
The Rules of the ISAC - Developers

The ISAC-Team
isac@ist.tugraz.at

Institute for Softwaretechnology
University of Technology, Graz, Austria

July 11, 2007

Contents

1 The ISAC charta 2

2 Testdriven development 4
2.1 Testdriven development in Java . 5
2.2 Log4j and Chainsaw . 6
2.3 Testdriven development in SML . 7

3 The coding standards 8
3.1 Task tags . 8
3.2 Name tags . 8
3.3 Coding standards for Java . 9
3.4 Coding standards for SML . 13

4 ISAC documents 13
4.1 Survey on the documents . 13
4.2 Standards for the documentation . 15
4.3 Final reports . 17

5 Checklists 18
5.1 Checklist for assigning a sub-task . 19
5.2 Checklist for the final hand-over of a sub-task 20

This document contains all rules agreed upon by the members of the ISAC-team. The
wide range of these rules will supposedly lead to a split into several documents in the
future.

1

1 The ISAC charta

ISAC is dedicated to learning as an essence of human beeing. On the one hand learning
is concerned with individual growth, with reflection about the part of human thinking
which can be mechanized my mathematics, with gaining insight into foundations of our
technology oriented society — issues ISAC wants to contribute with a novel kind of math
tutoring software. On the other hand, learning is a social activity in various ways: it
concerns cooperation between the learner and some kind of teacher, between teachers and
media producers, between educational administrators and course designers — issues ISAC
wants to contribute with a novel kind of math authoring software. And last not least the
ISAC-project is a learning community itself, embedded into the development in science as
a collective kind of learning.

In the future, an advisory board shall be engaged to balance these issues. Presently the
ISAC-project is primarily engaged into software development, and for this part the rules
are set up first below.

1. ISAC is an academic open-source project on learning mathematics.

2. The charta determines the administrative rules (pt.3.), the rights and obligations
of the members of the (pt.9.) ISAC-team with respect to the development process
and the (pt.4.) products resulting from this process within the ISAC-project.

3. Changes of the rules of the charta are set up to acceptance of two thirds of the
(pt.10.) active members of the ISAC-team in a (pt.12.) ISAC-meeting. Proposals for
changes have to be made public one week ahead of a decision in isac@ist.tugraz.at.
In case of parity of votes the (pt.11.) ISAC-admin decides.

4. The ISAC-products are common property of the members of the (pt.9.) ISAC-
team, where each person holds the copyright on the code he or she is author of. The
ISAC-products comprise the ISAC mathematics kernel, the ISAC tutoring system, the
ISAC authoring system the ISAC web-reader and ISAC content.

Detailed rules for cases of re-engineering will be established in time these cases will
come up.

5. ISAC is an open source project under GNU public license; the ISAC-project follows
the idea, that educational software should be free for everyone involved in learning
and teaching.

However, if ISAC-content, probably developed outside the ISAC-project, is commer-
cially used, ISAC will ensure fair sharing of profit with the ISAC-team. A procedere
for such cases will be established in time these cases will come up.

6. A certain sub-task of the ISAC-project is defined between an aspirant and the
ISAC-admin (usually by agreement on certain JUnit tests) following the checklist 5.1.
Ninety percent of this task are covered by this initial agreement; ten percent may

2

be required for tasks from the todo-list (pt.15.) urgently needed for accomplishing
general goals of the ISAC-project.

By the agreement on the sub-task the aspirant becomes an active member (pt.10.)
of the ISAC-team (pt.9.).

7. The responsibility for parts of code is given at the agreement on the sub-task
(pt.6). The responsibility is fixed for a list of directories, where the member is allowed
to create new files (and subdirectories in agreement with the (pt.11.) ISAC-admin)
and/or a list for already existing files.

If the request for changes in the code concerns files of one other active member, then
the change is due to the agreement between the two members. If the change concerns
more than one collegue, the agreement is up to involve the ISAC-admin, usually at a
(pt.13.) team-day. The ISAC-admin is responsible for all code not in responsibility of
an active member of the ISAC-team.

8. The cvs repository contains code with all tests running (in SML as well as JUnit-
tests in Java). In order to sustain this state, these steps must be followed:

(a) Merge new code with the repository by update.

(b) If there are conflicts, clarify them with the owner of the respective file (see pt.7).

(c) Run all tests (either in SML or in Java; in case of changes in the Java-SML
interface both).

(d) If some tests do not run, contact the owner of the respective testcase (see pt.7).

