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Kurzfassung

Diese Thesis bearbeitet Neuland in drei verschiedenen Richtungen. Erstens
in Richtung zweidimensionaler Formel-Darstellung und Visualisierung für
Systeme basierend auf (Computer) Theorem Proving (Abkürzung "TP" im
Titel). Zweitens beschäftigt sich mit "accessibile" und "inclusive" Systeme.
Die Dritte in Richtung beschäftigt sich mit der Integration von Scala mit
Java Swing im ℐ𝒮𝒜𝒞 Prototypen.

Die Relevanz der ersten Richtung ergibt sich wie folgt: TP-Systeme selbst
sind immer noch Werkzeuge für Experten, die eine schnelle Eingabe bevorzu-
gen und noch nicht darauf Wert legen, Formeln schön dargestellt zu sehen.
Jedoch ist TP-basierte Software dabei, in die Arbeitsumgebung von Inge-
nieuren einzudringen. Und Ingenieure erwarten Präsentationen von mathe-
matischen Formeln im üblichen zweidimensionalen Format. Die Stärken von
TP sollten beibehalten werden: insbesondere der Zugriff auf die Typen aller
Elemente einer Formel per Mausklick sowie die Verknüpfung mit entsprechen-
den Definitionen, wie sie aus den IDEs der Programmierer bekannt sind.

Um für Ingenieurs-Anwendungen bereit zu werden, hat der Proof-Assistent
Isabelle sein Front-End benutzerfreundlich gemacht. Isabelle ist das Logik-
basierte Back-End für ℐ𝒮𝒜𝒞, den Prototypen einer neuen Generation von
TP-basierte Lernsoftware und somit das System der Wahl für das Prototyp-
ing eines Editors in dieser Thesis.

Die Identifizierung von Schnittstellen für einen Editor in ℐ𝒮𝒜𝒞 ist durch
die schnelle Entwicklung von Isabelle und durch die umfangreiche und un-
orthodoxe Dokumentation eine besondere Herausforderung . Isabelles GUI
nutzt die Programmiersprache Scala, also muss diese Thesis sich mit dieser
Sprache auseinander setzen. Hilfreich für das Prototyping ist, dass Isabelle
sich weitgehend an Standard der Software-Technologie hält; insbesondere für
die Umwandlung von Formeln aus dem internen Format in ein Präsentations-
affines Format. Dabei werden Technologien aus dem Compilerbau verwen-
det, wie zum Beispiel annotierte Syntaxbäume und Transformation durch
“rewriting” auf diesen Bäumen.

vi



Kurzfassung vii

Die zweite Richtung, also der "accessibile" und "inclusive" Bereich, wurde
durch eine Diplomarbeit an der FH Hagenberg, Fakultät für Softwaretech-
nik, im vorangegangenen Jahr perfekt vorbereitet. Die Auswertung dieser
Arbeit gibt klar vor, wie der Editor in dieser Thesis entworfen werden soll:

Einerseits können sehbeeinträchtigte Personen nur Strings über ein Braille
Display lesen, andererseits werden komplizierte Formeln als Strings unver-
ständlich. Um diesen Widerspruch aufzulösen, schlug die vorangegangene
Thesis vor, Formeln als Bäume darzustellen, in denen mittels Pfeiltasten
durch die Teilformeln (dargestellt als kürzere! Strings) navigiert wird. Diese
Darstellung hat den Nachteil, dass sie für Sehende vorerst unverständlich ist
und somit der “inclusion” widerspricht.

Die vorliegende Thesis stellt eine elegante Lösung vor, die die bevorzugte
Formelpräsentation für beide, für blinde wie sehbehinderte Studierende,
aufrechterhält: Teil-Formeln auf der Braille (für blinden Studierende) wer-
den eindeutig mit Rechtecken auf der zweidimensional gerenderten Formel
(für sehende Studierende) hervorgehoben. Die Integration der Treiber für
die Braille samt zugehöriger Standards bleibt späteren Arbeiten überlassen.

Die dritte Richtung beschäftigt sich mit der Kombination von Scala und
Java Swing. Diese Kombination sowie die Integration des Editors in ℐ𝒮𝒜𝒞
kostete den größten Teil an Zeit und Energie dieser Thesis. Die Kombination
ist als grundsätzlich machbar bekannt, wurde aber noch nie zuvor bei der
Implementierung eines Formel-Editors ausprobiert. Die Kombination hat
sich letztendlich als einfacher herausgestellt als erwartet: Scala’s match ist
praktisch für das Scannen der Formelstruktur, und in Swing ließ sich die
Box-Technologie von LATEX einfach nachbauen.

Obwohl die Codebasis von ℐ𝒮𝒜𝒞 umfangreich ist, nachdem mehr als dreißig
Thesen zum Code beigetragen haben, war die Identifizierung einer Schnittstelle
für den Editor einfach und entsprechende Änderungen im Code minimal. Der
ℐ𝒮𝒜𝒞-Prototyp kann nun mit dem neuen Prototyp des Editors präsentiert
werden.

Alle Prinzipien von LATEX sind im Prototyp-Editor implementiert: ab-
nehmende Schriftgröße nach Ebenen der Teilformeln, jeweilige Anpassung
von Leerzeichen usw. Der Prototyp erlaubt die Eingabe von neuen Formeln
sowie die Bearbeitung vorhandener Formeln. Die praktische Erfahrung mit
dem Editor zeigt jedoch, dass die Benutzbarkeit für professionelle Anwender
(einschließlich Studenten) noch erhebliche Anstrengungen erfordern wird.

Die These lässt den Schluss zu, dass in allen drei Richtungen "the proof of
concept" erfolgreich war. Design und Implementierung sind solide grundgelegt
worden und die dabei gewonnenen Erfahrungen in der Arbeit dokumentiert.
Weiter Entwicklung auf Basis dieser Arbeit erscheint vielversprechend.



Abstract

This thesis breaks new grounds in three different directions, first towards
two-dimensional formula editors for systems based on (Computer) Theorem
Proving (abbreviated “TP” in the title), second towards accessible and inclu-
sive editors and third towards combining Scala with Java Swing in building
a respective prototype in ℐ𝒮𝒜𝒞.

The relevance of the first direction is given as follows: TP systems them-
selves are still tools for experts who prefer quick input and do not yet take
care of nicely rendered formulas. However, intrusion of TP-based compo-
nents into workbenches for engineers can be foreseen. And engineers expect
mathematical formulas presented in a two-dimensional format – while the
strengths of TP should be maintained, in particular the access to the types
of all elements of a formula via mouse click on the rendered formula, as well
as linking to respective definitions as known from programmers’ IDEs.

Making TP-based systems ready for engineers’ workbenches appears just
in time particularly for the proof assistant Isabelle, which has the most user-
friendly front-end. And Isabelle is the logic-based back-end for ℐ𝒮𝒜𝒞, the
prototype for a new generation of TP-based educational systems and the
system of choice for prototyping an editor within this thesis.

Identifying interfaces for an editor with Isabelle is a specific challenge
due to Isabelle’s rapid development and the highly elaborate but unorthodox
documentation. Isabelle’s GUI uses the programming language Scala, so this
thesis has to deal with this language. Fortunate for prototyping with Isabelle
is, that is uses standards of software technology; in particular, for conver-
sion of formulas from the internal format to a presentation-affine format it
employs the standard technologies from compiler construction, annotated
syntax trees and translation by rewriting on these trees.

The second direction towards accessible and inclusive editors has been
greatly prepared by a thesis at FH Hagenberg, faculty of software engineer-
ing, in the preceding year. The evaluation within this thesis gave a clear
direction how to proceed:

Visually impaired people can only read strings via their Braille display.
Complicated formulas become incomprehensible as strings, but flexible ac-
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Abstract ix

cess (via arrow keys) to subterms as elements (again represented as strings)
of a tree can make the structure of a formula comprehensible. This has been
shown by the preceding thesis (while other techniques like auditive informa-
tion has been shown inefficient).

The preceding thesis’ suggestion for presenting the tree also to a sighted
student for the sake of collaboration in inclusive educational settings (i.e.
with collaboration between a blind and a sighted student on one and the
same formula), this suggestion has also be abandoned. This subsequent thesis
provides an elegant solution, which maintains the preferred formula presen-
tation for both, for blind and for sighted students: sub-terms on the Braille
(for the blind student) are unambiguously related to highlighted rectangles
on the two-dimensionally rendered formula (for the sighted student). Inte-
gration of drivers for the Braille together with implementation of respective
mathematics standards is left to subsequent development.

The third direction, towards combining Scala with Java Swing in code for
a formula editor and integration into ℐ𝒮𝒜𝒞, took the major time and energy
in this thesis. Combining Scala with Swing is known as feasible in principle,
but that has never been tried out in implementing a formula editor. The
combination was more pleasant than anticipated: Scala’s match is convenient
for scanning the structure of a formula, and Swing was straight forward since
it has perfectly adopted the box technology from LATEX.

Although ℐ𝒮𝒜𝒞’s code base is already comprehensive, and although more
than thirty theses had contributed to the code, identification of an interface
for the editor was simple and respective changes in the code were minimal.
The ℐ𝒮𝒜𝒞-prototype now can be presented with the new prototype of the
editor.

All principles from LATEX are implemented in the prototype: decreasing
font size according to levels of sub-terms, respective adaption of spaces, etc.
The prototype also allows input of formulas from scratch as well as editing
existing formulas. Practical use of the editor, however, shows that consid-
erable efforts are still required towards a professional editor for professional
users (including students).

The thesis allows the conclusion, that in all three directions the proof of
concepts was successful. Solid foundations in design and in implementation
have been provided, respective experiences are documented in the thesis.
Further development based on these foundations appears promising.



Chapter 1

Introduction

The task to be accomplished by this thesis is in short: Research the state of
the art of formula editors, design an accessible and inclusive version, provide
a prototype implementation and integrate it into the ℐ𝒮𝒜𝒞-prototype, a new
kind of educational too..

The introduction has two main purposes: firstly it needs to explain the
reasons for designing and implementing yet another formula editor and sec-
ondly it needs to explain, why there are so different preliminaries to accom-
plish before the very task of the thesis begins.

1.1 Why yet another editor?
Thesis prefers the naming “formula editor” for a software component ren-
dering mathematical formulas in the usual two-dimensional representation
and supporting input of such formulas. The naming “equation editor” seems
preferred in American English, but is considered inappropriate here, because
an equation is just a specific formula of type boolean.

Now the answer to the question is that . . .

there are novel user requirements for formula editors,
introduced by the novelty of ℐ𝒮𝒜𝒞’s prototype.

The novelty of ℐ𝒮𝒜𝒞 1 is introduced by technology underlying the re-
spective mathematics engine, technology from (Computer) Theorem Prov-
ing (abbreviated TP in the sequel). In principle, TP is self-contained: all
elements and all statements are derived from simpler elements and state-
ments, ultimately by the few basic laws of formal logic. These derivations

1The ℐ𝒮𝒜𝒞-project’s research and development goes on since more than one decade
http://www.ist.tugraz.at/isac/History driven by in an interdisciplinary team
http://www.ist.tugraz.at/isac/Credits.

1

http://www.ist.tugraz.at/isac/History
http://www.ist.tugraz.at/isac/Credits


1. Introduction 2

are implemented by “interactive proof assistants” in (more or less) tradi-
tional mathematical notation (predicate logic) — and thus can be read by
humans without further translation.

So the technology triggers new kinds of interaction within formula edi-
tors: now a mathematical formula becomes the entry point for all underlying
operators and types in the same way as source elements of a computer pro-
gram are entry points for all underlying definitions, just by click on elements
in an IDE. In the ℐ𝒮𝒜𝒞 project this feature is part of the concept “transparent
systems”.

ℐ𝒮𝒜𝒞’s mathematics engine is based on such TP technology and exploits
respective power to support “dialogues between partners on an equal base”:
both partners, the student and the system can negotiate parts of formulas,
the system can give hints for subterms, etc. All the technical prerequisites
have been identified in the ℐ𝒮𝒜𝒞-project for building “systems that explain
themselves” [13, 14]: not only underlying definitions become interactively
available, but also intermediate steps of problem solving processes in en-
gineering mathematics — a trigger for novel requirements also on formula
editors.

Last not least, there are the requirements of accessibility and of inclusive
learning prepared by another thesis [6]. These two requirements are met
unsatisfactorily by available formula editors. Work on these requirements in
the thesis is supervised by the “Institute Integriert Studieren” at Johannes
Kepler University in Linz, Austria.

1.2 Why so diverse preliminaries?
The answer to the first question above and respective explanations indicate
a wider spectrum of challenges than anticipated by the title of the thesis.

Decision between Java Swing and Browsers was still open at the
beginning of the project: ℐ𝒮𝒜𝒞 plans to make ℐ𝒮𝒜𝒞 as accessible for students
as much as possible in the future. Depending on preliminary research within
this thesis, the envisaged prototype editor should be implemented either in
Java Swing or within browser technologies. So both possibilities need to be
investigated.

Not reinvent the wheel ! This is the main challenge when approach-
ing development within formula editors, where an uncountable number of
implementations are already done.

As a matured technology, formula editors are backed with well-established
theory and a wealth of respective publication. These have to be studied, in
particular MathML (Mathematical Markup Language) and LATEX, which set
the high standards for formula representation many decades ago.
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Also a review of existing formula editors needs to clarify, how close avail-
able products are to the user requirements set for the thesis. The search can
be confined to open source products, because the ℐ𝒮𝒜𝒞 prototype is itself
open source and consists of (many!) subsystems, which are all open source,
too. The sources have to be studied in order to estimate the effort required
to adapt to the given user requirements. This introduction can presage, that
this par of preliminary work was short: for all studied products the efforts
were estimated very high.

Isabelle is a trendsetter for GUIs in TP, because it already imple-
ments much of “transparent systems” mentioned above, in particular IDE-
like access to definitions via mouse click on elements of formulas.

Isabelle needs to be studied in order to prepare for integration the proto-
type editor into the ℐ𝒮𝒜𝒞 prototype, anyway. The ℐ𝒮𝒜𝒞 prototype is adopting
Isabelle’s technologies more and more with the long term goal to contribute
as Isabelle component. With respect to formula editors, fortunately, Isabelle
implements respective technology in a standard way. This machinery needs
to be studied and investigated for re-use by the editor envisaged in this
thesis.

There is also the issue, that ℐ𝒮𝒜𝒞 presently uses a specific interface to
Isabelle, not the standard interface. The specific interface transports terms,
which contain types, sorts and all the other stuff required for reliable rea-
soning. Since ℐ𝒮𝒜𝒞’s design delegates all reasoning to Isabelle, the question
arises, whether these terms are the right data structure for our formula ed-
itor, which serves ℐ𝒮𝒜𝒞’s front-end (which is not concerned with any kind
of reason). Thus these terms and respective transformations also will be
studied.

ℐ𝒮𝒜𝒞’s comprehensible code base challenges integration of the for-
mula editor envisaged in this thesis. The code base results from research
and development since more than a decade 2. The mathematics engine had
been developed 3, before the front-end was designed. The architecture of the
latter is highly abstract — part of the success for integration of about thirty
student projects (at the level of diploma and master theses 4 ) over the years
without changes to the initial architecture.

According to the comprehensive requirements captured by the initial
design and the many contributions, the code base is large and complex. The
study of relevant architectural considerations and respective portions of code

2http://www.ist.tugraz.at/isac/History
3Development of the mathematics engine Isabelle/ℐ𝒮𝒜𝒞 is still separated into the repos-

itory https://intra.ist.tugraz.at/hg/isa, while the thesis under consideration is reflected by
the repository https://intra.ist.tugraz.at/hg/isac.

4http://www.ist.tugraz.at/isac/Credits

http://www.ist.tugraz.at/isac/History
https://intra.ist.tugraz.at/hg/isa
https://intra.ist.tugraz.at/hg/isac
http://www.ist.tugraz.at/isac/Credits


1. Introduction 4

will be documented in the thesis in order to justify the design decisions for
the editor.

A hint for reading the thesis seems appropriate with respect to the diver-
sity of preliminaries: The final decisions during implementation (as described
in §4 near the bottom of the thesis) require references back to respective
design decisions in the preceding chapter, and further on, the latter require
references back to respective requirements stated previously — and all those
references end up somewhere in the preliminaries stated at the beginning in
§2. So the reader is advised to take the many references into consideration
in order to grasp the whole picture!

