkSheet Dialog to care
about internationalisation and visual appearance, which is out of interactional
context and should be left to the Presentation Layer.

16.6.3 Splitting up Responsibilities and Providing for In-
teraction

It seems best to have the various aspects of a button controlled by the component
which possesses the information necessary to do so.

While the Presentation Layer should control every visual aspect of a button
such as text, shape and placement on screen, the WorkSheet Dialog should
control the context in which the button appears and the action it triggers. See
[SBCOO0I] for the discussion of a related problem.

First attempts aimed at providing means for the WorkSheet Dialog to enable
or disable buttons otherwise controlled by the Presentation Layer. In the mean-
time, the goal changed to having the WorkSheet Dialog control the creation and
destruction of elements of user-interaction as well.

90



The WorkSheet Dialog creates a element of user-interaction by providing an
identification of the action it triggers. The presentation layer need not even
understand the meaning of the action, it uses the identification merely for no-
tifying the WorkSheet Dialog which action has been triggered by the user. In
addition to that, the WorkSheet Dialog provides the Presentation Layer with
hints about the context of the user interaction, such as whether the action re-
lates to a single formula or the user’s session as a whole. The Presentation
Layer can use this information to choose an appropriate visual representation.
Moreover, the the WorkSheet Dialog does not even request the trigger to be a
button. It requests that a means for the user to trigger a request be created and
it is left to the design of the Presentation Layer to offer a button, a menu item
or both. This approach bears similarites to the Factory pattern [GHIV95], but
the created object remains with the Presentation Layer and is not passed back
to the WorkSheet Dialog.

16.7 Obtaining and Storing Configuration Data

Much of the WorkSheet Dialog’s behaviour can be parameterised (UR, and
many of these parameters are individual to a user (UR. Moreover, some
of the parameters are modified by the system itself during a session (UR
based on data collected (UR[6.1).

16.7.1 The User Settings

By user settings we denote preferences on aspects of the system set by the
user (UR UR7 such as amount of data shown, levels of difficulty or
customisations of the visual appearance of the program. As these settings do
not pertain only to the WorkSheet Dialog but also to other parts of the system,
they will be managed outside the WorkSheet Dialog. It is to be noted that this
information does not change very often, so efficient processing is not an issue.

16.7.2 Permissions and Security Issues

With Z8AC being developed as groupware (UR, special attention has to
be paid to the fact that settings will be set not only by the individual user,
but also by privileged persons such as course administrators (UR. In
addition to that, changing some of the settings may be subject to restrictions
(UR depending on the role of the user. It is assumed that reconciliation
of contradictory settings and security issues have already been resolved by user
management and that the WorkSheet Dialog has access to the settings in effect
for the current session.

16.7.3 The User Model

As required in UR[G.3] the WorkSheet Dialog will adapt to the assumed knowl-
edge and abilities of the user. Decisions about which information to show and

91



which actions to take will be based on an internal abstraction of the experience
the system had with the user, the User Model.

The User Model is notified about every interaction between user and math-
ematical knowledge and information about the knowledge involved (UR.
The user’s performance (UR is recorded together with information about
the context of the interaction, i.e. the Dialog Atom used in the interaction. For
efficiency reasons, data is stored as statistical digest rather than as log. The
User Model is accessed frequently, at least once per interaction both for query
and for recording the outcome, and logging every event would grow the amount
of data processed unmanageable very soon.

Note that the User Model gathers and processes the data, but is not aware of
their meaning - knowledge items and Dialog Atoms are processed as identifying
numbers. Interpretation of the data is left to the components which use them,
i.e. the WorkSheet Dialog and, in the future, the Browser Dialog.

Abstractions on a higher level than the presently used statistics could be
added in the future, as cooperations of ZSAC in the field of didactics could
provide abstract measures e.g. for a user’s familiarity with a topic. In any case,
the User Model provides descriptive information about the user and decisions
about further actions are always taken by the WorkSheet Dialog.

As the user’s history has to be regarded as well (UR7 the User Model
will be stored across sessions along with the user’s settings.

B

16.8 Browser Dialog

The browser dialogs are responsible to process the informations coming from the
user interactions on the knowledge browsers (see chap and also for gathering
information from the knowledge base or (indirectly over the worksheet dialog)
from the math engine.

There is no possibility for the learner to manipute the data presented by
the knowledge browsers while using ZSAC’s tutoring-system. The only way to
change data from the KE-store is via ZSAC’s authoring-system. There are two
sources where the browser dialogs fetch their information:

1. When Data has to be fetched from the KEStore (chap it solely depends
on the UserModel (the membership to a course, a session within a written
examination, etc.) how much informationen if any can be retrieved form
the KEStore.

2. Data from the MathEngine (chap which concerns a context to a certain
calculation. The context gives a concrete interpretation of the meaning
of an item of the KEStore. The user can choose if he wants to switch
the context on or off. When the context is switched off only the static
information from the KEStore will be presented.

8End of copy from [Kre05] p.67-76.

92



In analogy to the worksheet dialog the browser dialog has a central role in
ISAC’s architecture following the ’Seeheim Model’ (see sect.

There is one dialog for one browser (see chap. But the functionality
of the four browsers is more different than their layout shows. Thus there is
a more sophisticated (subclass-)relation between the dialogs than betwenn the
browsers. The dialog can be

e an example browser dialog, which is responsible for starting the execution
of examples

e a knowledge browser dialog, which is responsible for displaying the respec-
tive parts of the math knowledge; thus there is a

— theory dialog
— problem dialog
— method dialog

The dialog has to handle links from each browser to each other. The dialogs are
created at the same time at setup of the session.

16.8.1 Browser Dialog and Worksheet Dialog:

There is four browser dialog for one session, while there may be 0. ..n worksheet
dialogs (according to the number of worksheets opened). The relations between
the two kinds of dialogs are discussed in

16.8.2 Survey on requirements

E| The browser-dialog is the peer for the browser within the dialog and gathers
the informations for the request. Depending of the type of request, it contacts
the KE-Store and/or the WorkSheet-dialog. Afterwards, the informations are
filtered depending a users actual permissions and duties. It is possible, that
pages are blocked as a whole — e.g. if an example is not accessible before
an other one is solved. Alternatively, some fields might be blocked. e.g. if a
learner has to solve a problem while performing a test, he might see all available
problems — but the dialog will suppress the fields which tell the user if (and why)
an actual problem does not fit.
The permissions are gained from different sources.

e The course-designer may define a group of users which may access an
example.

e The course-designer may define preconditions before a example is dis-
played (e.g. a date, or a set of examples to solve first)

e The course-designer may set the user to use a “temporary environment”
which alters all permissions to a set of KE-Objects(e.g. while an exam)

9This is a survey from an early design phase documented in [Gri03] p.42

93



e The dialog-layer maintains a user-history to find out which examples and
parts of the knowledge are already visited and solved.

The informations about a user are stored within the user-model. Informa-
tions like the history are not only gathered and used by the browser-dialog but
by the whole dialog-layer.

16.9 Dialog Guide and User Model

The term ’Dialog Guide’ addesses an abstraction which comprises both, the
Worksheet Dialog and the Browser Dialog. The Dialog Guide shall be subject
to simple implementation and parameterization of ’intelligent dialog behaviour’
by ’dialog authors’ in the future.

There is a detailed discussion in sect[I5.2.1] p[77]about the relations beetwenn
the dialoges an the UserModel within the context of session management.

94



Chapter 17

Worksheet

The worksheet is the center of user interaction in the ZSAC system. From the
Users point of view, the Worksheet is the place where the calculation happens.
The Z8AC’s knowledge base is constantly expanding and the user interface has
to be flexible enough to allow the user to use every function provided by the
mathematics engine.

17.1 The Presentation Model

As already mentioned when designing ZSAC, the entire was split into components
according to the Seeheim Model. The Worksheet component according to this
model represents the Presentation Layer. According to Seeheim Model, the
Presentation Layer is the component that serves for the simultaneous interactive
communication with the user. This component defines the user interface on a
lexical level by specifying the user interface widgets presented to the user. These
user interface widgets serve the purpose of supplying output to the user and
receiving input from the user.

17.2 Communication between the Presentation
and Dialogue Control Layer

As mentioned in the previous section, the main purpose of the Worksheet is to
translate the user interactions to the requests to the system. In this section
we shall discuss how to implement the communication between the Dialogue
and the Presentation Layer. To further simplify things, the communication is
divided into two categories:

e User Interface Events, which consist of user requests and system messages

e (Calculation Events, which represent the output of the mathematic engine

95



17.2.1 User Interface Events

The most common way to implement this type of communication is to hold a
reference to the system interface of the Worksheet Dialogue in the Worksheet
and for every user interaction event, simply call specific methods of the interface
to execute the command. However, the designers of ZSAC had to take in the
consideration that the Worksheet and the rest of the system are two different and
separate applications, meant to run on different computers and communicate
over network. Second consideration was that the Worksheet application does not
necessary need to be an AWT or SWING application, but could be a pure text
mode interface or even a 3D enhanced virtual reality interface. Additionally, the
components had to be as flexible as possible, but the interface should remain the
same, thus allowing for the separate development of Presentation and Dialogue
Layer.

The logical answer was to use the "command objects” as a practical mean
for network transport, because they can be easily serialised. The receiving mod-
ule of the system has only one method for communication that handles all user
interaction events. For each event this method receives the appropriate ”com-
mand object” as the parameter and acts accordingly. This keeps the interface
between the objects simple and stable.

In case of ZSAC Worksheet the ”command objects” are called Actions. The
Actions can be sent from Worksheet Dialog to Worksheet or vice versa. The
actions sent from the Worksheet Dialog to Worksheet are called UlActions and
represent different User Interface Elements the Worksheet needs to present to
the user. When the Worksheet receives the UlAction, it adds a widget to the
User Interface. To each of these widgets a certain UserAction is assigned. When
the User activates the widget, the Worksheet makes sure that the proper User-
Action is sent to the Worksheet Dialog. The Worksheet self has no knowledge
about the meaning of the Action.

As already mentioned in this document, there is a strong discrepancy in the
architectural requirements set for the system. The Presentation Layer should
have no knowledge of the state in which the dialogue currently is and the Di-
alogue Layer should have no knowledge over such things as placement and in-
ternationalisation. The solution is to establish a certain hierarchy within the
set of UIActions. This hierarchy lets the Presentation Layer choose the widgets
for representation, but leaves the possibility for the Dialog Layer to choose the
circumstances in which the widget is available. Certain actions are always avail-
able, like the actions applied to the entire calculation, whereas other actions can
only be performed on a single (or even specific) formula, like changing the tactic
or assumption and are available only in certain dialogue phases.This hierarchy
is implemented in ZSAC with ”contexts”. For example the actions applied to
the entire calculation have a certain context and all such actions are rendered
as push-buttons in the upper part of the worksheet.

It is important to note that according to Seeheim Model, the Presentation
Layer is not responsible for the context management, so the context of a certain
action is sent to the Worksheet as a part of the UIAction object.

96



17.2.2 Calculation Events

Second part of the communication between the Worksheet and the mathematical
engine are the calculation events. They are fired each time the mathematical en-
gine has some data for the worksheet. These events are handled asynchronously
in a separate method of the Worksheet. The asynchronous communication can
have its disadvantages. If the mathematical core processes several different cal-
culations from several users, the user may have to wait several seconds for the
result to appear. This can sometimes be a serious usability problem. However,
the major advantage is that the asynchronous message passing allows for more
parallelism.

17.3 Calculation views

According to the User Requirements, the user can start using the Worksheet in
two different modes:

e the specifying phase
e the solving phase.

From the Worksheet of view the two modes are the same (like a blank piece
of paper). The Worksheet has no knowledge of the current phase.

17.4 Calchead Panel

If the CalcHeadPanel is displayed because the user started a calculation from
scratch, then the user first has to model the problem. As specified in the User
Requirements, the Calculation Model is made up of the following fields :

e ’given’ which includes the input-items
e 'where’ which includes the pre-condition on the input-items
e ’find’ which includes the output-items

e ’relate’ which includes parts of the post-condition.

To provide a full specification, the user must also make inputs about the
problem type, the theory that is necessary to solve the problem and the method
on how to solve the problem. Each input value is checked by the mathematical
engine. If an input value is incorrect or cannot be handled by the mathematical
engine, then the user has to be informed about this fact. So far ZSAC can only
inform the user that something went wrong but is not in the position to provide
help to correct the problem.

If the user wants to refine a problem or to match a problem, then the model
of the current example and the specified problem from the problem hierarchy

97



are compared against each other by the mathematical engine. The task of the
CalcHeadPanel is to colorize the fields which are either correct (match) or not
correct (do not match).

Implementation Details

The CalcHeadPanel helps the user to model and specify a problem. If the user
decided to calculate a prepared example from the example hierarchy then the
CalcHeadPanel is already filled with values that are stored in the XML file that
represents the example (see listing below) otherwise the user has to input all
values that are necessary for a complete formalization of an example.

< DESCRIPTION >
< FORMALIZATION >
< VARIANT >
< TERMLIST >
< MATHML >
< ISA > equality (1+-1x2+x=0) < /ISA >
< /MATHML >
< MATHML >
< ISA > solveFor x < /ISA >
< /MATHML >
< MATHML >
< ISA > solutions L < /ISA >
< /MATHML >
< /TERMLIST >
< SPECIFICATION >
< THEORY > Test.thy < /THEORY >
< PROBLEM >
< KEY >
< ID > linear < /ID >
< ID > univariate < /ID >
< ID > equation < /ID >
< ID > test < /ID >
< /KEY >
< /PROBLEM >
< METHOD >
< KEY >
< ID > Test < /ID >
< ID > solve_linear < /ID >
< /KEY >
< /METHOD >
< /SPECIFICATION >
< HIDE > < /HIDE >
< DETAIL > < /DETAIL >
< /VARIANT >
< /FORMALIZATION >
</EXAMPLE>

It is very cumbersome to input a complete formalization; therefore, the
CalcHeadPanel has views with different detail levels for the formalization of
an example: A FullCalcHeadView in which all items of a formalization have
to be input and a SimpleCalcHeadView. The SimpleCalcHeadView provides a
view that is similar to existing algebra systems where the user has to input only
the example he wants to calculate (e.g. z + 1 = 2). At the time of this writing
Z8AC is only able to provide the SimpleCalcHeadView for equations.

As soon as a complete and correct formalization has been entered, ZSAC will
be able to calculate the formalized example and can go into solving phase.

Communication with the Calchead Panel

The Calchead Panel is an integral part of the Worksheet and communicates with
the Worksheet Dialog through aforementioned User Interface and Calculation
Events.

98



Y T,
/{_\r—cc..narul‘K

U = 1
Fre=eatdizn Layer £ =0 * Dialcgre Czrdral=r n\- 53 Apclicatich mie-faz= %
' .

Afplcezlan

aktizel it kslesl Zia oy

Figure 17.1: Worksheet as a part of Seeheim Application Model

99



i hize] Hl4rlzq ‘Warkslezt Sizloyg

Cenles Srea il 12

- - § P ]

Widge . Wdye, I |

B ) 4 semnkgl IEErAck oo 110)
Vilokae s e e H
Hes ACTICH 1
Cenless Aroa 2 i
- Jserfdon lezk,
Az [ /

W ilet

Figure 17.2: User Interface Events

100



Chapter 18

Knowledge Browser

18.1 Survey on the requirements

[Gri03] p.38 gives the following survey on the requirements as seen from an early
stage of design.

A ZS8AC-knowledge-browser is used to enter the knowledge and gain infor-
mation about the content and use of the special ZSAC System. The the design
is split into layers which separate the functionality of knowledge-gathering and
knowledge-presentation.

A few points to keep in mind to understand the structure of the design.

multiple layer structure to ease exchangeability of the knowledge-presentation

e Depending on their type, information is structured to different hierarchies.
An user can browse through the problems to gain an overview about the
capabilities of an ZSAC site, or view the provided examples. Although this
views might look logically different for the user, the same software is used
for all of them.

e A browser can either deliver static informations or react interactively on
each request. Both modes require a filtering-mechanism to adjust the
delivered data. This mechanism is located inside the dialog. Reasons to
block information include security reasons (block information while an
exam is in progress) as well as educational reasons (do not swamp a user
with examples he is not expected to solve)

e A browser has different “roles” e.g. “find a problem” or just browsing
through the knowledge or the examples.

e The different roles require interaction with other ZSAC modules. This
interaction is established and controlled by the dialog.

e the user can open a worksheet by clicking a link in the browser-window.
This call for a worksheet is tunneled through ZSACs dialogs to avoid direct

101



communications between frontend-applications. On the other way round,
the worksheet might call an browser (e.g. to find a matching problem) —
this leads to a new BrowserWindow which is created by the dialog.

18.2 Kinds of browsers and their differences

The task of the browsers is to provide acces to the KEStore, see chapC.0.5 and
reflects the

The browsers for the four parts of knowledge, for examples, theories, prob-
lems and methods look very similar: they display a hierarchy containing all
elements of the respective part and an element if selected in the hierarchy.

The browsers all work very similar; the most significant difference is in the
interactions available (for instance, there is a <Refine> button on the Problem-
Browser only). But as the front-end has no idea about the meaning of buttons
and other interactive elements, the difference can be neglected.

[

18.3 Browsers and dialogs

The architecture of the browsers and their dialogs is shown in figure and
and shall be discussed here. Note, that not all attributes and methods of
the classes are shown in the diagrams for simplicity.

The browsers are built totally equal. The way, elements of the knowledge
base or the example collection are presented should be equal anyway. The only
thing that differs is the behavior of some elements (e.g. the buttons) and their
content, they are displaying. The browser itself does not care about the meaning
of the elements it is showing. The meaning of the elements is only known by
the dialog, controlling the browser. That fact, that the browsers are all built
equal can be taken as an indication that the representation of the elements is
separated well from their meaning.

18.3.1 Communication between Browsers and Dialogs

The browser and the browserdialog communicate over Java RMI (Remote Meth-
od Invocation) [?]. This is a Java technology to call methods of objects, which do
not have to run on the same Java Virtual Machine, they do not even have to run
on the same physical device. Whenever information has to be passed from the
browser to the dialog, the notifyUserAction() method of the IBrowserDialog
interface is used to pass a UserAction. There are different kinds of UserActions
carrying different information. Whenever information has to be passed from
the browser dialog to the browser, the IToGuiInterface implemented by the
BrowserFrameRMI is used to hand over a UIAction. The UIAction carries
a EUIContext, which is implemented as enumeration. It determines, which

IBegin of [K06| p....— p....

102



component of the browser the UTAction concerns. The UIAction is forwarded
to this component, where it is finally handled.

18.3.2 Binding a Browser to a Dialog

The binding of a browser to the according browser dialog happens after login.
The login() method of the UserManager creates a new Session and returns an
interface to this session. The WindowApplication registers to the session by use
of the registerBrowserFrame((IToGUI) this) method, passing itself. The
session does now execute the initializeWindowApplication() method which
calls the openNewBrowserFrame () method for all four kinds of browser, passing
the according dialog. A new BrowserFrame is created, taking the according
dialog as argument of the constructor. The registerBrowserFrame() method
of the dialog is called to register an interface to the BroserFrame for the dialog.

This explanation might sound frightening at first. However, it leads to a clear
separation of the tasks. The browsers do not need to know anything about the
dialogs except of an interface to pass UserActions. The dialogs do not need
to know anything about the browsers except of an interface to pass UTActions.
The WindowApplicaion does only know the browser but not the dialogs. The
session does only know the dialogs but not the browsers themselves.

18.3.3 The Processing of Links

Whenever a link is selected, the Minibrowser creates a UserActionOnLink.
How this is actually done, and how the Minibrowser works, can be read in
[26.4] The UserAction is sent to the according dialog, where it is evaluated.

Whenever a dialog decides to display a link target in its registered browser,
an ULActionOnLink containing the link target is sent to the BrowserFrameRMI.
The EUIContext of this object is set to UCONTEXT_MINIBROWSER, so it
is forwarded to the Minibrowser, where the page is finally loaded.

B

2End of [K06| p....— p....

103



SIS [BI21SWWOD 10} JON USRS ANUNWWOD T 10} UOPISSad UM ps1es)

pesuomi]  pEeucDus N et +

pond e on: pewes meu] pebusyopeiuoo +
UER 0O UCHoY] M|: USHDE] W SW ST | M ano sl +
UEE 000 UHDISSM| ] UOHoE] Uoloy|nop +
Frowc{ ooy || UoE] ooy nop +

PO UoHon| 0| UHoE) JUsE 3| NPRe +
pon:yn: ofie) sbegias +

plon: Bulns: pbie)sBedles +

UMICUPSIEEMOI QNN W JONRS JSEMOI UL
uEs|ong. ~ pepEn =hedg
LEIIOD  IESU0D Wanod

PO ED] | SWE| JFEmg] SWEl s g1 sE 0el +
UES 0oq:{ UoiSyesn)| uooe]  uoagssnApou +

{ Boyeypassmoxy:moes woly)
Bomigesmaigl
o SOEMS] =

fueas] way)
Sjouay

o= flun—pES | SoEpEUl

i

UeHoog: US| USSR) JUSWS | rescw sl +
o { UoHEYI ) UOSE] US| N PRE +
Pron I UoHa || UeaE] uoiey | nop +
uES00q:| UCISISEN | UooE] Uiy | nop +

uEs{oog:{ uonoylss M) uonoE]  CoEguessmougipiou +

UBS|Cog:] UOIIoyISE | USE) UoagINop +

{ ssoBpmwroes woy)
inSeLl
== EOEMEM =@

PO LOHD ) UCHoE] US| nop +

PIOA [ JUBATUODYT UENS] PELL OIS JUDHDE +

a

JHn: T ebedg
[ PEsmosgru T sasmolg s b oesr woy)
JeEMmorg N
Jesmoig iy ) Jesaoug iy sb +

|suegiyes 4] |suegiymes Hisb +

IESAU I - T IESMOIG TIU W &
|auegiyaeimy: Tjeued Ayemyg
suE4ydgr:  Teued Ty dsT|EuozUOY £

lopey: sisusE| ebueys e oog
PO S 0D s Nog
TEgNUEY M 180 nuaw g
GBoeipesmnyg): “BoEp 1esmoIg §
depyysey: “euopng =uopE dewg

=

UEH OO0 USIYIN|: UOHSE] US| (SACW S +
Ploncl US| USiRE] WSS 3N PeE +
PO UCHYIM 1 USDE] US| Nop +

UESH 000 USHIESM]: UoE] uaEy|nop +
Frow(] puigii—

deEwyYseEH: TSUOloETSuohng dew g

(Josmosg: nb:oesr way)
|BLE 4 5 sMo.rg

( smsmouge: jnb: oesy weay)
aleldIasmolg

| seamoig:: inbzoesr wox)
I 8WEI B sMmolg

Figure 18.1: The Design of the Browsers

104



BrowsarTkalog =z ineface ==
[Vl S —— Y | |BrowserDidlog
PP —— fram Ismc chronemrdniog
¥oument_conteat_ Gonteat + nctify_lamrfiction (mction : Lsrfdion Jioolsan
¥session_ Eession | _[}-orng:m:ﬂtmnﬁmrn (browser frare ToEU) wod
Wocrinat bype  ConmatTee
¥oonat on_vhlbe  boolsan J;r
#oonisat_on_ bookan = false
+showBrowserFrans {Jwod e Ineface: |, mad-only
sregsteBrowssrFrare browser frare IToE) o Famam
+premntionmat (sonmat Contmat s frmjmiam remi )
+notiyJmerAction action LlerAdion JEodlean
+aendinbConed Tolr owser (i
+semCheckedConcut ToBrowser  (conbeot :Conbeot | wold tlk
+updaeState ) wid N
LN s intmrfmcs
T3
FobiermDideg fram sz Cinkrdacas )

{fam sac:howsaiabg )

—refine_vible  bookan

o workzhest vizble boclsan
—workahest_open_ bookan
—calkc_head_open_ boolean

+ notfyUseradion (adion :LlserAction | boolsan
¥oawButtons () woid
+ upclataState ] woid

Method Disleg
{bom Eacshosssaoiabg )
o workasbest vzble boclsan
~calc_head open_ bookan

+ notfylaeradion (@dion IlsrAction | bockan
¥orawButtons () woid
+ updatsate (| void

Thzory Dialog
{Pom mac:hossaciabg )
—bo_workshest_vsble  boolean

—CaC_read open . Doolean
—werhahmat_spen  bocman

+ notfyllzmrfidtion (mction mrfction | bockan
#drawButionm ) woid
+ UpdateShaic () woid

+dolladion daction : LserAdion Jhoclean

<+ dollidion dachon : IAdion 1void

+ mckd Il rmrk {mcticn :Llfctian Jaeid
+mrovslliHerent (sction Llckan ] boclsan

«c |nefacs ==
ICormexiPressrmer
firam jmac chowmraRog §
+pressnblonteat (oontext Sontext )wnoid

ExamplaDialog
[fom mac:honsediabg )

+epanifizrhhestFronEsarpe  (fenars Siing Jbaslean
+notifyUlserction {@ion :lserction |:boosan
sorawButtons ()oid

+sendCheckedContent ToBrowser  (contest ‘Context ) wod

Craabad with Posaidan far UKL Co mmunity Ediian. Mat for Comma cial Usa,

Figure 18.2: The design of the Browserdialogs

105



Chapter 19

KE-Store

19.1 Notes WN

These notes are an un-structured collection of (user- and software-) requirements
and (architectural- and software-) design consideratioﬂ

The (K)(E)(Stor)e encapsulates a database (stor)ing ZSACs mathematics
(K)nowledge and the (E)xamples.

The elements of the knowledge are given by the need of ZSACs mathematics
engine to automatically solve the examples in the KEStore.

See the user requirements in sect [£.4.1]
The hierarchy of examples can be rearranged for specific courses

Each element of the KEStore knows the respective path in the (current —
examples!) hierarchy.

The elements of the KEStore store sufficient information on formatting
for automated generation of the presentation of single elements as well as
for collections of elements.

The generation of the presentation format is located in the system as close
to the front-end as possible (in order to feature dfferent formats like html,
pdf etc).

The access to the database (internal to the KEStore) is encapsulated by
methods of the KEStore. The arguments carry the course (the student is
assigned to), the time (for time constraints during exams) etc. The return
values of these methods may be up to additional filtering and subsequent
calls of specific methods.

IThese notes where compiled as a prerequesite for re-designing the dialoguies in the ZSAC
summerterm 06

106



19.2 The initial structure with xml- and html-
files

19.3 Some old design considerations

B

This module is used to store and provide all static informations within ZSAC,
a user can obtain. Informations are supplied to the KFE-Store-module by either
importing them from XML or entering them directly through an ZSAC-KE-
Object-editor

Parts of the content contain mathematical informations (formalizations)
along to descriptions and explanations. Though the details of attached infor-
mations vary, all objects are handled in an similar way. Therefore, the umbrella
term KFE-Object is introduced. Different types are described in the following:

simple KE-Object Is a collection of informal data without any mathematical
information (no formalization). It can be used to build up explanations
of any content.

Knowledge ZSACknowledge is taken from the mathematics-knowledge-base
and consists solely of formal information. There are different types of
mathematical knowledge which build up the three dimensions of the ZSAC-
KB.

This informations reflect the knowledge of the math-engine, but a possible
change to the informations will not change any informations within the
KB! Therefore, knowledge informations have to be immutable to avoid
ambiguitied?]

Decorated Knowledge a course-designer or maintainer of an ZSAC site can
add a informal explanation to the mathematical knowledge. This combi-
nation is called decorated knowledge

Examples An example consists of the an informal description to tell the user
what to do and an formal representation (formalization) to enable the
MathEngine to solve it.

There is a special form of examples called composite-examples which are
used to describe examples which are partitioned to several parts (a., b.,
C., ...). More details on that in subsection [19.3.5

2Design considerations from [Gri03] p.43-53.
3knowledge-objects are synched with the KnowledgeBase using unique identifiers

107



Example Collections As the name suggests, a example collection is a object
to combine a number of examples to collections. It does not contain any
mathematical informations. An example can appear an arbitrary number
of example-collections.