(e) If there are no more conflicts and all tests are running, commit the new code.

(f) The commit has to be accompanied with a comment of one or two lines. If
the new code is related to discussions in an ISAC-meeting, the comment has to
reference the respective protocol (pt.14).

(g) Renamed files and directories must be commitet with a comment containing
’oldname-¿newname’ in order to make the history tracable.

When formulating the comments in commits remember: what has been changed is
implied by the changes (and these are recorded by cvs automatically), usually it is
more informative why something had be updated, or at which occasion some new
code has bee added.

9. The ISAC-team comprises all persons who ever have obtained a task (pt.6.) from
the (pt.11.) ISAC-admin and who have received admission from two thirds of the
(pt.10.) active members in an (pt.12.) ISAC-meeting.

10. The active members of ISAC-team are those who have not yet left the active
development process, usually on completion of their thesis or written report. The
membership can be abandoned like any other rule (pt.3). An active member is
discharged from this sub-task (pt.6) due to a procedure described in sect.5.2.

3

11. The ISAC-admin is the member of the ISAC-team supervising the whole development
process and the adherence to the rules.

He prosecutes breach of the rules by assigning a task, adequate to the annoyance
caused in the team, from the todo-list (pt.15) to the malefactor.

In case of absence the ISAC-admin has to determine a representative. In case of
permanent unavailability the ISAC-meeting has to determine a new ISAC-admin.

12. An ISAC-meeting requires the presence of two thirds of the members of the ISAC-
team, the ISAC-admin and the announcement like a rule (see above). The task of the
ISAC-meeting is to change rules of this charta including the active membership.

13. A team-day obliges each active member of the ISAC-team to be present one certain
day a week. This day is fixed at the beginning of a semester once for a semester.

The team-day serves discussing interfaces and other topics of common interest, per-
sonal concerns of the members of the ISAC-team, pair programming and ISAC-meetings
if required. A topic of common interest should be published in isac@ist.tugraz.at

at least 3 days ahead.

14. A protocol is written for each ISAC-meeting and for points of common interest at
a team-day. It serves the information of active members, who could not take part in
the ISAC-meeting and for later lookup. Thus the protocol briefly describes the points
of discussion and certainly contains all decisions.

The protocol is written by the active members of the ISAC-team all around in alpha-
betical order. It is stored in the cvs isac/admin, thus allowing for comments.

15. A todo-list contains tasks outside the sub-tasks defined according to pt.6. Entries
in the list are accepted by the ISAC-admin or by affirmation of two thirds in an
ISAC-meeting.

Tasks on this list are assigned to members of the ISAC-team by the ISAC-admin for
urgent reasons w.r.t. general ISAC goals or for prosecution of breach of rules.

2 Testdriven development

ISAC is a research and development projekt; as such it has to deal with open research
questions and changing requirements. Together with the middle size of the ISAC-team this
gives the major prerequisites for a development process following the ideas of ‘extreme
programming’ [Bec00].

In particular, all sub-tasks of development are defined by means of functional tests
together with the ISAC-admin.

4

2.1 Testdriven development in Java

Here are the rules for the part of development involving Java.

1. The subdirectories of src/java-tests are kept an exact sub-tree of src/java.
Sub-tree means, that these subdirectories in src/java-tests/* are omitted (w.r.t.
src/java/*) which are not needed for holding testcases and/or testsuites.

There are two exception to this rule:

(a) src/java-tests/isac/functest see (8.) below

(b) src/java-tests/isac/sml contains checks of the XML-output of the SML-
kernel.

2. Each testcase resides in that subdirectory of src/java-tests, where the tested class
resides in the respective subdirectory of src/java. (Thus, below we do not distin-
guish between ‘subdirectories of src/java-tests/*’ and ‘subdirectories of src/java/*’).
Thus we can name both src/java/isac/* and src/java-tests/isac/* for short
ISAC/*.

3. A testsuite for class Yyy.java is named TestYyy.java, and the testcases for a method
Yyy.xxx in TestYyy.java are named testXxx*. Mock-objects are named MockXxx

where Xxx is the name of an existing class.

4. If a testcase refers to methods of several objects, then it resides on the common root-
directory of the objects’ directories. This root is src/java-tests/isac ultimately.
TODO what if there will be too many testcases ?