1.3 The structure of the thesis
The structure is as follows: Chapter §2 collects all the different prerequisites
for the thesis: the high standards in formula presentation in Sect.§2.2 are
given by §2.2.1 various types of editors, by §2.2.2 MathML and last not least
by §2.2.3 LATEX. §2.3 briefly introduces the state of front-ends for (computer)
theorem provers (TP) with focus on Isabelle: §2.3.1 explains reasons for the
transitional state of TP, §2.3.2 presents Isabelle’s GUI and looks into the
machinery behind the scenes as far as relevant. The last prerequisite is the
ℐ𝒮𝒜𝒞 prototype in §2.4; after a brief introduction of it’s aims in §2.4.1, it’s
initial state of the front-end is described in §2.4.2 and requirements for the
formula editor are given in §2.5.

Chapter §3 comes to architectural and design considerations, which start
with the issue of re-use in Sect.§3.1: re-use of Isabelle’s machinery for for-
mula transformation in §2.3.3 and integration into ℐ𝒮𝒜𝒞’s existing front-end
in §3.1.2. Integration is discussed more specifically in a separate section
§3.2 and conforms to an interface specified in §3.3. Concern of design are
also datatypes specific for editors and general considerations about visual
representation of formulas in §3.5.

§4 describes the implementation of the editor prototype. §4.1 addresses
code structure, integration and choice of programming language. §4.2 ex-
plains how symbols are drawn by Java Swing, §2.2 shows how a formula is
rendered and §4.3 describes interaction within editing a formula. Implemen-
tation required specific test setups addressed in §4.4.

Finally, in chapter §5 a summary accounts for what has been achieved by
this thesis, conclusions reflect the appropriateness of design and implemen-
tation and future work tells how to proceed within prototype development.



Chapter 2

Preliminaries

The above §1.2 mentioned reasons for the large number of preliminaries.
Here details are given, which are required as prerequisites for detailed design
and implementation.

2.1 Accessibility and Inclusion
The requirements of accessibility and of inclusive learning have been pre-
pared by another thesis [6]. “Accessibility” means, that formulas must be
accessible by all humans interested in mathematics, also by visually impaired
people. The latter cannot use a mouse, which is an indispensable device for
input to a GUI at the present state of the art. How such GUIs have been
made accessible, nevertheless, this explains [6] but is out of scope of the
thesis at hand.

Visually impaired people can also not benefit from the two-dimensional
formula presentation on paper and on screen as rendered by formula editors
at the state of the art — so how help those people to understand formulas
without a mouse and without the two-dimensional presentation, without
respective expressiveness and conciseness, which results from hundreds of
years in mathematical experience?

And “Inclusion” means, that blind students are not excluded from main-
stream education and sit in one class together with peers. Inclusion leads to
educational settings, were a blind student and another (“normal”) student
want to cooperate in solving mathematical problems. And this might involve
the situation, where both discuss properties of one and the same formula
on a screen (or even on two different screens); for instance they might dis-
cuss, whether 1+2·(3+𝑥)

2·(3+𝑥) can be canceled or not — and then they need to
collaboratively refer to the numerator and the nominator, the arguments of
multiplication, etc — How can mutual pointing happen, when the one prefers
to point with the mouse to a two-dimensional representation and the other

5



2. Preliminaries 6

only can use keys and read strings on the Braille ?

A surprisingly straightforward solution has been prepared by [6],
dropping respective experiments with auditive information and specific rep-
resentations of formulas as trees:

• Leave the sighted user with all habits in manipulating formulas
and just support pointing to a part of a formula by high-lighting the
respective sub-term.

• Support navigation through a formula by specific keys and present
the respective sub-terms as strings on the Braille (with leading blanks
indicating the depth of the sub-term) — and high-light the sub-term
accordingly in the two-dimensional representation for the sighted user.

This solution includes even editing of a formula in collaboration between a
sighted and a visually impaired person!

The only challenge left seems to be to dissolve the meaning of keys within
different Swing components such that a blind person can use the keyboard
as the only input device for a sophisticated mathematics tool like ℐ𝒮𝒜𝒞.

2.2 Standards in Formula Presentation
Formulas are at the heart of technical communication, of engineering tools
and of technical and scientific publications. The two standards for represent-
ing formulas, LATEX and MathML, are briefly introduced below. Then layout
principles are discussed with respect to these two standards: mathematical
fonts, spacing within formulas and character size within sub-terms.

2.2.1 Survey on Available Types of Editors

There are commercial formula editors like MathType 1, MathFlow 2, Tech-
Explorer 3 or Wiris [9]. Beeing state-of-the-art, such editors are “what you
see is what you get (WYSIWYG)”, i.e. they try to resemble common nota-
tion for formulas in two dimensions. “Common notation” is a challenging re-
quirement, since there are differences in notation between pure mathematics
and engineering mathematics, even between different engineering disciplines
(e.g. electrical engineers prefer 𝑗 for the imaginary unit, others prefer 𝑖).

All these commercial editors cannot be integrated into ℐ𝒮𝒜𝒞, because
ℐ𝒮𝒜𝒞’s frontend is not standard like a browser. So these editors fall outside
the selection criteria of this thesis.

1http://www.dessci.com/en/products/mathtype/
2http://www.mathtype.com/en/products/mathflow/default.htm
3http://tex.loria.fr/outils/readme-techexpl.html

http://www.dessci.com/en/products/mathtype/
http://www.mathtype.com/en/products/mathflow/default.htm
http://tex.loria.fr/outils/readme-techexpl.html
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Open source editors can be adapted and integrated with more or less
efforts. However, there are comparably few editors of the latter kind. The
most prominent among these are MathJax 4 or MathCast 5. Several others
arose from singular efforts and are not maintained reliably [23].

But all these editors do not meet many of ℐ𝒮𝒜𝒞’s user requirements (in-
troduced later one); so these fall out of scope of this thesis as well. However,
there is much to learn from all these products, the most relevant points are
addressed subsequently.

The internal structure of formulas is different for the two standards
LATEX and MathML. The former is the eldest standard for mathematical
formulas and still used for scientific papers and books. The latter has been
introduced for use in internet browsers. The former presentation is merely
character strings, the latter reflects more mathematical structure [18].

Input of formulas is a separate challenge for editors. All of them provide
two-dimensional representation of formulas, but few of them allow input di-
rectly within the two-dimensional representation. A frequent detour is input
of formulas as strings, which afterwards are rendered in two dimensions.
Such a detour is out of ℐ𝒮𝒜𝒞’s user requirements introduced below, and thus
out of scope of this thesis.

Further requirements for ℐ𝒮𝒜𝒞’s formula editor are concerned with ac-
cessibility for visually impaired persons. These concerns have been clarified
by a preceding masters thesis [6] and the thesis at hand builds on that work.

Most intuitive input of formulas is promised by handwriting recognition;
however, most respective products are proprietary software, not open source
and thus out of scope of this thesis. Few experiments in open source are not
yet sufficiently serious for being envisaged by this thesis.

2.2.2 MathML

MathML is a standard issued by the World Wide Web Consortium (W3C),
now available in version three [30] within HTML5. MathML is a dialect of
XML, thus formulas encoded in MathML can easily be embedded in XML
documents and rendered in internet browsers.

MathML models the structure of a formula using specific XML tags. The
listing on p.8 shows how identifiers are modeled by tag <mi>, operators by
tag <mo> and numerals by tag <no>:

4https://www.mathjax.org/
5http://mathcast.sourceforge.net/home.html

https://www.mathjax.org/
http://mathcast.sourceforge.net/home.html
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1 <math xmlns="http://www.w3.org/1998/Math/MathML">
2 <mi>y</mi>
3 <mo>=</mo>
4 <msup>
5 <mi>x</mi>
6 <mrow>
7 <mn>2</mn>
8 <mi>k</mi>
9 <mo>+</mo>

10 <mn>1</mn>
11 </mrow>
12 </msup>
13 </math>

<mrow> collects elements simply in a horizontal sequence, for instance
2𝑘 +1 as shown in Fig.2.1. Other tags are used to determine position, height
and width of characters and spaces, and also level and style of sub-terms.
An example is exponentiation as shown in Fig.2.1.

Figure 2.1: Example MathML

Another example are fractions. Since XML trees are a recursive data
structure: a fraction can contain another fractions, etc.

The MathML shown in the listing on p.8 is “presentation format”, a
format close to the structure of the rendered formula, also called “concrete
syntax”. MathML defines a “content format”, too, for capturing the mathe-
matical structure of a formula, the “abstract syntax”. The latter turned out
irrelevant for this thesis and is thus not discussed further.

2.2.3 LATEX Technology

Modern standards of typesetting have been established by an academic none
commercial effort started by the mathematician and computer scientist Don-
ald Knuth in 1976. He was disappointed by the poor standards of newly
developed electronic publishing tools at that time. So he created one of his
own and named it TeX. As a mathematician Knuth was particularly inter-
ested in high quality of formula presentation, so this has been integrated in
TeX.

In contrary to MathML LATEX is input as a string; the specific syntax is
intuitive even for complicated formulas and known by heart by most math-
ematicians:

1 $y=x^{2k+1}$
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This string needs to be parsed. The resulting parse tree remains invisible
for the user. The formula defined by the string above is rendered this way:

𝑦 = 𝑥2𝑘+1

This simple example already indicates the many intricacies involved in
high-quality rendering of a mathematical formula: specific fonts help to dis-
tinguish letters, see for instance the strange 𝑥; further details will be dis-
cussed in §2.2.4 below. Then spacing between elements, just note the dif-
ferent spaces left and right of the equal sign = and compare it with the
smaller spaces left and right of +; further details will be discussed in §2.2.5
below. And last not least, the size of characters in the superscript 2𝑘 + 1 is
decreased in a certain amount as compared to the basis; further details will
be discussed in §2.2.6 below.

All that details are determined automatically from a simple string by
LATEX, so an author using this system can focus the content of his work and
is not distracted by issues of layout.

2.2.4 Standard Font

Donald E. Knuth even took care of fonts, was the first person to define
the shapes of characters by mathematical means, and developed a specific
font, AMS Euler Font [7], in collaboration with Hermann Zapf from the
American Mathematical Society (AMS). This font resembles handwriting of
a mathematician. The book Concrete Mathematics [4] was the first book
written using this font after integration into TeX.

Further notable fonts are MathML font and STIX font. Both are used
by MathML and other typesetting systems.

Fig.2.2 shows a very simple formula in order to introduce two impor-
tant notions for mathematical fonts, baseline and midline. The former is the
line where letters like a, b or c are based on, but not descenders like f, g
or j. The latter is placed at 2/3 of the height and has a specific purpose.
Mathematical symbols like +, · etc are not placed on the baseline but on the

Figure 2.2: Placing of the plus symbol.

midline (note that + goes beyond the baseline). This leads to nicely readable
formulas, where + is at the same height as a fraction bar, for instance 𝑋 + 𝑋

𝑋
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2.2.5 Spacing

As mentioned, LATEX creates rendering of formulas from strings and deter-
mines spaces between elements of a formula automatically. In case automatic
spacing appears not optimal, additional spacing information can be given
by ∖, and ∖; and other means.

MathML, however, makes spacing explicit by distinguishing specific tags
for

• operations
• identifiers
• numbers
• relations

These tags determine spacing specifically for various combinations of ele-
ments in a formula: there can be a

• large space (LS)
• medium space (MS)
• small space (SS)

where the abbreviations in parentheses refer to Fig.2.3. Here a table as-
sembles all combinations and the resulting spaces. The formula 𝑥 = 𝑎 + 𝑏

Figure 2.3: Spaces between elements of a formula.

involves spacing as shown in Fig. 2.4.

2.2.6 Character Size in Sub-Terms

Assignment of different sizes to different parts of one and the same formula
has first been formalized in LATEX. There each element of a formula is con-
tained in a box with specific width and height. So a formula becomes a tree
of boxes, where boxes contain other boxes and so determine higher levels
of nesting. Specific operators like fraction and exponentiation are assigned
specific vertical arrangements, where the level of boxes is increased by one
at a time. Fig.2.5 shows an example.

Each level reduces the size of embraced boxes. LATEX reduces box sizes
for such sub-terms by 66,6%, but only three levels down and then remains
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Figure 2.4: Spaces created for string “x = a + b”.

Figure 2.5: Levels of boxes in LATEX

constant. MathML, in contrary, remains constant already down from level
two. In both cases sub-terms remain readable in case of dynamic size change,
see Fig.2.6 on p.11.

Figure 2.6: Space is reduced by 2/3 for each level, maxlevel = 2.

2.3 Front-ends of Theorem Provers (TPs)
This thesis uses the abbreviate “TP” for both, for the academic discipline of
automated theorem proving (ATP) and interactive theorem proving (ITP)
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as well as for respective software systems. TP is an emerging technology, so
neither basic namings are settled (like “TP”) nor user interfaces (while the
logical foundations are about hundred years old).

2.3.1 State and Future of TP Front-ends

State of the art TPs combine ATP and ITP, like Isabelle [16], and are fre-
quently called generic proof assistant. The word “generic” points at the fact,
that even the basic logic can be determined within the system (if derivable
from “natural deduction” [3]). In Isabelle “Higher Order Logic” is most elab-
orated and abbreviated Isabelle/HOL.

At present TPs appear not targeted to widespread use of SW-engineers
(or of mathematicians), rather, TPs are concern of small groups of experts all
around the world. However, the user group is rapidly growing — mechanized
software verification is underway to engineering practice (and more slowly
to mathematicians’ everyday practice).

The first front-end for TPs was the Emacs editor [22], for centuries the
editor for programmers, and early adapted to TPs. Most power users of TP
still prefer the Emacs interface to other interfaces. However, Emacs technol-
ogy becomes outdated with the advent of parallel proof checking and with
widespread usage in engineering. Another issue is integrating collaboration
and version management with TPs.

The TP in the focus of the thesis, Isabelle, has the most advanced front-
end. It already shows part of what is called “transparent system” in the ℐ𝒮𝒜𝒞
project: all mathematical knowledge underlying any interaction in problem
solving is directly accessible (and readable by humans). Fig.2.7 shows what

Figure 2.7: Isabelle shows underlying knowledge transparently.

knowledge Isabelle shows by mouse click: the axioms of a semigroup by
click on +, the definition of integers as equivalence relation over natural
numbers by click on int (where one also finds the proof, that integers form a
seminring), a click on distrib_left the theorem of distributivity together with
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the proof, that this theorem holds for semigroups (and thus for seminrings
and thus for integers), etc.

2.3.2 Isabelle’s Graphical User Interface

The TP Isabelle [16] already exploits multi-core hardware and prepares for
widespread usage in the practice of software engineers and mathematicians.
Isabelle’s front-end has a specific interface, PIDE (prover IDE — integrated
development environment) [25]. This interface is capable of parallel proof
checking [26], linking editor content with definitions, etc. The main applica-
tion of PIDE uses jEdit [27] as front-end (besides others under development
for Eclipse and for standard browsers).

Here only those aspects of Isabelle/jEdit are presented, which are rele-
vant for the thesis. Isabelle’s front-end used for software verification looks
as shown in Fig.2.8 on p.13. Program code is a normal Isabelle term. For

Figure 2.8: Programs in Isabelle’s verification environment.

programming line-oriented presentation is appropriate. Isabelle uses line-
oriented presentation also for mathematical formulas as shown in Fig.2.9 on
p.14. This kind of presentation is still considered appropriate for TP. How-
ever, for widespread practice engineers will request the formula from Fig.2.9
presented as

𝑛∑︁
𝑖=0

𝑖3 = (𝑛 · (𝑛 + 1))2

4
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according to standards established by LATEX. Isabelle/ℐ𝒮𝒜𝒞 aims at widespread

Figure 2.9: Isabelle’s line-oriented formula presentation.

use and thus must go beyond Isabelle/jEdit in quality of formula presenta-
tion.

2.3.3 Isabelle’s Term Presentation

While Isabelle’s term representation appears simple, the respective inter-
nal machinery is standard technology, analogous to parsing of programming
languages. The process from term representation at the GUI to the repre-
sentation required for computer mathematics, and the all the way back, is
shown in Fig.2.10.