All objects can contain additional informations like images or descriptions to
enhance the understandability. These infos are attached using the presentation
and reference to extra data (images).

hierarchy: KFE-store-objects are used to build up the learning-environment for
the user. The compilation of the proper parts is achieved using the hierarchy-
object which combines the single items to an hierarchy and provides the basis
for a tree-like navigation through the content.

There are some standard-hierarchies which reflect the structure of the knowl-
edge of the MathEngine. These hierarchies are maintained by the math-engineers
within the SML-part of the system and only synched with them. Vice versa,
a change on the explanations will not change the knowledge! Therefore these
hierarchies may not be changed (like the KE-objects, the “nodes” of these hier-
archies)

19.3.1 XML-Import/Export

KE-Objects can be imported and exported from and to XML. They contain
informal data which are enriched by a set of tagged formulas which contain
the mathematical meaning necessary to solve it. This summary of data can be
transferred to the MoWGLI XML-format which provides a machine-readable
and machine-understandable way to present mathematical documents. Export
can also be used to transfer the informations to an other ZSAC-engine (the
destination ZSAC-system has to have the necessary mathematical capabilities
which can not be ensured by the document-format.

The different types can be treated in very similar ways — they differ only
in the amount of given data. In case of an import of knowledge, the resulting
KE-Object has to be write-protected to avoid any alteration.

Objects like problems and eramples contain a formalization which consists
of tags and related pieces of information — most likely formulas. These formulas
are also encoded in MoWGLI. The tags have to be preserved because they give
the meaning to the formulas.

Parts of the content (like images and links to related examples) are imple-
mented using textual references. So, unique identifier for all KE-Objects have
to be used to store this relations in an textual form.

Note, that the dialog can add automatically generated references which are
not part of the KE-Object and though not stored within the export-file.

The hierarchies have a different structure than KE-Objects and are stored in
own documents. Again, unique identifiers are necessary to restore the references.
When an hierarchy is exported, its referenced KE-Objects can be exported in
own files in the same operation.

108



D lis
| _Dinopolis |

KE-Store XML-f t
h Objects g orma

Dialog

KnowledgeBase

Figure 19.1: parts of the KFE-Store module

19.3.2 Communication with the dialog

To communicate with the rest of the system, the informations are put into a
hierarchy of (dinopolis)-objects which are transferred to the dialog (again using
dinopolis). These objects can cope with the dialogs need of restricting several
kinds of details. The object-structure is finer grained than the junks within the
underlying XML-Structure. e.g. it keeps its formulas in own objects.

These objects also can be modified (with sufficient access-rights) by an
example-author or a course-designer. Also, new KF-Objects can be created.
Several constraints on edition of examples have to be mentioned.

e there is a maximum of one client at a time which is allowed to alter an
object. This is because if two editors alter an object concurrently, they
would overwrite each others changes. (A lock is required)

e if an object is changed, all users of the object have to be informed to
update their representation.

e the structure of the knowledge may not be altered. These informations are
stored within the SML-part and are only changed by the math-engineers.
To keep the storages in sync, unique identifiers have to be used.

The object-representation can also be generated out of XML-files without
storing them within the KFE-Store-module. The interface to the Dialog keeps
the same but without the ability to change the information. A module like
that can be used to calculate an external example “on the fly” (e.g. out of the
ActiveMath system ) if it contains the proper formalization.

109



19.3.3 Relations

Contained items can be interlinked in various ways. On the one hand, there
are hierarchical structures which can be used to provide an “navigation-tree”.
A structure like this is given by the problem-tree. Each node (except the root-
node) has an “ancestor” and an arbitrary number of child-nodes. In case of the
mathematical data, these structures are given and may not change, in case of an
example-hierarchy, a course-designer may change them - respectively each course
has a own hierarchy (an example can appear on different places on different
hierarchies)

On the other hand, relations can be located within an object. They are part
of the object. For example if a KF-Object contains links to related examples.

Both types of relations can be suppressed by the dialog. Respectively it can
choose which ones it shows. Again, this decision depends on a users experi-
ence/permissions and a course-designers intentions.

Relations within ZSAC are realized as dinopolis-references. When they are
exported, they are stored in their unique textual-representation.

19.3.4 Presentation

The Presentation has to meet several requirements depending on the object
to show. While problems (like the other automatically created informations)
have a uniform appearance and a known set of informations, examples, simple
KE-Objects and especially example_collections have a higher need of individual
layout. The requirements are even hardened because of the dynamic parts of
this informations.

The uniform presentation of the mathematical data can be left to the browser
which transforms the data using templates.

Other data has to be enriched with layout-hints which have to be preserved
on its way through the dialog. This can be accomplished by adding an layout-
template with “slots” to fill the informations in. If an detail is suppressed by
the dialog, default-values have to be given.

This template has to be created by the example-, respectively the KE-
Object-editor which is the only one who knows how to present its informations
in the proper way.

It is important to mention that presentations can be “nested”. This means,
hat a document is created out of a number of objects. This mechanism is obvious
when we look at a KFE-Object which contains formulas.

The enclosing object is the description which contains both text blocks and
fields which contain references to the formula and the image. When the docu-
ment is to be displayed (creation of am HTML-Document), the formula is asked
for its presentation (which most likely results in an MathML - text).

This mechanism is expandable to more general cases — KE-Objects can be
used to set up the layout by just generating the frames to put other object
presentations in. Objects like this will be used to give an visible context for

110



Title

textual
description

textual
description

image

Figure 19.2: nested presentation

other objects like e.g. to summarize different sections to one page or building
up an example—collectionﬁ

To accomplish this behavior, the layouter has the option to either create an
link to an embedded object, or to make it “in-line”.

19.3.5 Example Collections and composite examples

Example collections are used to summarize related examples to one page. This
page can be designed to match a given layout — e.g. to ease the visual matching
between an example-subsection in a textbook and the presented corresponding
ZS8AC-page. The contained examples are stored as references to them.

An example-collection does not have any mathematical informations about
its content - it is just used to summarize and layout a set of related examples.

Composite examples go a step further. A composite example is for instance
a text example which defines a task and a set of sub items (a.), b.), c.) ) which
define what to solve.

Examples like this are split into two parts:

description Describes the task of the example in an informal (usually text, for-
mulas and images) way. It does not have any formal information about the
task it describes. The full formalization is stored within the sub-examples.
Though, the only difference to a simple KE-Object is the reference to its
sub-examples.

sub-examples One description can be used for one or more sub-examples
which contain formalization. Although there are common parts in sub-
examples with the same description, the sub-examples contain the full

4more details on example collections and composite examples see subsection [19.3.5

111



Description of the example (given)

Figure 19.3: composite examples

formalization. The sub-example can be calculated from the ME without
interference with an other object.

In opposition to a simple example-collection, a nested example needs fix
links between the task description and the sub-examples. This is because the
informal description of these objects is split.

When an sub-example is displayed, it cares sole for its own informations
— not for the informations displayed by the enclosing description. In figure
the enclosing object cares of the position of the example-description, the
positions of the sub-example-descriptions and the numeration. The fields for
the sub-examples are filled with the sub-examples presentation. If the designer
of an example-collection wants to limit the shown sub-examples he can do this
by setting up the dialog to suppress the unintended references (see subsection
15.1]).

19.3.6 Object structure

We have seen in the last sections that — although the informations to present
look very different at first glance — we finally achieve very similar needs.

All objects might have a presentation which describes the way they want to
be displayed. This presentation is not obligatory — a displaying device (browser)
might choose to ignore this layout. (respectively it might be incapable to follow
the hints given by the presentation). The layout built up by presentation con-
tains fields which are to be filled by other objects. The names of this fields are
also given within the list in the additional field. If a output-device ignores the
presentation, at least the order of this list should be preserved. Listed elements
also act as keys in the object to map to the final content.

The formalization contains a mathematical presentation of the object if
needed. The content of this field is given to the worksheet respective the math-
engine if there are some calculations to perform on this object.

Parent and childs are used to build up a content-dependent hierarchy. With
content-dependent is meant, that the content of an object is not complete with-
out the content of the referenced object (e.g. examples).

Meta contains meta-information like severity or target group. More details
on this are given in subsection metadata

112



object
presentation:
additional:
formal_data: isac-specification & formalization
parent:
childs:
meta: <metadata>
*<items listed in additional>:<values>

simple KE-Object The simple_KE-Object consists solely of a presentation
and the references of the therein used fields. Most likely, these references will
lead to images and formulas to display. Formalization, parent and childs stay
empty.

simple_KE_object
presentation: XML
additional: [KE_object (ID), ...]
formalization: empty
formal_data: isac-specification & formalization
parent: empty
childs: empty
meta: <metadata>
*<items listed in additional>:<values>

mathematical object Mathematical objects are the way to represent formal
informations of the mathematical knowledge base within the KE-Store. They
are generated through an automatic import. Although there is the possibility
to attach informations depending their presentation, usually this fields will stay
empty and the task of presentation is left to the output-modules which utilize
standard-templates for them.

knowledge_object
presentation: empty
additional: empty
formal_data: isac-specification & formalization
parent: empty
childs: empty
meta:<metadata>

simple example The simple example extends the capabilities of the simple
KE-Object by adding an example formalization. The parent and child fields are
left empty.

113



eimple_example_object
presentation: XML
additional: [KE_object (ID), ...]
formal_data: isac-specification & formalization
parent: empty
childs: empty
meta: <metadata>
*<items listed in additional>:<values>

composite example - task-description composite examples are the most
complex objects within the KFE-Store-module. They consist of a presentation
which describes the general task (a train drives with a speed of 160 km/h from
A to B ...) as well as hierarchical informations. Instead of a formalization,
it contains links to its sub-examples in its childs field. This object is just a
container for its sub-examples.

KE_object
presentation: XML
additional: [KE_object (ID), ...]
formal_data: isac-specification & formalization
parent: empty
childs: [composit-example subexample (ID), ...]
meta: <metadata>
*<items listed in additional>:<values>

composite example - sub-example This object builds the counterpart of
the task-description. Its presentation contains only information about the sub-
example (most likely the “question”:”when will the train arrive at B”). The
formalization field contains the full formal description.

KE_object
presentation: XML
additional: [KE_object (ID), ...]
formal_data: isac-specification & formalization
parent: composit-example task-description (ID)
childs: empty
meta: <metadata>
*<items listed in additiomnal>:<values>

Its theoretically possible to build a deeper hierarchy of composite examples.
In this case, the informations about a sub-example are gathered by traversing
all parents till an object with parent=empty reached.

114



hierarchy

All objects within the KFE-Store-module can be arranged within a hierarchy to
let the user navigate through them. This hierarchy is stored within an own
hierarchy-object which is different to the other items in the KFE-Store-module.

Like the other objects, it does contain metadata which describe the purpose
of the hierarchy. All other entries serve the representation of the structure.

Every node contains name, value and childrens. The value is a reference to
an KFE-Object which has to be called when the node is selected. name is a string
to show when the node is displayed. children is a list of node ids where a node
id is an identifier which uniquely identifies one node.

The root node has a predefined node id. Each node id may only occur once
within an hierarchy.

hierarchy:
metadata: (name, target group, ...}
rootnode: {name:string, value:ke-object-id,

children[nodeid, nodeid, ...J]}
<nodeid>*:{name:string, value:ke-object-id,
children[nodeid, nodeid, ...]}

The KE-Store can import and export a complete hierarchy using one file for
the hierarchy and one for each used KFE-Object.

Assembly of the nodes could also happen in an nested way like usual in XML.
The advantage of the presented version is that contained nodes can be found at
first glance — this is useful to restrict access to an “temporary environment” as
proposed in section ?7.

19.3.7 Metadata

All objects contain a field called meta which contains key-value tuples for various
informations. This informations have to serve different purposes:

copyright issues This type of fields contain informations which have to be
considered when the object is displayed or exported (for the purpose to
pass on to other systems). Among others, this fields can contain informa-
tions about the author and usage-permission.

hints for the dialog As mentioned, the dialog has to decide if and when an
object is to be displayed or filtered. metadata is used to assist this de-
cisions by giving informations about targeted users and difficulty of an
example. This hints are not the only mechanism to determine if an ob-
ject is to be displayed — a more detailed description of this is given in

subsection [15.1] dialog

115



search hints Metadata can also be used by search-engines to categorize an
objects content. This fields should also be passed on to an searchable
output-device like an HTTP-based Browser.

administrative data like date of creation, last change, ...

Most data fields do not belong to only one of this groups but are used for
different purposes. For instance although an author is mainly used to give in-
formation about the copyright, it might also be the subject of an search process.

There are a number of meta-schemas which are used to classify informations
on the wel?l

i

19.4 KE-Objects and external Informations
U

Z8ACgets its math-descriptions out of the KFE-Store-module which processes
the stored informations and builds an object-structure for the dialog to work
with. The process of building up the internal structure can also be based upon
well structured Documents like MathML and OMDoc. Vice versa, an export into
an XML-format is necessary to utilize the rich set of already built utilities. The
first process is used to import informations from external information-sources
like ActiveMath. The export to XML can be used to render the output for
representation as used for the Browsers.

questions his thesis) to answer: (WN: stated by AG at finishing his thesis)
Has user user! permission to read/write an object ?
Who is member/admin of course coursel

short USE-Case: fetch a course-startpage
e Browser wants to enter a course. he knows the

— name (ID) of the user

— ID of the course to display

browser asks the dialog for the startpage of the course

dialog determines the hierarchy of the course

dialog fetches the informations from the KE-Store using the users permis-
sions (exception if the permissions do not suffice)

dialog filters the hierarchy according to the user-model and delivers it to
the browser-dialog

5See also section 77
SEnd of copy from [Gri03] p.53
"Begin of copy from [Gri03] p.59

116



browser removes links to ungranted KE-Object and creates the hierarchy
(tree)

browser asks for the startpage (rootnode)

dialog fetches it (exception if mot granted) and filteres it according to the
user-model

browser removes links to ungranted KE-Objects and builds the presenta-
tion (accessing the presentation-fields - exception if not granted)

= XSLT-transformations

117



Chapter 20

Bridge Java — SML

20.1 Design der Klassenhierarchie

Diese Klassen MathEngine, bilden das Interface zum Frontend und zum Dialog.

20.1.1 MathEngine

Diese Klasse wird zu vom Dialog gestartet und stellt die Verbindung zur eigentlichen
Bridge her. Alle Objekte am Frontend kommunizieren nur ber diese Kompo-
nente mit der Bridge. MathEngine ist ein Singleton (siehe ?7).

20.1.2 CalcHead

Diese Klasse reprsentiert den Kopf einer Berechnung in SML. Der CalcHead
enthlt das Model und die Spezifikation einer Berechnung (siehe Glossar ). Er
muss ausgefllt und korrekt sein, bevor die eigentliche Berechnung gestartet wer-
den.

20.1.3 Formula

Diese Klasse reprsentiert eine Formel in einem CalcTree.

20.1.4 Tactic

Diese Klasse reprsentiert eine Tactic in einem CalcTree.

20.1.5 CalcElement

bergeordnete Klasse von CalcHead, Formula, und Tactic.

118



20.1.6 CalcTree

Diese Klasse reprsentiert eine Berechnung im SML-Kernel. Wenn der Benuzter
am Frontend eine neue Berechnung startet, wird intern ein solches Objekt
erzeugt.

ICalclterator iterator() liefert einen neuen Iterator zu diesem CalcTree.

public ICalclterator get ActiveFormula() liefert einen neuen Iterator, der
die aktive Formell] markiert.

public void moveA ctiveFormula(ICalcIterator newActiveFormula) be-
wegt die aktive Formel auf eine neue Position, die von dem mitgegebenen Iter-
ator markiert wird.

public int replaceFormula(Formula newFormula) ersetzt die aktive Formel
durch eine neue, mitgegebene Formel.

public int appendFormula(Formula newFormula) fgt diese neue Formel
unter der aktiven Formel ein.

public int setNextTactic(Tactic tactic) teilt dem Kernel mit, welche Tak-
tik im nchsten Schritt angewandt werden soll.

public Tactic fetchProposedTactic() liefert die vom Kernel vorgeschla-
gene Taktik fr den nchsten Schritt zurck.

public Tactic[] fetchApplicableTactics(int scope) liefert ein Feld mit
allen Taktiken in einem bestimmten Bereich scope zurck, die an der aktiven
Formel als nchster Schritt angewandt werden knnen.

public int autoCalculate(int scope, int nSteps) fordert den Kernel auf,
die Berechnung bis zu einem bestimmten Punkt selbststndig weiterzurechnen.
Der Parameter scope gibt den Bereich an, der beim weiterrechnen nicht verlassen
werden soll, und kann folgende Ausprgungen besitzen:

e Aktuelles Subproblem der Berechnung
e Aktuelle Subberechnung
e Die ganze Rechnung

Der Parameter nSteps gibt an, wieviele Schritte maximal weitergerechnet wer-
den soll. Wenn nSteps den Wert 0 besitzt, wird bis zum Ende fertiggerechnet.

IDamit ist diejenige Stelle im CalcTree gemeint, an der die Berechnung fortgesetzt wird.

119



20.1.7 Calclterator

Der Calclterator dient dazu, sich im CalcTree zu bewegen und eine bestimmte
Formel oder Taktik zurckzuliefern, oder um eine Stelle zu markieren, ab der
weitergerechnet werden soll. Diese Klasse verwendet das Design Pattern Iterator
(siehe ?7).

Methoden

boolean moveRoot() setzt den Iterator auf die erste Position des CalcTree
boolean moveUp() bewegt den Iterator zur vorhergehenden Formel
boolean moveDown() bewegt den Iterator zur nchsten Formel

boolean moveLevelDown() bewegt den Iterator eine Verschachtelungsebene
tiefer. Nur relevant bei Berechnungen mit Subrechnungen.

boolean moveLevelUp() bewegt den Iterator eine Verschachtelungsebene
nach auen.

boolean moveTactic() bewegt den Iterator zur Taktik, die zu der aktuellen
Formel fhrte.

boolean moveFormula() bewegt den Iterator nach Aufruf von moveTactic
wieder zur Formel zurck.

int getLevel() liefert den Level (=Anzahl der Subrechnungsebenen) der ak-
tuellen Formel.

ICalcElement getElement() liefert das aktuell markierte Element der Berech-
nung (Formel, Taktik, CalcHead) zurck.

Object clone() klont den Iterator und liefert ein zweites Iterator-Objekt
zurck, das auf die selbe Position im CalcTree zeigt.

int compareTo(Object o) vergleicht diesen Iterator mit einem zweiten. Die
Iteratoren werden als gleichwertig betrachtet, wenn beide auf die selbe Position
im CalcTree

20.1.8 BridgeMain

Die zentrale Komponente des Bridge-Systems. Sie startet die anderen Prozesse,
die zur Kommunikation mit SML dienen, leitet die Anfragen an den Kernel
weiter.

120



20.1.9 SMLThread

Hier wird der SML-Prozess gestartet und die Ein- und Ausgabe der Daten ge-
managt.

20.1.10 XMLParser

Hier wird der XML-Output des Kernels geparst und in Java-Objekte umgewan-
delt, die dann wieder an das Frontend weitergereicht werden.

121



122



Part 1V

Software Design Document

123



Chapter 21

Session Management

m
21.1 Logging into the System and Bootstrap-
ping

As a distributed system, ZSAC is started in several steps. For the following

discussion, we will differentiate ZSAC’s components into centralised static com-

ponents and components created dynamically on a per-session or per-user basis.
Static, centralised components:

Math Engine

Knowledge Base

Example Collection

Object Manager
Components created per session or per user:

e Session Dialog

Presentation Layers
e WorkSheet Dialog
e Browser Dialog

e User Model

!Begin of copy from [Kre05] p.63-65.

124



As for the centralised components running on dedicated servers, we will
assume they have been started by their respective administrators and their
services are available at login time of an individual user.

For initializing the components of ZSAC running on the user’s machine, sev-
eral actions have to be performed:

e Identify the user

e Start components individual to a user or session

e Retrieve the user’s User Model from centralised storage

e Connect the components - centralised and individual - to each other

One of the main problems in designing this part of ZSAC is finding a boot-
strapping procedure capable of connecting all the relevant components, which
essentially means making sure that every component can address any component
it needs to cooperate with.

Whereas the always-present, centralised components can easily be adressed
by entering the network address of their respective servers or storing the ad-
dresses in configuration files, the dynamically created per-user and per-session
components are harder to localise. In principle, only the instance which cre-
ated a component can know how to address it in the first place. As a solution,
a Session Dialog component was introduced to initialise and keep track of all
dynamically created components.

Doing Session Browsing
calculations management the knowledge

Worksheet Session |<>—| Knowledge Browser Eresentahon
ayer

<1 Session Controller

| Dialog Guide Browser Dialog | Dialogue
Controller

| Math Engine |I I| Knowledge Base | Application

Figure 21.1: Adding session management and a shared user model
Another problem is communicating with web browsers running on the user’s

machine unless new content has been requested by the browser. This makes it
impossible to notify the user of a change in the state of one of the centralised

125



components until the browser polls for new content. While this does not hin-
der browsing the Knowledge Base which presents data of rather static nature,
watching a calculation being modified by the Math Engine requires a minimal
software component capable of handling requests from the network running on
the user’s machine.

Once it was clear that some sort of active software on the user’s machine
would be required, parts of the Session Dialog functionality were moved onto the
user’s machine along with the login procedures and a basic GUI coordinating
the display requirements of the various components. The component running
on the user’s machine is simply referred to as GUIL

It is hoped that features and stability of the startup process will greatly
improve once the Dinopolis middleware system becomes available.

For details on the design of the bootstrap process and session management
see [Gri03l Hoc04].

Object Management
Browser Dialog |

Dialog Guide

Java/SML Bridge

H | Math Engine |I I Knowledge Base | Example Collection | H
 ISAC Backend i /L\ ;

Authoring Tools

Figure 21.2: The overall design of the ZSAC system

B

Attention, please: the following is copied from [Hoc04] and not up to date
since May 2005.

21.2 SessionDialog, BrowserDialog and Work-
sheetDialog
The architectural design as described in sect[I6.1]and in chap. WN-add-BrowserDialog

led to the following software design
The figure Fig p shows the dialoges within the session manegement.

2End of copy from [Kre05] p.63-65.

126



21.3 Starting a session

As already mentioned several times, one task of the graphical user interface is
to establish a connection to ZSAC. This process is shown in figure

The different steps in the initialization process are described in detail as
follows.

21.3.1 Communication with the InformationProcessor

1. Authorize the user
Authorization within ZSAC is not only necessary for rights management;
additionally, the WorksheetDialog must identify the user to record the
user history details.

The method login from the InformationProcessor takes two parameters,
namely the username and password, both are of type string. If the user
has authorized correctly, the method returns a session id. This session id
is a unique identifier for the user. This means the user can log in with
different applications and he will always get the same session id.

2. Establish connection to the SessionDialog
The method getSDialog from the InformationProcessor is parameterless
and returns an object that implements the SDialog interface. The way
the InformationProcessor establishes the connection to the SessionDialog
is transparent to the client. More details about the inner workings of the
InformationProcessor can be found in [Gri03].

3. Load the knowledge base entries

The entries of the knowledge base are stored as XML documents. These
XML files are structured hierarchically in accordance with the file system
structure. The InformationProcessor provides a method called loadHier-
archy, which takes as parameters the session identifier and the hierarchy
type. The type describes which part of the knowledge base (theories,
methods, problems see section ??) should be loaded. The method also
makes it possible to load the example hierarchy which strictly speaking is
not part of the knowledge base.

The method returns the XML file hierarchy of the selected type in string
representation, which needs to be converted into a hierarchical represen-

tation (see section [21.3.3)).

21.3.2 Communication with the SessionDialog

4. Create WorksheetDialog and connect it with the current session

The WorksheetDialog (in the ZSAC system architecture also called Dialog-
Guide) must know the current user; therefore, the WorksheetDialog needs

127



to be connected to the SessionDialog, which makes it possible to identify
the current user.

The SessionDialog provides a method called openDGuide that takes as a
parameter the session id and returns a dialog id. The dialog id identifies
the DialogGuide which the SessionDialog created transparently for the
client.

5. Establish connection to the DialogGuide

To get the DialogGuide object created in step 21.3.2] the SessionDialog
provides the method getDGuide. This method takes as parameter the
dialog id that the method openDGuide returned. The return value of
getDGuide is an object that implements the DGuide interface. This object
needs to be passed to the Worksheet and is responsible for handling the
communication between the Worksheet and the backend (the calculation
part of ZSAC).

21.3.3 XMLHierarchyParser

The XMLHierarchyParser class generalizes the functionality that each knowl-
edge base parser has in common (see figure . The task of each concrete
value of the XMLHierarchyBrowser is to convert the hierarchy of a knowledge
base part (loaded in step |3| of the initialization process) into a representation
that can be properly displayed by the GUI, especially by the HierarchyBrowser.
Note that for the theories part of the knowledge browser there is currently no
XMLTheoryBrowser designed, as the data format of theories is still original
Isabelle, and not XML.

Nevertheless, the XMLTheoryBrowser can always be included as a subclass
of XMLHierarchyParser.

The last two steps to complete the initialization process are described in the
following:

6. Get the root element of the hierarchy
A concrete value (e.g. XMLMethodParser) of the XMLHierarchyParser
parses the string representation of the hierarchy that was returned by the
method loadHierarchy in step [3] of the initialization process. The method
getRoot() returns the root node of the hierarchy.

7. Create hierarchy that can be displayed in the HierarchyBrowser
The root node created in the step above needs to be given as parameter
for the method createXXXNodesHierarchy. XXX is a placeholder for one
of following concrete values: Method, Problem, Example. This method
returns the hierarchy in a representation that can be displayed by the
HierarchyBrowser.

128



21.4 User Data

The present prototype, as of Feb.2012, holds all data in text files. Apparently,
all these data should go into a database.

21.4.1 The hierarchy of data

* isac-hostl (e.g. IICM)
* domainil (e.g. KFU Mathematik)
* grouplll (e.g. Analysis 3.Semester)
* student 1111
* student 1112 (Max mustermann)
* student 1113

* student 111i
* groupll2 (e.g. Algebra 5.Semester)
* student 1121
* student 1122 (Max mustermann)
* student 1123

* student 111j

* domainl2 (e.g. Informatik TUG)
* groupl2l (e.g. Signal Processing 5.Semester)
* student 1211
* student 1212
* student 1213 (Max mustermann)

* student 121k
* groupl22 (e.g. Computational Geometry 3.Semester)

* isac-host2 (e.g. RISC Linz)
* domain21 (e.g. WIFI 00e)

For instance, for an exam Signal Processing, Max is uniquely identified by
’"domainll/groupl21/Max’. The file ’accounts.txt’ determines the access rights
at login:

domainll/groupl11l/Max=password
domainll/groupl12/Max=password
domainl2/group121/Max=password
domainli/grouplll/moritz=pwd2

21.4.2 Data of a single user

All data of a single user are in four files, where the username is a prefix of the
filenames. Below we assume user 'x’:

129



1. x_admin.txt will be deleted: ZSAC provides math learning services depend-
ing on access rights as described above; so any other personal data like
student number, date of birth, etc does not belong to ZSAC.

2. x_settings.txt concerns technical aspects like language of the learner,
background color on the GUI, etc.

KEY4_LANGUAGE=VAL4_ENGLISH
TODO

3. x_profile.txt concerns learning aspects; initializes the user-model first
time and in case of being ’exclusive’. presently there is one profile for all
exams.

exclusivse=true

visibile_examples = None

# only whole branches shall be handled?...

# visibile_examples = [["Examples","IsacCore","Simplification"],
# ["Examples","Biology"]l]

KEY1_START_SPECIFY=VAL1_SKIP_SPECIFY_TO_START_SOLVE
KEY2_NEXT_BUTTON=VAL2_FORMULAE_ONLY
KEY3_STATUS=VAL3_LEARNER

TODO

Presently it is not clear, how to relate the information in ’accounts.txt’
to multiple profiles (e.g. different rules in the exam for Analysis and
in Signal Processing) and multiple UserModels ("*_model.txt: different
learning strategies in Analysis and in Signal Processing). So the present
code allows only one profile and one model per user in different groups in
different domains at a time.