5. All testcases and testsuites in a directory ISAC/*/aaa/ are called by a specific test-
suite /ISAC/*/aaa/Testall.java, and if there are subdirectories ISAC/*/aaa/?,
this specific testsuite calls the testsuites ISAC/*/aaa/?/Testall.java (and does
not go several levels deeper in the file hierarchy). Thus ISAC/*/aaa/Testall.java

contains exactly one additional call to ISAC/*/aaa/?/Testall.java per immediate
subdirectory ISAC/*/aaa/?/.

6. The testsuite ISAC/Testall.java is the root of the calling hierarchy and calls
all existent ISAC/*/Testall.java cascading down all tests, according to (5.), one
Testall.java per level.

7. Thus the implementor of a testcase for class ISAC.*.aaa.Yyy is responsible that

(a) the testcase is ISAC.*.aaa.TestYyy.java according to (2.) and (3.).

(b) This amounts to either

i. the directory src/java-tests/isac/*/aaa/ does already exist. Then the
implementor has to

5

A. insert a call of his TestYyy.java into src.java-tests.isac.*.aaa.Testall.java
(i.e. short ISAC.*.aaa.Testall.java)

ii. or directory src/java-tests/isac/*/aaa/Testall.java does not exist.
Then the implementor has to

A. create directory src/java-tests/isac/*/aaa/

B. create a testsuite ISAC.*.aaa.Testall.java calling ISAC.*.aaa.TestYyy.java

C. add a call of ISAC.*.aaa.Testall.java to ISAC.*.Testall.java, which
has been brought to existence applying (5.) recursively.

8. Functional tests are kept in ISAC/functest. They relate to the use-cases in the isac-
docu.tex. In order to allow cross-referencing, the whole LATEX-label must be used
in the code, e.g. \label{SPECIFY:check} (the numbering is useless due to ongoing
changes to isac-docu.tex).

9. Each functional test is a separate JUnit-test. Thus it can be referenced within javadoc
by @see, as can be referenced JUnit-tests themselves.

10. Interlinking of unit-tests (with the javadoc @see) is desirable.

(a) One obvious and thus mandatory way originates from the proceeding in test-
driven development:
Development starts with functional tests, usually followed by JUnit-tests cover-
ing parts of the function: these JUnit-tests must be interlinked bidirectionally
with the respective functional test. (i.e. a JUnit-test should point at least at
one functional test.

(b) If a JUnit-test (‘parent‘) covers several other JUnit-tests (‘children‘), then this
relation should be documented by bidirectional links between parent and chil-
dren.

11. TODO get experience, if the tests are fast enought be run parallel to module-
development; then consider how to separate them appropriately.

2.2 Log4j and Chainsaw

Debuggers (in particular the one implemented in Eclipse) have troubles with ISAC’s modules
running in different (virtual) machines — stepping through the code gets stuck in javaRMI.

Thus we use Log4j and Chainsaw for debugging across modules. ISAC uses Chainsaw’s
priority levels as proposed at www.vipan.com/htdocs/log4jhelp.html: Log4j by default
can log messages with five priority levels.

1. Use debug to write debugging messages which should not be printed when the appli-
cation is in production.

2. Info: ISAC uses this mode for presenting a survey on the communication between the
modules.

6

3. Use warn for warning messages which are logged to some log but the application is
able to carry on without a problem.

4. Use error for application error messages which are also logged to some log but, still,
the application can hobble along. Such as when some administrator-supplied config-
uration parameter is incorrect and you fall back to using some hard-coded default
value.

5. Use fatal for critical messages, after logging of which the application quits abnormally.

All levels highter than debug are in the responsibility of the ISAC-admin. Thus casual
overriding the usage above must be repaired by the ISAC-member on completion of his
sub-task.
The logger must be declared as

private static final Logger logger = Logger.getLogger(....class.getName());

Each call must be guarded by the if as in

if (logger.isDebugEnabled())

logger.debug(.....);

At level info the following abbrevations are used:

abbrevation module/class comment

WA WindowApplication

BF BrowserFrame

WS Worksheet

modules between gui and mathengine

SM SessionManager ? unify with SE ?

SE Session ? unify with SM ?

UM UserManager ? remove ?

DG DialogGuide superordinate concept of BD, WD – remove ?

BD BrowserDialog

WD WorksheetDialog

BR Bridge

Table 1: Abbrevations for survey on modules in the logger

The messages concerning SM. . . DG are indented 2 spaces, the BR is indented 4 spaces,
WA. . . is not indented.

2.3 Testdriven development in SML

TODO

7

3 The coding standards

3.1 Task tags

The following task tags are used for both, for Java and for SML.