Figure 2.10: Translation from the graphical representation to term vice
versa.

The process comprises the same separation of concerns between presenta-
tion format and internal format, which distinguishes MathML presentation
format from content format as discussed in §2.2.2. The process in detail is
as follows:

1. transformation: Pixels are handled by GUI-components and trans-
formed into an AST, which is as close as possible to the graphical
representation.

2. transformation: The AST close to graphical representation is trans-
formed such, that its structure is as close to terms as possible.

3. transformation: The AST close to term representation is transformed
into a term, Isabelle’s data structure for deduction and computation
in the prover.

4. transformation: From the prover come, among others, terms (i.e. for-
mulas, assumptions, programs, etc) which are transformed back to an
AST the easiest way; thus the structure of this AST is (again) close
to term representation.

5. transformation: The AST close to term representation is transformed
back such, that its structure is as close to graphical representation as
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close as possible.
6. transformation: Finally, the resulting AST is transformed into graph-

ical representation.
A specific issue for formula editors is raised by the fact, that Isabelle’s col-
lection of theories is extensible arbitrarily, including mathematical notation.
For instance, lists are defined as follows in Isabelle, the datatype for de-
duction and computation (the operation # :: ′𝑎 ⇒′ 𝑎list ⇒ ′𝑎 list is
defined with operator precedence 65) as well as the mathematical notation
𝑎#[𝑏, 𝑐] = [𝑎, 𝑏, 𝑐], as shown in Fig.2.11 on p.15.

Figure 2.11: Definition of list plus notation.

The consequences from these facts, alongside with others, for designing
a prototype editor will be reflected by software requirements later on.

Isabelle’s Formula Transformations

In order to prepare discussion of Isabelle’s transformations between pre-
sentation format and internal format of formulas, the transformations are
shown for the formula [𝑎𝑎𝑎, 𝑏𝑏𝑏, 𝑐𝑐𝑐], a list with three elements. 6.

Annotated Syntax Trees (AST) are the central part in Fig.2.10.ASTs
are indispensable for handling “syntactic sugar” like parentheses of lists. In
order to watch the process from Fig.2.10, the term [𝑎𝑎𝑎, 𝑏𝑏𝑏, 𝑐𝑐𝑐 :: 𝑖𝑛𝑡] is
packed into a dummy lemma:

lemma "[aaa,bbb,ccc::int] = ddd"
oops

Now the AST, which comes from the input of the lemma looks like this
(output in a LISP-like style implemented in Isabelle:
pre:
("const>HOL.Trueprop"

("\<^const>HOL.eq"
("_list"

("_args" ("_constrain" aaa <position>)
("_args" ("_constrain" bbb <position>)

("_constrain" ("_constrain" ccc <position>) "\<^type>Int.int"))))
("_constrain" ddd <position>)))

6The process and the data structures used in formula representation are very close to
these used in compiler construction.
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This AST contains positions (not printed in detail above), which Isabelle
uses for error messages such, that the messages can be shown at the location,
where the error comes from.

The above AST is transformed such, that the structure is as close to the
structure of a term (terms are those datastructure, which Isabelle uses for
reasoning and calculating):

post:
("\<^const>HOL.Trueprop"

("\<^const>HOL.eq"
("\<^const>List.list.Cons" ("_constrain" aaa <position>)

("\<^const>List.list.Cons" ("_constrain" bbb <position>)
("\<^const>List.list.Cons"

("_constrain" ("_constrain" ccc <position>) "\<^type>Int.int")
"\<^const>List.list.Nil")))

("_constrain" ddd <position>)))

Actually, the term generated from this AST has a very similar structure:

Const ("HOL.eq", "int list => int list => bool") $
(Const ("List.list.Cons", "int => int list => int list") $ Free ("aaa", "int") $

(Const ("List.list.Cons", "int => int list => int list") $ Free ("bbb", "int") $
(Const ("List.list.Cons", "int => int list => int list") $ Free ("ccc", "int") $

Const ("List.list.Nil", "int list")))) $
Free ("ddd", "int list")

Note, that each element of this term has a type: int list the list elements
and "int => int list => int list" the list constructor. The types are
automatically determined by Isabelle’s type inference [1, 5]. The types in-
crease reliability of Isabelle’s mechanical reasoning and go far beyond the
kind of types known from programming languages.

After internal operation in Isabelle, from the above term the following
AST is created, which contains the type information in order to allow to
show it on user request:

pre:
("\<^const>HOL.Trueprop"

("\<^const>HOL.eq"
("\<^const>List.list.Cons" ("_constrain" ("_free" aaa) "\<^type>Int.int")

("\<^const>List.list.Cons" ("_constrain" ("_free" bbb) "\<^type>Int.int")
("\<^const>List.list.Cons" ("_constrain" ("_free" ccc) "\<^type>Int.int")

"\<^const>List.list.Nil")))
("_constrain" ("_free" ddd) ("\<^type>List.list" "\<^type>Int.int"))))

Then the translations work the other direction and create an AST, which is
convenient for Isabelle to render the output.

post:
("\<^const>HOL.Trueprop"

("\<^const>HOL.eq"
("_list"

("_args" ("_constrain" ("_free" aaa) "\<^type>Int.int")
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("_args" ("_constrain" ("_free" bbb) "\<^type>Int.int")
("_constrain" ("_free" ccc) "\<^type>Int.int"))))

("_constrain" ("_free" ddd) ("\<^type>List.list" "\<^type>Int.int"))))

Note, that this structure for output is the same as the initial one from input,
just positions have been replaced by types.

2.4 The ℐ𝒮𝒜𝒞-Prototype

The academic field of TP (combining ATP and ITP) attracts much atten-
tion from the side of software verification and from formal specification of
technical systems; thus efforts in TP are focused on these requests. Atten-
tion from the side of education is still weak. ℐ𝒮𝒜𝒞 is one of three projects on
educational software for engineering mathematics based on TP technology:
MathToys [url-mathtoys] classifies itself a “toy” while E-Math [url-emath]
already started as an economic enterprise. So even judgment of seriousness
of such undertaking is not yet settled.

2.4.1 Prototype for a New SW-Generation

The ℐ𝒮𝒜𝒞 project considers prototyping as a serious. long-lasting 7 research
effort driven by development of TP technology and by requirements of learn-
ing mathematics, presently focused on engineering education. Prototyping
already clarified [12], that the features of TP are apt to generate a new
generation of educational mathematics software. The following features are
considered essential:

Deduction covers math’s distinguishing feature The distinguishing
feature of mathematics is formal reasoning, this feature distinguishes it from
other scientific disciplines and makes math a core method for many of them.
Thus didactic experts stress importance of reasoning on all levels of math ed-
ucation. The technology of deduction appears as the most appropriate basis
for educational math software. This is, however, presently not acknowledged
in practice: All educational math software except the three mentioned above
are built upon Computer Algebra (including Gröbner Bases for ATP in Dy-
namic Geometry).

An implicit consequence of the fact, that deductive technologies address
most essential aspects of mathematics is, that such technologies promise a
wider coverage in software support for engineering mathematics, in partic-
ular for specifying problems, identifying and arranging subproblems.

7http://www.ist.tugraz.at/isac/History

http://www.ist.tugraz.at/isac/History
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Mathematics knowledge is self-contained Fig.2.7 on p.12 showed,
what wealth of knowledge TP can reveal by mouse click behind the simple
lemma "12345 * 67 + 12345 * 33 = 12345 * 100":

1. + does not refer to some program code computing sums, rather they
are logical entities related to axioms of abstract algebra.

2. int does not refer to types of number representation, rather they re-
fer to the established deduction of integers from naturals ((𝑥, 𝑦) ≡
(𝑢, 𝑣) ←→ 𝑥 + 𝑣 = 𝑢 + 𝑦). And there is the proof, that integers are
associative, etc.

3. Each step, even a simple addition, is justified by some law (in this case
distrib_left) in traditional notation of mathematics.

So mathematics knowledge is self-contained: each object or fact is mechan-
ically justified, deduced from the axioms of logic in the end — so TP is apt
to establish “complete model of mathematics”.

Presentation can be close to traditional notation Another appealing
feature is, that TP can present mathematics in traditional notation every
educated person is familiar with (while the ability to construct knowledge
remains demanding) — so no need to learn some programming, some new
language or the like.

Of course, there are sophisticated deductive technologies like automated
provers, SMT, Gröbner Bases, etc, which involve specific representation of
formulas — but these representations can be hidden by a proof assistant
(Isabelle, for instance, nicely hides the internals of Sledgehammer [20] and
employs proof reconstruction [19]). So TP is apt to establish “transparent
models” of mathematics.

ATP is most powerful in checking user input Given a logical context
in a typed system, user input creates a proof situation: can the input formula
be derived from the context using certain knowledge?

ATP provides the most powerful technologies to decide this question! Of
course, the question is undecidable in principle (for instance in Isabelle/HOL),
but experience in the ℐ𝒮𝒜𝒞-project [url-isac-history] shows, that engineer-
ing problems need to be broken down to sub-problems anyway and within
these, most reasoning is much simpler than in proofs. Thus decisions for
derivable or not can be given in most cases.

So, TP is apt to establish “interactive models” of mathematics.

An extension to TP: “Next-step guidance” One requirement ap-
pears indispensable for “systems that explain themselves”: students can in-
put steps in constructing a Solution on their own for learning by trial &
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error — and get feed-back from the system. For checking correctness of
input, ATP is the most powerful technology as mentioned above.

However, what if a student gets stuck, which is a frequent situation
in learning by trial & error? Then the system has to provide a next step
— and this requirement is beyond the scope of TP. So the ℐ𝒮𝒜𝒞-project
uses Lucas-Interpretation [10, 11] for suggesting a next step and envisages
a comprehensive dialogue component for adaptive user guidance.

Relevance of TP features for education is is given by the fact, that
Isabelle/ℐ𝒮𝒜𝒞 is a “complete” 8 , transparent and interactive model of math-
ematics. So ℐ𝒮𝒜𝒞 is not primarily built for teaching, but for learning math-
ematics by interacting with the “model”, by investigation and by trial and
error — learning happens the same way as chess masters use chess playing
software for developing new strategies.

2.4.2 ℐ𝒮𝒜𝒞’s Front-end

The front-end is connected with the mathematics engine Isabelle/ℐ𝒮𝒜𝒞 not
via the standard interface [25], but by a specific one [libisabelle]. This
special interface transports terms9 as shown in Fig.2.12. The reader may
note, that formulas from the front-end back to Isabelle are encoded as strings
to be re-parsed and typed correctly 10.

Figure 2.12: Transport of formulas from the front-end to the back-end.

Terms have first been exploited in ℐ𝒮𝒜𝒞 by [6]. Most of ℐ𝒮𝒜𝒞 still repre-
sents terms as strings. Both together is possible, because all formulas are
transported by a Java object Formula, which contains both, the formula as
string and the formula as term (see the connection between Isabelle/ℐ𝒮𝒜𝒞
and Bridge in Fig.2.12).

8“Complete” not in the sense of the rigorous notion in model theory.
9 We use the word “term” for the data structure used for mathematical reasoning and

“formula” as a general notion without reference to data structure.
10Re-parsing of formulas encoded as strings shall remain as is according to §2.5.1
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The front-end manages various kinds of formulas, in examples, in formal
specifications, in assumptions, in explanations etc. Fig.2.13 shows the front
end in the state before beginning of this thesis: The headline on top shows

Figure 2.13: The previous ℐ𝒮𝒜𝒞 front-end.

some buttons (NEW for starting a calculation like in a computer algebra
system, Examples for calling prepared examples in the Example browser,
Theories, Problems and Methods calling respective hierarchies of mathemat-
ics knowledge, NEXT and AUTO call for a next step and the final result,
respectively) — all these are not relevant for this thesis.

In the panel below the headline on the left is an example with number
7.70. A click on this number had started interactive problem solution in
the Worksheet in the middle of the panel. On the right side of the panel
a part of the Theory browser is visible, which has been called by the step
from −𝑞 𝑥 = −𝑞0 to 𝑄′ 𝑥 = −𝑞0 in the Worksheet (from line 3 to line 4).
The Worksheet is part of Isabelle/ℐ𝒮𝒜𝒞 in Fig.2.12 like all other components
shown in Fig.2.13.

The Theory browser shows an explanation for this step 11.
The windows on the left and on the right are not concern of this thesis,

11There is an inconsistency in variable naming: the shear force is named 𝑄 in the
worksheet and 𝑉 in the explanation. The reason is simple: the engineer involved in the
respective project [15] changed is mind quicker than authoring could accomplish within
time limits.
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only the window in the middle and in the focus, the Worksheet. The Work-
sheet is the center of activity during interactive problem solving: from here
are called formal specification of the problem and of subproblems, methods
to solve problems, explanations for certain steps (as shown in the figure)
etc.

The Worksheet holds the steps during interactive problem solving, to-
gether called a Calculation in ℐ𝒮𝒜𝒞. Indentations of steps indicate sub-
problems (like the integration in Fig.2.13). Steps consist of two text lines,
one for the actual formula (with significant indentation) and the other for
the formal justification shifted to the right margin (not shown in the figure).
The red marker indicates, that there is no formula input and approved by
Isabelle/ℐ𝒮𝒜𝒞.

Further functionality is provided by the Worksheet: a right-mouse-click
on a formula opens a context menu with the following entries:

• Assumptions: lists the assumptions generated in this step.
• Tactic applied: the tactic provided by the system if the step has been

done by Isabelle/ℐ𝒮𝒜𝒞.
• Intermediate steps: opens a deeper level of formulas if available, e.g.

in a sub-problem.
• Tree representation: displays the respective formula in a representation

for visually impaired students as implemented by [6]. As soon as this
functionality will be covered by the editor under construction, this
entry will disappear.

A right-mouse-click on a tactic field presently opens a context menu listing
some12 tactics to be applied to the selected step.

All in all, the Worksheet incorporates much functionality and accord-
ingly is a complex software module with various kinds of input and of user
interactions.

2.5 Requirements for the Editor Prototype
The preliminary work as described above leads to decisions by ℐ𝒮𝒜𝒞’s project
leader in order to cut down the extent of efforts for the practical part of the
thesis.

Nevertheless, user requirements are stated in full coverage and without
any curtailment. What not can be accomplished within this thesis, will be
recorded in the final summary. But the software requirements capture con-
sequences of the preliminary design decisions of the project leader. This
particularly holds for decisions about the programming language Scala.

12ℐ𝒮𝒜𝒞’s dialogue guide is prepared to present different lists, as soon as a respective user
model is implemented: a list with all relevant tactics, a list with applicable tactics (which
seduces to blind trial&error clicking), a list adding some not-applicable tactics, etc.



2. Preliminaries 22

Use cases are postponed to a later chapter, where design considerations
have clarified several issues already.

2.5.1 Downcut Decisions for Prototyping

In an early phase of work on this thesis the project leader stated the following
decisions.

Stay with Java Swing and postpone browsers. The requirements for
ℐ𝒮𝒜𝒞, those for a formula editor in §2.5 alone, reflect the possibility, that
such software tools will migrate from universities down to high schools and
will adapt accordingly. There front-ends for mobiles will be appropriate; but
such migration require additional development efforts and will take time
(and hopefully technologies on mobiles will have settled, and Java will not
have decayed in the meanwhile).

This decision is also combined with the hope, that integration of ℐ𝒮𝒜𝒞
with Isabelle is also possible at the front-end: The Isar proof language [29]
is designed on a high level of abstraction and implemented using standard
concepts of compiler construction. So re-use (see §3.1 below) of Isabelle/-
jEdit for Isabelle/ℐ𝒮𝒜𝒞 shall be considered. Probably Isabelle will have an
optional browser-based interface in a few years, which would be in line with
ℐ𝒮𝒜𝒞’s migration to mobiles. 13

Restrict formula transformation to one direction, the direction from
the back-end to the front-end. This divides efforts in less than half. The
other direction, from the front-end to the backend, stays as is — where
formulas are reverted to strings in a format, which can be parsed correctly
by Isabelle/ℐ𝒮𝒜𝒞.

Input (i.e. in direction from the fronend to the back-end) of subterms
requires a parser. This parser shall be implemented just for the use cases
and with minimal effort.