4. x_model.txt concerns learning aspects over time and represents the User-
Model. The design will be in principle: the UserGuide records all user
interactions (history) and upon ending a session, the history will be ab-
stracted and stored (not yet decided what, how, where). At start of a
new session, the UserModel might be reconstructed from the previous ses-
sion — in certain cases. One case is clear: ’exclusive’ profiles inhibit such
reconstruction.

#dynamic dialog data of user ’x’
#WNO70510
TODO-key=TODO-value

130



21.5 WindowApplication

The WindowApplication is, besides the initialization of ZSAC, responsible for
the properly responding to user actions. The WindowApplication is split into
two areas, one in which the different hierarchies are displayed (BrowserPanel)
and one in which different Worksheets can be displayed as InternalFrames
(WorksheetDesktopPane).

The WindowApplication class provides, among other things, the following
methods:

e openNewWorksheet opens a new Worksheet as an JInternalFrame; this
allows the GUI to display a window within another window.

e getActiveWorksheet returns the currently active Worksheet. This is the
Worksheet with the cursor in it.

e actionPerformed is called if the user has generated a special event (e.g.
clicking a button). This method then makes the proper actions for that
event.

A complete list of the methods with short description can be found as
JavaDoc on the CD accompanying this thesis.

21.5.1 Internationalization

Internationalization is the process of designing an application so that it can be
adapted to various languages and regions without engineering changes.
An internationalized program has the following characteristicsﬂ

e With the addition of localization data, the same executable can
run worldwide.

e Textual elements, such as status messages and the GUI compo-
nent labels, are not hardcoded in the program. Instead, they
are stored outside the source code and retrieved dynamically.

e Support for new languages does not require recompilation.

e Culturally dependent data, such as dates and currencies, ap-
pear in formats that conform to the end user’s region and lan-
guage.

e It can be localized quickly.

Locale-specific data must be tailored according to the conventions
of the end user’s language and region. The text displayed by a user
interface is the most obvious example of locale-specific data.

Shttp://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

131



The GUI of Z8AC uses Java’s locale support for internationalization purposes.
Therefore, all locale-specific data is stored in Properties files, for each supported
locale a separate Properties file must be created (e.g. MenuBar_de DE.properties
for German locale support and MenuBar_en US.properties for English locale
support). Properties files are text files with key value pairs, in which the value is
stored in the corresponding locale. The ResourceBundle class of the Java pro-
gramming platform loads the Properties file, which matches the locale settings
of the current user.

21.5.2 Window Management

The GUI uses the multi-document interface (MDI)E| technology for the manage-
ment of the Worksheet windows. The MDI technique uses a primary window,
called parent window, to visually contain a set of related document or child
windows.

The JDesktopPane from the Java programming platform provides the func-
tionality that is necessary to use the MDI technology. Each window that should
appear in the Worksheet area is added to the JDesktopPane as an instance of
the JInternalFrame class.

21.5.3 XMLHierarchyParser

The XMLHierarchyParser uses the X ercesQEI DOMParser to parse the different
hierarchy files like the problem hierarchy shown in listing [21.1

< NODE >
< ID > Problemhierarchy < /ID >
< NODE >
< ID > e_pbllID < /ID >
< CONIENIREF > pbl_1.xml < /OONIENIREF >
< /NODE >
< NODE >
< ID > equation < /ID >
< CONIENIREF > pbl_2.xml < /OONIENIREF >
< NODE >
< ID >univariate< /ID >
< CONTIENIREF > pbl_2_1.xml < /OCONIENIREF >
< NODE >
< ID > linear < /ID >
< CONTENIREF > pbl_2_1_1.xml < /OONIENIREF >
< /NODE >
< NODE >
< ID > root < /ID >
< CONTENIREF > pbl_2_1_.2.xml < /OCONIENIREF >
< NODE >
< ID > sq < /ID >
< CONIENIREF > pbl_2_1_2_1.xml < /OONTENIREF >

4http://msdn.microsoft.com/library /default.asp?url=/library/en-
us/dnwue/html/ch10g.asp and also available on the CD accompanying this thesis (file
Microsoft-MDI.pdf).

Shttp://xml.apache.org/xerces2-j/index.html

132



< NODE >
< ID > rat < /ID >
< CONIENIREF > pbl_2_.1.2_1_1.xml < /OONIENIREF >
< /NODE >
< /NODE >
< NODE >

Listing 21.1: Problem hierarchy in XML representation.

6Begin of Georg Kompachers contribution in [Kom07].

133



‘E5] [FEIELWIWOE 104 10N UOKPT MU NWWoD TN 10} UORESTH It PELEEID

TUOESES UBLNT

plosiinoel: swe il ecwonq) sweissvo gissiBy +
uTs|oog:] uop s UoeE) uoEs Ao + ﬂ

{ Eopmprezmosg:aes woy)
Bojoyg sesmoag)
o @CHEW e

POl U SATU O JUSAS) PELL OH B UDIOE +

uEREeg [ Ui eS| USIRE) Uk [ oR T
prew: [ anguiBey: wasguiBory psunme o aaguiBo) +

pIOA T UOLDWINI UOIE) UOLWINoD +

T BT = T

( Baspen . oes woyl

18 Beuey Boymaggm
Bojeiguasmosg T1sbrucw T BopIp s
r “Boep imzao) g mayoT—
=Eopip e

LET ~uopmms—

i i omsr wiarg)

uogeaddymopul

oWy

s o] i)

<< fpo—poa’ smcpsul e

T1eBoucw T1eEn - N—V

Bumez (Bune pruosses) sweuasn @b+
Jmzyl Bupkg: piuokoes)iscnsb +
Boeyieswoug | [ Buus ssed Buns: swewissn) uibop+

1zBeuey e
% BOTUSW|

SEFT - &

Bung: Bungs: pluorzes) swewisseb +

uoi=as:| Bunpg: ==ed’ Bung: sweuiesn) uibe +

depjyse: Tiemn dew” sweuiszn—

{eraon.:oesr wog)
wbrueppesp
s uopmBulg

peainecl: uvowesidds vopuw) BWEld1esmoig) s +

uempog| uoieg e uolee) uokopesn Ao +
1SuszaIg PR D)) 1S a1 gpesuoD)aE +
1EpADILRL O () 18P0l dresuesish +
1eEouepBomg o () 18BeuepBopig o b +
Boegaduexy:() BopgadweogeE+

EBomg foayl: ) BoEgdossb+
Eopgpeyspil) BorgpogspyisE +
Bopguaquy:() Eomguagegi=E+

eNUEEH: T erWESE dEW pEN—
Eung: TplucEses-

{ worsTes: o wary

i) UD UOESRS SOEE

bmm e

EELTE
e
T T T

Bunis:l Bupis: prumssss) gifgewensezn b+
uossng: Bunig: piuosses) gliguoEseginb+
UDESE T[] 5[] JEEN) U DES IS PRT +

dEPLEEH: BWEWESM dEW pUOESES-
depjyseH: TuoEses dew puoEsms-

leBrurpuoisseg
== unepug ==

_\ (uswsbcuTw uoEses

Figure 21.3: The dialoges in a session

134



main : Windao' lication ip: InformationProcessor | sDialog : SDialog  parsar: XMLHierarchyParsar

: getShialog() : SDialog

: loadk { : ghring, i : ghring) : sting
»

: opanDGuide(sassonld : sting) : sting

: getDGuide(dialogld : string) : DGuide

: getRoot() : Node

: Noda) : F

Figure 21.4: Sequence diagram about the required initialization steps to build
up the communication with ZSAC.

135



+ XMLHierarchyParser

+ XMLHierarchyParser()
+ getRoot()

+ XMLExampleParser

+ XMLExampleParser()
+ createExampleNodesHierarchy()

+ XMLMethodParser + XMLProblemParser
+ XMLMethodParser() + XMLProblemParser()
+ createMethodNodesHierarchy() + createProblemNodesHierarchy()

Figure 21.5: Abstract class XMLHierarchyParser acts as superclass for the
XMLParser that parses the different knowledge base hierarchies.

136



Chapter 22

Browser Dialogs

The figure fig[22.1] p[TI37] shows the class diagram for the browser dialoges.

‘B[ IR B DD 0L 108 UCHR S AU o0 4 104 UDEBE0d LI, pegmeis

o () aerzeepdn +
ek [ uenngvenE
umwmesg [ uo gy sy usgeE) s Ry AR -

PO | RO BENOT W0 KTNSO LA
L= HER b=

ummco | UOYREL: USIEE] Lo BNy I pou +
umapEeg By by mamumy) s e U oy me s guede -

USSR TSEISK RS W o

By oy ows Loy
Bopgdoay

i Eqmpesnong s wag)
Bopgsdwexy

PRK oD JREN0D) a0 DR
Doy o oeey o)
R TR R TR ]
<= moepEu| >

oo [ ogeyy: noges) e ) s -

Pl ey o P ) e e -
PIAL USRI : Woq2e) UomyI R +
US| USRI U USmnon +

" e s oy oy
neaLl

< ey VY

mos [ aEEAEDdn +
P [ sucmrgveny
ummCod | UopSy e UOMEe)  uoEyR s AR

ummong uado pemy o
uEspeg CEpgre e o
e ong Coes L)
Eapy pogpen

P [} sgeppdn +
P [ sucqrEMeny
umsyoog [ uopay sy uome)  uo s AR +

UBSNOOT T USI0 P o
[T STl e W=
ummgESg EpgER e o
USROS  FERA MR-

(" Barmeswon:ors o)
Beopigquegay

L.q P [ P0G PANOT) 6 MOUEOLTMSHOCP DSOS £

o AUo-pEa @nepay | |

[T
[- [=210. 28

=T DT T T T C T (R TR L= T o ST

pion:l) aETzaEpdn+

PO} P oL O D s +

UESET [ US ICISENT: USToE) U O e o +
e jEmpony rapss) jEap oo e

= TR TLIEEL LT T g

1

ok reol: =suey mesosg =uedEeswgms B -

ummpoc( Uy o) uegaymsygou +

¥ BOD O DO Lo

R = UENOO: USTRANOTE
UBmpOO  mqEA UD e ook
add yrapory T edly paposl
UDIEIE TUoSsasy

U TToa e T=Egy TR ET )
fpray fuamEug

[T——
o SIEUEN |

{ Bopmpomsicug:: sy wogl
BFoneores woug

Figure 22.1: The class diagram for the browser dialoges

BrowserDialog implements IBrowserDialog, IContextPresenter

137



Each BrowserDialog is responsible for the communication to the WSDialogs
via the ContextProvider-interface and also for the communication to the Browsers
over Java RMI (Remote Method Invocation). Each BrowserDialog gets infor-
mation from the Browser by triggered UserActions. In the other direction
UIActions are sent. Thes class has the following constructor:

BrowserDialog(Session session): This class must have the session_ lo-
cally stored to provide access to the active WorksheetDialog for this BrowserDialog.
The Session stores the WSDialogManager and the WSDialogManager itself stores
the active WorksheetDialog. The UserLanguage is also read out from the
session_ and stored locally.

The BrowserDialog offers the following public methods:

® boolean notifyUserAction(IUserAction action): This method is re-
sponsible for handling all actions coming from the browser stored in browser_frame_rmi _.
If the request has been accepted the return value is true otherwise it is set
to false. The request can be denied if the user has no priviledges to do such
a UserAction. To make this decision the BrowserDiaolg has to check up
the UserSettings and the UserModel. But this would not lead to an ex-
ception. An exception is thrown if the current state of the BrowserDialog
cannot handle the UserAction (DialogProtocolException).

e void presentContext(Context context): This method belongs to the
IContextPresenter interface. It is called by the WorksheetDialog, if
context changes have to be shown in the browser. This method checks
the status of the member variable context_on_. If context_on_ is set to
false, the current_context_ won’t change.

e void registerBrowserFrame(IToGUI browser_frame): This method is
called from the WindowApplication to register the BrowserFrame at the
BrowserDialog. After registering the BrowserFrame the hierachy_ is
sent as an UTActionOnHierarchy.

e void sendCheckedContextToBrowser (Context context): The Method
is used when context_on_ is set to true. Then the method checks the re-
ceived context by use of the checkContext method of the IContextProvider
interface. This interface returns again a context, which is sent to the
BrowserFrame.

e void sendInitContextToBrowser (): This method is used when the varable
context_on_ is set from false to true or when showBrowserFrame() is
called. Then the context of the WorksheetDialog of the active worksheet
which has implemented the IContextProvider interface is the initial con-
text and it is sent to the BrowserFrame.

e void showBrowserFrame(): If an UserAction with the ActionID is UI_BROWSER_GET_FOCUS
received this method is called and the the BrowserFrame will get the focus.

The BrowserDialog offers the following protected methods:

138



void drawButtonContextOff(): This method causes the Context Off
button to be shown. If the button is already shown, nothing happens.
Otherwise the Button for Context On is removed and the Button for Con-
text Off is shown.

void drawButtonContextOn(): This method causes the Context On but-
ton to be shown. If the button is already shown, nothing happens. Oth-
erwise the Button for Context Off is removed and the Button for Context
On is shown.

abstract void drawButtons(): This method has to be implemented by
the drived classes because every browser has a different set of buttons.

HierarchyKey getHierarchyKey(String xml_content): To get the cor-
rect HierarchyKey from the xml_content string the 'HierarchyKeyParser
will be used and the HierarchyKey will be returned.

void interpretLink(URL url): This method responsible to interpret a
link coming from the BrowserFrame. Normal links fetch html-files which
are shown in the correspondig browser (The first three letters in the file-
name show which browser is responsible for the link). For specific links
coming from the ExampleBrowser which include #COMMAND_EXEC_EXAMPLE#
a the method openWorksheetFromExample (String kestore_key) is called.
The kestore_key is parsed from the URL.

Vector<String> loadContent(String session, String type, String filename):
The content is loaded from the KEStore by using the callKEStore method

whith encapsulates the communication via XML-RPC. The content is stored

as the first element. The Vector<String> is used to get better structured

information if an erros occurs.

Hierarchy loadHierarchy(ContextType type): The Hierarchy is loaded
from the KEStore by using the callKEStore. If the type is unknown, null
will be returned.

void sendContextToBrowser(Context context): This method sends a
context to the browser but first it has do get the HierarchyKey and store it
into the context object. The sent context is the new current_context_.

void sendGetFocusToBrowser(): This method is responsible for mak-
ing a BrowserFrame visible to the user, i.e. when interpretLink is
called to open a html-file in a different browser this method will cause
the BrowserFrame to come in front of all frames.

void sendLinkToMiniBrowser(Context context, ContextType type):
Sends the browser the information to display the new selected problem.
This method is called if a new context has to be shown in the browser.
A link is created out of the KEStoreKey which is stored in the Context ob-
ject. This created link is then sent to the minibrowser via void sendLinkToMiniBrowser (String link).

139



e void sendLinkToMiniBrowser (String link): The user_status is read
out of the Usermanager, which is implemented as a singleton and then
void sendLinkToMiniBrowser (String link, int user_status ) is called.

e void sendLinkToMiniBrowser(String link, int user_status ): Calls
the doUIAction method of the BrowserFrame with an UIActionOnLink
but first the user_status has to be checked for the privileges of the user
to decide how much information will be provided.

e void setCurrentContextToWorksheet (): This method takes the current_context_
and calls the active Worksheet to set the current_context_ as the new
context for the worksheet. The jToWorksheet; button is only visible if
there is an active Worksheet and if the calcHead is opened.

e void switchToMatchOff (): This Method sends an UIAction to instruct
the BrowserDialog to generate the Context off button (and also remove
the Context on button first).

e void switchToMatchOn(): This Method sends an UIAction to instruct
the BrowserDialog to generate the Context on button (and also remove
the Context off button first).

The BrowserDialog offers the following private methods:

e private Vector<String> callKEStore(String function, Vector<String> parameters):
This method encapsulates the communication with KEStore. This com-
munictaion is done via XML-RPC.

e private Vector<String> filterContent(String session, Vector<String> result):
Inside this method a DOM is build from the String stored in the result
Vector. Then some Node of the DOM can be filtered depending on the
privileges of the user.

Here are the member variables of the BrowserDialog. They are all set
protected to be accessible from the derivated classes:

e IToGUI browser_frame_rmi_

e Hierarchy hierarchy_

e Context current_context_

e Session session_

e ContextType context_type_

® boolean context_on_visible_
® boolean context_on_

e UserLanguage user_language_

140



22.1 Communication with the Browsers
22.2 Communication with the Worksheet Dialogs

22.3 Communication with the KEStore
[

'End of Georg Kompachers contribution in [Kom07].

141



Chapter 23

Worksheet Dialog

The subsequent text follows [Kre05|, the initial design considerations. The sec-
tions downto deal with representing calculation data for the Work-
SheetDialog (and for the WorkSheet), and the sections downto deal
with communicating with other components.

For the second part od the Dialog Guide, the BrowserDialog, see (see 77
on p.??). The details of interaction between BrowserDialog and Knowledge
Browsers are analoguous to the interaction between WorkSheetDialog and Work-
Sheet. Thus in the sequel 'Dialog Guide’ is used for both dialogs.

u

23.1 Storing Enumeration Types

In many contexts in the implementation, variables or parameters hold informa-
tion about one out of a finite set of alternatives.

Such values are often stored as integer numbers with every alternative be-
ing represented by a number. Throughout the ZSAC system, named constants
(public static final int) are used to represent alternatives.

While this approach improves readability and the names of the constants are
scoped, the values themselves are still indistinguishable from other integers and
thus cannot be type-checked or range-checked for proper use at compile time.

In the future, these integers will be replaced by the Typesafe Enum pattern
[BloO1] to prevent unintentionally wrong use of enumerated values. In this
pattern, every enumeration has a class of its own with a private constructor and
all possible values are public constants initialised internally using the private
constructor.

Java version 1.5 already implements exactly this pattern; the development
environment during writing this part of the documentation was still fixed to
Java 1.4.

1Begin of copy from [Kre05] p.78

142



23.2 The Hierarchy of Mathematical Objects

23.2.1 CalcElement

CalcElement, accessible through the interface ICalcElement, is the common
base class for all objects stored in a calculation. Every node in a CalcTree is
a CalcElement or derived from it. CalcIterators (see below) reference
ICalcElements.

Data Stored

Apart from serving as a common reference, ICalcElement defines the attributes:

Type is the concrete type of the element, one of CALCEL_FORMULA, CALCEL_-
TACTIC, CALCEL_CALCHEAD or CALCEL_ASSUMPTION.

Visibility hints at whether to display the CalcElement to the user:
DISPLAY VISIBLE DEFAULT, DISPLAY VISIBLE HIGHLIT, DISPLAY HIDDEN
(invisible but can be displayed on request), DISPLAY_INVISIBLE (remain-
ing invisible).

ViewStyle hints at how detailed the element will be displayed to the user.
ViewStyles have been defined for CalcHead and will be added as alter-
native levels of detail for the other derived types are developed. The
ViewStyle is chosen by the Dialog Guide to match the user’s level of
expertise.

Rating stores the result of the Dialog Guide’s estimation of the user’s familiarity
with the CalcElement in question, obtained from evaluating a query to the
User Model. As estimating the user’s familiarity with the CalcElement
is expected to be a complicated process, the results, once computed, are
stored for later reference during the session.

It is debated whether the attributes Visibility, ViewStyle and Rating
will stay with a data type used throughout the system or they will be moved to
a derived type visible only to the Dialog Guide and the Presentation Layer.

Conversions

Regardless of the internal representation, a CalcElement provides the meth-
ods toSMLString and toMathML for delivering external representations of the
data stored for the Math Engine and the Presentation Layer, respectively. As
soon as appropriate parsers are implemented, the methods fromSMLString and
fromMathML will be added. For the time being, the SML representation of the
Math Engine is used internally for prototyping purposes and is likely to be
replaced by a more efficient structured representation in the future.

143



ICalcElement

A

CalcElement

Formula Tactic CalcHead Assumption

Figure 23.1: The hierarchy of mathematical objects

23.2.2 Classes Derived from CalcElement

Apart from CalcHead, the classes derived from CalcElement are implemented
basically as mere stubs, as the Dialog Guide does not know the mathematical
meaning of the data intended to be contained, hence does not use or manipulate
them.

Formula

Formula is presently implemented storing its internal data as a String holding
exactly the string representation of terms as defined by Isabelle.

At a later stage in development, the internal structure of a Formula will be
made accessible to the user. To provide for this, a method copyTerm is added
to the class to extract subterms (see section for substitutions or similar
purposes.

CalcHead

As a consequence of the decision to integrate subproblems into the main CalcTree
(see section @ , CalcHead has to be derived from CalcElement.

According to [8:4.2] and the CalcHead has the following additional
attributes used during the Specifying Phase (see section :

144



CalcHeadStatus summarizing all the states of the ModelItems: the state is
”correct” or "incorrect”.

BelongsTo tells whether the items belong to a Model of a problem(!) or a Guard
of a method(!)

Model or Guard , consisting of Given, Relate, Where, Find: ModelItemLists,
which are lists of ModelItems.

Specification , consisting of Method, Problem and Theory, each being an
identification referencing the Knowledge Base.

Every ModelItem is a formula associated with a Status for feedback from
the Math Engine. During the Specifying Phase, the Math Engine checks the
CalcHead and provides specific feedback on every ModelItem labelling it as one
of STATUS_CORRECT, STATUS_INCORRECT, STATUS_SYNTAXERROR, STATUS_TYPEERROR,
STATUS_INCOMPLETE, STATUS_MISSING, STATUS_HELP_ME or STATUS_SUPERFLUOQUS.

The ViewStyles of a CalcHead are the following: VIEWSTYLE FULL, VIEWSTYLE MODEL,
VIEWSTYLE_SPECIFICATION.

Again, the Dialog Guide does not know the mathematical meaning of the at-
tributes of a CalcHead, but it uses the Status feedback to provide user guidance
and decide about the completion of the Specifying Phase.

Tactic

A Tactic is presently implemented as a stub, adding the attributes (which are
still questionable, too):

Name : To the user, every Tactic is identified by a String representing its
name.

Description : Descriptive text according to
and, as many Tactics use a theorem for rewriting:

TheoremSymbolic : A Formula as a symbolic representation of the theorem
used for rewriting.

TheoremName

TheoremDescription

Assumption

Assumptions are presently implemented as a mere stub.

145



23.2.3 Subterms

Subterms of a Formula can be regarded as Formulas themselves. To navigate a
Formula and select different subterms, the stub of a TermSelector class with
methods goRoot, goLeft, goRight, goDown and goUp is provided for reference.
These methods are inspired by the DOS-interface of the computer algebra sys-
tem Derive.

23.3 Iterators for Navigating the CalcTree: ICalcIterator

Methods offered by iterators include the following:

moveRoot moves an iterator to the start of the calculation, i.e. the root of the
CalcTree. Note that the root element of a CalcTree is always a CalcHead

(see section [16.5.3)).

moveCalcHead moves the iterator to the CalcHead specifying the part of the
calculation the iterator is presently referencing. Note that this is not
necessarily the root CalcHead, as subproblems are integrated into one

single CalcTree (see section [16.5.3)).

moveUp and moveDown move the iterator to the previous or next element in the
tree, respectively.

moveLevelUp and movelLevelDown move the iterator one nesting level out of
one level deeper into the tree. These methods might seem redundant to
moveCalcHead, but they are not as there may be mathematical structures
other than subproblems branching the CalcTree.

getElement returns the CalcElement referenced by the iterator, a Formula or
a CalcHead.

getTactic returns the Tactic being applied to the currently referenced Formula.
getTactic supersedes the previous idea of amoveTactic method, as it has
been decided to couple Formula and Tactic more tightly and to reference
Tactics by referring to the Formula they are applied to.

All move methods return a boolean being true on success and false if there
is no appropriate element to move to.

23.4 Data Types Used for Communication

The communication between the Dialog Guide and the front-end is the same for
both parts: between KnowledgeBrowsers and BrowserDialog as well as between
WorkSheetDialog and WorkSheet including the CalcHeadPanel. In the sequel
we only mention the latter part.

146



23.4.1 Events

Events are used whenever a component needs to notify other components of
something happening without knowing which component will eventually handle
the situation and without having to wait until processing the event has finished.
Apart from receiving requests from the user, events are used for notifications
abouts changes in the state of the CalcTree. Events are sent to components
having registered as being interested in notifications using the Observer pattern.
Events as used by Z8SAC resemble the Command pattern [GHIV93].

Changes in a Calculation: CalcChangedEvent

A CalcChangedEvent is sent by the Math Engine every time the calculation
represented by a CalcTree changes to notify other compoments to look for
updates. Normally, the WorkSheetDialog listens to CalcChangedEvents from
the Math Engine and passes them on to the Presentation Layer, if appropriate.
The WorkSheetDialog might decide not to pass the events if the changes affect
only details of the calculation filtered away by the WorkSheetDialog.

Methods offered by CalcChangedEvent:

getLastUnchangedFormula returns an iterator pointing to the last Formula in
the CalcTree not affected by the change to avoid examining parts of the
tree which have not changed anyway.

getLastDeletedFormula returns an iterator pointing to the last Formula to be
deleted below the getLastUnchangedFormula (i.e. we assume a coherent
sequence of formulae within the CalcTree). If there is nothing to delete,
the iterator points at getLastUnchangedFormula.

getLastGeneratedFormula returns an iterator pointing to the last Formula
generated within this step; there may be several Formulas between getLastUnchangedFormula
and getLastGeneratedFormula, even on different levels of the CalcTree.

isCompleted returns false, if the Math Engine has been requested to calculate
more than one step to indicate that the CalcTree has changed but the
request is not completed yet.

Message in case the preceding request for changing the calculation failed (WN0503
under consideration; concerns detailed design of the Dialog Guide).

Intervention by the User: UserAction

Every time a user request cannot be handled by the Presentation Layer alone,
a UserAction event is sent to registered listeners, which is usually the Work-
SheetDialog. See appendix C, p.110 in [Kre05| for a list of requests recognised
by the WorkSheetDialog.
getActionID returns an int identifying the user’s intervention or request.
Several classes are derived from UserAction if additional information has to
be passed:

147



UserActionOnIterator carries an iterator, e.g. to move the active formula.

UserActionOnCalcElement carries any CalcElement, e.g. to replace the active
formula by a version edited by the user.

UserActionOnCalcHead refers to a part of a CalcHead during the Specifying
Phase, e.g. to have a part of the CalcHead completed by the Math Engine.

There are several analoguous UserActionOn. . .s for the BrowserDialogs.

HHFHHFHHFHHFHHFHHFHHHHHHH##WN051223 Manuel bitte: Kontext, und
wie er fuer das CalcHeadPanel benutzt wird (durchreichen der Action Win-
dowApplication - Worksheet - 777) ...

See 23541

Controlling the Presentation Layer: UIAction

o gyt WN051223 Manuel bitte folgendes updaten

Kontext analog zu UserAction (177)

Although the naming is not adequate, UserAction objects are reused to send
requests from the WorkSheetDialog to the Presentation Layer. Requests sent by
the WorkSheetDialog include having the user edit a formula and activating or
decativating buttons on the user interface (see appendix C.3, p.112 in [Kre05]).

See

HHHHHHHFHFHFHHFHHHHHHHFAWNOS51223 Manuel bitte obiges up-

daten

23.4.2 Exceptions
Exceptions Handled by the WorkSheetDialog

Being embedded into a distributed system, RemoteExceptions from Java-RMI
have to be handled by most components, including the WorkSheetDialog.

NotInSpecificationPhaseException is thrown by the Math Engine and
probably more exceptions originating from the Math Engine will be added in
the future.

Exceptions Thrown by the WorkSheetDialog

DialogProtocolException is thrown if a request arrives out-of-order, e.g. cal-
culating without having finished the Specification Phase. Every DialogProtocol-
Exception carries additional information about which UserAction caused the
error and which Dialog Phase the WorkSheetDialog was in when the error oc-
cured. Several exceptions have been derived from DialogProtocolException
to indicate special situations:

DialogMathException is thrown if the WorkSheetDialog cannot recover from
an exception thrown by the Math Engine.