FIX*ME tags locations in the code where some existing functionality is established by a
short-cut or a hack.

• FIXME has low priority, i.e. the fix need not made during the sub-task (see pt.6 of
the ISAC-charta).

• FIXXME has normal priority, i.e. the fix should be made during the sub-task.

• FIXXXME has high priority, i.e. the fix should be made as soon as possible.

FIXMEs need to be discussed at the final hand-over (see the checklist 5.2).
TO*DO tags locations in the code where some functionality is missing.

• TODO has low priority, e.g. it is used by eclipse’s code generator; the latter should be
removed as soon as possible.

• TOODO has normal priority, i.e. the fix should be made during the sub-task.

• TOOODO has high priority, i.e. the fix should be made as soon as possible.

TODOs need to be discussed at the final hand-over (see the checklist 5.2).
If an author of a FIX*ME or a TO*DO sets the tag outside his part of responsibility to

code (see pt.7 of the ISAC-charta), he has to follow the coding standards pt.5 on p.10.

3.2 Name tags

Name tags serve short comments, see the coding standards, eg. pt.5 on p.10 or 14 on p.11.
The name tags of the members of the ISAC-team are so far . . .

8

name tag username name
AG agriesma Andreas Griesmayer
AK akremp Alan Krempler
CR croppos? Christian Ropposch
GK gkompach Georg Kompacher
GS gschroet? Günther Schröttner
LK akirchst Alois Kirchsteiger
JL jloinig Johannes Loinig
MG mgold Matthias Goldgruber
MH mhochrei Mario Hochreiter
MK mkoschuc Manuel Koschuch
ML mlang Martin Lang
NC nsimic Nebojsa Simic
RG rgradisc Richard Gradischnegg
RK rkoenig Robert Könighofer
RL rlang Richard Lang
SK Stefan Karnel
TF tfink Thomas Fink
TO tober Thomas Oberhuber
WK wkandl Wolfgang Kandlbauer
WN wneuper Walther Neuper

The username is used by the cvs versioning system.

3.3 Coding standards for Java

The following closely resembles the ‘Dinopolis Java Coding Convention’.

1. The language for code is English. This applies for all names and identifers in the
code as well as for all comments.

2. Avoid the use of block comments (/* ... */) in the source code and use the line
comments (//...) instead. This makes the source code less fragile to erroreneous
deletions of code-lines and robust against the use of eclipses code-formatter. Eclipses
code-formatter also badly handles //-comments if they are at the end of a long line;
such comments should be above the respective line.

3. If it is absolutely necessary to put comments in the code to describe algorithmic de-
tails preceed the according code fragment with a comment block rather than spread-
ing the comments across the code fragment.

4. If it is absolutely necessary to clarify non-obvious code write short comments at the
end of the appropriate code line. Nevertheless whenever such a comment seems nec-
essary think twice if there is a better obvious solution that doesn’t need a comment!

9

5. In exceptional cases (e.g. if the author is not an active member of the ISAC-team
anymore) a comment may be added to a piece of code by someone who is not the
author. In this case the comment has to be marked with NNyymmdd, where NN follows
the table in sect.3.2.

6. When describing a design pattern the name of the book which deals with this pattern
should be cited (e.g. [Gamma et al. 1998]).

7. When describing algorithms the names of the book which deals with these algorithms
and datastructures should be cited (e.g.[Sedgewick 1992].

8. The source code for every class (even for non-public classes) should reside in a file of
its own. The only exception to this rule are inner classes and anonymous classes as
it is per definition impossible to put them in files of their own.

/*

* @author <author>, member of the ISAC-team,

* Copyright (c) ${year} by <author>

* created ${date} ${time}

* Institute for Softwaretechnology, Graz University of Technology, Austria.

*

* Use is subject to PGPL license terms.

*/

9. When writing stand-alone programs the class with the main method in it should
not have anything to do with the functional part of the code. The same applies for
applets: The Applet class should not have anything to do with the functional part
of the code.

10. Every class should be a member of a package. Classes belonging to the default
package are undesired, even for testing.

11. Java import statements should be written in the following order:

(a) Java Core API classes.

(b) Java Extension API classes.

(c) Classes from third party APIs.

(d) ISAC classes.

To increase the readability of the import part, all imports should be sorted by package
names, that means imported classes belonging to the same package can be found in
consecutive lines. Between the three categories mentioned above a single blank line
is recommended. Using wildcards in import statements makes updating of classes
hard and should therefore be avoided.