In this direction drop all but the naked formula, which is: mark-
ers for line breaks, types and references to definitions. Such markers an-
ticipate line breaks at appropriate subterms in case the width of formula
representation is limited (e.g. in case the window width changes). Dropping
types can get over demonstrations of a prototype. But dropping references
to definitions is a real show stopper: major advantages of TP technology as
emphasized in §2.3 cannot be demonstrated in the prototype.

13At present the major obstacle in re-using Isabelle/Isar for Isabelle/ℐ𝒮𝒜𝒞 is that ℐ𝒮𝒜𝒞
is a multi-user system, while Isabelle has no session management.
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2.5.2 User Requirements

The user is a student of a course in mathematics or in an engineering subject
and doing respective homework. A student also can be visually impaired and
thus raises specific requirements [6].

UR 2.1 Editing a formula comprises:
• input from scratch
• delete sub-terms in a formula
• add elements to a formula: variables, numerals and operators
• update arbitrary elements of a formula.

UR 2.2 Formulas are IDE-like, i.e. elements of formulas are linked with
underlying definitions of operators and of types by mouse click.

UR 2.3 Two-level feedback on input. Input is finally terminated by a
special key, which submits the input formula to Isabelle/ℐ𝒮𝒜𝒞 for checking
logical consistency (e.g. the formula must be derivable from the current con-
text). Such checks are costly and slowly — while there should be immediate
feedback on missing parentheses, missing arguments of operators: so there
should be another level of feedback restricted to the editor (i.e. without
involving Isabelle/ℐ𝒮𝒜𝒞).

UR 2.4 Two kinds of access: set focus, edit. A formula or a tactic
under focus make various services available, which depend on the respective
location in a calculation: for instance, show rules applicable at the formula.
Different from this kind of access is editing and updating a formula or a
tactic — for editing completely different services are required.

UR 2.5 A formula can be read-only without or with exception of some
subterms. Such restriction of users’ options extends the dialogue’s ability in
user-guidance. The read-only status is made visible.

UR 2.6 The set of operators is extensible. Mathematics is an evolv-
ing science. Thus the language of mathematics, as provided by Isabelle, is
extensible — and Isabelle/ℐ𝒮𝒜𝒞’s editor thus must be extensible, too.

UR 2.7 Operators can be input by keys or by a context sensi-
tive palette. This anticipates availability on hand-helds with small (touch)
screen.

UR 2.8 Operators have the following properties, where some of them
are described using “non-standard” names below:
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1. Arity, the number of arguments: in 𝑎 + 𝑏 the operator + has two argu-
ments, 𝑎 and 𝑏; in

∫︀ 𝑏
𝑎 𝑥2𝑑𝑥 there are four arguments (Isabelle prefers

three arguments: the last two arguments are written as one term 𝜆𝑥.𝑓);
in −1 the − has one argument, but it has two in 𝑎− 𝑏.

2. “Fixity”:
(a) prefix, e.g. operator sin is prefix in sin 𝑥2 with argument 𝑥2

(b) postfix, e.g. 𝑖 + + is postfix with argument 𝑖 in programs
(c) mixfix, e.g. if 𝑎 < 𝑏 then 𝑎 else 𝑏 is mixfix with arguments

𝑎 < 𝑏, 𝑎, 𝑏

Note, that also programs are formulas (and in fact, ℐ𝒮𝒜𝒞’s methods
shall be presented via the editor in the future).

3. Priority: It is customary that 1+2 ·3 = 7 and not 1+2 ·3 = 9, because
· has a higher priority than +. So priority is determined by natural
numbers.

4. Symbol: mathematicians occasionally use strange symbols for specific
operators like ∈,⊑,⊗,⊗⋆,⊗⋆ etc.

5. “Layout” in the graphical representation is already different for bi-
nary operators (operators with two arguments): operator / produces
𝑎
𝑏 , operator ^ produces 𝑎𝑏, etc.

6. “Syntactic sugar” concerns specific representations for certain formu-
las, for instance for lists as [1, 2, 3].

UR 2.9 Operations like +, ·, − etc are binary. MathML presentation
format §?? reflects associativity of operations by <row> and thus accommo-
dates mathematical habits. ℐ𝒮𝒜𝒞 insists on rigorous handling of formulas, for
instance, when applying algebraic laws: thus (𝑎+𝑏)+𝑐 and 𝑎+(𝑏+𝑐) should
not be the same. + is left associative, so only for (𝑎 + 𝑏) + 𝑐 parentheses are
omitted to 𝑎 + 𝑏 + 𝑐, and not for 𝑎 + (𝑏 + 𝑐).

UR 2.10 A formula can have several fill-in-gaps. See UC.3.6. Fill-
in-gaps shall also be used for guidance at input, for instance at input of
a definite integral like

∫︀ []
[] []𝑑[] the graphical representations appears with

fill-in-gaps, here denoted by []. See UC.??

UR 2.11 Special keys let jump from gap to gap in a formula.
UR.3.6 shows several fill-in-gaps. The user is supported to place the cursor

to other gaps without using the mouse.

UR 2.12 Subterms can be marked by certain colors. See UC.3.6,
where the colored areas are indicated by rectangles. Note, that the colors
can be related within certain formulas (e.g. lines 05, 06 and 07 in UC.3.6).

UR 2.13 The system can place the cursor to a subterm. See UC.??.
However, the user is free to manually set the cursor everywhere in a formula.
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UR 2.14 The user can set the cursor to any sub-term in a formula
(independently from writable or read-only according to UR.2.5)). In case of
writable, editing occurs at the position of the cursor.

UR 2.15 Input is immediately represented in 2 dimensions. Input
comes from the keyboard and appears at the cursor-position (UR.2.14).
Specific operations (e.g. division) immediately lead to specific representation
(e.g. a horizontal fraction bar).

UR 2.16 Line breaks regard the structure such that operators with
high priority are held together and breaks are in-between elements bound
by lower priority. This feature also applies dynamically when the width of
windows changes.

UR 2.17 There are keys for navigating through the sub-terms of a
formula. These <keys> are in detail:

• <Alt> + <↓> next subterm on the same level
• <Alt> + <↑> previous subterm on the same level
• <Alt> + <→> one level down in the tree of sub-terms
• <Alt> + <←> one level up in the tree of sub-terms

These Keys are necessary for the inclusion(see §2.1).

UR 2.18 Navigation keys are preset and can be changed

UR 2.19 Hitting inappropriate keys (e.g. <Alt> + ↑ at the root of
the sub-terms’ tree) triggers auditive feedback.

UR 2.20 (Sub-)terms are represented on the Braille display as
strings. Together with UR.2.17 even complicated formulas should become
comprehensible. The braille indicates the number of a subterm within the
sequence on one level (according to UR.2.17) by a natural number and the
level by the number of leading blanks after this number (see §2.1).

UR 2.21 Navigation on formulas is inclusive which means, that a
sighted student and a visually impaired student are able to cooperate on
the same formula: one via mouse and screen, the other via keys and Braille
display. Thus, marking of sub-terms by mouse and by navigation keys is
analogous, and both trigger output to Braille (see §2.1).

UR 2.22 String-representation of formulas is variable. There are
specific formats [6] for presentation of formulas on a Braille display (see
UR.2.20). The same format is used for input according to UR.2.15 – which
might be different for sighted users and for visually impaired.
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UR 2.23 A sub-term can be marked such that both, a sighted student
and a visually impaired student can identify the marked region (cf. UR.2.20)
and use this information for cooperation (see §2.1).

UR 2.24 Font size can be adapted by the user as well as preset for
specific purposes, e.g. demonstration via beamer. The size is the same for
all formulas of a Worksheet.

2.5.3 Software Requirements and Scala

The following requirements reflect the leader’s decisions from §2.5.1, which
immediately leads into using Scala. So a few words about this fairly novel
programming language [17] and it’s relevance for this thesis. The use of Scala
is enforced by the fact, that the envisaged editor exchanges formulas with
Isabelle/ℐ𝒮𝒜𝒞 as Scala datastructures (more details about that will follow
later). Good luck for prototyping within this thesis is that the editor’s GUI
has to integrate with Java Swing — and that is what Scala has been built
for: provide novel features (like type inference, functional programming, al-
gebraic datatypes, etc) and remain compatible with approved features (Java
Virtual Machine, Java Swing, etc). Particularly useful for implementing the
editor was Scala’s smooth integration with Java Swing and pattern match-
ing on the formula’s Scala datastructures; this gives short, readable and thus
elegant code.

The software requirements following subsequently give a first look ahead
into details of the envisaged editor.

SR 2.1 The editor is rendered by JavaSwing. ℐ𝒮𝒜𝒞 has the potential
to gradually migrate in usage from universities to high school. At the latter
acceptance of ℐ𝒮𝒜𝒞 requires availability on mobiles. Software technology of
mobiles seems not be settled sufficiently in order to decide details for imple-
mentation of a formula editor (JavaScript in standard browsers?). So ℐ𝒮𝒜𝒞
will adhere to the existing front-end in JavaSwing for some more years, and
thus the editor uses this technology.

SR 2.2 Scala code is a mirror of Isabelle’s ML code. Formulas come
as Scala structures from Isabelle to the front-end. Presently Isabelle’s han-
dling of formulas is implemented in SML. So part of this handling has to be
translated to Scala, and Isabelle’s well-tried structure is mirrored as much
as possible. In particular the file structure and the identifiers are mirrored
from SML to Scala.

SR 2.3 Adopt Isabelle’s machinery for defining syntax. Isabelle’s
tools to define new operators appear elegant and exhaustive, such that the
interfaces provided by these mechanisms should be used as much as possi-
ble also for a LaTeX-like editor. This is particularly related to UR.2.6 and
UR.2.8.
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SR 2.4 Formulas are represented as ASTs. Formulas come from Is-
abelle as Terms in a Scala structure, which is close to MathML content
format §??. For the editor a structure close to MathML presentation format
§?? is more appropriate. The respective standard structure are annotated
syntax trees, abbreviated as “AST”. Isabelle’s ASTs (and also their transla-
tion to Scala) reflect subterms sufficiently in order to meet UR.2.12.

SR 2.5 Boxes and cursor are set within Scala. Boxes are set via
substitutions found by a rewrite engine. While rewriting is done in a type-
safe way in Isabelle/ℐ𝒮𝒜𝒞, setting boxes is done in the front-end at lower
costs. AST-AST-translations come with a rewrite engine, which is sufficient
for this purpose (where theorems have been pre-selected by Isabelle/ℐ𝒮𝒜𝒞).

SR 2.6 Settings are determined in a property file. Settings comprise
colors of marked areas (c.f. UR.2.12), font size (c.f. UR.2.24), etc. Settings
are stored in a (Java) property files at the place where the other files reside
in the code.

SR 2.7 Use cases are reflected in the repository in the JUnit Test-
Case in package isac.gui.mawen.TestUseCases.



Chapter 3

Design Considerations for
TP-based Editors

The TP-based Editor has special requirements witch are shown in §2.5. In
this chapter discusses design consideration in order to perform these require-
ments.

3.1 Re-use of Existing Components
Isabelle is a generic proof assistant §2.3.1 with a generic graphical user-
interface §2.3.2 — where both are not only generic with respect to their
functionality, but also with respect to their software architecture. So re-use
of respective components and technology is an obvious offer for designing a
TP-based editor in the ℐ𝒮𝒜𝒞-prototype. §2.3 shows the status quo of these
technologies, where §2.3.3 introduces Isabelle’s terms and ASTs.

User requirements do not mention type annotations in formulas. So an
essential design decision is to drop types of formulas and of all the elements of
a formula. Further experiences with the ℐ𝒮𝒜𝒞-prototype will show whether
this decision restricts learning opportunities and whether it is worth the
efforts implementing this feature.

With the decision to drop types the next decision is straight forward –
we recall that Isabelle uses two structures of Formulas:

• Terms for calculation and
• Annotated Syntax Trees (AST) for representation.

To guarantee the compatibility, the ℐ𝒮𝒜𝒞-prototype uses the same structures.
For the visual representation of formulas we only need the AST structure —
and without any type annotations, which simplifies things considerably (c.f.
p.15). However, Isabelle actually has no interfaces to transfer an AST to
the front-end, so we need to translate the respective Isabelle code explained
in §2.3.3 from SML to something, which can be integrated into the ℐ𝒮𝒜𝒞-

28
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prototype’s Java Swing — and this is Scala already in use by PIDE [27] and
introduced in §2.5.3.

Since the editor has to be integrated into the ℐ𝒮𝒜𝒞-prototype, re-use of
respective components is obvious as well.

3.1.1 Adapt Isabelle’s AST Transformations

As shown in §2.3.3 Isabelle uses one and the same machinery for both di-
rections, the transformation from the front-end (graphical representation)
to the back-end (typed term) and vice versa. We shall see, that only one di-
rection was taken for translation to Scala and for adaption to the prototype
editor.

Not only type annotations have been dropped within prototype devel-
opment by this thesis (as mentioned above), also several components of
Isabelle’s AST transformation machinery have been simplified for :

• Symbol tables, in Isabelle implemented as balanced 2-3-trees, are rep-
resented as Scala Map.

• Automated generation of rewrite rules for AST-AST-translations from
convenient syntax definitions (see for instance Fig.2.11) is replaced
by separated and explicit definition of respective rules. However, the
format of these rules is an immediate translation from those in SML.

• Special Scala code for AST-AST-translations are circumvented by re-
stricting the use cases such, that these are not required in the proto-
type.

Translation from Isabelle code written in SML to Scala code was straight
forward. In particular, the Isabelle developer team established a functional
style of programming, which has been pertained during translation for the
ℐ𝒮𝒜𝒞-prototype (for details see the chapter on implementation below).

The design decision for dropping types allows for another decision: For
the prototype editor only the direction from the back-end to the front-end
is needed. The other direction is circumvented by continuing ℐ𝒮𝒜𝒞’s status
quo, the representation of formulas by strings. The new editor’s structured
operation on formulas is based on ASTs, but after delivery of an input for-
mula to Isabelle/ℐ𝒮𝒜𝒞 the ASTs are transformed into a string, which can
be parsed back and typed by Isabelle. For typing ℐ𝒮𝒜𝒞 maintains a logical
context implemented by another student’s project [8]. Of course, this is in-
efficient, but makes this thesis maximally independent from other changes
in the ℐ𝒮𝒜𝒞 system.

3.1.2 Integration into the ℐ𝒮𝒜𝒞 Architecture

Before integration of the formula editor into ℐ𝒮𝒜𝒞 can be considered, rele-
vant components of the Worksheet need to be identified. ℐ𝒮𝒜𝒞’s architecture
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provides the Worksheet with very few, but highly complex connections. This
is shown in Fig.3.1:

Figure 3.1: ℐ𝒮𝒜𝒞’s architecture for user interaction on formulae.

This architecture differs from the MVC architecture [2] in that the di-
alog occupies a central role: the WorksheetDialog is part of a DialogGuide
(not shown in the figure), which coordinates the WorksheetDialogs (each
Worksheet has its WorksheetDialog) and the BrowserDialogs (for theories,
problems and methods managing various interactions) according to a user
model.

With respect to the Worksheet it controls each UserAction (even read-
/write access to sub-terms of a formula!) and decides on each information
passed to the Worksheet, the main interface for interaction with students.
One reason for this architecture is, that ℐ𝒮𝒜𝒞 is designed for adaption to
various learning scenarios, see. §2.4.

According to this design, an input formula is packed into a UserAction,
like all other user actions on the Worksheet, and sent to the WorksheetDialog
for a first classification. Then the WorksheetDialog usually decides to pack
the input with the respective position from the Worksheet and to forward
to Isabelle/ℐ𝒮𝒜𝒞 for checking correctness.