148



DialogNotImplementedException is thrown if a requested feature is not yet
implemented by the WorkSheetDialog.

DialogUnknownActionException is thrown if the WorkSheetDialog has been
passed an unknown UserAction.

23.5 Interfaces used by the Dialog Guide

The interfaces IToCalc and IToUser are used for operating on the calculation.
The interfaces IWorkSheetDialog and IToGUI are used for guided inter-
action with the user and are implemented by the WorkSheetDialog and the
Presentation Layer, respectively.
IToGUI is used by the BrowserDialog for the KnowledgeBrowsers as well.

23.5.1 Communicating Towards the Calculation: IToCalc
This interface contains two methods for accessing a calculation.

addDataChangeListener registers a component implementing the IToUser in-
terface as listener for CalcChangedEvents to be notified of changes in the
calculation.

iterator returns an iterator for navigating a calculation.

Other methods of this interface provide direct manipulation of a CalcTree.
These methods are intended to be used by the WorkSheetDialog but not directly
by the Presentation Layer, as user access to these operations is abstracted in
the requests listed in appendix C, p.110 in [Kre05].

getActiveFormula returns a CalcIterator indicating the position in a calcu-
lation where modifications take place. This includes editing as well as the
starting point for automatic calculation.

moveActiveFormula sets the position where modifications to the calculation
will be applied.

appendFormula appends a new, empty Formula to a calculation.

replaceFormula replaces the active formula, if the correctness of the new Formula
can be confirmed.

fetchProposedTactic asks for the next Tactic the Math Engine would apply.
setNextTactic sets the next Tactic to be applied.

modifyCalcHead applies modifications to a CalcHead and asks for feedback
from the Math Engine.

completeCalcHead completes a CalcHead automatically.

autoCalculate calculates a number of steps automatically.

149



23.5.2 Communicating Towards the User: IToUser

This interface is implemented by the WorkSheetDialog to be able to be noti-
fied by the Math Engine about changes in the calculation as well as by the
Presentation Layer to be able to be notified by the WorkSheetDialog.

The only method calcChanged is passed a CalcChangedEvent as parameter.
In the present implementation, the WorkSheetDialog passes the CalcChanged-
Event to all registered listeners without filtering or other processing taking
place.

IToCalc IToUser

+caleChanged (CaloChangedEvent)

A

+addDataChangelistener (IToUser)

A

+iteratori)

CalcChangedEyent

MathEngine

+CalcTres

DialogGuide

-t

Status is gueried through iterators [ﬁ

Figure 23.2: The WorkSheetDialog(TODO.rename.DialogGuide) and the Math
Engine communicating updates in a calculation using the Observer pattern

IToCale IToUser IToCalc IToUser

+addDataChangelistener ()

A

+iterator ()

+calcChangedi)

A

1
I
CalcChangedEyent

t+iterator ()
+addDataChangeListensr ()

+calcChanged ()

A

==

CaleChangedEvent

A

MathEngine

DialogGuide

|

L
| WorkSheet |

+CalcTree <%

-l
-

Both events and iterators are intercepted and modified by the DialogGuide Iﬁ

Figure 23.3: The WorkSheetDialog(TODO.rename.DialogGuide) intercepting
communication between the Math Engine and the Presentation Layer using the
Decorator and Mediator patterns

150



23.5.3 The Presentation Layer as Seen from the Dialog
Guide: IToUser

This interface is implementedb by the Presentation Layer to provide a means for
the Dialog Guide controlling the user interface as described in section[[6.6.3] For
instance, the BrowserDialog provides different buttons depending on whether
a problem is shown with a plain model, or a model matched with an active
CalcHead.In addition to that, the WorkSheetDialog can request actions from
the user, such as editing a formula.

The means for interaction are passed to the presentation layer and withdrawn
again by the methods addUIElement and removeUIElement respectively.

The only method concerning interaction,doUIAction, is passed a ULAction
to be processed by a user interface as parameter.

23.5.4 The WorkSheetDialog as Seen from the Presenta-
tion: IWorkSheetDialog

startCalculate initialises the WorkSheetDialog by providing an identification
of the user, a Formalization and STARTFROM_EMPTY _WORKSHEET, STARTFROM_PROBLEM
or STARTFROM_EXAMPLE to indicate how much information will be available
for user guidance during the Specifying Phase. Note that the user does not
interact with this WorkSheetDialog until he chooses to start a calculation,
so use cases UC are handled outside the WorkSheetDialog.

The identification of the user is used to retrieve the appropriate User-
Settings and UserModel. The Formalization is passed on to the Math
Engine during initialisation.

After successfully contacting a Math Engine, the WorkSheetDialog enters
the Specifying Phase or the Solving Phase, dependent on the UserSettings.

registerUIControlListener registers a component implementing the ITo-
Worksheet interface as listener for UserActions controlling a user inter-
face.

notifyUserAction is the central method for communicating with the Work-
SheetDialog. A UserAction as listed in appendix C in [Kre05] is passed to
the WorkSheetDialog. The return value is true if the request has been ac-
cepted and will be processed and false if processing the request is denied.
Processing a request can be denied according to the user’s privileges or the
user’s experience, a decision the WorkSheetDialog takes after consulting
the UserSettings and the UserModel. Note that denying a request is not
an error condition from the WorkSheetDialog’s point of view. An error
condition would be a request impossible due to the WorkSheetDialog’s
state, such as not matching the current Dialog Phase. In this case, there
has been an error in the communication between the WorkSheetDialog
and the Presentation Layer and a DialogProtocolException is thrown.

151



Once a request is accepted, further action resulting from the request
is communicated through UserActions sent by the WorkSheetDialog or
CalcChangedEvents originating in the Math Engine.

DGuide IToWorksheet
+registerUIControllistener (ItoWorksheet) +doUIAction (UserAction)
+notifyUserAction(Useriction) ¢

T .
1 |
| I
| I

L=zerfction - L

Dialog Guide - e Antinn Worksheet

Figure 23.4: The WorkSheetDialog and the Presentation Layer communicating
user interaction FIXME.WN0512 DialogGuid —; WorkSheet+Browsers: UIAc-
tion

23.6 Communicating with the UserModel

On the level of items in the Knowledge Base, such as Tactics, and the con-
text of Dialog Atoms, the UserModel provides statistical data about prevoiusly
recorded interactions with the user.

getTouchedCount returns the number of previously recorded interactions.

getSuccessCount returns the number of previously recorded successful inter-
actions.

getTouchedLast returns the timestamp of the last interaction recorded.
getSuccessLast returns the timestamp of the last successful interaction recorded.

getTimeSpentAvg returns the average time the user spent with the interaction.
Time is provided ny the SessionHandler (i.e. by the system running this
module).

getTimeSpentMax returns the maximum time the user spent with the interac-
tion.

Statistical data are gathered as the WorkSheetDialog announces the start and
end of every interaction between user and Knowledge Base.

startInteraction is called with identifications of the Knowledge Base item
and the Dialog Atom used.

152



‘28] [BINIEWWED) 194 1N UOHPT AN NWWoD TN 194 UOPISad Yl pRIEaIs)

1BUBEEI PEI 0T L) 1 BUES AIgLEL ooLEE + Bums: (i IALHo + Buns: (i TALHo +
Jopol giesucl () 1eproigios ooieb +

1ebeuepEopn s () 1ebruepBomg ek +

( eeyruugy: g oesr wan
POYRIHUDD

(' eyrungy: an:ooest woy)
Kooy paquon

{ vorssesseer way)

e 1- 4
» Bupgz (LHe+ Bupz: () 1LH = +
“uoEmas g Tuopzes
TuoEses— ( agnuuoy: masoes wog) ( Spo) gnssesT wog)
sfduwegyEpue e i e L]
TEoep 1mmaoig s — N LN
Bumz:(ITpiHes +
Aoy fpumeiy: ) LeydipieisiqisE +
ThRuOT WA S| daysiogIy:l) fEya s yeE+
(| Boprpmsmosg: oo wory
sbomp & Boreiaras moug { sy pan: et wiary)
o]
v | A Y
1 sdpjdsp ' '
v i i
P T '
piov [ pRp e peucs) pepespuasad + ,
=abopip 1meLow amupp
ay puesBoep { Bopnpmsmoug: sest woay 1
AR UG B UEEy e 3 USSPy 0
UCREDL MW Wos =€ BOCHEUl = 1
Ly IO} SECEE| i
s o ) SIEIG Sy oyeE +

pespueDy: [ PoEpu Oy posuoD) pospucTeule +
plos [ pRWOs ERUCH) o oiEs T
LB OZE [ PRI DD PEU0D) PEU0D HELD +

T Bampan- = wag) e sdd)mauen: sdi mauos) IRueDIL |+

i _I.Hun.ﬂ.__.ulv
Boy sy =y o

{ Boppem: e uog)

Impo IgRelueDy
=2 mNEpEU| >

S
{ Boprpsm .oy wog)

Figure 23.5: The dialoges in a session
153

endInteraction is called with an int indicating the success of the interac-

tion. As there is no appropriate measure for the success of an interacton

presently available, the values 0 and 1 will be used for prototyping.

23.7 The important classes

The figure fig23.5| pl153| shows the classes involved in the WorksheetDialog.

szbeuepyBomgam

~EoepTsaymy o asoT

[ Bomp meEyon

2End of copy from [Kre05] p.89



Chapter 24

Worksheet

The WorkSheet provides the user with the means to view a calculation or to
interactively construct a calculation. For specifying a problem or a subproblem
there is an additional view called CalcHeadPanel.

24.1 Communication with the WorkSheetDia-
log

The connection to the WorksheetDialog has already been established at initial-
ization time as described in section P1.3.2] step P1.3.2] Each Worksheet holds
exactly one connection to a WorksheetDialog and a WorksheetDialog is also con-
nected to exactly one Worksheet (1:1 relation). This relationship is necessary as
the WorksheetDialog needs to record the user actions in the user history, and the
WorksheetDialog also holds the complete calculation tree for the corresponding
calculation in the Worksheet.

The entire connection goes over Java RMI interface thus enabling that the
WorksheetDialog and Worksheet be on physically separate machines. The class
WorksheetRMI wraps up the RMI interfaces on the Worksheet side.

The WorksheetDialog communicates with the Worksheet over two interfaces:

e [ToGui - implements the handling of UlActions through the doUIAc-
tion(UIAction) method (see section [23.5)).

e [ToUser - implements the handling of Calculation Events through the
calcChanged(CalcChangedEvent ) method (see section [23.5.2]).

These interfaces are implemented by the WorksheetRMI wrapper class, which
passes the UIAction and CalcChangedEvent objects to the aggregated Work-
sheet.

154



24.2 The classes or the WorkSheet

The Worksheet is the main component within the graphical user interface and is
responsible for the interaction with the user while doing a calculation. The main
task of the Worksheet is the representation of the calculation steps. Each step is
stored as a node in the CalcModelHierarchy (see section and these nodes
are displayed in a hierarchical structure by the Java JTree component. How
detailed each step is displayed on the worksheet is agreed in accordance with
the WorksheetDialog and depends on the user history. The communication from
Worksheet to WorksheetDialog is performed over Java RMI. Each user action is
processed in the Worksheet and if the requested action needs the functionality of
the mathematical engine then the request is forwarded to the WorksheetDialog.
In the current phase, there are very few user actions that are handled solely by
the Worksheet. Upon receiving the user action, the WorksheetDialog handles
the request (e.g. forwards calculation tasks to the mathematical engine) and
returns the result back to the Worksheet.

As shown in figure the class Worksheet is designed around a lot of
helper components.

These components are described in more detail in the following sections.

24.2.1 TreeModel

The mathematical calculation is represented in ISAC SML core as a hierarchi-
cal tree structure. The perfect component for rendering such structures is the
SWING JTree component. However in order to render such data, this compo-
nent requires the data provider to implement the TreeModel interface.

In the ISAC system the TreeModel Interface is implemented by an ab-
stract class AbstractTreeModel. This class implements the basic function-
ality of the interface which is universal for all TreeModels, regardles of the data
types of their Nodes. The AbstractTreeModel is inherited and extended by the
CalculatonModel class which represents the bridge between ISAC’s calculation
hierarchy and the JTree display component.

The Figure shows the class diagram of the Tree Model part of the
Worksheet.

The CalculationModel class serves as an event wrapper for the the CalcModelHierarchy
where all calculation nodes are stored.

24.2.2 CalcModelHierarchy

As previously mentioned the CalcModelHierarchy stores each node of the cal-
culation tree in a representation that can be displayed by the standard SWING
component JTree.

Figure [24.3] shows the communication required to propagate data changes
to the JTree. The WorksheetDialog sends a calcChangedEvent () (over RMI)
which notifies the Presentation Layer that a node has been added to the calcula-
tion tree. The CalcModelHierarchy accepts the added node and stores it to its

155



ITaGUI interfa
IToUser

dolllction() : boolean

dellAction() : void caleChanged) : void
acdll svoid
removell|Elemert() : boclean é
~ ' AbstractTreeModel
1
H ' R R —
| erealizass listemerlist : Eventlistensrlist
‘WorkshaetRMI AbstractTraehodel(]
interta ws_ : Worksheet
1GuTeGui legaer : Logaer
notityliserAction() : void WorksheatRMI() Calculationhtedsl
Pay = -
T sarilVersionUID ;long .
' <<realize>> "
GalcHeadPansl root : Object
Worksheet hierarchy_ : CalcMadelHisrarchy
sarialVersionUD clong. N
ger - sarialVersion D ; long mode| Caleulatio nMadel)
. mi': MouseAdaptar
DYEETAY MATCH ot chp_ popuphlenu : JPopupMeny
button_panel_: JPanal mausm_pairl_: Faint hierarchy_
dynamic_actions_by_menu_items_ : Hashiap
GCalcHeadPanel) dynamic_action_ids_with_context_cakhead_ : Vactor
looger ;Logger
madel : TreeMode| calc_hierarchy_| CalcModelHierarchy
commonactionsOnGaleElements_ [, g
. . =arialVersionUlD <long
chp_: GalcHeadPanel
WorkshestPopup Handler deskiop_: JDeskicpPane GalcModeiHisrarchy()
actions,_ - Vecior ca|c_ln.:raa_wsmr_me:an
menu_: JPepupan panzl_frame_ : JintemalFrame
actions_ta_labels_ : HashMap Worksheetr)
WorksheetPopupHandlert)
irgeEditor_
traeFendarer_
1.
GustomTreaGel Editor CalcModsiNeds
CustomTresCel Rendsrer [ [
looger : Logger worksheet_ : Workshest i H
image : JLabel K editedNode_ : Objest children_: Vestar
text : TraeTextPansl renderer_ | renderer_: TreeCelRenderar parent_ : CakModelNode
formulaText_: JTextField facticSiring _ : String
tacticText_: JTextFied assumplionSiring_ : String
CustomTreeCallRendarar() editorPanel_: JFansl formulaPapupHandler_ : WorksheetPopupHandler|
subGell_ it facticPopupHandler_ : WorksheetPopupHandier
SUBCELL FORMULA ini showWhat_: int
SUBCELL TACTIC int SHOW_TACTIC : int
SHOW_ASSUMPTION : int
CustomTreeCallEditor()
GalcModeiNode()

Figure 24.1: The worksheet class and its dependencies.

internal tree data structure. After storing the node, the CalcModelHierarchy
sends message to the CalculationModel about the added hierarchy node. Fi-
nally the CalculationModel notifies all registered listeners (including the JTree)
of the inserted node.

The communication procedure in the opposite direction is shown on Fig-
ure[24:4] The User has changed a node in the JTree so the component notifies its
listeners. However, the CalculationModel ignores the valueForPathChanged ()
event, because the user changes are not stored in the calculation model hier-
archy unless they are authorised by the mathematic engine. The Worksheet
class is registered as the JTree listener and it propagates the change event to
the WorksheetDialog. The WorksheetDialog then checks the result with the
mathematical engine and the results of the requested operation are delivered to
the Worksheet as a calcChangedEvent.

The CalcModelNodes are stored in the CalcModelHierarchy object in a
tree like structure where each node holds references to its children as well as its

156



<<interfacess
Trealodal

addTresModelListanar(] : TreeModealListanar) : woid
getChild{parent : Object,index : int) : Object
getGhikdGount{parent : Chjsct) : int

getindexCAChikiparent | Objectchild : Chject) @ int

getRoot() : Object

isLeaf{node | Object) : boolean

removeTreehModellistenar(l : TreeModelListener) : void
valueForPathCGhanged|path : TreePath, new\alue : Chject) : woid

1
1 AbstractTreeModal -= Treehodsl
: wrealizess
L
AbstractTreeMods!
root 1 Objact

listanerList | EventlistenerList

AbstractTreeModeli]

Calculatio nModel
ialVersi o.
ogger ;Lo CalcModelHisrarchy
root ; Object cerialVarsienUID ; long
higrarchy_ : GalcModelHisrarchy hierarchy_
CalcModelHierarchyi)
CalculationMaodal()

Figure 24.2: The Tree Model class diagram.

parent.

The CalcModelNode object holds an instance of the formula as a CalcElement
as well as the string representations of the tactic and assumption (used for dis-
play purposes). Each CalcModelNode has two WorksheetPopupHandler objects
which store the available actions the user can perform on a certain formula.
These actions are currently rendered as a popup menu accessible with the right
click on formula or tactic.

24.2.3 CustomTreeCellRenderer

The JTree SWING Component provides the programmer with a possibility to
customise the rendering of single cells. This possibility is currently used in the
ISAC system in order to render both the tactic (or assumption) and a formula

157



ITree: CalculationModel: CalcMiodelHierarchy: WorksheetDlalog:

addTreeModelListenar

calcChangedEvent

fireTresNodesins erted

treeModesinserted

e Sttt

fireTreaStructureChanged

treeStructureChanged

R T T

Figure 24.3: Communication flow necessary to propagate the node inserting
event from the calculation tree to the presentation component.

in a single node. Therefore, each node consists of two JLabel objects which are
used to display the corresponding content. In future extensions this class could
implement some renderer capable of graphical representation of ISAC formulae.

24.2.4 CustomTreeCellEditor

Similar to the CustomTreeCellRenderer the CustomTreeCellEditor provides
for a way to edit the nodes in the JTree. Currently, the CustomTreeCellEditor
consists of two JTextArea components capable of editing multi-line text. The
choice which line of text to edit comes from Worksheet. This class catches
the mouse events, calculates the position of the mouse click and notifies the
CustomTreeCellEditor. Needles to say the future enhancements should pro-
vide a graphical editor and implement its own mouse click handler.

158



[Tree: CaleulationModel: CalcModelHierarchy:

‘ Warksheet: ‘ ‘ WorksheetDialog:

walueForPathChange

editingStopped

h 4

notilyUserdction

calcChanged

Figure 24.4: Communication flow necessary to propagate the change of the node
in the presentation component to the calculation tree.

24.2.5 CalcHeadPanel

The CalcHeadPanel is displayed by the GUI if the user wants to specify a (sub-
)problem or if the WorkSheetDialog decides for an explicit specifying phase.
Additionaly, the user can choose to open the CalcHeadPanel to get an insight
into the specification or the model of the problem started from the example
collection.

The CalcHeadPanel is implemented in the main CalcHeadPanel class and a
couple of presentation components. The class diagram of these components is
shown on the Figure

The Worksheet communicates with the CalcHeadPanel by directly calling
its two methods:

e fillCalcHeadFromTextFields and
o fillTextFieldsFromCalcHead

These methods take single parameter an instance of the CalcHead to display or
to fill. As the user ends the modeling/specification phase, the Worksheet asks

159



interta

ICalcHead View

filTextFiaidsFromCalcHead() : void
filCalcHeadFromTextFisks() : void
resat]) : void

ixt_relate_ : JTextField

panel_given_: Ma el
pane_given_: JScroliPane
panel_where_ : Modelltsms Panel
pane_where_: JScrallPans

current_panel_index_: int
focus_lost_handler_: IGuiTaGui

panel_where_

fields_ : Vector
current_position_  int

ModelPanal()

label_problem_: JLabel
txt_theory_: JLabel
txt_method_ @ JLabel
txt_problem_ : JLabel
re=_bundle_ : ResourceBundie

panel_find_ : MadelitsmsPanel pansl relate_ LopS METHOR it
pans_find_: JScrollPans LopS _FRCBLEM it
panel_relate_: ModsltsmsParel LapSL _TERORM
pans_ralats_: JScrollPane BOATIIN_THECEY i
Foyoun - SemaL syt POSITION PROBIEM jnt
res_bundls_ : ResourceBundls EOATIIN METHOD nt

current_position_  int
prablem_bution_ : JRadioBution
methad_button_: JRadinBution
radio_putton_handler_ : |GuiToGui

HeadLinaPanel
GalcHeadView GalcHeadPanel
head line_ : JLabel
22 1D long ssralVersionlD long
N Tigad_line_panel_ HEADLINE _PANEL_INDEX sint loogar_ Looger
HeadLinePanel() IODEL PANEL INDEX :int TYPE_TRY MATCH:int
LYE BEX_El NE in
res_bundle_ : ResourceBundle button_panel_: JPanel|
logger_cLogger,
current_panel_indsx_: int
ModzIPanel CalcHeadPansl()
Versionuin mode| panel GalcHeadView()
GIVEN PANEL INDEX: int info_panal_
WHERE_PANEL_INDEX . int.
EIND_PANEL_INDEX . int. =pecifiafion_panel_
BELATE_PANEL INDEX @it
Iabel_given_: JLabel
Iabel_where_: JLabsl
Iabel_find_: JLahel SpecificationPanel
abel_relats_: JLabel . o
- slong
txt_given_: JTextField ModelitemsPansl e
ixt_where_ : JTextFisld label_thecry_ : JLabel
t_find_ : JTextFisid panel_given_ labe|_methad_: JLanel

SpecificationPanel()

Figure 24.5: Communication flow necessary to propagate the change of the node
in the presentation component to the calculation tree.

the CalcHeadPanel to fill out the CalcHead that gets sent to the Worksheet-
Dialog. The second method is used to initialise the CalcHeadPanel from an
existing CalcHead, when the user has started the calculation from an example,
but wishes to see the model and the specification.

The CalcHeadPanel can display the following ViewStyles:

e VIEWSTYLE_FULL
e VIEWSTYLE_MODEL
e VIEWSTYLE_SPECIFICATION

For each ViewStyle of the CalcHeadPanel, there is a corresponding presen-
tation component. The full ViewStyle simply shows the both components.

ModelPanel

As the name ModelPanel indicates, this component is used to display the model
data of the CalcHead. The model consists of four fields : given, where, find and

160



relate. The display and editing of these fields is realised through four JTextArea
components.

What is more the ModelPanel gets the composite data from the Worksheet
and can show the user whether the given data is correct, complete, missing,
superflous etc.

SpecificationPanel

The SpecificationPanel allows the user to view or edit the theory, method or
the problem connected to the edited CalcHead. It is implemented in the same
way as the ModelPanel.

161



Chapter 25

KEStore

162



Chapter 26

Knowledge Browser

26.1 The relation between the browsers

The architectural design in sect on p relates browsers to the respective
dialogs. The relation is the reason for the structure of the browsers detailed
here.

The figure fig p shows the class diagram for the browsers.

What is seen by the user has a uniform structure for examples and the
knowledge (theories, problems, methods).

26.2 The classes for a browser

The HierarchyBrowser’s task is to display the hierarchy which was generated
by the XMLHierarchyBrowser in a way that the user can browse through this
hierarchy.

The HierarchyBrowser was designed (figure according to the model
architecture that is used in the programming language chaE] within the Swingﬂ
library.

This design principle makes it possible to define a model interface (Brow-
serTreeModel) that mainly defines accessor methods. It defines no operations
to manipulate the structure of the data — no methods to insert, remove or
change data items in the model. This makes implementing a model and using it
with a component (in the ZSAC design this is TabPanel, which uses a standard
component, namely JTree, to render the data of the model) somewhat different
from using the more conventional MVC (model-view-controller) design principle.
This difference allows greater flexibility. It means that different components can

IFlanagan [Fla02] provides an essential quick reference about the Java programming plat-
form

2Flanagan [Fla99] also provides a reference about the Java Foundation Classes which
includes Swing.

163



use the existing data structure without having to make modifications to that
structure to make it conform to the required interface.

The HierarchyBrowser has to display the entries of the three parts of the
knowledge base and the entries of the example hierarchy. As these hierarchies
are logically connected and the user may want to switch fast between them, the
HierarchyBrowser uses the so-called Tabbed Window technology. Each hierarchy
is displayed in an own tab window. This lets the user switch back and forth
between the different knowledge base hierarchies.

26.2.1 TabPanel

TabPanel is designed as an abstract class and it generalizes the drawing of the
different hierarchies, as this is done the same way for each of the hierarchies.
The drawing itself of the hierarchy can be done by a standard component that
almost each windowing toolkit framework provides. TabPanel only coordinates
the initialization of the model which needs the hierarchy data for a correct
initialization. The model must then be connected to the component that is
responsible for the drawing of the data that the model provides.

26.2.2 BrowserTreeModel

The BrowserTreeModel provides the component that takes over the rendering of
the hierarchy with data from the different hierarchies. As the BrowserTreeModel
does not provide any operations to manipulate the structure of the data, another
mechanism must be used.

The behavioral design pattern Observer, described by Gamma et al. [GHIV93)]
and implemented as Event-Listener-Concept within the Java programming plat-
form, is the chosen mechanism within the ZSAC architecture. The notation of the
Java programming platform is used within ZSAC; therefore, the names listener
and event source are used afterwards instead of observer and subject.

Figure [26.3] shows the communication that is required to propagate data
changes to the renderer. Each step that is necessary is described in more detail
in the following:

1. Register Listener
Each application or object that needs to be informed about changes in
the structure of the data must register itself as a listener at the rendering
component.

2. Receive Event
The application receives events from the rendering component and deter-
mines the actions to take.

3. Change Data
The application changes the underlying data model, in this case the hier-
archy of the knowledge base.

164



4. Report Change
The application reports the changes to the BrowserTreeModel.

5. Notify Rendering Component
The BrowserTreeModel notifies its listeners (the rendering component au-
tomatically registered itself as a listener for the BrowserTreeModel com-
ponent) of the change.

6. Request Data
The rendering component asks the BrowserTreeModel for data that it has
to display.

7. Delegate Request
The BrowserTreeModel, which has a connection to the hierarchy, delegates
the request for data to the hierarchy.

8. Return Data
The hierarchy returns the complete data structure to the BrowserTree-
Model.

9. Return Result
The BrowserTreeModel sends back the data to the rendering component,
which can now display the new data.

26.2.3 BrowserPanel

The three BrowserPanel classes—ProblemBrowserPanel, MethodBrowserPanel
and ExampleBrowserPanel—extend the functionality of the TabPanel class.
This extra functionality is described in detail for each class in the following:

e ProblemBrowserPanel
As described in the Use Cases 7?7 and 7?7, the user can either match the
model of the current example against a problem in the problem hierarchy
or try to refine the model of the current example with the help of the
problem hierarchy and ZSAC’s mechanism to automatically find the best
matching problem. The user can choose the desired action with a right
click in the ProblemBrowserPanel.

As soon as the user accepts the matched model he can start or continue
(if the user refined or matched the model of a subproblem) the solving
phase. The user request is then forwarded to the Worksheet, which takes
over the control during the solving phase.

¢ MethodBrowserPanel
For MethodBrowserPanel currently no special functionality is described
in the requirements; therefore, the MethodBrowserPanel at the moment
only shows the content of the XML-file for a specific method if the user
selects one.

165



¢ ExampleBrowserPanel
As described in Use Case ?7?, the user can start a calculation from the
example hierarchy. If the user selects an example that he wants to calculate
then a formalization (see section ?7?) is generated from the XML file that
describes this example. The WindowApplication is responsible for opening
a new Worksheet that takes as parameter the formalization.

Note that for the theories part of the knowledge browser there is currently
no TheoryBrowserPanel designed, for the same reason as for the XMLTheory-
Parser. Nevertheless, the TheoryBrowserPanel can every time be included as a
subclass of TabPanel.

26.3 Implementation details

The HierarchyBrowser renders the parsed hierarchy of the XMLHierarchyParser
with the help of the Java JTree object. To use JTree for this task there are
some steps necessary that are described in the following sections. Figure [26.4]
shows the result of the rendering by JTree.

26.3.1 HierarchyNodes

Each NODE tag (see listing represents an entry in the hierarchy and is
converted to an object that is derived from HierarchyNode. HierarchyNode
provides getter and setter methods for ID and CONTENTREF. The nodes of the
example and method hierarchy also have additional tags to ID and CONTENTREF
for each additional tag the objects provide getter and setter methods.

26.3.2 Hierarchy

The HierarchyNodes are stored in the Hierarchy object. The Hierarchy object
is needed by the BrowserTreeModel object. BrowserTreeModel implements the
Java TreeModel, which is necessary for the Java JTree object to render the
different hierarchies in a tree representation.

El

26.4 Minibrowser

Displaying HTML content in a Java GUI is in no big problem since most of the
javax.swing.* components, which are used to display plain text, are also able
to display HTML content. The task of displaying HTML content is done by the
Minibrowser as shown in figure The Minibrowser is an extension of the
javax.swing.JEditorPane. The JEditorPane is per default able to deal with
the following content:

3Begin of [K06| p...— p....

166



e text/plain
e text/html
o text/rtf

The type of content can be selected with the setContetType () method. There
are two methods for displaying HTML content:

e setText(String html): shows the passed HTML string directly. The
disadvantage of this method is, that the HTML content has to be loaded
into a string manually. According to SR.??7, urls pointing to the local
file system must work as well as urls pointing to documents available
over the World Wide Web via http. Thus, an extra loading-class would
be necessary to get the HTML content independent from the location.
Additionally, the whole user interaction should not block while the file
is loaded, so the loading-class would have to run in an extra thread, as
required in SR[I2.14] All the problems of thread-synchronization would
have to be solved. However, the big advantage would be, that the HTML
string could be manipulated directly. The content of HTML tags could be
replaced or modified by dynamically generated HTML parts with a single
String.replace() command.

e setPage(String url) loads the content of the passed url. This works
from the World Wide Web as well as from the local file system. The page
can be loaded synchronously or asynchronously. Dynamic changes in the
static HTML document are not that easy, but they are possible by use of
a so called EditorKit. This is explained in section [26.4.2 in detail.

The use of the setPage () method clearly results in less work to be done, so it
was declared to be the weapon of choice for the MiniBrowser.

26.4.1 The Processing of Links

Links are handled with so called HyperLinkListeners. Whenever a link in
the JEditorPane is selected, the registered HyperLinkListener is called. In
our case, the BrowserFrame implements the HyperlinkListener interface. It
is added as the one and only HyperlinkListener of the Minibrowser. If a
link is selected, the hyperlinkUpdate () method is called. The BrowserFrame
creates and sends an UserActionOnLink. If a new page has to be displayed,
and UTActionOnLink containing the link target gets to the Minibrowser. It is
loaded by use of the setPage () method of the JEditorPane class.

26.4.2 Dynamic Modification of the Static HTML Con-
tent

According to SRI12.2.6] the content displayed in the knowledge browsers can
be enriched with context dependent information. A context refers to the active

167



formula in the active worksheet. The reader may have a look at figure [14.1
while reading the following explanation.

The worksheetdialog is the module which knows the active formula. It
queries the math engine over the bridge for a specific context (a context to
theories, problems or methods) for this formula. The math engine responses on
this query with the XML representation of the desired context. The context is
parsed, which leads to a Context object (either ContextTheory, ContextProblem
or ContextMethod) carrying the information in attributes. This Context object
is passed to the corresponding browserdialog. The browserdialog remembers the
context as current context and forwards it to the browser.

As mentioned in section the HTML content itself is never available in
a string to be modified directly. The JEditorPane uses an HTMLEditorKit for
displaying HTML content. The only possibility for manipulating the represen-
tation is, to use an EditorKit. The solution is shown in figure 26.5

An HTMLFactory is used to create components to be displayed out of HTML
elements. Instead of the standard EditorKit, a self made EditorKit can be
used. A MinibroserEditorKit is derived from the HTMLEditorKit. The meth-
od getViewFactory() is overridden by a method which returns a self written
view factory called MiniBrowserViewFactory. The create()-method is called
with all HTML elements of an HTML document. The returned View is dis-
played. This MiniBrowserViewFactory contains a map between HTML tag
strings and IHTMLElementRenderer interfaces. If an HTML tag is not in the
map, the create () method returns the standard View. If the tag is in the map,
the renderElement () method of the corresponding interface is called to get
the View. The class behind the interface can create an own object, which is
derived from the ComponentView. The createComponent() methode can now
implement the representation of the HTML element just as desired.

This design can be used very flexibly. Whenever an HTML tag has to be
displayed in an special manner, a new ContextRenderer which implements the
IHTMLRenderer interface and a View which creates the Component has to be
programmed. The tag to be processed and the according Renderer has to be
inserted into the map by use of the addElementPresenter () method of the
MiniBrowserViewFactory.

In the current state of the ZSAC-software, this feature is only used to re-
place everything which is inside a <class="context"></class> tag with the
context information from the math engine. The string ’context’ is inserted
together with a ContextRenderer into the map of the ViewFactory. This class
creates a ContextView. The createComponent () method of this class returns
a Component displaying the HTML representation of the (dynamic) context in-
stead of the static content between the <class="context"> </class> tags. The
toHtml () method is called on the current_context_. This method returns an
HTML string presenting the attributes of the context object.

4End of [K06| p....— p....

168



"B [AQISWIWOT 10} JON "USHIPT ANUNWIWOT TN IO} UOPISSO UM PS[ESI])

peE oD preuoDusnnget +

pon pEwon: pEuos mau] peBusyopEiucs +
UES 00q:| USNaY] M]: UKDE] WSWST| ) saows +
UES{ 00| USHIISST | UOHDe] uoioy| M op +
POV U OS] U EE) uoliy | nop +

PO { US| 1] WD) JusWE| 3| PPE +
ponciHn: cbuelsbeqies +

plow Buns: pbue)sBeges +

UsIoHpIIEEMOIEILIN: I JONPS ISEMoIQIUILL
uEs|o0]: ~ pepEo sbedg

IEUCD ESoD usunsg

qun: sbedg

[ SEmosgRuLL ;T Jesmosg s nboesr woy)
195 MOog LN

Pon|NE0L ) SWEIf JsEmog] SUsl4isEsgisEbe +
UES 0Oq:| UCHIRIESM| UoE] uogyissnApou +

{ Soyeypsssmosgoes waoy)
Gowiaesmaigl
o SOEMS] =

(el woy)
Slollay
=< fluoc-pES | SoEpSU

uesoog: | uolayies ) uonoe]  BojEgissscigipou +

UES| 000 USHDYIES| UOHoE] Ualioy|op +
Fron] uoog ) uoiae] vy nop +

plon: { JUSATU DD |USAS] PELLL QS U DIPE +

L=t NN T = =TT T =S
|auEgiyes Hit) |susdiyceis Hst +

JeSanDIgIul | - TIEmAoug TIU W g
|auEgfiyaEiay " jpued Ayaeisyg
suegpdsr: Teued pdE|Epozuoy §

Jopepy: T eisusE| eBusys peuoog
pEU oD SO Weunag
JEQNUSN e nusw g

1

UES| SO0 USSR USoE] U SIS feacw El +
FIon ] UiEy| | USHDE] JUSU S TN PRE +

Pron{ LoDy USSE] UaEYInep +

UES 00q: US|y ISEM | UoioeE] udey|nop +

| ssospeur:ossr woy)
inDeLl
<< BOEMSWM >

A

Boeiqiesam g “BoEp sz g g
deyyyseH: “suopng slopE dews
depyyseH: TsuopoeTsuopng dew g

UES| SO0 USSR USoE] U SIS encw sl +
PO UDEy| | US(EE] US| N pRE +

PHon ] Uoog| | USoE] uolEy | nop +

UES| 000, USHORISS | USoE] Uy |nep +
plon] puigiu—

( desmaxgs b oesr wox)
[ SLE I8 SMOIE

{ smsmoug: inboesy wody)
G R e |

[ desmauginbzoes woy)
N S LI d g smMorE

SUESADIG

Figure 26.1: The classl%ié%gram for the browsers



+ isac::gui::util::Hierarchy

# root: HierarchyNode
# rootNodes: Map
# childNodes: List

Hierarchy()
addNode()
getChilds()

+ BrowserTreeModel i
+
+ getChild()
+
+
+

# hierarchy: Hierarchy

getIndexOfChild()

+ BrowserTreeModel() getRoot()
+ gelRopl() l— = toString()
+ getChildCount() — —
+ isLeal()
+ addTreeModelListener()
+ removeTreeModellistener()
+ getChild()
+ getindexOfChild()
+ valueForPathChanged() e"I
— + TabPanel
J + javax::swing::JTree ||
# viewTree: JTree — .
+ TabPanel()
+ isac::gui::k .71 hod ImsthodBrnwserPanel
/ \
+ MethodBrowserPanel() / \
+ isac::gui: E: leBi Panel \
\
+ ExampleBrowserPanel() \
+ 1 i:b ::probl ProblemB Panel

+ ProblemBrowserPanel()
+ actionPerformed()

Figure 26.2: HierarchyBrowser using a more conventional MVC (model-view-
controller) architecture

170



1) Register Listener v

endering
omponent

Application - 2) Receive Event ﬁ

5) Notify Rendering Comp.
9) Return Result

4) Report Changg | BrowserTree 6)Request Data
Model

T) Delegate Request

Y

3) Change Da@_. Hierarchy

’B) Return Data

Figure 26.3: Communication flow that is necessary to propagate changes in the
structure of the data to the rendering component.

171



3 Problemhierarchy h
[y e_phliD
@ [ equation
@ [J univariate
D linear
@ [ root
@ (s
[ rat
[ normalize
[ rational
& 3 polynomial
& [J expanded

Figure 26.4: The problem hierarchy converted from XML representation and
rendered by JTree

himl 1ag rendering J

<c read-only == << read-only == <e nead-only ==
JEditorPane HT ML EditorKit HTMLFactory
(from jawax - awing || (fram javax :zwing = faxt shimd | ffrom javax zswing text chiml oHTMLEditartGt )| -
cleaks
'
'
2 W
== mad-only ==
MiniBrowser MiniBrowserEditorKit ComponantView
(fram isac::gui “browsar :minibrowsar | (fram isac: gui:-browser :manibrowsar | from javay ::swing = faxt )
#panent_:BrowserFrame waciory_ MiniBrowse ViewF actony
fpage :URL -
#aurmen_conlex_ :Confex +getViewFadary [): WiewFadony
#page_loaded_ boclean
+zeiPage [argQ:Sinng | rvaid ZE
+seiPage [arg0: URL) veid
+dallAcion (action :IUActon Jvoid
+dallAcion (action :IUserAcion |:boclean MiniBrowserViewFactory
+conexiChanged [new conlesd :Conlexd Jwvaoid (from isac:gur :-browser zminibrowser |
Fpareni_ :MiniBrowser
=< inlerdaces == #map ag_presenier HashMap=Siing, IHTMLElemeniRenderars
IHTMLElementRenderar TR el e =
o - ) +ceak felement Element): View
ffrom_Sac..gul -browser minbrawsar ) +addElemeniPresenisr (g :Sing presemrer (HT MLElemeniRendemer |void
+menderBlement glement :Efamant): View

iy

ConfextRendarer ConbaxtView
(from izac::gui sBrowsar sminibrowsar | {from izac::gui sbrowsar minbrovsar )
dpament_ :MiniBrowser fcurrant condext Conlexd
#oumeni_contexl_ :Conlext #ourrenielement. :Elameant

+conkexiChanged [new_confexd :Comexd Jwaid | == craak == +ConfexiView g:Elamant confexd :Conlext |:ConlaxdView
+menderElement Element :Eflarmant]: View creales | foreakCompanent (|: Component

Created with Pozeidon for UML Community Edition. Nat Jor Commerelal Use.

Figure 26.5: The Use of an EditorKit to Manipulate the Representation

172



Chapter 27

Bridge Java — SML

27.1 Klassen und Methoden

Die Hauptschnittstelle zum Frontend wird durch die Klassen MathEngine, mit
der eine Verbindung zur Bridge hergestellt werden kann und neue CalcTrees
angefordert werden knnen. Die Klasse CalcTree reprsentiert eine Berechung,
in die neue Formeln/Taktiken eingefgt, gendert oder automatisch vom Kernel
vervollstndigt werden knnen. Um die vorhandenen Elemente im Calctree der
Reihe nach abzuarbeiten, ist eine Klasse Calclterator vorgesehen, die auerdem
dazu dient, einzelne Elemente zu referenzieren, die z.B. gendert werden sollen.

27.1.1 BridgeMain

Dies ist die Hauptklasse der Bridge, die die anderen Teilkomponenten (SML-
Thread, RMI-Verbindung, Logger, ...) startet. Sie erzeugt ein GUI-Fenster,
in dem die Kommunikation mit dem Kernel, Verbindungen von auen, sowie
Fehlermeldungen mitgeloggt werden. Diese Logging-Information wird zustzlich
in eine Datei geschrieben, wofr die Klasse BridgeLogger zustndig ist. Diese
Klasse bentigt folgende Parameter beim Aufruf:

e Den Pfad, wo sich die INI-Datei befindet, in der weitere Parameter der
Bridge spezifiziert werden knnen.

e Hostname sowie
e Port, an dem der Socket, der auf Verbindungen wartet, geffnet wird.

e Pfad zur DTD-Datei, mit der die XML-Ausgaben des Kernel validiert
werden.

Die INI-Datei hat folgendes Aussehen:

173



transportMode=[string—mathml] Zur Zeit werden mathematische Formeln
zur Vereinfachung nur als Strings bermittelt, in einer spteren Projektphase solle
jedoch die Verwendung von MathML mglich sein.

socketPort=xx[Integer] Der Port an dem ein Socket geffnet wird, der auf
Verbindungen von Objekten wartet, die mit dem SML-Kernel kommunizieren
mchten.

path=xx[String] Der Pfad zu dem Verzeichnis, in dem Ausgaben der Bridge
(Logging und Debug-Information) geschrieben werden sollen.

waitMillis=xx[Integer] Dieser Wert gibt an, wie lange (in Millisekunden)
auf eine Reaktion des Kernels gewartet wird. Verwendet wird diese Variable
in der Klasse TimeCheckerThread, die fr das Erkennen einer Zeitberschreitung
zustndig ist. Sollte der Kernel in dieser Zeit nicht reagieren, kann angenommen
werden, dass er in eine Endlosschleife gelangt ist oder fehlerhafter SML-Code
ausgefhrt wurde. Sobald dieser Zustand erkannt wurde, ist es die Aufgabe
der Bridge, dafr zu sorgen, dass der Kernel wieder reagiert (im konkreten Fall
wurde dies durch einen Kernel-Neustart realisiert) und den letzten konsistenten
Zustand des Kernels wiederherzustellen.

kernelExec=xx[String] Der (Kommandozeilen-)Befehl, der den Kernel startet.
Mit diesem externen Prozess kommuniziert die Bridge im folgenden durch Um-
leitung der Ein- und Ausgabestrme in Java-Objekte. In der aktuellen Phase des
Projektes die SML-Variante Poly /ML zusammen mit Isabelle 2002 als Mathe-
matikbasis verwendet.

Der SML-Prozess kann auch auf einem exteren Server aufgerufen werden,
wie das momentan im ISAC-Projekt der Fall ist. Die Remote-Kommunikation
erfolgt dann ber das Secure Shell Kommando ssh. Beispielsweise heit der Server,
auf dem SML am IST installiert ist, damson, der SML-Prozess kann daher von
einem beliebigen Rechner am IST folgendermaen aufgerufen werden:
ssh damson exec /usr/local/Isabelle2002/bin/isabelle HOL-Real-Isac

kernelArgs=xx[String] Optionale Parameter, die beim Aufruf des obigen
Befehls mitgegeben werden knnen.

Methoden
27.1.2 BridgeRMI

Diese Klasse ist fr die Kommunikation mit dem Frontend ber RMI zustndig.
Alle Objekte am Frontend, die mit dem Kernel kommunizieren, delegieren ihre
Methodenaufrufe, in denen eine Anfrage an den Kernel erfolgt, an das Objekt
MathEngine, das sich noch in einer gemeinsamen Java-Umgebung mit diesen
Objekten befindet. Die Remote-Kommunikation erfolgt also nur zwischen den
Instanzen von MathEngine und BridgeRMI.

174



Methoden
27.1.3 MathEngine

Dies ist die zentrale Klasse des fr das Frontend sichtbaren Teils der Bridge.
Da fr diese Klasse das Singleton-Pattern verwendet wurde, gibt es nur eine
Objekt-Instanz dieser Klasse. Die Verbindung ber RMI zu den hinteren Teilen
der Bridge wird von dieser Klasse im Konstruktor vorgenommen. Wenn ein
Benuzter eine Rechnung startet, werden Methoden in dieser Klasse aufgerufen,
diese Aufrufe werden dann ber RMI an eine Instanz der Klasse BridgeRMI weit-
ergeleitet. Dort wird der entsprechende SML-Code an den Kernel geschickt.
Die Ergebnisse werden in Java-Objekte geparst und als Rckgabewert der an-
fangs aufgerufenen Methoden an das Frontend zurckgeschickt. Die Methoden
der Klassen CalcTree, CalcHead und Calclterator, die eine Interaktion mit dem
Kernel bentigen, werden an diese Klasse delegiert, die die entsprechenden Meth-
oden bei BridgeRMI aufruft. In dieser Klasse ist auerdem das Laden und Spe-
ichern von Berechnungen realisiert.

Methoden

27.1.4 BridgeLogger

Diese Klasse dient dazu, die Kommunikation der Bridge mit dem SML-Kernel
mitzuloggen und in einer Datei auf der Festplatte fr sptere Analyse-Zwecke
aufzuzeichnen. Neben den gesammten Ein- und Ausgaben vom und zum Kernel
werden auch Initialisierungsschritte und Statusnderugen in der Bridge, Verbindungsauf-
bauten und Trennungen von auen sowie Debug- und Fehlerinformationen gel-

oggt.

Datenfelder

int minLogLevel: Schranke, die die niedrigeste Wichtigkeitsstufe von Nachrichen
angibt, die noch in der Datei mitgeloggt werden sollen. Der Wert dieser Schranke
wird mit O initialisiert, was bedeutet, dass alle Nachrichten beachtet werden.
Der Wert kann von auen verndert werden, um die Anzahl der mitgeloggten
Nachrichten einzudmmen.

Methoden

public void log(int level, String msg)

Die Nachricht msg der Wichtigkeitsstufe level (je hher die Zahl desto wichtiger)
wird in der Log-Datei angehngt, wenn level grer gleich der Schranke min-
LogLevel ist.

27.1.5 ClientList

Hier wird eine Verbindung zwischen der ClientID eines Objektes, das eine
Verbindung zur Bridge herstellt hat, und einem Objekt der Klasse Print Writer,

175



durch das Daten an das Objekt geschickt werden knnen. Hierzu wird ein Con-
tainer mit dem Interface Map verwendet, in dem ein Schlssel (die ClientID) und
ein Wert (PrintWriter-Objekt) aufeinander abgebildet werden.

Methoden

public void addClient(int id, PrintWriter pw) Fgt einen neuen Client
zur Liste hinzu.

public PrintWriter getPrintWriterOfClient(int id) Holt den PrintWriter,
der mit der mitgegebenen ID des Clients korrespondiert.

27.1.6 SMLThread

Das Starten des externen SML-Prozesses und die Umleitung der Ein- und Aus-
gabestrme erfolgt in dieser Klasse, die in einem eigenstndigen Thread luft.
SML wird mit dem Kommando, das als Parameter beim Starten der Bridge
mitgegeben wurde, aufgerufen. Zur Kommunikation mit dienen Objekte vom
Typ InputStream bzw. OutputStream, die mit dem SML-Prozess verbunden
sind. Diese Objekte werden von denjenigen Bridgekomponenten, die sich mit
der Kernel-Ein- und Ausgabe befassen, verwendet.

Methoden
27.1.7 TimeCheckerThread

Es wurde schon fters in dieser Arbeit die Problematik angesprochen, dass der
SML-Kernel unter Umstnden nicht mehr reagiert und neu gestartet werden
muss. Um einen solchen Zustand erkennen zu knnen, wird nach jeder Eingabe
an den Kernel geprft, ob innerhalb einer bestimmten Zeitspanne auf die Anfrage
reagiert wurde, d.h. eine entsprechende Ausgabe vom Kernel generiert wurde.
Hierzu wird die Klasse TimeCheckerThread verwendet. FEine Instanz dieser
Klasse wird beim Starten der Bridge angelegt und mit der Variable waitMillis
aus der INI-Datei initialisiert. Um ein berschreiten des Zeitlimits festzustellen,
wird jedes Mal, wenn eine Anfrage an den Kernel geschickt wird, ein Zeitstempel
in einer LIFO-Queue, die sich in der Klasse BridgeMain befindet, eingetragen,
der wieder entfernt wird, sobald die Antwort des Kernels erfolgt. Sollte jedoch in
der definierten Zeitspanne keine Rckmeldung eintreffen, dann leitet diese Klasse
die notwendigen Schritte zum Kernelneustart ein.

Methoden
27.1.8 CalcTree

Diese Klasse reprsentiert einen Berechnungsbaum im SML-Kernel.

176



Methoden

public void addClient(int id, PrintWriter pw) Fgt einen neuen Client
zur Liste hinzu.

27.1.9 Calclterator

27.1.10 ClientOutputWorker
27.1.11 Clients2KernelServer
27.1.12 Kernel2ClientsServer

27.2 XML-Parser Digester

Als Parser fr die vom Kernel ausgegebenen XML-Daten wurde der in Apache
Projekt beheimatete Parser Digester gewhlt. Dieser Abschnitt befasst sich mit
der Verwendung dieser Klasse im Java-Code.

27.2.1 Arbeitsweise des Parsers

Der Digester Parser ist in der Lage, aus XML-Code fertige Java-Objekte zu
erzeugen, die whrend des Parse-Vorgangs dynamisch angelegt und mit Inhalten
aus dem XML-Code befllt werden knnen, wobei die Information, was an welcher
Stelle in der Hierarchie des XML-Codes zu geschehen hat, dem Parser ber soge-
nannte Regeln mitgegeben wird, z.B. eine Regel zum Erzeugen eines Objektes
einer bestimmten Klasse. Dieses Objekt wird vom Parser auf einen internen
Stack abgelegt.

Um eine Methode dieses Objektes aufzurufen gibt es eine weitere Regel.
Die Methode wird mittels des Refilection-Mechanismus von obersten Objekt
des Parser-Stacks aufgerufen. Als Parameter der Methode wird der Inhalt des
entsprechenden XML-Elements mitgegeben.

Weiters gibt es eine Regel, die es ermglicht, das oberste Stack-Objekt in das
darunter liegende einzufgen, und so auf beliebig vielen Ebenen verschachtelte
Objektbume zu erzeugen. Als Ergebnis des Parse-Vorgangs des Digester Parsers
wird das am Ende zuoberst am Stack liegende Objekt zurckgeliefert.

27.2.2 Einrichten und Initialisieren

Die folgenden Packages des Apache-Jakarta-Projektes (zu finden auf der Jakarta-
Homepageﬂ) werden fr das Funktionieren des Digester Parsers bentigt: commons
beanutils; commons logging; commons digester; commons collections. Nachdem
diese Packages lokal vorhanden und dem Klassenpfad des Java-Projekts hinzuge-
fgt wurden kann der Digester im Java-Code verwendet werden. Die erforderliche

Ihttp://jakarta.apache.org/commons/digester/

177


http://jakarta.apache.org/commons/digester/

Import-Anweisung lautet:

import org.apache.commons.digester.Digester;

Danach kann mit dem Befehl Digester digester = new Digester(); eine
neue Instanz der Klasse Digester angelegt werden.

27.2.3 Regeln

Der Digester bentigt Regeln, die angeben, was beim Parsen zu geschehen hat.
Diese Regeln werden dem Parser in der Initialisierung ber bestimmte Methoden
(eine fr jede Regelart) bergeben. Diese Methoden besitzen das Namensmuster
addRegelart. Folgende Regeln wurden bei der Implementierungsarbeit bentigt:

addObjectCreate(String elem, Class cl) veranlasst den Parser, jedesmal
ein neues Java-Objekt der Klasse cl anzulegen, sobald im XML-Code das El-
ement mit dem Namen elem gefunden wird. Dieses neue Objekt wird auf der
obersten Position des Objekt-Stacks des Parsers abgelegt.

Beispiel:

digester.addObjectCreate ("*/CALCHEAD", CalcHead.class);

addCallMethod(String elem, String meth, int args) veranlasst den
Parser, die Methode meth beim obersten Objekt des Stacks aufzurufen, sobald
im XML-Code das Element mit dem Namen elem gefunden wird. Als Argu-
ment der Methode meth wird der Inhalt des Elements als String mitgegeben.
Der Parameter args gibt die Anzahl der zustzlichen Argument von meth an (Bei
den fr die Verwendung mit der Brigde-Komponente bentigten Regeln hat dieser
Parameter immer den Wert 0).

Beispiel:

digester.addCallMethod ("*/CALCID", "setID", 0);

Der Methodenaufruf geschieht ber den Reflection-Mechanismus, d.h.der Name
der aufzurufenden Methode wird als String bergeben. Dieser Umstand fhrt
dazu, dass Fehler in den Regeln oft erst zur Laufzeit entdeckt werden, z.B.wenn
der Methodenname falsch geschrieben wurde, oder am Stack ein Objekt liegt,
auf das diese Methode nicht angewandt werden kann.

addSetProperties(String elem, String attr, String prop) veranlasst
den Parser, ein Property-Feld mit dem Name prop des obersten Objekt des
Stacks mit Wert des Attribut attr des XML-Elements elem zu befllen. An-
ders ausgedrckt, wird die Methode setProp(String val) des obersten Objekts
aufgerufen mit dem Wert von atir als Parameter.

Beispiel:

digester.addSetProperties("*/SIMPLETACTIC", "name", "name");

Wenn z.B.XML-Code das Element <SIMPLETACTIC name="Add_Given"> vorkommt,
so wird die Methode setName ("Add_Given") des obersten Objektes aufgerufen.

178



addSetNext(String elem, String meth) die Methode meth beim zweit-
obersten Objekt des Stacks aufzurufen, sobald im XML-Code das Element mit
dem Namen elem gefunden wird. Als Parameter wird das oberste Objekt des
Stacks mitgegeben, welches daraufhin vom Stack entfernt wird.

Beispiel:

digester.addSetNext ("*/POSITION", "setPosition");

addSetRoot(String elem, String meth) die Methode meth beim unter-
sten Objekt des Stacks (Wurzelobjekt) aufzurufen, sobald im XML-Code das
Element mit dem Namen elem gefunden wird. Als Parameter wird das oberste

Objekt des Stacks mitgegeben, welches daraufhin vom Stack entfernt wird.
Beispiel:

digester.addSetRoot ("*/CALCID", "setCalcID");

27.3 Starten der Bridge-Komponente

179



Chapter 28

Implementation Detalils

28.1 Packages

TS8AC’s software design document [IT02a)] defines a subset of the overall function-
ality (described in section ??) that has to be implemented within the prototype
in order to limit the programming effort as the complete functionality for the
user interface goes far beyond the confines of a thesis.

The implementation of the predetermined functionality follows the non-
functional requirements described in section ?7; therefore, the Java program-
ming platform and the Java programming language were chosen for the im-
plementation tasks. The Java programming platform was also chosen because
there are a lot of (open source) tools like Amﬂ or L0g4JE] that make it possible
to concentrate on the programming tasks and are easy to integrate into the Java
programming platform.

To provide a well-structured and easily readable source code, the implemen-
tation follows the Code Conventions for the Java Programming LanguageE] that
are published by SUN.