Isabelle/ℐ𝒮𝒜𝒞’s feedback is transformed into a CalcChanged event, which
is inspected by the WorksheetDialog: there also might have been an error.
In case of correctness the WorksheetDialog allows the Worksheet to request
getFormulaeFromTo (an input formula might have deleted subsequent for-
mulas). This request goes directly to the Bridge, which forwards the request
to Isabelle/ℐ𝒮𝒜𝒞 and receives a Term. This is transformed to an AST (in the
Bridge, see Fig.2.12) and packed into a CalcFormula, i.e. a formula with the
appropriate position(s) in the Worksheet (the plural of position is required
for deleting, inserting, etc.)
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3.2 Integration into the ℐ𝒮𝒜𝒞-Prototype
§1 has stated a comprehensive code base for the ℐ𝒮𝒜𝒞 prototype, §2.4.2
gave a description of the front-end and the role of the Worksheet and §3.1.2
showed how architecture connects the Worksheet with the other components
of ℐ𝒮𝒜𝒞. With this information design of integration can go into details. We
shall see, that integration is smooth: it only concerns very few elements from
the complex ℐ𝒮𝒜𝒞 architecture.

3.2.1 Formulas in Calculations

This thesis focuses formulas in the Worksheet, where solutions for problems
are interactively constructed. Calculations in the Worksheet are displayed
in a Java Swing JTree. This JTree’s uses custom a TreeCellRenderer and
a TreeCellEditor. The TreeCellRenderer is for visualization purposes, while
the TreeCellEditor is for Editing — the usual separation of model and view
[2].

In the case of a graphical editor this separation is more delicate: data
manipulation, i.e. checking formulas and generating feedback, is done in the
back-end by Isabelle/ℐ𝒮𝒜𝒞. Another kind of data manipulation is updating
the structure of the formula (i.e. an AST) — this kind of manipulation,
however, is part of rendering.

Both implementations have been nearly similar. The only difference was
the feedback from the CalcTreeCellEditor to the Worksheet after all kinds
of changes. Both built the same graphical structure as one can see in Fig.3.2.

Figure 3.2: An EditorFactory abstracts to one interface for both, the old
string-representation and the new editor.

The JTextFields were editable in the CalcTreeCellEditor and locked in
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the CalcTreeCellRenderer. Also no Events were fired in the CalcTreeCell-
Renderer. This has been done by the Java Swing JTree. So no extra work
needs to be done to lock the editor in the visualisation mode — this is
mentioned here and will be important for the Editor in a future chapter.
The new formula editor is placed in the CalcTreeCellRenderer and in the
CalcTreeCellEditor.

3.2.2 Formula Representation

As shown in Fig.3.2 a calculations is represented by a JTree in the Worksheet.
Steps within such a calculation are represented by nodes in the tree. A
JTree node has two JTextFields. The first one is the FormulaTextField and
the second one the TacticTextField. Both fields need to be replaced by the
editor.

In order to feature smooth transition in development from the old text
fields to the new editor, and in order to cope with cases, where the prototype
editor does not work as expected, a property file allows the user to choose
between the JTextField or the Editor.

Figure 3.3: On the right side there is the Graphical Representation of the
JTree and on the left side the structure of the UI Components.

An EditorFactory determines on the basis of the property file to return
the old JTextField Representation or the new editor, which is encapsuled in
the EditorPanel class. The EditorPanel is explained in §4.1



3. Design Considerations for TP-based Editors 33

3.3 Interface for a Formula Editor
Here the above design considerations are driven towards implementation in
two different ways, (1) by declaring an interface and (2) by fixing use cases.

3.3.1 The Java interface

This is the interface between the existing code of ℐ𝒮𝒜𝒞 and the new editor.
As mentioned above, this interface also covers the previous implementation
of the editor by JTextField.

3.3.2 Use Cases

This section is according to the standard notion. The numbering within the
use cases indicate the level of priority. Use cases also reflect ℐ𝒮𝒜𝒞’s proto-
type status and address specific demonstrations. Beginning with UC.3.7 the
individual cases are ranked by priority.

UC 3.1 Operators ranked by urgency for prototype demonstration
are

1. addition and subtraction + −, multiplication ·, division 𝑥
𝑦

2. differential operator 𝑑
𝑑 𝑥

3.
∫︀ 𝑏

𝑎 𝑓𝑑𝑥

4. further operators according to UR.2.6

UC 3.2 variables ranked by urgency are
1. variables consisting of letters, digits and underscore
2. variables with subscripts
3. variables with foreign fonts (e.g. Greek)

UC 3.3 Numerals ranked by urgency
1. integer numbers
2. floating point numbers
3. complex numbers

UC 3.4 Datatypes ranked by urgency
1. lists like [1, 1

2 ,
∫︀ 2

0 𝑥 𝑑𝑥] or [setzeRandbedingungen, Biegelinien] (com-
pare UC.3.8)

2. vectors like
(︂

𝑥
𝑦

)︂
or

(︀
𝑥 𝑦

)︀
3. matrices like

(︂
𝑎 𝑏
𝑐 𝑑

)︂
or

(︂
1 𝑏 1

2
𝑑

∫︀ 2
0 𝑥 𝑑𝑥 𝑓

)︂
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UC 3.5 Demo of simplification of fractions. Significant formulas in
the respective calculation are

Simplify (1 + 1 / 2 + (2 / (x + 3) + 2 / (x - 3)) / (8 * x / (x ^ 2 - 9)))
:
1 + 1 / 2 + (2 / (x + 3) + 2 / (x - 3)) / (8 * x / (x ^ 2 - 9))
:

The formula in graphical representation

1− 1
2 −

2
𝑥+3 + 2

𝑥−3
8·𝑥

𝑥
2−9

demonstrates a specific benefit of §2.2.3 the readability of complex formulas
improved by different font sizes.

UC 3.6 Input of specific operators is supported by fill-in-gaps. In-
put of 𝑎 + 𝑏

𝑐 can proceed in several ways
1. Input starts always with an operator:

(a) Input starts with “+”, this creates the rendering⨂︁
+
⨀︁

where
⨀︀

denotes a gap and
⨂︀

denotes a gap with cursor.
(b) After input of “a”, in the second GAP a “/” is input, this creates

the rendering
𝑎 +

⨂︀⨀︀
(c) After input of “b” a special key moves the cursor (see UR.2.11)

to the denominator:
𝑎 + 𝑏⨀︀

2. Input of infix operators start with the first argument:
(a) After input of “a” the “+” is input which renders as

𝑎 +
⨂︁

(b) The input of “b / ” (ending with a blank) into the gap above
renders as

𝑎 + 𝑏⨂︀
(c) A special key works as in Pt.§1c

3. The input variants Pt.§1 and Pt.§2 can be mixed arbitrarily.
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UC 3.7 Demo of user-guidance. User-guidance involves marked sub-
terms and fill-in-gaps. Below a next formula is suggested by a matching
rule and a resulting formula. Given a student, who fails to apply the chain
rule at the formula 𝑑

𝑑 𝑥 sin(𝑥2) in line 05 within some arger calculation; then
ℐ𝒮𝒜𝒞 has several ways to help, for instance with output as in lines 06 and 07:

04 . . .

05 𝑑
𝑑 𝑥

𝑥 + 𝑑
𝑑 𝑥

sin( 𝑥
2 )

06 Rewrite ( 𝑑
𝑑 bdv sin( 𝑢 ) = cos(𝑢) * 𝑑

𝑑 bdv 𝑢 )

07 𝑑
𝑑 𝑥

𝑥 + cos(𝑥2) * 𝑑
𝑑 𝑥

⨂︁
08 . . .

In line 07 ℐ𝒮𝒜𝒞 presents a formula with a fill-in gap and the CURSOR placed
into this gap, indicated by

⨂︀
. Note that the first formula in this calculation

is
Diff (x ^ 2 + sin (3 * x ^ 4), x)
:

i.e. in graphical representation

Diff (𝑥2 + 𝑠𝑖𝑛(3 · 𝑥4), 𝑥)

UC 3.8 Demo of engineering mathematics. This demo shows, how a
problem in engineering math is decomposed into sub-problems, where each
step towards a solution is justified. So each step can be related to some
theorem, and each theorem can be accompanied by multimedia explanations.
Significant formulas in the respective calculation are

:
y x = Integral c_3 + 1 / (-1 * EI) * (c_2 * x + c / 2 * x ^ 2 + -1 * q_0 / 6 * x ^ 3) D x
:
Problem (Biegelinie, [setzeRandbedingungen, Biegelinien])
:
[L * q_0 = c, 0 = (2 * c_2 + 2 * L * c + -1 * L ^ 2 * q_0) / 2, 0 = c_4, 0 = c_3]
:

The first and last formula in respective graphical representation are:

𝑦 𝑥 =
∫︁

𝑐3 + 1
−1 · 𝐸𝐼

· (𝑐2 · 𝑥 + 𝑐

2 · 𝑥2 +−1 · 𝑞0

6 · 𝑥3 ) 𝐷𝑥

[𝐿 · 𝑞0 = 𝑐, 0 = 2 · 𝑐2 + 2 · 𝐿 · 𝑐 +−1 · 𝐿2 · 𝑞0
2 , 0 = 𝑐4, 0 = 𝑐3]

Graphical representation makes clear, that there are questionable results of
simplification in ℐ𝒮𝒜𝒞, e.g. −1 · 𝑞0

6·𝑥3
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UC 3.9 Demo manipulation of sub-terms. Given the equation 𝑥+1+
−1 * 2 = 0 from within an interactive calculation, support the following
operations (also with respect to inclusion UR.2.21):

1. Replace the subterm −1 * 2 by subterm −2
2. Replace the subterm 1+−1*2 by subterm 1−2. Note, that parentheses,

if invisible, in associations of + are ((𝑥 + 1) + −1 * 2)!
3. Cut the subterm 1 + −1 * 2 on the left hand side of the equation and

paste it on the right-hand side resulting in 𝑥 + 0 = 0− (1 + −1 * 2)

UC 3.10 Programs are terms. Thus language constructs like

if 𝑛 < 0 then fac 𝑛 = 𝑛 * fac(𝑛− 1) else 1

should be manageable by an editor. The operator is if, which takes three
arguments: 0 < 𝑛, fac 𝑛 = 𝑛 * fac(𝑛 − 1) and 1. The envisaged editor,
however, shall not take care of syntax high-lighting.
Program Simplify t_t =

Repeat (
Try (Rewrite_Set klammern_aufloesen False) @@
Try (Rewrite_Set ordne_alphabetisch False) @@
Try (Rewrite_Set fasse_zusammen False) @@
Try (Rewrite_Set verschoenere False)) t_t

3.4 Datatypes
§2.3.3 demonstrated Isabelle’s transformation on annotated syntax trees
(ASTs). §2.4.2 mentioned that ℐ𝒮𝒜𝒞’s interface to Isabelle/ℐ𝒮𝒜𝒞 transports
terms; these terms arrive as Scala data structures at the front-end side of li-
bisabelle. In order to take profit from Isabelle’s general machinery of formula
transformation, the whole machinery needs to be transferred from Isabelle’s
SML to the Scala in the ℐ𝒮𝒜𝒞 front-end.

3.4.1 Term, the mathematical Object

Formulas are represented as terms for the purposes of computer mathemat-
ics. Isabelle has two identical implementations of terms, one on the mathe-
matics side implemented in SML and one on the front-end side implemented
in Scala. The definition in Scala, already implemented by the interface men-
tioned in §2.4.2, is this:

sealed abstract class Term
case class Const(name: String, typ: Typ = dummyT) extends Term
case class Free(name: String, typ: Typ = dummyT) extends Term
case class Var(name: Indexname, typ: Typ = dummyT) extends Term
case class Bound(index: Int) extends Term
case class Abs(name: String, typ: Typ = dummyT, body: Term) extends Term
case class App(fun: Term, arg: Term) extends Term
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The term constructors relevant for a formula editor are Const encoding
operators, Free encoding variables and App connecting operators with their
arguments. Var is concerned with meta-variables in patterns, Bound and Abs
are concerned with high-order terms, both not relevant for our purpose on
editors as well as all the types Typ.

The term [𝑎𝑎𝑎, 𝑏𝑏𝑏, 𝑐𝑐𝑐] used for demonstration in §3.4.2 above is imple-
mented as Scala Term as follows:
App(App(Const("List.list.Cons",

Type("fun",List(Type("Int.int",List()),Type("fun",List(Type("List.list",List(Type("Int.int",List()))),Type("List.list",List(Type("Int.int",List())))))))),
Free("aaa",Type("Int.int",List()))),
App(App(Const("List.list.Cons",

Type("fun",List(Type("Int.int",List()),Type("fun",List(Type("List.list",List(Type("Int.int",List()))),Type("List.list",List(Type("Int.int",List())))))))),
Free("bbb",Type("Int.int",List()))),
App(App(Const("List.list.Cons",

Type("fun",List(Type("Int.int",List()),Type("fun",List(Type("List.list",List(Type("Int.int",List()))),Type("List.list",List(Type("Int.int",List())))))))),
Free("ccc",Type("Int.int",List()))),
Const("List.list.Nil",Type("List.list",List(Type("Int.int",List())))))))

Another Term 𝑎𝑎𝑎 + 4
𝑏𝑏𝑏::𝑟𝑒𝑎𝑙 is implemented like this:

App(App(Const("Groups.plus_class.plus",
Type("fun",List(Type("Real.real",List()),Type("fun",List(Type("Real.real",List()),Type("Real.real",List())))))),

Free("aaa",Type("Real.real",List()))),
App(App(Const("Fields.inverse_class.divide",

Type("fun",List(Type("Real.real",List()), Type("fun",List(Type("Real.real",List()), Type("Real.real",List())))))),
App(Const("Num.numeral_class.numeral",Type("fun",List(Type("Num.num",List()),Type("Real.real",List())))),

App(Const("Num.num.Bit0",Type("fun",List(Type("Num.num",List()),Type("Num.num",List())))),
App(Const("Num.num.Bit0",Type("fun",List(Type("Num.num",List()),Type("Num.num",List())))),

Const("Num.num.One",Type("Num.num",List()))))) ),
Free("bbb",Type("Real.real",List()))))

This term shows, that Isabelle internally relies on binary encoding of num-
bers: Num.num.Bit0 and Num.num.One denote the binary number 1002 = 410
(in reverse order). The reason for this encoding is typical for provers of the
HOL-family: using arithmetic from some processor would introduce respec-
tive unreliability to Isabelle — while the binary representation is manipu-
lated by Presburger arithmetic [21] and rewriting, which is proved correct
within Isabelle.

Strings like ”Groups.plus_class.plus” are compiled partly automatically
by Isabelle due to logical dependencies (”Groups.thy”, ”plus_class”, etc),
see Fig.3.4. Logical dependencies are up to frequent changes in Isabelle. So
these strings are not at all fixed. The translation from binary encoding to
decimal encoding for human users is done by AST-AST-translations.

3.4.2 Annotated Syntax Tree

Isabelle’s formula transformations on ASTs have been introduced in §2.3.3,
SR.2.4. We translate the SML data structure into the following Scala datas-
tructure one-to-one:
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Figure 3.4: Definition of + in Isabelle.

object Ast {
sealed abstract class Ast
case class Constant(name: String) extends Ast
case class Variable(name: String) extends Ast
case class Appl(name: List[Ast]) extends Ast

def ...

Scala requires a sealed abstract class in order to inhibit modification by pro-
grammers later on. The structure is much simpler than a Term: Constant
represents function constants (e.g. algebraic operators), Variable takes vari-
able identifiers and numerals. A Variable can be matched with an arbitrary
AST. Appl allows to recursively build a structure of ASTs by assembling
them in a List of ASTs. The Term introduced on p.37 is represented as an
AST as follows:

Appl[Constant("\<^const>List.list.Cons") ,
Appl[Constant("_constrain"), Appl[Constant("_free"), Variable("aaa")],

Appl[Constant("_ofsort"), Appl[Constant("_tfree"), Variable("'a")],
Constant("\<^class>HOL.type")]],

Appl[Constant("\<^const>List.list.Cons"),
Appl[Constant("_constrain"), Appl[Constant("_free"), Variable("bbb")],

Appl[Constant("_ofsort"), Appl[Constant("_tfree"), Variable("'a")],
Constant("\<^class>HOL.type")]],

Appl[Constant("\<^const>List.list.Cons"),
Appl[Constant("_constrain"), Appl[Constant("_free"), Variable("ccc")],

Appl[Constant("_ofsort"), Appl[Constant("_tfree"), Variable("'a")],
Constant("\<^class>HOL.type")]],

Constant("\<^const>List.list.Nil")]]]

The above AST shows the costs for users’ convenience to request the types
for any element in a formula any time. ??