Related Java classes are grouped into Java packages to provide a hierarchy
with logically connected classes. The Java classes that were implemented within
this thesis or are connected to this thesis are grouped into the following packages:

e isac.gui
Classes that represent the graphical user interface (WindowApplication)
and windows that are displayed in the graphical user interface. Also classes
that handle the user events and the alignment of the windows.

e isac.gui.browser
All classes that are needed by the HierarchyBrowser as well as the Hier-
archyBrowser itself.

Thttp://ant.apache.org/

2http://logging.apache.org/log4j/docs/index.html

3ftp:/ /ftp.javasoft.com/docs/codeconv/CodeConventions.pdf and also available on the CD
accompanying this thesis.

180



isac.gui.browser.example
Classes that are connected to the Example HierarchyBrowser as well as
the Example HierarchyBrowser itself.

isac.gui.browser.method
Classes that are connected to the Method HierarchyBrowser as well as the
Method HierarchyBrowser itself.

isac.gui.browser.problem
Classes that are connected to the Problem HierarchyBrowser as well as
the Problem HierarchyBrowser itself.

isac.gui.calcheadviews
Classes that represent the different views and therefore the detail level
that a CalcHead can have.

isac.gui.treetable
Classes that represent the calculation tree as well as classes that can mod-
ify the representation of the calculation tree.

isac.gui.util

Helper (Utility) classes for the GUI-like classes that perform GUI-related
work in a dedicated thread or classes that are responsible for the layout
of graphical components in a window.

isac.util
Helper (Utility) classes that provide functionality which can be helpful
within the whole Z8SAC architecture.

isac.session
Classes that are responsible for the session handling like the SessionDialog.

isac.wsdialog

The DialogGuide (Worksheet Dialog) and classes that have a relation to
the DialogGuide. These are classes that for example record the user his-
tory or build up the connection to the Bridge.

181



182



Part V

Usecases

183



This part of the document serves the following purposes: it

1. relates the isac-docu to the code and vice versa: i.e. the use cases to the
test cases (JUnit tests, etc.). For that reason the code uses exactly the
complete labels within this document, e.g. “\1label{UC:cas-input}”.

2. documents internal discussions about crucial design questions during the
early design phases

3. establishes data for test cases at the end of the implementation phase

4. provides for entry-points to understand ZSAC for collegues newly joining
the Z8AC-team.

Thus for the most important usecases there are more details (including in-
teraction diagrams) and testdata in the software design document (SDD), part
[V} each testcase is based on a usecase described here.

All these details in the SDD are referenced at the respective usecases below
and presented in the subsequent part [VI]

184



Chapter 29

Visit an Z&AC site

The ’user’ in this chapter is a visitor.

UC 29.0.0.1 The contents of an ZSAC site is inspected using a standard
browser

Anybody dropping into an ZSAC-site more or less intentionally first wants to
know what is offered at this site. The visitor may never had heard anything
about ZSAC, and thus should get information on the purpose and the features
Z8AC. Or somebody may want to know in detail about the contents of the
knowledge base and/or the example collection of this particular site.

1. The Visitor is reaching the entry-page of the ZSAC-site. This site containes
a welcome-message from the host of the system as well as a brief sumary
of its content. The entry-page acts as doorway for

e the ZSAC-knowledge (i.e. decorated knowledge including explana-
tions) as it contains links to the problems, methods and theories

e the example collection

2. The user might select one of the three main branches of the knowledge

base (Fig on pi186|) and browse them as described in or jump
directly to an example-collection.

29.1 Browse the knowledge:

TISACs mathematics knowledge is separated from the knowledge interpreter (the
‘mathematics engine’). The knowledge is described such that it can be read by
human users and can be interpreted by the mathematics engine in one and the
same format. Thus the knowledge base is one entry point of interactive learning
(besides the example collection).

For technical reasons we subsume the example collection here: Handling and
representation of knowledge and examples has been unified so far. There are

185



theories

functions over K
methods
veclorspace Rxkxh

vectomspeae Kok

matrices over |
change representation
palynomials over B
syslematic enumeration
palynomials over |
structural comparizon
complex numbers C

ilerate
real numbers B
projeclion
rational numbers )
climinate
integer numbers 1
i factorize
natural numbers M
reduce
f f f f problems
evaluation approedmation factorization
eualion interpolation differentiation
ineguation optimization integration

Figure 29.1: The 3 dimensions of ZSACs knowledge base

several terms concerning knowledge, see [iT02b] ’List of Terms Used in the ZSAC
Project’”: knowledge, decorated knowledge (i.e. knowledge plus explanations),
KE-store (i.e. decorated knowledge plus example collection).

UC 29.1.0.2 User browses through the knowledge hierarchies
A student uses a WEB-Browser to gain an overview of ZSACs problem hierarchy,
for instance, see p

1. The user decides for "problems’ (and not for theories, methods or examples;
this descision may be put on another KE-store browser or on a worksheet).

2. The browser-window of the problem-browser shows the root problem

3. The browser-window of the problem-browser shows the hierarchy of prob-
lems (at least the next lower level of problems).

4. After selecting one of the problems this one is displayed, and all the ex-
planations contained are shown. (These explanations are optional infor-
mations which have been added by a course designer, depending on the
special course: typical examples, illustrations etc).

5. Eventually the navigation tool for the hierarchy is updated (nodes can be
expanded and collapsed when needed)

Further navigational help: If the user has changed the page with the contents
of a problem, the survey on the hierarchy might not be up to date. Thus there
is button 'where am I 7’ showing the position of the current page within the
hierarchy.

186



29.2 Browse the example collection

IS8AC is a web-based system as the mathematics knowledge (Isabelle theories,
problems, methods) and the example-collection of an ZSAC-site can be browsed
using a standard web-browser — if the owner of the ZSAC-site is willing to do so
(and there are many reasons to make the offers of a specific site visible to the
public, at least a part of it).

The math power of an ZSAC-site actually can be experienced by doing the
calculations given in the respective example-collection. However, doing the cal-
culation in the interactive way (which is ZSAC’s outstanding feature !) requires
software which is too complext to be handled by the Applet-technology available
presently; for interactive calculation you need to download the ZSAC Tutoring
System.

But one may want to get at least a glimpse of the math power of an ZSAC-
site, or one might be interested only in the completed calculation, not in the
interactive construction of a calculation: this for is the ZSAC Web Reader — see
http://www.ist.tugraz.at/projects/isac/www/content/isac-reader.html.

UC 29.2.0.3 Select and display a single example
The user selects an example from the example-hierarchy (i.e. a leaf of the tree),
and the description (text, figure, formulae) of the example is displayed.

UC 29.2.0.4 Ezxecute a single example
Executes an example displayed in the example browser by hitting some hotspot
(preferably the number uniquely identifying each example).

UC 29.2.0.5 Select and display a page of examples

Select a page of examples like in a textbook.

Hint (to be deleted from here!): Each node of the example hierarchy has a
iDESCRIPTION,, which can be used for a page of examples. Design such that
a page is a node exactly one level above the leaves, and the leaves are exactly
the examples contained in the respective page. The difference and challenge is
with the following ...

UC 29.2.0.6 Execute an example from a page
Execute an example (preferably by clicking the number identifying the example)
contained in a page displayed on the example browser.

The last usecase does not address the visitor, but an example author. It is kept
here until other UCs for the example author come up.

UC 29.2.0.7 An author selects a single example
This extends UC[29.2.0.7| by displaying the formalizations of the example, which
is hidden from the learner.

187



Chapter 30

Learn interactively with

I8AC

The ’user’ in this chapter is a learner.

Some of the actions below may be blocked depending on the specific example
being solved, the user’s preferences or restrictions in the user’s rights. In this
case, nothing happens, as if the action had not been requested.

The specific way how actions are requested is not specified. At the discretion
of the designers of the GUI, this could happen by selecting from a menu bar or
a context menu, by clicking buttons or by keyboard shortcuts.

30.1 Start a Calculation

30.1.1 Initialising Session and Dialog

UC 30.1.1.1 Identifying the User
The user has to identify himself so ZSAC can retrieve his personal preferences,
his performance history and restrictions in his access rights.

On success: The user is identified and continues by choosing a starting point

as described in B0.1.2

On failure: The identification process starts over again.

Further Information: This use case shows no alternatives for incorrect user
input. The user can cancel the login process at any time.

1. The system asks the user to authorize by username and password.
2. The user inputs username and password.
3. The system checks the inputs with the stored username and password pair

and TODO shows the group(s) the user is member of.

188



4. TODO: If the user is assigned more than 1 course, the system asks for the
choice of a course, and grants access.

5. Use case ends successfully.

Details in ?7.

UC 30.1.1.2 A subscribed user calls ZSAC.
The user has logged in as a registered user in another system (preferably a con-
tent management system of an educational institution) already; and within this
system he followed a link to ZSAC. In this case another login would be boring;
thus Z&AC tries to get the login-data immediately from the calling system. These
login-data are the same data as in UCJ30.1.1.1]

UC 30.1.1.3 Contacting a Math Engine

The Math Engine does not run on the same machine as the Dialog Guide. The
network address of the Math Engine has to be entered manually or read from a
configuration file. This could happen before or after the user login.

On success: Continue with user identification (UCJ30.1.1.1)) or choosing a start-
ing point (30.1.2)).

On failure: Failure is critical, calculations cannot be done. The program has to
be aborted. As an alternative, the user can be prompted for a network ad-
dress even if he would not enter it manually under normal circumstances.

30.1.2 Choosing a Starting Point

UC 30.1.2.1 Doing an Example from an Example Collection
An example from a collection of prepared examples is started for stepwise in-
teractive calculation. This is analoguous to UCJ29.2.0.4

On success: The complete Model and Specification of the example are known
to ZSAC, so ZSAC can offer help filling in the fields of Model and Specifi-
cation.

Precondition: The complete model and specification of the example are known
to ZSAC (but not shown to the user), so ZSAC can offer help filling in the
fields of model and specification, which in turn is the prerequisite for ZSAC
to be able to calculate automatically the solution of the example.

Moreover, from the potential of solving ZSAC derives the potential to au-
tomatically derive user guidance.

1. The system provides the user the example hierarchy.

2. The user selects an example from the hierarchy.

189



3. The system generates a CalcHead from the formalization hidden behind
the example.

4. The system creates a CalcTree with the CalcHead.

5. The use case ends successfully.

Details inB3.1.2

UC 30.1.2.2 Starting a Calculation from Scratch
The user can choose to start an example from scratch, entering the Model and
Specification manually into an initially empty form.

On success: The user is free to do calculations not contained in the example
collection. On the other hand, in this case ZSAC cannot offer any help in
completing the Model and Specification, only checks for completeness and

consistency. See also UCJ30.1.2.1] and UCJ30.2.1.1

Precondition: The user is free to do calculations not contained in the exam-
ple collection. Help while filling in the fields of model and specification
can only be based on matching from data entered so far. On the other
hand, in this case ZSAC cannot offer any help in completing the model and
specification, but only checks for completeness and consistency.

1. The system provides the user with an empty model and specification.
2. The user models and specifies the problem (as described by use case 7).
3. The system creates a calculation from the specification.

4. The use case ends successfully.

Solve an example for a particular problem:

Let us assume the user browses through the hierarchy of types of equations,
finds some interesting type (i.e. ’problem’), eventually because of the method
mentioned in this problem, and wants to solve an example of this type of equa-
tion by use of the method proposed.

1. The user has the equation-type (’problem’) [’degree_5”, ”polynomial”,
”univariate”, ”equation”] in the problem-browser, and finds [”Newton”,
”univariate”, "real”] as method solving this equation-type.

2. He hits the button (transfer to worksheet) which pops up a worksheet
with an empty model, but with descriptions already inserted from the
problem [’degree_5”, ”polynomial”, ”univariate”, ”equation”] (analogu-
ous to UC.?? below). This problem is also inserted in the calc-heads
specification, already.

190



3. The user inputs an equation z? + 3z + 4 = 0 with bound variable z into
‘given: equality’ and ’given: boundVariable’ respectively — yielding the
status ’incorrect’ for the precondition has_degree_in 5 (x? + 3z +4 = 0) x

4. If he has input an equation with a correct degree, and if he has selected
the method (ev. from the method-hierarchy) and thus completed the calc-
head, he can start solving.

Such situations are captured by the following use cases.

UC 30.1.2.3 Starting a Calculation from a Problem
The user can choose to start an example beginning from a Problem, entering
the Model and Specification manually. After choosing a Problem by browsing
the Problem hierarchy, modelling and specifying will start with a form which is
initially empty except for the Problem chosen.

In the future, ZSAC could offer extra help by offering a choice of Methods
known to match the Problem or by help texts specific to the Problem.

On success: The user is free to do calculations not contained in the example
collection. On the other hand, in this case ZSAC cannot offer any help in
completing the Model and Specification, only checks for completeness and
consistency. See also [30.1.2.1] and [30.2.1.1}

UC 30.1.2.4 Solve an example demonstrating a particular method
Let us assume the user browses through the hierarchy of methods for solv-
ing equations, finds some interesting method (e.g. [’Newton”, ”univariate”,
"real”]), and wants to solve an example by use of the method selected.

NN

1. The user has the method ["Newton”, "univariate”, "real”] displayed in the
knowledge browser.

2. He hits the button (transfer to worksheet) which pops up a worksheet
with an empty model, but with descriptions already inserted from the

method ["Newton”, ”univariate”, "real”]. This method is also inserted in
the calc-heads specification, already.

3. The following steps and features are analoguous to UCJ30.1.2]. ..

UC 30.1.2.5 Input an example like into an algebra system
The user calls such typical function like ’solve’, ’simplify’, ’differentiate’ etc,
presumerably for a quick solution.

1. The user gets a worksheet for input of just the one (head-)line (and no
other parts of a (still empty) calc-head)

2. The user inputs solve (23 + 2% + x +1 =0, )

3. The dialog will guide the user immediately into the solve-phase (as above
in UCJ30.1.2.5| — or the user hits a button which immediately calculates
the result.

191



30.2 Model and Specify an Example

As modeling and specifying is done ahead calculating a solution, and as these
activities are rather different from calculating, these activities are done within
an environment called CalcHead.

30.2.1 Edit the CalcHead

Let us assume, the user wants to exercise the example for demonstration in
appendix [A] on p219] This example is particularily interesting w.r.t. modeling
(and not so much w.r.t. specifying). Furthermore, let us assume the CalcHead-
Panel is already open and displays the empty model; i.e. without the contents
of the boxes as shown on p[219| but containing the ’decriptions’ (Constants,
Mazximum, etc.) for user-guidance.

1. The user inputs r = 7 in the appropriate field 'given: Constants’ yielding
the status ’correct’ for this item.

2. The user inputs v to ’find: Mazimum’ and A = 2uv — u? to ’relate:
Relations yielding the states ’superfluous’ (i.e. not known to the system)
and 'incomplete’ respectively.

3. If the user does not understand ’superfluous’ (i.e. the system cannot relate
the item to the example — the term ’superfluous’ could be better ?!) he
may ask the system for proposing the next step.

4. The system suggests ’Add-Find Mazimum A’; accepting this suggestion
yields ’correct’.

5. The user inputs § = rsina in 'relate’, still yielding ’incomplete’. If the

o 3 3 o v o_ 111
user may ask once more, the system suggests § = rcosa} pursuing the

variants Fyr and Frrp on p219)

6. However, the user finds out that he can solve the problem using the the-
u

orem of Pythagros, adds (%)% + (%)? = 72 to *Mazimum A’ and yields a
‘complete’ model. (i.e. after the tacit specification of theory, problem and

method the calc-head is 'complete’).

This situation is captured by the following use case.

UC 30.2.1.1 Editing the Model

The user inpts items (i.e. adds formulae to the descriptions) to the fileds ’given’,
'find’ and ’relate’ and gets feedback fron ZSAC on each item with respect to the
problem from the hidden specification. No fields of the Model or Specification
will be changed.

On success: Fields offending criteria for completeness and correctness are marked
and offer feedback on their status. The user can continue modelling or
specifying. ZSAC does not correct incorrect items; however, the user can

192



remove the items marked as incorrect and let ZSAC provide the correction
as described in other use cases in this section.

On failure:

Precondition: The model and the specification are known to the system (be-
cause the user has selected the example from the collection, containing
these data) but not shown to the user. The correct completion of the
model and the specification is the prerequisite for ZSAC to be able to cal-
culate the solution of the example.

1. The user has to model the problem — input values for given, find, with,
relate — and to specify the problem — input values for theory, problem
and method.

2. The system checks the model with respect to the specification, in partic-
ular it matches the (root-) model with the problem.

3. The user accepts the calc-head (model and specification).

4. The use case ends successfully.

30.2.2 Obtaining Help from ZSAC

Besides obtaining feedback on each item input into the model, the user can get
help from Z8AC in the following ways.

UC 30.2.2.1 Having Z8SAC Complete the CalcHead
The user requests a CalcHead, containing some input, to be completed auto-
matically.

On success: The Specification is complete and correct and ready for starting
a calulation as in [30.2.4l

On failure: If the CalcHead contains some wrong items, a ’completion’ can-
not result in a correct CalcHead. The user can still continue specifying
manually.

UC 30.2.2.2 Having I8AC Complete the Model
When doing a prepared example, the user can have the Model (fields Given,
Find, Relate) completed by ZSAC with data from the hidden formalization.

On success: The Model is complete and correct.

On failure: If the example was started from scratch (UC{30.1.2.2)), the data
entered so far might not suffice to fill in all fields or find the best match.
The user can still continue modelling manually.

UC 30.2.2.3 Having Z8AC Complete the Specification
When doing a prepared example, the user can have the Specification completed
by Z8AC with data from the hidden specification.

193



On success: The Specification is complete and correct and ready for starting
a calulation as in [30.2.4l

On failure: If the example was started from scratch (UC{30.1.2.2)), the data
entered so far might not suffice to fill in all fields or find the best match.
The user can still continue specifying manually.

UC 30.2.2.4 Having ZSAC Complete One Field of the Model
When doing a prepared example, the user can have one field of the Model
completed by ZSAC with data from the example collection.

On success: The selected field of the Model is complete and correct.

On failure: If the example was started from scratch (30.1.2.2)), the data entered
so far might not suffice to fill in the field or find the best match. The user
can still continue modelling manually.

UC 30.2.2.5 Having ZSAC Complete One Field of the Specification
The user can have one field of the Specification (fields Theory, Problem, Method)
completed by ZSAC from data entered so far.

On success: The selected field of the Specification is complete and correct.

On failure: If the example was started from scratch (30.1.2.2), the data entered
so far might not suffice to fill in the field or find the best match. The user
can still continue specifying manually.

30.2.3 Contextual Access to the Knowledge

In many examples the interactive generation of the specification (theory, prob-
lem, method) is an opportunity for learning, e.g. determining the type of equa-
tion (i.e. the problem). For this task the user has to search the mathematics
Knowledge Base, while ZSAC uses contextual information from the calculation
for guiding the search.

Three cases:

1. The user wants to calculate an existing example. In this situation the
user has to choose the problem from a browser-window for problems (UC
29.1.0.2)). But the user goes with the current model and specification on
the CalcHeadPanel into the problem hierarchy. In order to give the user a
hint for the problem the problem-browser is opened with the problem as
specified (e.g. problem [univariate, equation/ as provided by the generator
of the example and suggested by ZSAC on previous request of the user) —
UCB0.2.30] below.

Once the problem-browser is opened, any selection of a problem matches

with the model still marked (i.e. the system remembers the active model.

Thus, in order to browse without matching, there is a toggle-button (match/no — match)
on the browser ) — UC.?? below.

194



After some browsing the user may get lost in the large problem hierarchy.
If he remembers the starting point of the search, he may select problem
[univariate, equation] and hit the button (refine) on the browser (while

(match/no — match) is activated) — UCJ30.2.3.9

The user is somewhere in the calculation and calls for <Problem>; then
this problem is displayed in the problem browser which is specified in the
parent-CalcHead of the Active Formula.

The user wants to start a new calculation that is unknown to the system
(UC 772).

In this situation the user has also to choose the problem from a problem
browser, but the system cannot give a hint to the user as the calculation
is unknown to the system. Therefore, the browser window is opened with
the root of the problem tree marked.

UC 30.2.3.1 Go into the problem hierarchy with a particular model
The CalcHeadPanel contains some (or even no) input items in the model. These
items are matched with the problem selected in the problem hierarchy.

Steps taken:

1.
2.
3.

5.

The user calls for the problem-browser.
The system provides the user the problem hierarchy.

The user selects a particular problem from the problem hierarchy which
he wants to be matched.

The system validates the request and returns the matched model. Each
model item (given, where, find, relate) contains a status.

The use case ends successfully.

For transferring the match to the actual worksheet see UC [33.2.4] on p[196}

UC 30.2.3.2 Go into the method hierarchy with a particular model
Analoguous to UC[30.2.3.1

UC 30.2.3.3 Go into the theory hierarchy with a particular theory
Analoguous to UC[30.2.3.1

UC 30.2.3.4 Having I8AC Refine the Problem.
On request of the user, ZSAC refines the problem to a best match of the data
entered into the model so far. The root of the search is the currently selected
problem.

Steps taken:

1.

2.

The system provides the user the problem hierarchy.

The user generates an action that tells the system to refine the selected
problem.

195



3. The system validates the request and tries to find the corresponding prob-
lem for the model and returns the best matching problem. Each model
item (given, where, find, relate) contains a status based on the matching.

4. The use case ends successfully.

For transferring the match to the actual worksheet see UC ?7 on p The
transfer fails without error, if no worksheet is open (e.g. at the very beginning
of a session).

Details in33.2.3

UC 30.2.3.5 Go into the problem hierarchy from a worksheet

The user calculating (i.e. in the solve phase, some Active Formula) calls the
problem hierarchy. This selects, matches and displays the problem specified in
the parent-CalcHead to the Active Formula.

UC 30.2.3.6 Go into the method hierarchy from a worksheet
analoguously.

UC 30.2.3.7 Go into the theory hierarchy from a worksheet
analoguously.

UC 30.2.3.8 Transfer a selected problem to the worksheet

Let us assume the user has found an appropriate problem P (with key pblID)
in the problem-hierarchy (the matched model m’ is on the problem-browser,
t00). Thus, the button (match/no — match) was activated to 'match’. Now she
wants to transfer the specified problem P to the worksheet (and to the related
calc-tree in the SML-kernel). For this purpuse the ’active formula’ must have
been somewhere on a modspec on pos p.

e The user hits a button (transfer — to — worksheet).

e The worksheet comes to the foreground again, and inserts model m’ and
updated pblID in the specification, all at position p (and all has been
updated in the SML-kernel as well).

Details in[33.2.4]

UC 30.2.3.9 Toggle a problem from instantiated to non-instantiated
The problem browser has been called from a worksheet, and shows the problem
instantiated from the worksheet’s context. A toggle-button switches to the plain
problem without instantiation. And vice versa.

UC 30.2.3.10 Getting Background Information from the Knowledge
Base

Especially with Tactics, extra background information may be available from
Z8AC’s Knowledge Base. In an extra window, Z8AC’s Knowledge Base can be
browsed, with information on the current item as a starting point.

196



On success: A browser window is opened showing information on the current
item.

On failure: If no information matching the current item can be found, brows-
ing starts from the root of ZSAC’s Knowledge Base or from information
on the current Problem.

30.2.4 Starting the Solving Phase

UC 30.2.4.1 Starting Interactive Calculation
Having entered a Model and a Specification, the user can start solving the
example interactively.

On success: In a worksheet window, the first formula in is displayed. Calcu-
lation continues as in [30.3]

On failure: If the Model and Specification are not error-free, complete and
consistent, modelling and specifying continues. Status information on the
fields of the Model and Specification is updated.

UC 30.2.4.2 Starting Automatic Calculation
Having entered a Model and a Specification, the user can request the calculation
being done by ZSAC.

On success: In a worksheet window, the final result is displayed. The user can
still analyse and modify the calculation as described in [30.3

On failure: If the Model and Specification are not error-free, complete and
consistent, modelling and specifying continues. Status information on the
fields of the Model and Specification is updated.

30.3 Calculating a Result

Let us assume, the calculation has been propagated for several steps until the
following expression (the current formula) is on the worksheet (see x.x on page

?77)
i (G - (2-3))-

Now, what are the choices for the users (i.e. the users) ?
Any of the following actions may be taken at any time during the calculation.
The numbering below does not imply the order in which the actions are taken.

30.3.1 Moving the Active Formula

Most actions during the Solving Phase refer to a specific point in the course of
calculation, the currently active formula. All editing takes place at the currently

197



active formula or the Tactic being applied to it and calculation continues from
that point. Most of the time, the last formula entered or calculated will be the
active one.

UC 30.3.1.1 Mowving the Active Formula
In order to edit a part of the calculation, the user has to move the active formula
to the desired location first.

On success: The referenced formula becomes the new active formula. Actions
refer to this position now.

30.3.2 Taking Single Steps Interactively

UC 30.3.2.1 Entering a Tactic Manually

The user can enter the Tactic, i.e. step of calculation, to be applied to the
active formula manually. The Tactic is recognised by its name. The Tactic is
not applied immediately, but will be applied the next time a step in a calculation

(130.3.3)) is requested.

On success: The Tactic is recorded and will be applied to the active formula
the next time a step of calculation is requested.

On failure: If the Tactic entered is not known to ZSAC or the Tactic is not
applicable to the currently active formula, the user is notified but nothing
else happens.

UC 30.3.2.2 Picking a Tactic from a List of Known Tactics

The user can pick the Tactic to be applied to the active formula from a list of
all Tactics known to ZSAC. The Tactic is not applied immediately, but will be
applied the next time a step in a calculation is requested.

On success: The Tactic is recorded and will be applied to the active formula
the next time a step of calculation is requested.

On failure: If the Tactic is not applicable to the currently active formula, the
user is notified but nothing else happens.

UC 30.3.2.3 Picking a Tactic from a List of Applicable Tactics

The user can pick the Tactic to be applied to the active formula from a list of
Tactics applicable to the current situation. This list is prepared by ZSAC. The
Tactic is not applied immediately, but will be applied the next time a step in a

calculation (30.3.3]) is requested.

On success: The Tactic is recorded and will be applied to the active formula
the next time a step of calculation is requested.

UC 30.3.2.4 Entering a Formula Manually
The user can enter a proposal for the next formula in the course of calculation
manually.

198



If a Tactic has been chosen for this step, the input must match the result of
this Tactic.

If no Tactic has been chosen, there must be a sequence of Tactics which
derive the formula entered from the currently active formula.

On success: The entered formula is entered into the calculation and becomes
the currently active formula. Additional steps may be added automatically
to reflect the derivation of the formula entered.

On failure: The formula is rejected if it is not the result of the Tactic chosen
for this step or - if no Tactic has been chosen - no derivation confirming the
correctness of the formula can be found. A new formula can be entered.

UC 30.3.2.5 Editing and Replacing a Formula

The user can edit and modify the active formula, which need not be the last
formula in the calculation. Changing a formula potentially invalidates all sub-
sequent steps, which are removed from the calculation. There must exist a
sequence of Tactics which derive the formula entered from the preceding for-
mula.

On success: The edited formula is entered into the calculation. The display is
updated as to reflect the derivation of the entered formula.

On failure: The formula is rejected if no derivation confirming the correctness
of the formula can be found. A new formula can be entered.

30.3.3 Automatic Calculation

UC 30.3.3.1 Having Z8AC Propose the Next Tactic
In addition to choosing a Tactic manually (UCJ30.3.2.1)), ZSAC can propose the
next Tactic based on its knowledge of the Method solving the current Problem.

On success: A Tactic for the next step has been chosen.

UC 30.3.3.2 Having ISAC Calculate the Next Formula

In addition to entering a formula manually (UC[30.3.2.4), ZSAC can calculate
the next formula by applying the chosen Tactic to the active formula. If no
Tactic has been chosen, ZSAC uses its knowledge about the Method solving the
current Problem to choose a Tactic (UC

On success: The entered formula is entered into the calculation and becomes
the currently active formula.

UC 30.3.3.3 Having Z8AC Calculate until the End of the Current Sub-
problem is Reached

Z8AC can calculate any steps needed to finish the current subproblem automat-
ically.