After AST-AST-translations this AST is transformed to this version.

Appl[Constant("_list"),
Appl[Constant("_args"),

Appl[Constant("_constrain"), Appl[Constant("_free"), Variable("aaa")],
Appl[Constant("_ofsort"), Appl[Constant("_tfree"), Variable("'a")],

Constant("\<^class>HOL.type")]],
Appl[Constant("_args"),

Appl[Constant("_constrain"), Appl[Constant("_free"), Variable("bbb")],
Appl[Constant("_ofsort"), Appl[Constant("_tfree"), Variable("'a")],

Constant("\<^class>HOL.type")]],
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Appl[Constant("_constrain"), Appl[Constant("_free"), Variable("ccc")],
Appl[Constant("_ofsort", Appl[Constant("_tfree"), Variable("'a")],

Constant("\<^class>HOL.type")]]]]]

This version is more convenient for Isabelle’s conversion to an Isabelle-string
in the GUI, see Fig.2.9. This thesis, too, creates a simpler version by Scala
code, which however has the same structure shown below.

3.4.3 Specific Decisions on ASTs

Here are some decisions on the datastructure underlying graphical represen-
tation of formulas within the practical work of this thesis.

Make ASTs as simple as possible. §2.5.1 decided to “drop all but
the naked formula, which is: markers for line breaks, types and references
to definitions”. The AST actually created by the SML code in Isabelle has
been shown on p.38; the AST created by the new Scala code is

Appl(List(
Constant("List.list.Cons"),
Variable("aaa"),
Appl(List(

Constant("List.list.Cons"),
Variable("bbb"),
Appl(List(

Constant("List.list.Cons"),
Variable("ccc"),
Constant("List.list.Nil")))))))

After AST-AST-translations this AST is transformed to this version:
Appl(List(

Constant("_list"),
Appl(List(

Constant("_args"), Variable("aaa"),
Appl(List(

Constant("_args"), Variable("bbb"), Variable("ccc"))))))))

Comparison with Isabelle’s ASTs including types on p.38 shows how much
simpler this version is. Note, however, the little differences in structure be-
tween the former (SML code) and the latter (Scala code). This decision is
in conflict to UR.2.2 and restricts UR.2.3.

Another decision (not mentioned in §2.5.1) is to represent numerals not
in binary format as shown on p.37 but in decimal format in a Variable, i.e.
the editor works on this AST, where the graphical representation is aaa+ 4

bbb :
Appl(List(

Constant("Groups.plus_class.plus"),
Variable("aaa"),
Appl(List(

Constant("Fields.inverse_class.divide"),
Variable("4"),
Variable("bbb")))))
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Represent specific functionality in ASTs. In order to keep the inter-
face to the envisaged editor simple, functionality is packed into the data
structure. Such functionality concerns marking of sub-terms, fill-in gaps and
a possibility for the system setting the cursor.

Given the data structure introduced in §3.4.2, specific Constants are
inserted and deleted in the structure (without changing the mathematical
semantics) as follows:

marked subterms
(a) ast ←→ Appl(List(Constant("BOX"), Constant("1"), ast))
(b) ast ←→ Appl(List(Constant("BOX.nnn"), ast))
fill-in gaps

ast ←→ Constant("GAP")
cursor set by system

ast ←→ Appl(List(Constant("CURSOR"), ast))

For marked subterms the variant (b) has been chosen, because Scala
allows an if within patterns (which is not possible in SML). All above pro-
ductions can be combined arbitrarily (as long as not restricted by constraints
in implementation).

Marking of sub-terms are requested by UR.2.10, UR.2.12 and UR.2.23.
Inclusive navigation on formulas,UR.2.21, is accomplished by presenting the
marked sub-term on the Braille (as a string).

Fill-in gaps are sub-terms offered to the user for input. This refers to
UR.2.10, UR.2.11 and UC.3.6. Replacement of a sub-term by a fill-in gap
can be done within Scala, so the mathematics engine Isabelle/ℐ𝒮𝒜𝒞 needs to
be called.

The cursor can be set by the system according to UR.2.13. ℐ𝒮𝒜𝒞’s
user guide (which presently is a stub prepared for setting the cursor, see for
instance UC.3.7,

At the beginning of input of a formula the respective AST (i.e. an empty
formula) is as follows:

Appl(List(
Constant("CURSOR"),
Constant("GAP")))

3.5 Layout Classes for Sub-Terms
This thesis works on a limited number of use cases §3.3.2, but explores
challenges in generic solutions for formula editors. Isabelle provides users
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with elegant mechanisms to specify new syntax as briefly shown in §2.3.3.
Such mechanisms cannot be provided by this thesis; but we identify classes
of layout, which shall be handled by different code and (hopefully) cover all
kinds of LATEX’ rendering of formulas (we exclude tricks in raw TEX).

Binary infix operators in line are +, *, −, = (within the use cases)
and others. These operators are one certain line (if in a line at all – see the
subsequent two classes). A specific challenge here is associativity: (𝑎+𝑏)+𝑐 =
𝑎 + 𝑏 + 𝑐 and 𝑎 + (𝑏) + 𝑐) ̸= 𝑎 + 𝑏 + 𝑐 are different terms according to UR.2.9.
This UR excludes MathML’s row introduced in §2.2.2. Parentheses adjust
their size to the enclosed sub-term

𝑎 · (𝑏 + 𝑐) +
(︂

𝑑

𝑒
+ 𝑓

)︂

Fraction-like operators are at least binomial coefficients
(︀

𝑁
𝑘

)︀
and frac-

tions. LATEX reduces font size of numerators and nominators:

𝑎 +

𝑏+𝑐
𝑑+𝑒
𝑓+𝑔

ℎ+𝑖

𝑗 + 𝑘

However, LATEX reduces size only down to three levels of subterms, the
topmost 𝑏+𝑐

𝑑+𝑒 has the same size as the respective nominator 𝑓 +𝑔 (the spaces
between the fraction bars are larger, because 𝑓 is larger than 𝑑 or 𝑐).

Exponentiation shifts arguments not only vertically but also shifts ar-
guments vertically:

𝑥𝑥
𝑥

𝑥
𝑥

Also in this class LATEX reduces size only down to three levels: the topmost
three 𝑥 all have the same size.

Prefix operators like sin, cos, solve(𝑥 + 1 = 2, 𝑥) have different kinds of
arguments (terms, pairs as with solve, etc) and different arity (i.e. a different
number of arguments). This thesis omits postfix operators.

List-like term collections are lists [𝑎, 𝑏, 𝑐], tuples (𝑎, 𝑏, 𝑐) and enumer-
ated sets {𝑎, 𝑏, 𝑐}. Set comprehension like {𝑛]; .]; 𝑛 < 100} is omitted in this
thesis.
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Matrix-like term collections cover various numbers of lines and rows
greater-equal one:

(︀
𝑎 𝑏 𝑐

)︀ (︂
𝑎 𝑏
𝑐 𝑑

)︂ ⎛⎝𝑎
𝑏
𝑐

⎞⎠ ⎛⎝ 𝑏
𝑐
𝑑
𝑒

𝑏 𝑥

𝑐
∫︀ 𝑏

𝑎 𝑥2𝑑𝑥 𝑦

⎞⎠
Operators with sub- and super-scripts and other fancy features which
mathematicians invent, when they run out of traditional notation. A very
special operator is the differential operator 𝑑

𝑑 𝑥 𝑓 , where the two arguments
𝑥 and 𝑓 are placed very differently. And a specific variability is given by
integrals with two, three or four arguments:∫︁

𝑥2𝑑𝑥

∮︁
𝐶

𝐹 𝑑𝑠

∫︁ 𝑏

𝑎
𝑥2𝑑𝑥

The first example above is in the use cases §3.3.2.



Chapter 4

Implementation of a
Prototype Editor

This chapter establishes a connection between the design and the code im-
plemented alongside with the thesis. First static aspects of the code are
considered in §4.1 together with general decisions for coding. §4.2 discusses
relevant details of Java Swing, before dynamic aspects can be addressed
in §4.3. The final section §4.4 describes the procedure of implementation,
which had to cope with the comprehensive code base of the ℐ𝒮𝒜𝒞-prototype.

4.1 Classes and Coding Decisions
Given by design and by preliminary decisions by the project leader, the
implementation has to combine two programming languages, Java and Scala:
formulas are given as data structures in Scala, and the formula editor is
integrated into ℐ𝒮𝒜𝒞’s front-end written in Java Swing. Before an assignment
of these two programming languages can be approached in §4.1.3, a structure
for the editor’s code is introduced in §4.1.1 and respective integration into
ℐ𝒮𝒜𝒞 discussed in detail in §4.1.2.

4.1.1 Code Structure of the Editor

The issue of a formula editor is to relate graphical representation with a com-
prehensive data structure representing a formula (actual an AST according
to SR.2.4).

Graphical aspects, as imposed by SR.2.1, are addressed by the class Ed-
itorPanel and a class AstComponent provides connection to the data struc-
ture. Fig.4.1 shows the relation between these two components. The Edi-
torPanel is a JPanel; it is a Java container and embeds the AstComponent
(presenting the formula 𝑥 = 2 − 𝑦). The kind of embedding is determined
by a OverlayLayout, which allows to set appropriate parameters for display

43
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Figure 4.1: OverlayLayout comprises AstComponent and OverlayPanel.

according to events fired by AstComponent.
If the user edits 𝑦 or continues input after 𝑦, for instance, then there are

two different ways of implementation:
1. Place a JTextField over the graphical representation such that re-

spective parts of the formula are hidden (the figure displaces this
JTextField). Parse the input string and insert the generated sub-AST
into the AST. This has the advantage, that a JTextField provides much
functionality out of the box: event handling, copy and paste, deletion,
etc.

2. Listen to events on the keyboard and distinguish between alphanu-
meric characters one side and all the other characters on the other side.
In case of subsequent alphanumeric characters continue with input of
an integer number, case of another character change the structure of
the formula 1 and render the AST accordingly.

The practical work invested considerable time for experiments with both
variants.

The AstComponent assembles input to an AST and draws into a JCom-
ponent [2]. This is depicted in Fig.4.2. Utilities for drawing are separated
into two classes, CalcUtil and DrawUtil. The former calculates position and
size of each AST and returns a Box class. The latter draws the boxes. The
method paint uses both, details will be discussed later.

1This includes several limitations, which do not generalise to a full-fledged editor: there
are operators consisting of more than one character, there are not only integers but also
decimal points, etc.
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Figure 4.2: Strucure of the Formula Editor.

4.1.2 Integration into ℐ𝒮𝒜𝒞

As shown in §2.4.2, the main tool for interaction on formulas is called a
Worksheet in ℐ𝒮𝒜𝒞. A Worksheet represents calculations from engineering
mathematics in a Java Swing JTree, where each line contains a step of cal-
culation and certain nodes in the tree can be expanded in order to show
calculations on sub-problems. For instance, in Fig.4.3 the node solve (-1
+ x = 0, x) could be expanded and show the steps solving this sub-problem
2 Formulas in this screen shot are still strings, modeled by JTextFields. In-
between the steps of calculation there are lines, which are ready to display
additional information requested by the user: the justification for the step,
assumptions generated by this step, etc as shown in §3.2.1. The sisac project
leader decided, not to consider formulas in this field.

2This example is the most beloved one in ℐ𝒮𝒜𝒞’s test suite, because it comprises much of
ℐ𝒮𝒜𝒞’s functionality (not shown in the screen shot). The example also shows, how general
solutions might look strange if applied to specific (even simple) examples: solve does
what any computer algebra system can do, but it shows intermediate steps: it solves a
large class of equations; it first generates a specific normal form -1 + x = 0, which allows
to determine the degree of the the equation mechanically. This and other information is
used to select the appropriate method for solving the recognised class of equations (such
selection is done behind the scenes in this case and not shown in Fig.4.3).
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Figure 4.3: A Calculation is constructed in a Worksheet, i.e. a JTree.

Since it is not expected, that this master thesis can completely replace
the old string representation of formulas without cutting down other features
of ℐ𝒮𝒜𝒞 dramatically, the old string representation needs to be kept alive.
For this purpose a EditorFactory is introduced according to §3.2.2, which
decides with respect to a property file:

1 public class EditorFactory {
2 private static boolean IsEditorVisible;
3 static {
4 try {
5 InputStream is = WindowApplicationPaths.class
6 .getResourceAsStream("/properties/Editor.properties");
7 if (is != null) {
8 Properties p = new Properties();
9 p.load(is);

10 IsEditorVisible = p.getProperty("EDITOR")
11 .replace(" ", "").equalsIgnoreCase("MAWEN");
12 }
13 } catch (Exception e) {
14 IsEditorVisible = false;
15 }
16 }
17 public static IEditor getFormulaEditor() {
18 if (IsEditorVisible) {
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19 return new EditorPanel();
20 }
21 return new FormulaTextField();
22 }
23 }

The factory decides whether to return a FormulaTextField (preserve the
previous state) or an EditorPanel introduced by this thesis. An example for
the property file is in Fig.4.4 (in conformance with SR.2.6). This example

Figure 4.4: Example for the factory’s property file.

shows, that there are further data, now required by the new formula editor.

As described in §3.2.1, model and view are separated into TreeCellEditor
and TreeCellRenderer, respectively. These two classes were almost similar
for JTextFields. Also with the new editor, for both a Layout is built by the
EditorFactory:

1 editor_ = EditorFactory.getFormulaEditor();
2 tacticText_ = new JTextField();
3 editorPanel_ = new JPanel();
4 editorPanel_.setOpaque(true);
5 editorPanel_.setBackground(UIManager.getColor("Tree.background"));
6 editorPanel_.setLayout(new BorderLayout());
7 editorPanel_.add(editor_.getComponent(), BorderLayout.CENTER);
8 editorPanel_.add(tacticText_, BorderLayout.SOUTH);

Now, with the new editor, both classes TreeCellEditor and CalcTreeCellRen-
derer need to observe varying height of formulas (while JTextField always
had the same height). The new editor reports the height of an edited formula
for rendering by the JTree’s repaint.

The implementation of the editor introduced two callbacks for the Work-
sheet

1. notifyLocalCheck und
2. notifyIsaCheck.
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where the latter continues the old behaviour and the former adds a new
behaviour: notifyIsaCheck sends the formula to Isabelle (while the AST is
transformed to a string which can be parsed by Isabelle, see §2.5.1 and
Fig.2.12).

New notifyLocalCheck implements an idea arising from the fact, that
much of Isabelle’s machinery for formula transformation is shifted to the
front-end and rewritten in Scala by this thesis. So there are means for local
syntax checks for formulas in order to disburden the backend (centrally used
by many front-ends). These means could be used to handle units locally (and
thus avoid burdening Isabelle with defining types for each unit).

4.1.3 Java – Scala – Java

An interesting challenge for implementation work was to find a good com-
bination of Java and Scala. In Java and Java Swing ℐ𝒮𝒜𝒞’s front-end is
implemented, and the new editor has to be integrated according to SR.2.1.
On the other hand, the formulas to be edited come as Scala datastructures,
as ASTs according to SR.2.4.

The challenge was to assign the parts of the editor’s code to that pro-
gramming language, which better supports the tasks to be programmed
respectively. The assignment turned out straight forward as follows.

• Scala was used for code handling Scala ASTs, elegantly exploiting the
powerful match. Scala code seamlessly calls Java Swing. Examples are
CalcUtil and DrawUtil.

• Java was used for handling the Java Swing components to embed-
ded into the Worksheet together with respective event handling. An
example is EditorPanel extending JPanel.

Referring to Fig.4.2 on p.45 we have: An AST is passed through the Java
EditorPanel to the Scala AstComponent. The AST is manipulated in Cal-
cUtil and DrawUtil by Scala’s match. After editing is finished the AST is
returned by the EditorPanel and the Worksheet (both in Java) is notified.

The directory structure for handling ASTs is copied from Isabelle, as
much as Isabelle’s machinery has been translated from SML into Scala so
far. The purpose of the parallel structure is to ease further translation and
maintenance (according to frequent changes in Isabelle’s low level machin-
ery); this is in line with further narrowing between Isabelle and ℐ𝒮𝒜𝒞. Some
classes are already implemented in libisabelle (see §2.4.2); in order to not
overwrite these, respective identifiers get an “X” as prefix, for instance XSyn-
tax.