199



On success: Intermediate steps have been added to the calculation to solve the
current subproblem. The result of the subproblem becomes the currently
active formula.

UC 30.3.3.4 Having ZI8AC Calculate until a Final Result is Reached
ZS8AC can calculate any steps needed to finish the current calculation automat-
ically.

On success: Intermediate steps have been added to the calculation to reach a
final result. The result becomes the currently active formula.

30.3.4 Showing and Hiding Data

UC 30.3.4.1 Hiding a Category of Information
The user can choose not to see certain categories of information (e.g. Tactics,
Assumptions). In any case, formulas cannot be hidden and remain displayed.

On success: The respective category of information is removed from the work-
sheet.

On failure: The worksheet remains unchanged.

UC 30.3.4.2 Showing a Category of Information
The user can choose to see categories of information currently hidden.

On success: The respective category of information is displayed on the work-
sheet.

On failure: The worksheet remains unchanged.

UC 30.3.4.3 Choosing the Displayed Nesting Depth of Details

For the sake of better overview, the user can choose the depth of nested sub-
problems or subcalculations which are displayed. Hidden details are indicated
by symbols to facilitate display on demand. If the currently active formula is
below the displayed level of detail, it is moved up to the nearest visible formula.

On success: The respective nesting levels are removed from or added to the
worksheet. Symbols indicate hidden levels of detail. After hiding levels,
the active formula may have moved.

On failure: The worksheet remains unchanged.

UC 30.3.4.4 Hiding Parts of the Calculation

For the sake of better overview, the user can choose to hide several steps of
the calculation. Hidden steps are indicated by symbols to facilitate display on
demand. If the currently active formula has been hidden, it is moved up to the
nearest visible formula.

200



On success: The respective steps are removed from the worksheet. Symbols
indicate hidden steps. After hiding steps, the active formula may have
moved.

On failure: The worksheet remains unchanged.

UC 30.3.4.5 Hiding Tactics on Behalf of ZSAC

Z8AC can decide to hide steps of the calculation from the user. Such decisions
can be based on records of the user’s experience with specific Tactics or on the
user’s preferences.

On success: The respective steps are not displayed on the worksheet. Symbols
indicate hidden steps.

UC 30.3.4.6 Showing Hidden Parts of the Calculation
Parts of the calculation indicating hidden steps can be expanded, adding one

nesting level of detail at a time. It does not matter whether the steps have been
selected for hiding (UCJ30.3.4.4]) or have been hidden because of their nesting

depth (UCJ30.3.4.3) or have been hidden by ZSAC (UCJ30.3.4.5)) in the first

place.
On success: The respective steps are added to the worksheet.

On failure: The worksheet remains unchanged.

30.3.5 Obtaining Help and Extra Information

UC 30.3.5.1 Displaying the Assumptions Holding at a Specific Point
in the Calculation

The user can have the Assuptions (e.g. restrictions on possible values for a
variable) holding at a specific point in the calculation displayed. Different from
actions changing the calculation, the user need not move the active formula to
the spot of interest.

On success: The Assumptions holding at the referenced formula are displayed.

UC 30.3.5.2 Displaying the Origin of Assumptions
The user can have the origin of an Assumption, that is the Tactic creating the
assumption, indicated on the worksheet.

On success: The Tactic where the assumption originated is indicated.

UC 30.3.5.3 Show the tactic applied to a formula
UC 30.3.5.4 Show a list of tactics applicable to a formula

UC 30.3.5.5 Show the intermediate steps leading to a formula

201



UC 30.3.5.6 Show the CalcHead to a HeadLine on the worksheet
The user marks a formula, which is the headline of a (sub-)problem, and requests
to display the whole CalcHead.

30.3.6 Solving problems with subproblems

Let us assume, the user has finished the model-phase of a rootproblem or a
subproblem in the reference example and has the following model on the screen:

z. L = solve (Reals, [univariate, equation])
Model

given: equality —\/ﬁ +24/1r2 — (%)2 —2v =0,

boundVariable v, errorBound ¢ = 0.001
find:  solutions L
Specification
Theory: Reals
Problem: [univariate, equation]
Method:

Now the user has to solve the equation. We further assume, ZSAC’s knowl-
edgebase contains a method for solving this particular equation; then it can be
found either directly in the list of methods. If the user cannot find it directly,
then the problem hierarchy assists in the search for an appropriate method by
refining: the problem [univariate,equation] will match the model, apparently;
and the problem hierarchy is structured such that the tactic Refine_Problem
[univariate,equation] will find the appropriate problem (in this case: type of
equation) in a search on the children of [univariate,equation/ automatically —
let us assume, the appropriate one is [fraction,root,univariate,equation]. Even-
tually the tactic Refine_Problemn may be disallowed by the dialog guide (for the
reason to push users searching the problem hierarchy themselves).

202



Chapter 31

Authoring

31.1 Author the knowledge base

UC 31.1.0.1 Buzld the structure of the knowledge base description
All informations about the structure of the knowledge base are stored inside the
SML-part of the system. This structure has to be known by the Broswers to
enable the user to browse the systen. To reduce the load of the math-engine and
to enhance the informations available for a problem, the informations of the ma-
thengine are copied to the description-database. Here, the problem-descriptions
can be enriched with additional informations using the description editor. The
structure for the browsers is created through querying the Browsergenerators.
This UC concernes about creating the structure inside the description-database
and add additional informations.

@ The structure-transfer is started by the description—administratorﬂ

e The user starts the description-editor

e The description-editor starts the authentication-process which au-
thentificates the user and results in an permission object which iden-
tifies the userl

e The description-editor Calls the description-storage to initiate the
structure transfer.

e The description-storage starts the transfer if the permissions suffice.
@ browser-generators are queried for the structure of the knowledge base. A

XML Description of each node is created and stored within the XML-
Description database.

L Access has to be controlled by the description-editor which is responsible for the user-
authentication - only identifyed users may access

2The authentication process utilizes the Dinopolis framework - a detailed description can
not be given yet

203

authenticationmodule
einfuehren - wo
werden die userinfos
gespeichert, kann
man auch rechte auf
einzelne knoten
geben, wie werde
diese rechte
gespeichert...



Description-—
Administrator
A
e Authentication

Description-—
Editor

P

Description—
Storage

P

| Browser- ‘

permissionfcheckn1

Generator

Figure 31.1: Structure generation

e the browser-generator is asked by the description-storage for the root-
node of the problem hierachylﬂ

o Afterwards, the browser-generator is asked for the mathematical in-
formations of this problem. Mathematical informations contain:

— subproblems
— items of the problem

e A XML - Description is built for this informations. All informations
are stored in dedicated fields which identify their type. Subproblems
are stored as list of references to their XML-Description which are
built resursively in the same way. A reference to the parent problem
has to be added too.

e The XML-Descriptions are put into the storage. A reference to the
root problem is set.

@ After creating the structure, the description editor can browse through the
XML-Files and add additional information.

e The description editor asks the description-storage about the root
problem

e The description-storage returns a so called description-object, which
containes all necessary informations, to the editor. E|

3This query is transferred through the wrapper which translates java-objects into a char-
acter stream which is used to communicate with the Math-Engine and vice versa - the syntax
of the communication with the wrapper has to be defined within the ADD

4see ADD and SDD for more details

204



e The description containes fields which might be changed by the de-
scription editor through set-methods. Again, access to this methods
is only given after checking the permission-object. A change of math-
ematical informations out of the math-engine is not allowed. Only
additional informations like text, images and references to further
informations (URLs, examples) are allowed. Changes have to be
propagated to the description-storage and other users of the same
informations (e.g. another description-editor or a browser).

e As the representation containes information about the subproblems,
the editor also can navigate through the hierachy to edit other than
the root-problem by loading their representation.

31.2 Author the example collection

UC 31.2.0.2 An author adds some examples

Let us assume that some of the examples from a traditional mathematics text-
book have been implemented in an ZSAC example collection. Now an author
wants to add some more examples from another section. Then he has to accom-
plish the following tasks.

1. He opens the example browser and zooms into the table of contents
in order to locate the position where to insert the new section.

2. He inserts the new section by first selecting the section preceeding the
new one. Then he selects the level of the new section (which may be the
same as the preceeding one, or one level deeper) and inputs the headline
of the new section. .

Alternatives:

(a) The required headers are all present already, and the author
starts immediately with (3) editing an example. In this case the
location of the examples label and text (or figures) is determined
immediately.

(b) The new section is several levels deeper in the hierarchy than
the last preceeding section already input. In this case at least a label
(and eventually a headline) for each level down to the level of the
new section is input one after the other.

3. He edits the first example by declaring its label according to the text-
book. Then he edits the examples text, the formulas inserted in the text,
and eventually a figure — copying the layout presented in the textbook.

4. He adds the ’hot spot’ for calculation of the example; now the de-
scription of the example as visible to the user is finished.

205

AG: vielleicht sollten
wir das eigentliche
example und den
“verzeichnisbaum”
(level/headline)
voneinander trennen,
damit man ein
examle in
verschiedenen
beispielsammlungen
verwenden kann



5. He adds the formalization of the example together with its specifica-
tion necessary for automatically solving the example (which is the prereq-
uisite for user guidance in tutoring).

UC 31.2.0.3 An author checks the example(s)

1. He checks the executability of the examle by activating the "hot spot’
and thus calling the math engine, which first checks the syntax of the
formalization, and then starts the calculation in a worksheet which pops
up. (The calculagion usually will be done in an automated way chosen by
the author.)

2. He adds another example after the first one has been finished by edit-
ing the examples label analogously to (3).

3. The final check over all examples newly input so far makes the au-
thor sure that the examples are ready to use for tutoring. The sequence
of examples is determined by marking the first and the last one, and then
it will take some time until all these examples have been calculated au-
tomatically. This ’batch mode’ of calculation creates some protocol the
author can inspect for the results: a list of the examples computed cor-
rectly, those not finished correctly, and those not terminating.
Alternatives:

(a) The calculation of an example does not succeed, which can
be seen on the worksheet presenting the calculation. In this case
the example author needs expertise for authoring math knowledge
(given by himself or by some other person) and requires to start the
authoring tools for the math knowledge base.

After adaption of the math knowledge base the respective formalization or
even the text and figure of the example may be up to change. IL.e. editing all
elements of an example (including deletion) must be possible.

206



Part VI

System View of the UCs
and Test Cases

207



Here some of the use-cases from part [V] are detailed down to a system view.

The the enumerations # within the use-cases are used for the numbering in
the respective system views in this part, detailed into #.a, #.b,. .. if necessary.
Numbers, where no comments additional to the UC is required, are left blank.

Some of the UCs are basis for test cases; these are also described in this
part.

208



Chapter 32

Visit an Z&AC site

209



Chapter 33

Learn interactively with

I8AC

33.1 Initializing the Session

33.1.1 Identifying the User, UC
This is a system view of usecase UC[30.1.1.1] on p[I8§]
1.
2.
3. The system checks the inputs with the stored username and password pair
(a) login returns a session identifier (if the combination of username and

password was correct)

(b) create a browser-dialog using InformationProcessor’s getBDialog method
(there is one per session)

(¢c) create a session-dialog using InformationProcessor’s getSDialog (there
eventually are several per session).

(d) Call openDGuide from the session-dialog to open a new worksheet-
dialog (DialogGuide).

These points are depicted in the interaction diagram on p

33.1.2 Doing an Example from an Example Collection,

UC [30.1.2.11

This system-view describes the internal steps of UCJ30.1.2.1] where a learner
decides to calculate an example. The system-view is depicted in Fig We
assume, that the user is already logged in and found the example to do.

210



InfoProcessor

GUI (in BrowserFrontend) SessionDialog
2. @Lin )
userlD. passwd -
. sessionlD
3, [g$tSDialog )
»
- SDialog
'an .
Ib. & tBrowserDmlog
sessionlD -
»
- bdID
3c. @penDGu[de
sessionlD) »
< wsl[D

Figure 33.1: Usecase UC[30.1.1.1] identify user.

1.

2. (a) TODO: The user selects an example in the hierarchy-selection-tool,
and hits the number of the example in the content-window. (Presently
the examples are displayed separately, and thus can be selected in the
hierarchy-selection-tool).

(b) The browser-dialog checks the access-rights of the user (as a member
of a group with specific pre-set, time-depending rights) and fetches
the formalization of the example from the KE-basis.

(c) The browser-dialog passes the formlization the the worksheet-dialog
(which is responsible for all kinds of access to the SML-kernel)

(d) The worksheet-dialog calls the SML-kernel to create a new calc-tree
and an iterator, and to return a respective calcID.

(e) Then the workseet-dialog opens a worksheet,

(f) resets the iterator (to the head of the calc-tree) and fetches the calc-
head ('modspec’) from the calc-tree

(g) The worksheet-dialog decides (depending on the user-model) on the
presentation of the calc-head and transfers it to the worksheet.

211



KE—-store browser— browser— worksheet—  worksheet SML—kernel

—window —dialog —dialog
seleat expl
2a. obj.met—aaa
expllD 3
Zh. obj.met—bbb
- explIly
-
fmz
.‘7}
2c. (" obj.met—cecc
fmz -
2d. obj‘met—ddg
fmz -
2e. - - cale—head
-
2f. obj.met—eee| -
—_—
-
obj.met—fff |
2g. calc—head :

Figure 33.2: Usecase UCJ30.1.2.1| start from expl-coll.

33.2 Initializing a Calculation

33.2.1 Go into the problem hierarchy with a particular
model, UC [30.2.3.1
This UC on p[195]is detailed as follows and depicted in Fig[33.3}
1. (a) ...button (problem) ...

(b) The worksheet-dialog fetches the calc-head from the SML-kernel and
returns the problem-ID pblID to the worksheet.

(c) ?7? The worksheet opens a browser-window (or of already open, puts
the window to the foreground).

(d) The browser-window asks the browser-dialog for the content, in par-
ticular the model, which eventually has been completed by explana-
tions from the KE-basis.

2. The browser-window displays pblID ...

33.2.2 Matching the Problem, UC [30.2.3.1
The UC on p.?? is detailed as follows and depicted in Fig[33.4}

212



1

(=]

KE—basis browser— browser— worksheet—  worksheet SML—kernel
o —window —dialog —dialog
i <problem>
a.
i .
ILc:l::_]_n-et—a:i:ij
-
b \ obj.met-bbb
' calelD >
ﬂ cale—head. pblID
phblID 3
robj _met—cccj
c. - pblID
d. (obj.met—ddd)
pblID ’
obj.met—eeg
< pblID!
explanations -
-
obj.met—fff
H
- modsped
Eexplan,, modspec
Figure 33.3: Usecase UC[30.2.3.1
1.
2.
3. (a) Thekey pblID of the selected problem P (e.g. [rational,univariate,equation))

is passed to the browser-dialog.

The browser-dialog accesses the KE-basis and filters the explanations
according to the access-rights of the user.

The browser-dialog asks the worksheet-dialog for the data from the
SML-kernel.
The worksheet-dialog passes the pblID (and the calcID) to the SML-
kernel and fetches the modspec (after the problem P has been matched
with the model m related to the ’active formula’ still marked on the
worksheet).

4. The model of m’ is displayed in the browser-window together with the
hierarchy-selection-tool (still displaying the selection from step [3] above.

213



KE—store browser— browser— worksheet—  worksheet SML—kernel

—window —dialog —dialog
3. hierarchy—selection
3a. obj.meét—aaa
wsID le]i}
3b. obj.met—bbb
< pblID
explanations -
3c. robj_n et—ccc
wslD
3d. obj.met—ddd]
calclD -
- calc—head
¢ modsped
4. éxglanntiorr‘,c:dc—hend

Figure 33.4: Usecase UC ?? match problem.

33.2.3 Having Z8AC Refine the Problem, UC [30.2.3.4

This UC on pi30.2.3.4|is detailed as follows (the sequence of the function calls
is exactly the same as in Fig)33.4] just the names (refine instead match) and
arguments of some functions are different):

1.
2.
3. (a) The key pblID of the selected problem P (e.g. [rational,univariate,equation])

is passed to the browser-dialog.

(b) The browser-dialog accesses the KE-basis and filters the explanations
according to the access-rights of the user.

(¢) The browser-dialog asks the worksheet-dialog for the data from the
SML-kernel.

(d) The worksheet-dialog passes the pblID (and the calcID) to the SML-
kernel and fetches the modspec (after the problem P has been refined
to P’ with the model m related to the ’active formula’ still marked
on the worksheet).

4. The model m’ is displayed in the browser-window together with pblID’
marked in the hierarchy-selection-tool. The (match/no — match) is set to
(match).

214



33.2.4 Transfer a selected problem to the worksheet, UC
30.2.5.8

The system view — ALTERNATIVE A of UC[30.2.3.8] is detailed as follows
and depicted in Fig[33.5] Design principle was to have the same functions as in

UC.?7? ... UCB0.2.3.4

2. (a) The browser-window transfers the currently marked pblID (and the
wsID) to the browser-dialog

(b) The browser-dialog passes pblID and wsID to the worksheet-dialog
in order to call for update of the related calc-tree.

(¢) The worksheet-dialog calls for update of the related calc-tree and
receives the resulting modspec (with model m’ and with pblID in the
specification) from the SML-kernel.

(d) The worksheet comes to the foreground again, and inserts the matched
model m’ and the updated pblID in the specification, all at position
p in the worksheet.

KE—store browser— browser— worksheet—  worksheet SML~kernel
) —window —dialog —dialog

1. <transfer—to—worksheet>

2a. obj.met—aaa
wslD. pblIQ
Zb. ("obj met—bbb

wsID, pblI
e obj.m et—ddt_ﬂ:

calelD -
-« calc—héad
obj.met—cece
2d. le—head
calc—head o

Figure 33.5: UC[30.2.3.§ transfer pbl to worksheet

The system view — ALTERNATIVE B of UCJ[30.2.3.8] is detailed
as follows and depicted in Fig Design principle was to avoid unnecessary
datatransfer from the SML-kernel (the differences are in points [3| and [4] below):

1. The user hits a button (transfer_to_worksheet).

2. The browser-window transfers the currently marked pblID (and the wsID)
to the browser-dialog

215



3. The browser-dialog passes pblID, wsID and the modspec to the worksheet-
dialog.

4. The worksheet-dialog calls for update of the related calc-tree and receives
‘calc-tree updated’.

5. The worksheet comes to the foreground again, and inserts the matched
model m’ and the updated pblID in the specification, all at position p in
the worksheet.

216



Chapter 34

Authoring

KE—basis browser— browser— worksheet— worksheet SML-kernel
o —window —dialog —dialog
1.
2.
3.
4.
5.
>
-
< >
=< — data
- >
- o

Figure 34.1: Usecase UC.?7?

217



Part VII

Appendices

218



Appendix A

The example for reference

This example intended to illustrate interaction with ZSAC is quoted from [Neu99].

I8AC features a new kind of calculations in applied mathematics, and it is
an issue to make the novel functionality of this software as clear as possible.
In order to meet this issue, an example is given to be referenced by the use-
cases within this document. The example is taken from a calculus course at
highschools; thus it should not pose problems to understand the underlying
mathematics. Nevertheless the example covers all major features offered by
ZSAC.

A.1 Description, formalization and modeling phase

The description of an exampleﬂ may consist of text, formulas and figures:

Given a circle with radius v = 7, inscribe a rectangle with length u
and width v. Determine u and v such that the rectangles area A is a
mazimum.

Figure A.1: Figure for the maximum example

IThese terms are defined in the appendix of [{T02b] 'List of Terms used in the ZSAC-
project’

219



The inital step in solving such an example is, to construct a model from the
description. The respective model looks like this, if all items are input:

given : [ Constants ]

where: 0 <7
find X: [ Maximum ,
AdditionalValues | [u,v]|]
with @4 =2uw—wu2 A ()2 +(3)2=r2 A
VAW v AT = 2ul — ()2 A ()2 4 (Y2 = 2

relate : [| A = 2uv — u?, (%)2 + (%)2 —2]]

The boxes mark the items meant for input by the user, whereas the surrounding
information is provided by the system and serves user guidance. If the model is
perfect, ZSAC can solve the example autonomously.

In order to provide userguidance already in the model phase, each example is
accompanied by a formalization prepared by an author and normally hidden
from the user:

Fro = ({r=7}4 {4 [u]},
{0<2<r, {A=2uv—u? (£)?+(%)?=r})

Frr = ({T:7}’ {A7 [uav]}7
fo<s<r {A=2uw—2? (%)?+(3)?=r%})

Fi= ({r=T7} {A,[u,0]},
{0<a<Z, {A=2uv—u? ¥ =rsina,§ =rcosa})

In this case the formalization comprises three variants, Fr, Frr, Frrr, which
presumerably cover all possibilities students would consider in a particular
course. All of such formalizations for one example together are called ’for-
malization’ in the sequel.

Given such a formalization and a specification (see below) , ZSAC can solve
an example autonomously and in stepwise interaction down to the result.

If ZSAC is being used to solve an example unknown to the system (i.e. without
a hidden specification and formalization prepared by an author) ZSAC cannot
provide user guidance at the beginning of this phase (see ??). In particular,
the items Constants, Marimum and AdditionalValues have to be found in the
theory Descript.thy.
A.2 Knowledgebase and specification phase

The knowledge base comprises three parts, theories, problems and methods.

220



Theories contain the knowledge deduced from axioms and definitions by for-
mal proof (done by the interactive theorem prover Isabelle). For the example
at hand knowledge is prepared like the following:

theory ’calculus’

consts
d_d

rules
diff_sum
diff_prod
diff_quot

"[real, real]l=> real"

"d_d bdv (u + v) = d_d bdv u + d_d bdv v"

"d_d bdv (u * v) d_dbdvu*v+ux*xd.dbdv v"

"Not (v = 0) ==> (d_d bdv (u / v) =
(ddbdvu*v-ux*xddbdvv) /v~ 2)"

Problems capture the aspect of application of knowledge.

!
\—
I
|
|
!
\—
I
|
|
|
|
|
|
!
\—
I
|
|
|

equation
\ _ univariate

\__ linear
\— polynomial
\— rational

...

function
\__ make

\— by-elimination

\— by-new_variable
differentiate

\___ for_mazimum

| \_ on_interval

...

\_ integrate

...

optimization
\__ linear

\ ...

\— calculus

\ — mazimum

The example at hand shall be described by the problem [calculus, optimiza-
tion] (note the reverse order w.r.t. the hierarchy above, which seems more usual
in many cases, e.g. [linear, univariate, equation]), and will be broken down

221



into the subproblems [make, function], [on_interval, for_maximum, differenti-
ate, function] and [tool, find_values]. The root-problem of the example looks
like

Solve_problem [mazimum, calculus, optimization]

given : [ Constants fiz_ |
where : map (30 < §) fix_
find : [ Maxzimum m_

AdditionalValues vs_ |
with : let xp = {m_} U{vs_} U (Vars rs_);
To = map primed T1;
in map (opA) rs_$ N $
V8228 (ASxz18.8map (opA) rs_$) S8
relate : rs_

This problem is matched with the formalization and yields the model shown
above.

Methods describe the algorithms solving the problems. The method solving
the example calls the subproblems mentioned:

Script Maximum_value (fiz_::bool list) (m_::real) (rs_::bool list)
(v_::real) (itv_::real set) (err_::bool) =
(let
e- = (hd o (filter (Testvar m_))) rs_;
_ = (if #1 < Length rs_
then (Subproblem (Reals,[make, funtion],no_met) [m_, v_, rs_])
else (hd rs_));
mz- = Subproblem (Reals,[on_interval, for_mazimum, differentiate,
function], maximum_on_interval) [ t_, v_, itv_ |
in (Subproblem (Reals,[tool,find_values],find_values)
[ mz_, (Rhs t_), v, m_, (dropWhile (ident e_), 1s_])))

An example is given a specification (’it is specified’) by three pointers into
each of the three parts of the knowledge base, i.e. a pointer to a theory, to
a problem and to a method. For the example this is (Differentiate, [calculus,
optimization], Maximum_value).

A.3 Interaction on the worksheet and the browsers
Within a calculation the centre of interaction with the user is a so-called work-
sheet. At certain points the user may want to view the knowledge base in a so-

called browser-window and/or select some knowledge, or the dialog presents
such a window.

222



In the modeling phase the user inputs formulas on the worksheet, and on
the worksheet they get most of the feedback. After a while the worksheet could
look like this:

Solve_problem [mazimum, calculus, optimization]

Model
given: [ Constants r =17 |
where: 0 <r
find: [ Maximum, AdditionalValues [u,v] |

relate: [A=2uv, (%) +(3)? =72, % =rsina]

where Solve_problem [mazimum, calculus, optimization], Constants, Maz-
imum, AdditionalValues, and 0 < r have been supplied by the system, and
several items are marked: Mazimum with ’'missing’, A = 2uv with ’incorrect’,
and § = rsina with 'superfluous’. Regarding this kind of feedback users may
successfully complete modeling; if they are not capable to do it, they just hit a
‘go-on’ button and ZSAC gets the correct model from the hidden formalization
and specification. For the following let us assume, that the model is completed

correctly:

Solve_problem [maximum, calculus, optimization]
Model
giwven: [ Constants r = 7]
where: 0 <r
find: [ Mazimum , AdditionalValues [u,v] ]
relate: [A=2uv —u?, (%)*+ (3)? =r%, % =rsinq]
Specification
Theory:
Problem:
Method:

The superfluous item § = rsina does not matter, below there are the
specification-fields to be determined (i.e. input by the user) within the spec-

ification phase.

The specification phase requires data from the knowledge base in general.
In the case of the examples model above the decision is required, which kind
of problem the given model can be matched with: [linear, optimization], or
[calculus, optimization], or some other problem. The information necessary for
this decision can be found in the hierarchy of problems.

Learners can browse the hierarchy of problems (theories, methods) and
they can apply the problem (theory, method); the latter transfers the problem
(theory, method) to the respective field below the model on the worksheet.

For instance, applying the problem [linear, optimization] would cause this
display on the worksheet:

Solve_problem [mazimum, calculus, optimization]

223



Model
given: [Constants r = 7|
where: 0 <r
find:  [Mazimum , AdditionalValues [u, v]]

relate: [A=2uv —u?, (4)*+ (3)? =% % =rsina]

Specification
Theory:
Problem: [linear, optimization]
Method:

where some items in the model would be marked with some_error-feedback. For
instance, applying a theory even might cause the feedback ’syntax-error’ when
the model contains function constants not defined in the theory or in one of the
theories parents.

Browsing problems (when started from a model on the worksheet) matches
the problem selected with the model on the worksheet, i.e. on the browser-
window the same feedbacks are given as for the model on the worksheet de-

scribed on p[223]

A.4 The solving phase and subproblems

Before we describe ZSACs features for the solving phase, we fix one correct model
and one specification (out of several possible ones) as follows:

Solve_problem [mazimum, calculus, optimization]
Model
given: [Constants r = 7|
where: 0 <r
find:  [Mazimum A, AdditionalValues [u,v]]
relate: [A=2uv —u?, (%)*+ (3)? =r% % =rsina]
Specification
Theory:  Reals
Problem: [mazimum, calculus, optimization]
Method:  [make_fun, by_elimination/

The following worksheet shows the whole calculation without the respective
models and specifications; this short-presentation could stem from an interac-
tion, where the user is merely interested in the result and let the system calculate
autonomously:

Solve_problem [mazimum, calculus, optimization]
1. SubProblem (DiffAppl, [make, function])

1. solve_univariate ((9)2 + (3)2 = 7"2) u

2 2

2 e [um2yr - )]

224



1A =2-2¢/r2 = (3) v —o?

2. SubProblem (DiffAppl, [on_interval, for_mazimum, differentiate, function])

1.4 (2-2,/72— (5)2-1}—’(}2) =
, . 2 2
]A,1—2 T27(%) 72\/7,2‘07_?72/0
o [0 (o2 2 _
2. solve_univariate <2 r (“2’) zm 2v O) v

2°. L = [v = 234.567]
3. SubProblem (DiffAppl, [find_values, tool])
9. [u = 123.456,v = 234.567]
[u = 123.456,v = 234.567]

225



Appendix B

T8ACs tactics

Init_Proof Hid (dialogmode, formalization, specification) transfers the
arguments to the math engine, the latter two in order to solve the example
automatically. The tactic is not intended to be used by the student; it
generates a proof tree with an empty model.

Init_Proof generates a proof tree with an empty model.

Model_Problem problem determines a problemtype (eventually found in
the hierarchy) to be used for modeling.

Add_Given, Add_Find, Add_Relation formula inputs a formula to the
respective field in a model (necessary as long as there is no facility for the
user to input formula directly, and not only select the respective tactic
plus formula from a list).

Specify_Theory theory, Specify_Problem problem, Specify_Method
method specifies the respective element of the knowledgebase.

Refine_Problem problem searches for a matching problem in the hierarchy
below 'problem’.

Apply_Method method finishes the model and specification phase and starts
the solve phase.

Free_Solve initiates the solve phase without guidance by a method.

Rewrite theorem applies 'theorem’ to the current formula and transforms it
accordingly (if possible — otherwise error).

Rewrite_Asm theorem is the same tactic as 'Rewrite’, but stores an eventual
assumption of the theorem (instead of evaluating the assumption, i.e. the
condition)

Rewrite_Set ruleset similar to 'Rewrite’, but applies a whole set of theorems
(’ruleset’).

226



Rewrite_Inst (substitution, theorem), Rewrite_Set_Inst (substitution,
ruleset) similar to the respective tactics, but substitute a constant (e.g.
a bound variable) in ’theorem’ before application.

Calculate operation calculates the result of numerals w.r.t. 'operation’ (plus,
minus, times, cancel, pow, sqrt) within the current formula.

Substitute substitution applies ’substitution’ to the current formula and
transforms it accordingly.

Take formula starts a new sequence of calculations on ’formula’ within an
already ongoing calculation.

Subproblem (theory, problem) initiates a subproblem within a calculation.

Function formula calls a function, where formula’ contains the function
name, e.g. 'Function (solve 1+ 2z + 322 = 0 x)’. In this case the
modelling and specification phases are suppressed by default, i.e. the
solving phase of this subproblem starts immediately.

Split_And, Conclude_And, Split_Or, Conclude_Or, Begin_Trans, End_Trans,
Begin_Sequ, End_Sequ, Split_Intersect, End_Intersect concern the
construction of particular branches of the prooftree; usually suppressed by
the dialog guide.

Check_elementwise assumptions w.r.t. the current formula which com-
prises elements in a list.

Or_to_List transforms a conjunction of equations to a list of equations (a
questionable tactic in equation solving).

Check_postcond: check the current formula w.r.t. the postcondition on fin-
ishing the resepctive (sub)problem.

End _Proof finishes a proof and delivers a result only if ’"Check_postcond’ has
been successful before.

227



Appendix C

Development environment

Delopment environments: There are two environments, (1) SML for
the knowledge interpreter and the meth knowledge base, which both are based
on Isabelle written in SML, and (2) Java for networking, the dialog and the
front-end.

Dev C.0.1 SML wversion is Standard ML of New Jersey, Version 110.0.7,
September 28, 2000

Dev C.0.2 SML library for HTML is smlnj-110.9.1/src/smlnj-1ib/HTML

Dev C.0.3 Isabelle version is "Isabelle99: October 1999”

Dev C.0.4 Java version is ”1.3.0.01”, Java(TM) 2 Runtime Environment,
Standard Edition (build 1.3.0-01), Java HotSpot(TM) Client VM (build 1.3.0-01,
mixed mode)

Dev C.0.5 Java applets 777

Dev C.0.6 Development environments are linux version ...and Unix ...

Standards and components: A major part of the components concern
networking because the knowledge interpreter and the knowledge base reside on
a server for two reasons: (1) for efficiency reasons: both need major computer
resources, and (2) for administrative reasons: ZSAC will be used in courses
initially.

Access to the server is established by standard internet protocols, formats
and browsers as much as possible; this is not trivial because importan standards
are still under development.

Dev C.0.7 Standard for knowledge and example collections due to IEEE
Learning Technology Standards Committee (LTSC), Learning Object Metadata,
Working Draft Document 3 (approved 1999-11-27). TODO: OmDoc¢, LMML,
7IMS?

228



Dev C.0.8 The middle ware layer is realized by Dinopolis version ...

Dev C.0.9 The Browser is Mozilla 1.2 - Released November 26, 2002.
There should be as few additional software components within the browser as
possible.

Dev C.0.10 Plugins must not be required by the browser. 777

Dev C.0.11 The SML-kernel comprising the knowledge interpreter and the
knowledge base is under development. The interface to the SML-kernel is doc-
umented in ???7isac/doc/interfaces/me-calc.dvi.

Documentation and revision control: All documentations and sources
are under one revision control.

Dev C.0.12 Doxygen is used for all java sources.

Dev C.0.13 cvs contains all documentation, sml sources, the config file of
doxygen and the java sources. There are the following directories:

cvs/ doc UseCases, URD-SRD, ADD-SDD, math-eng
etc settings
lib/ icons
scripts
tools/

src/ dox-config
java/ ...package 1/ ...klasse 1
...klasse ...
...package n/ ...klasse 1
...klasse ...
jars
sml

Dev C.0.14 Directories for all files of the project are the following

bin

cvs ...as above ...

doxygen

html/ thy html-representation of Isabelles theories
pbl XML-representation of ZSAC’s hierarchy of problems
met XML-representation of Z8AC’s list of methods
exp XML-representation of ZSAC’s example collection

229



Appendix D

List of terms used in the

I8AC-project

Active formula (Aktive Formel) is the unique formula marked on the
—worksheet, where the next step of calculation will be performed. If
another item on the worksheet is marked, the formula closest (.. to be
specified) to the marked item is the active formula. If the calculation is
finished, the result of the calculation is the active formula. Also —context
position.

Browser (Browser): There are browsers for —theories, —problems, —methods
and —examples.

Browser dialog (Browser-Dialog) is the part of the —dialog guide which
is concerned with the access to the —KE-store.

Browser-Window (Browser-Window) is the presentation of data gener-
ated by the —browser, which also handles the http requests generated by
the browser window. (The browser-window is that what usually is called
a 'browser’).

Calc-head (Rechnungskopf) is the first (highly structured) element in a
—calculation (i.e. a 'root-problem’) and in a subproblem. It consists of a
—headline, a —model and of a —specification. On the —worksheet it is
represented only by the headline.

Calc-state (Rechenzustand) is given by an internal calc-tree (partially rep-
resented on the —worksheet) and a —active formula.

230



Calculation (Rechengang) leads from the —description of an —example via
the —modeling phase, the —specification phase and the —solving phase
to the result.

Calculator (Rechner) is that part of the —SML-kernel which does single
steps of calculation without touching the —proofstate.

Course admin (Kurs-Administrator) is a person administering the use of
Z8AC for learning within a group of —learners.

Course designer (Kurs-Designer) edits the —example collection which can
be solved by a given —math knowledge base (edited by a —mathematics
author) and/or edits —explanations within the —math knowledge base.

Context (Kontext) is a relation between the —context position in a certain
—calculation and a part of the —math knowledge.

Context position (Kontext Position) is a uniquely formula in a —calculation
giving one side of a —context.

Decorated knowledge (Erweitertes Mathematik-Wissen) is the —mathemath
knowledge(base) plus —explanations. Each element of the math knowl-
edge can have 0...n explanations (usually specific for courses).

Description (Beschreibung) of an —example consists of —formulas, even-
tually of text and/or a figure. The —modeling phase transforms the de-
scription into a —model.

Dialog atom (Dialog-Atom) is a predefined, minimal unit of interaction
between the —learner and ZSAC. These atoms are symmetrical w.r.t. the
two dialog partners.

Dialog author (Dialog-Autor) an expert in learning theory who adapts and
extends the —dialog guide.

Dialog guide (Dialog-Komponente) is a component of ZSAC which consists
of the —worksheet-dialog and the —browser-dialogs.

Dialog mode (Dialog-Modus) is assembled from —dialog patterns and sup-
ports certain learning strategies, e.g. exploratory learning, written exam-
niation etc. Dialog patterns are designed and implementd by a —dialog
author.

231



Dialog pattern (Dialog-Muster) is assembled from —dialog atoms such
that it can adapt to certain situations in a dialog, e.g. if the —learner
produces many errors. Dialog patterns are designed and implementd by a
—dialog author.

Dialog profile (Dialog-Profil) defines certain —dialog modes for examples
in the example collection for a certain course. A dialog profile is defined by
a —course designer and set/reset for a specified duration during a course
by the —course admin.

Example (Beispiel) is a unit to be calculated and solved separated from
others. In general, they are prepared by an author in an —example col-
lection. It consists of an explanation (analoguous to —explanation of an
element of the math knowledge), a —formalization and a —specification.

Example browser (Beispiels-Browser) is an interactive representation of
the —example collection within the —front-end.

Example collection (Beispielsammlung) contains —examples, each of
them consisting of formulas, of a hidden —formalization and —specification,
and eventuallly of text and a figure.

Example profile (Beispiels-Profil) describes the structure of an—example
collection; this structure provides data for the —dialog guide.

Explanation (Erkldrung) is an optional addon (text, formulas, figures,
movies, links, —examples and any combination of these) to elements of
the —math knowledge base.

Formalization (Formalisierung) contains the formulas in a minimal struc-
ture necessary for automated generation of a —model of an example. To-
gether with a —specification this information is sufficient for automatically
solve the example.

Formula (Formel) consists of variables, constants and functions constants
(for logical, algebraic etc. operators); all these parts, however are not yet
structured as a (typed) —term.

Guard (Guard) of a —method: prevents the method’s script to be applied
to an inappropriate problem. The guard has the same structure as a
—modelpattern (and thus sometimes is called a ’guardpattern’).

232



Headline (Problem-Kopf) represents a —calc-head on the worksheet; it
either looks like Problem (Reals, [univariate,equations]) or an Algebrasys-
tem function like solve(z? +z +1 =0, ).

Interpreter (Interpreter) comprises the modules —math engine and the
—rcalculator.

Isabelle is the name of one of the most successful interactive theorem provers;
Isabelle provides the —theories containing the deductive part of ZSAC’s
knowledge base.

Item (Item) of a —model, which can be an input item (in the field ’given’),
a precondition (in the field 'where’), an ouput item (in the field ’find’) or
a relation (in the field ’relate’). ’Given’, ’find’and ’relate’ may be input
by the user, where 'where’ is supplied by the system. An item consists of
the —item-description and the —item-data.

Item-data (Item-Daten) are the formulas following the —item-description.

Item-description (Item-Beschreibung) is an identifier heading each —item
in the fields ’given’, 'find’ and ’relate’. It indicates the kind of data to be
input to the respective item by the users, serves typechecking of the data
etc.

Item-status (Item-Status) gives feedback to each item of a —model with
one of the following kinds of status: correct, true, false, missing, incom-
plete, superfluous, syntaxerror.

KE-store (KE-Basis) is the —decorated —math knowledge plus the —example
collection.

Kernel (SML-Kern) comprises the —interpreter and the —knowledge base,
all written in SML.

Knowledge base —mathematics knowledge base

Knowledge browser is one of the —theory brosers, —problem browser,
—method browser.

233



Learner (Lernender) a user of ZSAC, who uses ZSAC for learning and ex-
ercising, i.e. who calculates —examples by use of the —math knowledge
base.

Learner model (Lernprofil) is an abstraction over all interactions of a cer-
tain learner with ZSAC during a course; this abstraction serves to adapt
Z8AC’s behaviour to the personal needs of the learner.

Match (Matchen): the —model of an example (or a subproblem) matches
the —modelpattern of a problem, or not. This kind of matching is different
from the matching-algorithm of symbolic computation: it checks if all
—items are input, and evaluates the predicates in *where’.

Math engine (Mathematik-Maschine) provides for all functions doing
—calculations: for applying —tactics, for input —formulas, for calculating
resulting formulas, for proposing the next tactic, and for doing calculations
automatically; it maintains a —proofstate for each calculation.

Mathematics author (Mathematik-Autor) an expert in computer math-
ematics who adapts and extends the —mathematics knowledge base.

Mathematics kernel (Mathematik-Kern) replaced by —math engine; please,
dont’t use anymore !

Mathematics knowledge base (Mathematische Wissensbasis) is stored
in three SML-datastructures, in an acyclic graph of —theories, in a hier-
archy of —problems, and in a hierarchy of —methods. It is extensible
by —math authors and can be both, read by —learners and interpreted
by ZSAC. Short form is math knowledge. See also —decorated math
knowledge.

Method (Methode) contains a —script describing the algorithm for calcu-
lating the result, and a guard structured like a —modelpattern in order
to inhibit inappropriate application of the script.

Method browser (Methoden-Browser)

Model (Modell) is a part of the —calc-head. It consists of —items (as well
as the —modelpattern).

Modelpattern (Modell-Pattern) is the part of a —problem.

234



Modeling phase (Modellierungs-Phase) is the initial phase in problem
solving. In this phase either the system automatically transforms a —formalization
of an example into a —model or the user inputs the —items into the model.

Parsing (Parsen) is the process of transforming an ’plain’ formula into a
typed term. Parsing requires the specification of a —theory containing
information about infix position of operators etc.

Problem browser (Problem-Browser)

Problem (Problem) consists of a —modelpattern and some technical ele-
ments (—methods solving this problem, rule sets for evaluating the pre-
condition in —matching etc.)

Proofstate (Beweiszustand) replaced by —calc-state; please, don’t use any-
more !

Rewriting (Rewriting) transforms a formula into a new one by application
of a —theorem. ZSAC provides conditional as well as ordered rewriting.

Script (Skript) describes the algorithm solving a particular problem; a script
contains —tactics, expressions for guiding the flow of evaluation, and even-
tually subproblems.

Selection-tool (Auswahls-Tool) displays the contents of either the —example
collection, or the dependency graph of —theories, or the hierarchy of
—problems, or the hierarchy of —methods; and it allows to select a re-
spective item for detailed display.

SML-kernel —kernel

Solving phase (Losungs-Phase) is the final phase in problem solving, which
generates the solution from the —model and the —specification; this phase
may comprise all problem solving phases for one or more subproblems.

235



Specification (Spezifikation) relates a —model (or a —guard) of a calc-head
to the —modelpattern (or guradpattern) of the respective —problem (or
—method) while determining a —theory, —a problem and a —method.

Specification phase (Spezifikations-Phase) is the second phase in problem
solving, which determines the —theory, —the problem and the —method.
This phase can be done automatically and hidden from the user, if the
—dialog guide decides to do so. Sometimes, if it is clear from the context,
this phase also comprises the —modeling phase.

Step ((Rechen-) Schritt) propagates a —calculation and involves both part-
ners once, i.e. the —learner and the —dialog guide. A step is represented
by one of the —dialog atoms.

Tactic (Taktik) is applicable or not to the current —formula within the
current proofstate, and generates a new formula accordingly.

Term (Term) is an Isabelle term (simple typed lambda calculus) generated
from a —formula by —parsing.

Theorem (Theorem) is a predicate proven true by —Isabelle w.r.t. certain
preconditions. Theorems are applied by —rewriting.

Theory (Theorie) is the part of the —math knowledge base which defines
(function) constants and axioms. Within a theory usually the related
—theorems are being proven by —Isabelle and stored.

Theory Browser (Theorie-Browser)

User (Benutzer) of ZSAC may be one of the following: —visitor, —learner,
—math author, —dialog author, —course designer, or —course admin.

Visitor (Besucher) a user of ZSAC, which occasionaly browses an ZSAC-site,
i.e. the —knowledge base and the —example collection.

236



Worksheet (Arbeitsblatt) contains the —calculation of an —example even-
tually leading to a result.

Worksheet dialog (Arbeitsblatt-Dialog) is the part of the —dialog guide
which is concerned with the interaction between learner (see chapter |1|on
pi13) and —math engine.

237



Appendix E

Abbrevations

UR
URD
SR
SRD
ucC

ADD
SDD

user requirement

user requirements document
software requirement

software requirement document
use case

architectural design document
software design document

238



Bibliography

[Blo01]

[BMR*96]

[F1a99]

[Fla02]

[GHIV95)

[Gra04]

[Gri03]

[Hoc04]

[iT02a]

Joshua Bloch.  Effective Java Programming Language Guide.
Addison-Wesley, 2001.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommer-
lad, and Michael Stal. Pattern-Oriented Software Architecture: A
System of Patterns. John Wiley & Sons, 1996.

David Flanagan. Java Foundation Classes in a Nutshell. O’Reilly,
Sebastopol, CA, September 1999.

David Flanagan. Java in a Nutshell. O’Reilly, Sebastopol, CA, 4.
edition, March 2002.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

Richard Gradischnegg. FEine java/sml-schnittstelle fiir ZSAC auf
basis von xml. Master’s thesis, University of Applied Sciences, Dpt.
Software Engineering, Hagenberg, Upper Austria, 2004.
http://www.ist.tugraz.at/projects/isac/publ/da-
gradischnegg.ps.gz.

Andreas Griesmayer. Architecture and Knowledge-Represenation of
the Web-based Math-Learning-System ZSAC. Master’s thesis, Uni-
versity of Technology, Institute for Softwaretechnology, Graz, Aus-
tria, Oct 2003.
http://www.ist.tugraz.at/projects/isac/publ/da-griesmayer.pdf.

Mario Hochreiter. Design and implementation of a graphical user
interface for the math-learning-system ZSAC. Master’s thesis, Uni-
versity of Applied Sciences, Dpt. Software Engineering, Hagenberg,
Upper Austria, 2004.
http://www.ist.tugraz.at/projects/isac/publ/da-hochreiter.ps.gz.

ZS8AC Team. ZSAC — user requirements document, software require-
ments document, architectural design document, software design

239



[iT02b]

[iT02¢]

[iT02d]

[KO06]

[Kom07]

[Kre05)

[Neu99]

[NeuO1]

[Pfa85]

document, use cases, test cases. Technical report, Institute for Soft-
waretechnology, University of Technology, 2002.
http://www.ist.tugraz.at/projects/isac/publ/appendices.ps.gz.

I8AC Team. ZSAC appendices to the analysis and design docu-
ments. Technical report, Institute for Softwaretechnology, Univer-
sity of Technology, 2002.
http://www.ist.tugraz.at/projects/isac/publ/appendices.ps.gz.

ZSAC Team. ZSAC use cases. Technical report, Institute for Soft-
waretechnology, University of Technology, 2002.
http://www.ist.tugraz.at/projects/isac/publ/use.ps.gz.

ZSAC Team. ISAC, interfaces for developers of math knowledge and
tools for experiments in symbolic computation. Technical report,
IICM, Institute for Softwaretechnology, University of Technology,
2002.

http://www.ist.tugraz.at/projects/isac/publ/mat-eng.pdf.

Robert Konighofer. Presentation of mathematical knowledge in the
Z8AC-system. Telematik Projekt/Seminar and Bakk-Arbeit, Oct
2006. Graz University of Technology, Institute for Softwaretechnol-

ogy.

Georg Kompacher. Context-based access to ZSACs knowledge base.
Software-Projekt und Bakk.-Arbeit B, Oct 2007. Graz University of
Technology, Institute for Softwaretechnology.

Alan Krempler. Architectural design for integrating an interactive
dialogguide into a mathematical tutoring system. Master’s thesis,
University of Technology, Institute for Softwaretechnology, Graz,
Austria, March 2005.
http://www.ist.tugraz.at/projects/isac/publ/da-krempler.pdf.

Walther A. Neuper. Mathematics tutoring II: A mathematics-engine
for guided interaction. technical report IST-TEC-99-15, IICM - Inst.
f. Software Technology, Technical University, A-8010 Graz, August
1999.

http://www.ist.tugraz.at/projects/isac/publ/IST-TEC-99-15.ps.gz.

Walther A. Neuper. Reactive User-Guidance by an Autonomous
Engine Doing High-School Math. PhD thesis, IICM - Inst. f. Soft-
waretechnology, Technical University, A-8010 Graz, 2001.
http://www.ist.tugraz.at/projects/isac/publ/wn-diss.ps.gz.

G. Pfaff, editor. Seeheim Workshop on User Interface Management
Systems. Springer, 1985.

240



[SBCOO01] Timothy J. Sliski, Matthew P. Billmers, Lori A. Clarke, and Leon J.

[Sch02a]

[Sch02b]

Osterweil. An architecture for flexible, evolvable process-driven user-
guidance environments. In ESEC/FSE-9: Proceedings of the 8th
European software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software en-
gineering, pages 33—43. ACM Press, 2001.

Klaus Schmaranz. Dinopolis - A Massively Distributable Compo-
nentware System. Habilitation thesis, University of Technology,
IICM - Inst. . Softwaretechnology, A-8010 Graz, Austria, June 2002.

Klaus Schmaranz. Dolsa - a robust algorithm for massively dis-
tributed, dynamic object-lookup services. 2002.

241



	I User Requirements Document
	Kinds of I-2muS-5muAC users
	General requirements
	Users of I-2muS-5muAC
	Calculations and Data Involved
	Miscellaneous

	Requirements of the visitor
	Browsers: overview – detail:
	Do some examples:

	Requirements of the learner
	Start a calculation
	User Guidance
	Help in the specify phase
	Views into the knowledge
	Surveys on related knowledge
	Context-related views


	Requirements of the math author
	Requirements of the dialog author
	User Profiling
	Flexible Dialog Behaviour
	Adaptation to Individual Users

	Requirements of the course admin
	Groups of learners
	Restrictions
	Survey on the progress of the learners
	Written examinations

	Requirements of the course designer
	General
	Appearance of example collections
	The structure of example collections
	Edit examples in the example collection
	Checks for example collections
	Check of format
	Check of solvability

	Edit explanations in the knowledge base
	A knowledge profile
	A dialog profile

	Requirements of the administrator
	Install and monitor the system
	Customize the appearance in the web


	II Software Requirements Document
	General requirements
	Delopment environment,
	Decisions for underlying systems
	The connection between Java and SML
	System requirements for the users:
	Communication in the distributed system
	Choosing a Means of Communication
	The Dinopolis Middleware project
	Java-RMI


	The worksheet
	Views on Examples and Knowledge Items
	General Requirements
	The Knowledge Browsers
	The example browser

	The dialog guide
	Components of the dialog guide
	The dialogstate
	The usermodel


	III Architectural Design Document
	Surveys
	Survey on the components
	Basic Concepts for Separable User Interfaces
	The Seeheim Model
	The MVC Architecture
	Comparing the approaches
	Implications for I-2muS-5muAC

	Survey on the architecture

	Session Management
	The Dialogs
	Session-Dialog
	Browser-Dialog and Worksheet-Dialogs

	User Data and Access Rights
	Dialog Guide and User Model
	User-Administration
	Permissions-module


	Dialog Guide
	Browser Dialogs and WorkSheet Dialog
	Location of the Dialog Guide
	The Interfaces to the WorkSheet Dialog Component
	Controlling the Course of Interaction
	Dialog Phases
	Dialog Atoms

	Sharing the Calculation with other Components
	Representing the Model and the Specification
	Representing the Path to the Solution
	Treating Subproblems
	Accessing Calculation Data
	Communicating Changes in the State of Calculation

	Configuring the User-Interface
	The Presentation Layer in Control
	The WorkSheet Dialog in Control
	Splitting up Responsibilities and Providing for Interaction

	Obtaining and Storing Configuration Data
	The User Settings
	Permissions and Security Issues
	The User Model

	Browser Dialog
	Browser Dialog and Worksheet Dialog:
	Survey on requirements

	Dialog Guide and User Model

	Worksheet
	The Presentation Model
	Communication between the Presentation and Dialogue Control Layer
	User Interface Events
	Calculation Events

	Calculation views
	Calchead Panel

	Knowledge Browser
	Survey on the requirements
	Kinds of browsers and their differences
	Browsers and dialogs
	Communication between Browsers and Dialogs
	Binding a Browser to a Dialog
	The Processing of Links


	KE-Store
	Notes WN
	The initial structure with xml- and html-files
	Some old design considerations
	XML-Import/Export
	Communication with the dialog
	Relations
	Presentation
	Example Collections and composite examples
	Object structure
	Metadata

	KE-Objects and external Informations

	Bridge Java – SML
	Design der Klassenhierarchie
	MathEngine
	CalcHead
	Formula
	Tactic
	CalcElement
	CalcTree
	CalcIterator
	BridgeMain
	SMLThread
	XMLParser



	IV Software Design Document
	Session Management
	Logging into the System and Bootstrapping
	SessionDialog, BrowserDialog and WorksheetDialog
	Starting a session
	Communication with the InformationProcessor
	Communication with the SessionDialog
	XMLHierarchyParser

	User Data
	The hierarchy of data
	Data of a single user

	WindowApplication
	Internationalization
	Window Management
	XMLHierarchyParser


	Browser Dialogs
	Communication with the Browsers
	Communication with the Worksheet Dialogs
	Communication with the KEStore

	Worksheet Dialog
	Storing Enumeration Types
	The Hierarchy of Mathematical Objects
	CalcElement
	Classes Derived from CalcElement
	Subterms

	Iterators for Navigating the CalcTree: ICalcIterator
	Data Types Used for Communication
	Events
	Exceptions

	Interfaces used by the Dialog Guide
	Communicating Towards the Calculation: IToCalc
	Communicating Towards the User: IToUser
	The Presentation Layer as Seen from the Dialog Guide: IToUser
	The WorkSheetDialog as Seen from the Presentation: IWorkSheetDialog

	Communicating with the UserModel
	The important classes

	Worksheet
	Communication with the WorkSheetDialog
	The classes or the WorkSheet
	TreeModel
	CalcModelHierarchy
	CustomTreeCellRenderer
	CustomTreeCellEditor
	CalcHeadPanel


	KEStore
	Knowledge Browser
	The relation between the browsers
	The classes for a browser
	TabPanel
	BrowserTreeModel
	BrowserPanel

	Implementation details
	HierarchyNodes
	Hierarchy

	Minibrowser
	The Processing of Links
	Dynamic Modification of the Static HTML Content


	Bridge Java – SML
	Klassen und Methoden
	BridgeMain
	BridgeRMI
	MathEngine
	BridgeLogger
	ClientList
	SMLThread
	TimeCheckerThread
	CalcTree
	CalcIterator
	ClientOutputWorker
	Clients2KernelServer
	Kernel2ClientsServer

	XML-Parser Digester
	Arbeitsweise des Parsers
	Einrichten und Initialisieren
	Regeln

	Starten der Bridge-Komponente

	Implementation Details
	Packages


	V Usecases
	Visit an I-2muS-5muAC site
	Browse the knowledge:
	Browse the example collection

	Learn interactively with I-2muS-5muAC
	Start a Calculation
	Initialising Session and Dialog
	Choosing a Starting Point

	Model and Specify an Example
	Edit the CalcHead
	Obtaining Help from I-2muS-5muAC
	Contextual Access to the Knowledge
	Starting the Solving Phase 

	Calculating a Result  
	Moving the Active Formula
	Taking Single Steps Interactively 
	Automatic Calculation 
	Showing and Hiding Data 
	Obtaining Help and Extra Information 
	Solving problems with subproblems


	Authoring
	Author the knowledge base
	Author the example collection


	VI System View of the UCs and Test Cases
	Visit an I-2muS-5muAC site
	Learn interactively with I-2muS-5muAC
	Initializing the Session
	Identifying the User, UC 30.1.1.1
	Doing an Example from an Example Collection, UC 30.1.2.1

	Initializing a Calculation
	Go into the problem hierarchy with a particular model, UC 30.2.3.1
	Matching the Problem, UC 30.2.3.1
	Having I-2muS-5muAC Refine the Problem, UC 30.2.3.4
	Transfer a selected problem to the worksheet, UC 30.2.3.8


	Authoring

	VII Appendices
	The example for reference
	Description, formalization and modeling phase
	Knowledgebase and specification phase
	Interaction on the worksheet and the browsers
	The solving phase and subproblems

	I-2muS-5muACs tactics
	Development environment
	List of terms used in the I-2muS-5muAC-project
	Abbrevations