Two different coding standards are the consequence of preparing for
further narrowing between Isabelle and ℐ𝒮𝒜𝒞: All Scala code translated from
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Isabelle’s SML adheres to Isabelle’s coding standards [28]. Other Scala code
and Java code adhere to ℐ𝒮𝒜𝒞’s coding standards [24]. Resulting conflicts in
certain program files are taken into account.

Figure 4.5: Calculation is done by Scala, UI-Component are created in Java.

4.2 Symbols and Expressions in Java Swing
This section describes, how nicely Java Swing implements the concept of
LATEX’s boxes in a straight forward manner. So §2.2.3 is specified for Java
below, first in general, then for single symbols in §4.2.1 for expressions with
horizontal expansion in §4.2.2 and for expressions with vertical expansion
in §4.2.3.

Rendering of formulas is done by overwriting the paint method of JCom-
ponent [2]. This method recursively scans an AST top down and draws the
respective boxes. Before rendering the box sizes are calculated by CalcUtil
bottom up over the AST. So each box can be drawn independently.

Coordinates and positioning in Swing are different from mathematical
coordinate systems. In Swing the origin (0/0) is top left. Fig.ref shows that a
rectangle is drawn top down while a sequence of characters is drawn bottom
up. This difference leads to difficulties when composing elements of a for-
mula. For instance with fractions, because the width of both, numerator and
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Figure 4.6: Two different coordinate systems in Swing.

nominator, needs to be determined before both of them can be positioned
within the fraction. These difficulties are encountered best by separating
computation of box sizes (in CalcUtil) from drawing boxes (in DrawUtil).
Separation, in turn, enforces carrying lots of data, which capture the boxes’
properties. The implementation collects these data in graphical objects of
class Graphics.

4.2.1 Single Symbols

The atoms of formulas are symbols. Drawing symbols appropriately for for-
mulas involves specific technicalities. In Swing each symbol is boxed in two
layers.

The first layer is specified by the font-metric. The height of the layer is
the maximal height for all Symbols. In mono-spaced fonts every symbol has
its own width. We call this layer “outer box”. The second layer, called “inner
box”, is calculated from the maximal with and height of the vector graphic
for each symbol. As an aside there should be mentioned, that there is a third
layer, which is the maximal space for each character, but for the editor this
is never used. Fig.4.8 shows inner and outer boxed for four symbols. There

Figure 4.7: Layers for drawing symbols.
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are two different classes of symbols for aligning several of them.

Alignment of symbols requires two concepts: the coordinate system in-
troduced at the beginning of §4.2 and boxes introduced above. The coor-
dinate system is already incorporated in the font and thus involved only
implicitly.

Alignment is different for identifiers and for operators. Identifiers consist
of letters, all of which ‘sit” on the baseline such that also descenders are as
expected §2.2.4 for reading text. So Swing relives the programmer from all
respective work.

The alignment of operators goes along the midline as mentioned in §2.2.4.
Thus assembling elements of formulas require specific care in order to have
the plus in 𝑎+𝑏 and the fraction bar in 𝑎

𝑏 exactly on the midline. Respective
code is found in CalcUtil.

Interpolation and antialiasing makes symbols more smooth. Swing sup-
ports interpolation by simply configure rendering this way:

1 new RenderingHints(
2 RenderingHints.KEY_TEXT_ANTIALIASING,
3 RenderingHints.VALUE_TEXT_ANTIALIAS_ON);

The effect of these few lines of code is important for readability of formulas,
in particular if the font size is small:

Figure 4.8: Compare a symbol with and without interpolation.

4.2.2 Expressions without Vertical Alignment

As mentioned above, assembling formulas from atomic boxes requires care.
The simpler case is considered first, horizontal alignment as traditionally
used for the operators +, · and −. Given the example 𝑎 + 𝑏, the respective
AST is:

Appl(Constant("+"), Variable("a"), Variable("c"))
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class identifier LATEX implemented
horizontal + · − = yes
fraction 𝑎

𝑏 yes
exponent 𝑎𝑏 yes
prefix sin cos tan (−𝑎) yes
list [𝑎, 𝑏, 𝑐] {𝑛 . 𝑛 > 1} (𝑎, 𝑏) partially

matrix
(︂

𝑎 𝑏
𝑐 𝑑

)︂
no

spec-op
∫︀

𝑥2𝑑𝑥
∮︀

𝐶 𝐹 𝑑𝑠
∫︀ 𝑏

𝑎 𝑥2𝑑𝑥 no

Table 4.1: Layout classes for operators.

Rendering this formula works as follows: First the box for 𝑎 is calculated.
The positition of + is shifted right by the width of the 𝑎-box. Then the
+-box is calculated and the width extended with additional space specific
for + as show in Fig.4.9:

Figure 4.9: How to calculate the box for 𝑎 + 𝑏.

The box enclosing the whole formula gets its width from adding the
enclosed boxes and its height from the maximum of the enclosed boxes.

4.2.3 Expressions with Vertical Alignment

Readability of formulas is significantly improved by extending sequential
lines to a second, vertical dimension as already mentioned in §2.2.3 and
§2.2.6. The design identified several layout classes in §3.5. The implementa-
tion provides the classes shown in Tab.4.1:

The table shows, that only the most important operators have been im-
plemented. Another challenge not yet tackled, is to parameterise the classes
such that math authors can extend the classes without touching the editor’s
code.
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4.3 Dynamic Aspects
This section describes, how the components introduced in §4.1.1 interact
with each other. In particular, §4.3.1 explains calculation and rendering of
a formula, §?? explains the effects of mouse movements over a formula and
§4.3.3 explains editing of a formula via keyboard.

4.3.1 Interactions between Components

Swing performs rendering by use of paint methods, which in turn is called
by every repaint.

Such a paint method is implemented for an AstComponent, the JCom-
ponent used for embedding a formula in the front-end’s Swing machinery.
This AstComponent.paint takes an argument of type Graphics which is able
to draw in Swing, if given appropriate data.

Appropriate data are a formula represented as an AST, so an AST is an
argument of AstComponent. Within paint, boxes are calculated according
to 4.2 by use of CalcUtil. In a first step for each symbol width and height
are stored in Settings.ast_Stringbounds.

1 var ast_Stringbounds = Map.empty[String, (Rectangle, Rectangle,
Rectangle)]

2 def fillStringbounds(ast: Ast, g: Graphics2D) {
3 fillStringboundsRec(Variable(",x"), g)
4 fillStringboundsRec(Variable(")"), g)
5 fillStringboundsRec(Variable("(i"), g)
6 fillStringboundsRec(Variable("xx"), g)
7 fillStringboundsRec(ast, g)
8 }
9 def fillStringboundsRec(ast: Ast, g: Graphics2D) : Unit = ast match {

10 case Constant(str) => {
11 val op = XSyntax.isa_ast(str)
12 g.setFont(new Font("CMCSC8", Font.PLAIN, CalcUtil.fontsizeOf(0)))
13 val RectLv0 = getStringBounds(g, op, 0f,0f)
14 g.setFont(new Font("CMCSC8", Font.PLAIN, CalcUtil.fontsizeOf(1)))
15 val RectLv1 = getStringBounds(g, op, 0f,0f)
16 g.setFont(new Font("CMCSC8", Font.PLAIN, CalcUtil.fontsizeOf(2)))
17 val RectLv2 = getStringBounds(g, op, 0f,0f)
18 ast_Stringbounds = ast_Stringbounds + (op -> (RectLv0, RectLv1,

RectLv2))
19 }
20 case Variable(str) => {
21 g.setFont(new Font("CMMI12", Font.PLAIN, CalcUtil.fontsizeOf(0)))
22 val RectLv0 = getStringBounds(g, str, 0f,0f)
23 g.setFont(new Font("CMMI12", Font.PLAIN, CalcUtil.fontsizeOf(1)))
24 val RectLv1 = getStringBounds(g, str, 0f,0f)
25 g.setFont(new Font("CMMI12", Font.PLAIN, CalcUtil.fontsizeOf(2)))
26 val RectLv2 = getStringBounds(g, str, 0f,0f)
27 ast_Stringbounds = ast_Stringbounds + (str -> (RectLv0, RectLv1,

RectLv2))
28 }
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29 case Appl(asts) => asts.foreach(x => fillStringbounds(x, g))
30 }

In a second step CalcUtil.assembleBoxes assembles boxes according to Set-
tings.ast_Stringbounds. After each successful calculation of a box in CalcU-
til.assembleBoxes.p a call-back is performed (the purpose of the call-back is
explained later). Boxes for Constant and Variable are calculated immedi-
ately. Appl describing composed formulas are implemented with one or two
arguments, which is conformant to most of the layout classes §3.5. Appl with
more arguments are handled by the map function such, that a horizontal se-
quence is created.

The final step DrawBox.draw draws the whole AST recursively descend-
ing through all the sub-ASTs.

4.3.2 Mouse Events on the EditorPanel

For sighted people the mouse is considered the main tool for pointing at cer-
tain sub-terms in the new editor. Each mouse event over a formula triggers a
repaint (!), so the display of the formula can be changed dynamically. There
are three kinds of mouse events, mouseDragged, mouseDown and mouse-
Moved, each connected with a specific functionality:

Selection of boxes is connected with mouseDragged: drawing a rectan-
gle over a certain area with the mouse causes identification of the respec-
tive box under the mouse by AstComponent.mouseDragged. Identification
uses the four edges of the box. The movement creates a list of boxes, for
which the smallest parent in the AST has to be found — see AstCompo-
nent.findHighestBoxOf below.

1 def findHighestBoxOf(rootbox: DrawBox, markedBoxes : List[DrawBox]) :
Option[DrawBox] = {

2 if (markedBoxes != null && rootbox != null && rootbox.children != null
) {

3 if (markedBoxes.forall(x => Box.Contains(rootbox,x)) &&
4 ! rootbox.children.exists(x => markedBoxes.forall(y => Box.

Contains(x, y)))
5 ) {
6 return Some(rootbox)
7 } else if (markedBoxes.forall(x => Box.Contains(rootbox, x)) &&
8 rootbox.children.exists(x => markedBoxes.forall(y => Box.

Contains(x, y)))) {
9 for( box <- rootbox.children) {

10 findHighestBoxOf(box, markedBoxes) match {
11 case Some(box) => return Some(box)
12 case None => {}
13 }
14 }
15 }
16 }
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17 return None
18 }

Given the formula 𝑎 + 𝑏 · 𝑥 represented by this AST

Appl(Constant("+"),
Variable("a"),
Appl(Constant("*"), Variable("b"), Variable("c")))

selecting 𝑎 and 𝑐 gives as smallest parent in the AST

Appl(Constant("*"), Variable("b"), Variable("c"))

and the box of this parent is displayed AstComponent.findHighestBoxOf.
Thus the above selection results in this AST according to §3.4.3:

Appl(Constant("+"),
Variable("a"),
Appl(Constant("BOX.1"), Appl(Constant("*"), Variable("b"), Variable("c"))))

And Fig.4.10 on p.55 shows the respectively rendered formula.

Figure 4.10: The above selection results in the rendering below.

Set the cursor into a formula starts editing of specific parts of a formula:
if <Ctrl>+mouseDown is done somewhere on the EditorPanel, the respec-
tive part of the formula is marked by the cursor. The cursor’s underline
indicates the range for editing. Given the formula 𝑎𝑎𝑎 + 𝑏𝑏𝑏 as an exam-
ple, for different parts of the formula can be with respect to the position of
the mouse, see Fig.reffig:four-selections. The mouse click notes the coordi-
nates on the EditorPanel; these are used for searching matching boxes and
calculating the respective AST (probably a parent in case no.4 below) by
AstComponent.mouseDown. This AST gets marked by CURSOR according to
§3.4.3.

1. 𝑎𝑎𝑎 if the mouse is placed somewhere in this range. Note, that the
cursor can not be set to somewhere in the middle of 𝑎𝑎𝑎 (for instance
for editing a single character in a long identifier or a large number).
So there are possibilities for later improvement.

2. + if the mouse is placed sufficiently close.
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Figure 4.11: Four selections according to mouse postion.

3. 𝑏𝑏𝑏 if the mouse is placed somewhere in this range.
4. the whole formula 𝑎𝑎𝑎 + 𝑏𝑏𝑏 if the mouse is placed between 𝑎𝑎𝑎 and

+ or between + and 𝑏𝑏𝑏.
The rendering, as intuitive as shown above, is created from a CURSOR placed
appropriately in the formula’s AST. So ongoing interaction, still without
editing anything, updates the formula’s datastructure (as done analogously
done with BOX as described on p.4.3.2) as follows:

Appl(Constant("+"), Variable("a"), Variable("b"))

is updated to

Appl(Constant("+"), Appl(Constant("CURSOR"), Variable("a")), Variable("b")

when the cursor is placed on “a”

Display boxes in formula is connected with mouseMoved. First, in this
last case the AST is never changed (no BOX, no CURSOR etc). So the way
used in the previous two cases is not possible (i.e. just re-painting the whole
AST). Highlighting of a proper sub-term under the mouse position is done
by the following code in AstComponent.paint:

1 override def paint(g: Graphics) = {
2 ...
3 box = CalcUtil.assembleBoxes(ast, (box: DrawBox) => {
4 if (EventUtil.foreachBoxFunction != null) {
5 EventUtil.foreachBoxFunction(g2, box)
6 }
7 })
8 ...
9 }

CalcUtil.assembleBoxes gets a call-back as described in §4.3.1), which works
on each box as described by the following code:
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1 var foreachBoxFunction : (Graphics, DrawBox) => Unit = null
2
3 def drawBoxAt(p: Point) = {
4 foreachBoxFunction = EventUtil.doInBox(p, (g, box) => {
5 Box.draw(box, g, false)
6 }
7 )
8 }

foreachBoxFunction is used by drawBoxAt for highlighting a box at a posi-
tion 𝑝, i.e. the mouse position. Now the whole functionality follows from the
fact, that AstComponent.paint is called upon each mouseMoved.

4.3.3 Interactions during Editing

Effects of interaction on a formula with the mouse have been described in
§4.3.2 on p.54 and on p.55. Two variants of editing are presented analogously
to §4.1.1: (1) via a JTextField or (2) via keyboard events immediately. Both
variants were implemented; here follows a description of experiences gained
during implementation of both variants.

Editing via JTextField inherits all the built-in features from Java Swing:
setting the cursor, updating elements of a string, cutting out substrings,
copy&paste, etc). Implementation assigns a “null” Layout to JTextField
which can be shifted to the location of the cursor. This field is set visible
during editing and set invisible during rendering.

Although this variant appears convenient and straight forward for im-
plementation, there are disadvantages with respect to usability: The datas-
tructure of a string (i.e. an array of characters) is very different from the
datastructure of a formula as discussed so far: Within a string the structure
of a formula can easily be violated. For instance, from the formula “𝑎·(𝑏+𝑐)”
the substring “·(𝑏+” can be cut out without efficient means to inhibit such
an operation within the realm of strings.

Once a string is input, it needs to be parsed — and handling “·(𝑏+” rea-
sonably would create nightmares. Experiences also showed, that the JTextField
appears alien in context of a formula rendered in two dimensions.

This variant has been pursued until changeset https://intra.ist.tugraz.at/
hg/isac/rev/a2a220b0996b and then removed in favour of the variant below.

Editing via keyboard events is the other variant. This introduces the
burden to take care of all key events. But the major goal of accessibility and
inclusion, discussed in §2.1, could not be achieved elegantly, see for instance
UR.2.17, UR.2.20, UR.2.21 and UR.2.23.

Restricting the view to the EditorPanel, editing is started as described

https://intra.ist.tugraz.at/hg/isac/rev/a2a220b0996b
https://intra.ist.tugraz.at/hg/isac/rev/a2a220b0996b
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by “set the cursor” in §4.3.2. 3 After editing has started, key events are
handled according to the state transition diagram in Fig.4.12. The diagram
is read as follows:

Figure 4.12: Aufbau des State transition diagram.

The two states Number and Identifier are related to Ast.Variable and
may continue input of a longer number or identifier. The respective AST is
either empty

Appl(Constant("CURSOR"), Constant("GAP"))

or continues input on this kind of AST:

Appl(Variable(str), Constant("CURSOR"))

The other states are not adorned with cycles in Fig.4.12 and thus left by the
subsequent key stroke. The state Start attracts all keys and immediately
switches on to respective states.

The state Operator is related to a lookup of the map XSyntax.ast_const
for fetching the appropriate AST structure. The parent of the selected AST
is replaced with this structure. Into the structure the first argument of the
operator is inserted and the cursor set to the second argument. Further
arguments, if they exist, get GAPs as place holder according to SR.2.5.
Fig.4.13 shows the steps required to input the formula 𝑎 + 𝑏

𝑐 from scratch.
3Replacing a whole sub-term following “selection of boxes” is not yet implemented.
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Figure 4.13: create the Formulas by typing “a+b/2”.

And Fig.4.14 on p.60 shows the steps required to input the formula 𝑎+𝑏
𝑐

from scratch. Note step five <↑>, which changes the scope of the cursor and
applies multiplication to both elements of 𝑎 + 𝑏.

There is a difference between

Appl(Cursor, ast)

and

Appl(ast, Cursor)

The former provides an insertion before the existing (sub-)term, the latter
an insertion after the existing (sub-)term.
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Figure 4.14: Create the Formulas by typing 𝑎+𝑏
𝑐 .

Editing of operators is different from editing numbers and identifiers
beyond what is shown in Fig.4.12. The most simple case is, if the number
of arguments is equal; see this example:

Appl(Constant("+"), Variable("a"), Variable("b"))
↓

Appl(Constant("/"), Variable("a"), Variable("b")))
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A + is replaced by a /, which changes the rendering considerably; however,
the structure of the AST remains as is.

More difficult is the situation, when the number of arguments is different,
for instance, when sin is replaced by +:

Appl(Constant("sin"), Variable("a"))
↓

Appl(Constant("+"), Variable("a"), Constant("GAP"))

Then Constant("GAP") is a place holder waiting for input (while the cursor
is also set to this position automatically). This mechanism generalises for
an arbitrary number of arguments, as long as the number for the replacing
operator is larger: keep the existing arguments and provide GAPs for the
further ones. But what to do in the other way round is not yet clear . . .

Appl(Constant("+"), Variable("a"), Variable("b"))
↓

Appl(Constant("sin"), Variable("a"))

. . . what should happen with Variable("b")? Here another requirement is
raised, the requirement of undo.

4.4 Test Environments
After clarification of architecture and top level design, as described in §3, im-
plementation proceeded bottom up. Thus the first phase of implementation
was concerned with rendering a single formula, the second with rendering
formulas in a calculation and the third was concerned with input of formu-
las. The latter phase could re-use the test environments from the former two
phases.

4.4.1 for a Single Formula

The ℐ𝒮𝒜𝒞 prototype still needs to be started from within the IDE, with sep-
arately launching four modules §2.4.1 running in different virtual machines;
and then many interactions are required to start a calculation and come to
a formula finally — doing this during experiments with rendering a single
formula would be annoying. Thus there is a specific test environment for
incremental coding for a single formula.

TestEditorPanel is such an environment which implements Junit Test-
Case. This test is not included in ℐ𝒮𝒜𝒞’s test suite, because it launches a
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JFrame which cannot be checked by an assertion (due lack of respective
tooling in ℐ𝒮𝒜𝒞 at the time of working on this thesis).

4.4.2 for Working on a Calculation

The goal of the thesis was to integrate the prototype editor into ℐ𝒮𝒜𝒞’s
prototype. In order to avoid time consuming launch of ℐ𝒮𝒜𝒞 and selection
of a calculation, as mentioned above, a minimal test setup is required. Such
a minimal setup turns out to be surprisingly complicated, but this thesis
could re-use a test environment already implemented by [6] p.38 ff. Re-use
of the existing test was connected with some improvements of the code.

The respective test environment is TestWorksheetForMawen; it requires
three mocks:

1. MockWorksheetDialog mocks the WorksheetDialog, which handles all
interactions on the Worksheet and also display of formulas (among
others).

2. MockDialogIteratorSIMPLIFY mocks the DialogIterator, which iter-
ates over a CalcTree according to interactions on the Worksheet. In
the test case, the iterator runs over a CalcTree explained next.

3. MockCalcTreeSIMPLIFY contains fixed formulas to be displayed in
the Worksheet within the test setup.

The few changes in the Worksheet and respective helper classes required
to integrate the new editor were checked by ℐ𝒮𝒜𝒞’s test suite.



Chapter 5

Summary, Conclusion and
Future Work

This thesis is assigned prototyping a formula editor in ℐ𝒮𝒜𝒞, a prototype for a
new kind of educational software, which builds upon a rapidly evolving TP,
Isabelle. So there cannot be final results of the thesis. Moreover, designing
and implementing an editor, which is accessible for visually impaired stu-
dents as well as appropriate for inclusive learning (i.e. collaboration with
sighted students), is a task which cannot be accomplished by one person.

So this final chapter is separated into three sections: first there is a regis-
ter accounting what has been done and what could not be done accompanied
with experiences from development. Second are conclusions drawn from the
work actually done, and third there is a preview to future work.

5.1 Summary
This thesis is a feasibility study on a TP-based formula editor. The study
involved much preliminary work on accessibility and inclusion §2.1, on stan-
dards in formula presentation (LATEX and MathML) §2.2, on the state of the
art of front-ends in TP §2.3, on the predetermined architecture and code base
for embedding the editor §2.4 as well as predetermined user-requirements
and software-requirements §2.5 for a formula editor.

The prototype of the editor exploits all features of Java Swing which
make trials with editing convenient: a formula can be moved by mouse and
resized by mouse-wheel within the EditorPanel. The size dynamically de-
termined for one formula is pushed to all other formulas of a Worksheet as
soon as editing is quit. Although the editor reports the height of an edited
formula, the JTrees’s renderer does not yet recognise varying heights. All
this behaviour is experimental and might be changed eventually.

63
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The register what has been done and what could not be done is organ-
ised along the points integration into ℐ𝒮𝒜𝒞, datastructure for rendendering
formulas, rendering in LATEX quality and finally interaction and editing of
formulas. This sequence roughly reflects proceeding from an internal and
technical view to what the user views on the surface .

Integration into ℐ𝒮𝒜𝒞 was challenging but brings the benefits of existing
data structures for formulas, respective transformations and an elaborated
user interface for calculations.

1. . . . accomplished
(a) design and implementation of an interface for an accessible and

inclusive editor
(b) integration into ℐ𝒮𝒜𝒞 2.4 (UR.2.5) by adopting the CalcTreeCell-

Renderer and CalcTreeCellEditor
2. . . . partially accomplished

(a) two levels of feedback are implemented (UR.2.3): feedbakc by
Isabelle is left as is and LocalCheck is only a stub

(b) translation from ASTs (after input) to terms for check by Isabelle/ℐ𝒮𝒜𝒞
is circumvented by submission of strings, which are parsed to
terms in Isabelle

(c) Braille Support (UR.2.20, UR.2.21, (UR.2.22) has a stub in the
editor’s interface and creates output on the console

3. . . . not yet tackled
(a) Isabelle’s user-friendly syntax definitions should be connected

with the editor for the purpose of extending the language of math-
ematics (UR,2.8)

(b) automated generation of rewrite rules for AST-AST-translations
from syntax definitions

Datastructure for rendendering in Isabelle are annotated syntax trees
(AST), however the present interface between ℐ𝒮𝒜𝒞 and Isabelle only trans-
ports terms.

1. . . . accomplished
(a) translated Isabelle’s AST from SML to Scala
(b) implemented translation from Term to AST in Scala
(c) extended Scala ASTs with CURSOR, GAP and BOX, i.e. ASTs

hold data for dynamic actions
(d) properties of operators are defined centrally (UR.2.6)
(e) parentheses according to operator priority (UR.2.16)
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2. . . . partially accomplished
(a) CURSOR has no position

3. . . . not yet tackled
(a) translation from AST to Term
(b) record positions for elements of formulas for the purpose of dis-

playing terms on request
(c) make types visible in the editor by mouse-cklick

i. keep types during translation from Term to AST
ii. additional mouse features in the editor

Rendering in LATEX quality establishes the first impression when ap-
proaching a formula editor in a software system for mathematics.

1. . . . accomplished
(a) draw boxes around sub-terms with different colors (UR.2.12)
(b) draw gaps and a cursor (UR.2.10, UR.2.13)
(c) size of sub-terms in fractions and powers is reduced according to

respevctive levels
(d) automated selection of fonts depending on operators or identifiers

of variables
2. . . . partially accomplished

(a) rendering of operators 2.8 UR.2.9
i. integral works only with two arguments
ii. unknown operators are displayed prefix with the arguments

in a horizontal sequence
3. . . . not yet tackled

(a) unary minus
(b) keys for navigation cannot be changed (UR.2.17)
(c) no auditive feedback (UR.2.19)
(d) selected sub-terms cannot be deleted or replaced
(e) the demo example “Biegelinien” does not work completely

User Interactions and Editing of formulas comprises input from scratch,
updating certain elements of a formula and navigation on a formula.

1. . . . accomplished
(a) key strokes lead to immediate display; for instance, input of +

creates two gaps for the arguments
(b) zooming and shifting of formulas for increased readablilty (UR.2.24)
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(c) input a formula from scratch (2.8 UR.2.9)
i. addition, multiplication, subtrakcion
ii. division, exponentiation

(d) update certain elements of a formula (UR.2.1, 2.15)
i. identifiers
ii. operator with same number of Parameter (e.g. change 𝑎 + 𝑏

into 𝑎− 𝑏)
iii. operator with fewer Parameter (e.g. change 𝑎−𝑏 into 𝑠𝑖𝑛(𝑎))
iv. operator with more Parameter (e.g. change 𝑠𝑖𝑛(𝑎) into 𝑎−

⨂︀
)

v. selection of sub-terms by mouse (UR.2.23)
(e) navigation on a formula (UR.2.11, UR.2.14, UR.2.17)

i. CURSOR
ii. BOX
iii. display BOX-content to the console

(f) properties of operators are defined centrally (UR.2.6)
(g) parentheses according to operator priority (UR.2.16)

2. . . . partially accomplished
(a) input a formula from scratch (2.8 UR.2.9)

i. copy and paste a whole Formula is not included directly but
possible

ii. integral works only with two arguments
iii. unknown operators ware displayed prefix with the arguments

in a horizontal sequence
(b) update certain elements of a formula

i. input of operators only by keys, not by palette (UR.2.7)
ii. variables and numbers cannot be edited character by charac-

ter, rather they need to be deleted from the end
iii. two level of feedback are implemented, but LocalCheck is only

a stub (UR.2.3)
(c) navigation on a formula

i. sub-terms can be selected via mouse click (UR.2.2), but sub-
sequent clicks do not extend up to the next parent term.

ii. Braille feedback is only a stub(UR.2.202.21, (UR.2.22)
3. . . . not yet tackled

(a) input a formula from scratch
i. unary minus
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purpose program language lines of code (LoC)
production code Java 246

Scala 2.118
test code Java & Scala 1.114
total 3.478

Table 5.1: Lines of code added by the prototype editor

(b) update certain elements of a formula
i. selected sub-terms cannot be deleted or replaced

(c) navigation on a formula
i. keys for navigation cannot be changed (UR.2.17)

(d) no auditive feedback (UR.2.19)
(e) the demo example “Biegelinien” does not work completely

Experiences with combining Scala and Java confirmed, that this
combination works smoothly – in principle with one exception, which ap-
peared in the development under consideration: In Scala one and the same
identifier can denote a class or an object, and Scala can distinguish between
these – but Java cannot distinguish. Thus Java prompts the error “. . . cannot
be resolved to a type” in the code, but compilation deals correctly with the
situation and eclipse’s package explorer doesn’t indicate this situation as
well.

These inappropriate error indications triggered a new point in ℐ𝒮𝒜𝒞’s
coding standards: The respective code line must be preceeded by /*err*/
for the reader who scans for red marks at the left margin.

Another inconvenience was caused by eclipse’s build management: edit-
ing code does not lead to proper re-compilation frequently – at least not with
a comprehensive code base as in ℐ𝒮𝒜𝒞 plus the code added by this thesis as
shown in Tab.5.1 on p.67. (This table does not show the updates required
for introducing the interface for the editor into ℐ𝒮𝒜𝒞 and adaptions to the
test environment §4.4). So a complete re-build was required frequently, but
this takes about ten seconds on a high-end workstation. In order to save
time, another way out was to just cut respective code and paste it again.

5.2 Conclusions
The feasibility study for a TP-based, accessible and inclusive formula editor
can be considered successful. The study provided the following insights:
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The combination of Scala and Java is appropriate for constructing
an editor: Java provides access to Swing, a powerful library since it has
adopted the concepts of LATEX. And Scala’s match is perfect for operating on
tree-stuctures like those of formulas. Thus integration into ℐ𝒮𝒜𝒞 was straight
forward.

This insight paves the way for a mid-term alternative to an ℐ𝒮𝒜𝒞 front-
end on tablets and handhelds 1 — an editor implemented in Scala & Java
Swing can also be integrated into Isabelle/jEdit, which is implemented in
the same programming languages. 2

Editors can combine LATEX-quality and TP-requirements: TP in-
creases demands on a formula editor but also provides appropriate tech-
nologies for constructing formula editors. The demands are indicating types
for all elements of a formula and providing extensibility for the language of
mathematics. The prototype demonstrates, that this can be done by mouse-
click on elements like in Isabelle/jEdit. The latter is less straight forward,
but respective layout classes have been identified.

This insight allows to envisage development of ℐ𝒮𝒜𝒞 towards a novel
mathematics tool for engineering education.

Development efforts can be estimated when striving for a professional
editor with formulas rendered in LATEX-quality, with accessibility for visually
impaired students and including cooperation with sighted students, and with
convenient input even without menues. Respective development can follow
the design and the architecture provided by this thesis; efforts are estimated
with about one Man Year, for details see below.

This insight provides prerequisites for planning future development of
ℐ𝒮𝒜𝒞 towards a professional tool for engineering education.

5.3 Preview to Future Work
Future work has been identified in great detail by the feasibility study and
the prototyping efforts of this thesis. The following enumeration collects all
points which have been mentioned as not (completely) accomplished in §5.

1. Integration into ℐ𝒮𝒜𝒞

(a) consider to do simple checks of a formula locally (without calling
Isabelle): matching parentheses, etc

1(ℐ𝒮𝒜𝒞 for such devices will come sooner or later, at least when respective technologies
have settled

2Then the challenge remains, to introduce session management, dialogue guidance and
Lucas-Interpretation to Isabelle/PIDE.
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(b) extend AST-AST-translations to the full range of mathematical
operators and data structures (matrices, etc)

(c) implement the interface for the Braille display
(d) provide user-configuration of mathematics standards for the Braille
(e) connect Isabelle’s user-friendly syntax definitions with the edi-

tor for the purpose of extending the language of mathematics
(UR,2.8)

(f) automated generation of rewrite rules for AST-AST-translations
from syntax definitions

2. Datastructure for rendendering
(a) provide the other direction of translation: from AST back to Term

and submit the latter to Isabelle (instead of strings to be re-
parsed)

(b) record positions for elements of formulas for the purpose of dis-
playing terms on request

(c) make types visible in the editor by mouse-cklick
i. keep types during translation from Term to AST
ii. additional mouse features in the editor

3. Rendering in LATEX quality
(a) rendering of operators 2.8 UR.2.9
(b) unary minus
(c) keys for navigation cannot be changed (UR.2.17)
(d) no auditive feedback (UR.2.19)
(e) selected sub-terms cannot be deleted or replaced

4. User Interactions and Editing
The above list together with the experiences made during this thesis lead to
a final judgement as follows:

• ℐ𝒮𝒜𝒞’s code base and the one of Isabelle (which serves as source and
model for the editor’s AST-AST-transformations) is complex and vo-
luminous such, that time required for getting acquainted with exceeds
the scope of a thesis

• The work required for development towards a professional tool com-
prises much coding and little theoretical work such that the work seems
not appropriate for an academic thesis

Thus further development of the prototype editor appears inappropriate for
student projects.
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