10

12. Classes should be preceded by a Javadoc header of the following form 1:

/**

* Description of the class in HTML format, if a useful link can

* be given in the running text do this with

* @link fully.qualified.Class#method(fully.qualified.Param)}

* @author <authorname>

* @version <version number>

* @see <fully.qualified.Classname#methodName(param-classes)>

* @deprecated <if applicable write reason here, otherwise omit

* this line>

*/

class ExampleClass {

...

}

13. Prefix methods by a Javadoc header of the following form, if the method is not given
by an interface:

/**

* Description of the method in HTML format, if a link can

* be given in the running text do this with {@link

* fully.qualified.Classname#methodName(fully.qualified.Paramclass)}

* @param <paramname> <paramdescription>

* @return <return value>

* @exception <exception> <description when it is thrown>

* @see <fully.qualified.Classname#methodName(param-classes)>

* @deprecated <reason if applicable, otherwise omit this line>

*/

public Object myFunction(Object test_param) throws MySpecialException {

...

}

If the method is given by an interface, the description shall not repeat the related
description in the interface; use @see and refine the related description if necessary.

14. If bad hacks are absolutely unavoidable for whatever reason (e.g. absolutely have to
meet a deadline, etc..) they should be tagged by a hack-start and hack-end comment
of the following form, NNyymmdd according to coding standard no.5:

// FIXXME.NNyymmdd hack: <description of the hack>

1Adapt eclipse: <Window><Preferences><Java><Code Style><Code Templates> accordingly !

11

[..... the hack]

// END hack.NNyymmdd

For (<author, date>) the signature described in 5 has to be used.

To facilitate a grep, the keyword FIXXME should be written in upper-case and with
at least two ‘X’s. More than two are allowed and should be used for really bad hacks
- as a rule of thumb: the more ‘X’s the word FIXXME contains the worse the hack
is, up to a maximum of five ‘X’s 2. All hacks that have found their way into the code
should be removed as soon as possible!

15. Name identifiers according to the following naming conventions 3:

Packages:
lowercase

Interfaces:
I FollowedByName

Classes:
AllWordsCapitalizedWithoutUnderscores

Methods:
firstWordLowerCaseRestCapitalizedWithoutUnderscores

Constants (= finals):
ALL UPPER CASE WITH UNDERSCORES

Class and instance member variables:
all lower case with underscores and with trailing underscore

Auto variables (=variables used locally in methods):
all lower case with underscores

Exceptions:
ClassNameEndsWithException

Besides these general naming rules some special naming conventions apply: All meth-
ods which change properties of classes should be named setXXX. The methods re-
turning the value of certain properties of classes can be divided into two categories:
getXXX for non-boolean properties and isXXX for boolean values respectively. Exam-
ple:

public void setCounter(int value) {

...

}

public int getCounter() {

2Adapt eclipse: <Project>Properties<Java Task Tags> accordingly !
3Adapt eclipse: <Window><Preferences><Java><Code Style><Code Templates> accordingly !

12

...

}

public void setReadOnly(boolean value) {

...

}

public boolean isReadOnly() {

...

}

16. The following code structuring conventions apply 4:

• Write opening curly braces at the end of the preceding code.

• Write closing curly braces around code-blocks in lines of their own.

• Indent code-blocks by two spaces. Don’t use tabs for indentations but use spaces
instead. Only indent the code block, not the curly braces!

• When invoking methods the opening brace always should follow the method
name without any whitespaces.

• Use the eclipse formatter each time you commit a source file.

17. java-doc is generated separately for the production-code in java and for the test-cases
in java-tests. Thus do NOT reference from java to java-tests — this kind of ref-
erence is implicitly documented by the naming convention which mirrors directories,
files, classnames, methodnames etc., see sect.2.1.

3.4 Coding standards for SML

The following closely resembles the standards given in [Pau91].
TODO

4 ISAC documents

ISAC as an academic project relies on the motivation, the expertise and the dedication of
the members of the ISAC-team. Thus the documents are kept to an absolute minimum.

4.1 Survey on the documents

All the documents maintained in the ISAC-project are presently:

The ISAC documentation of the system has the purpose to ease entering a new
sub-task. Each member of the ISAC-team is challenged to contribute to the documentation
within his or her sub-task to furtherly ease the entering of follow-up sub-tasks.

4Adapt eclipse: <Window><Preferences><Java><Code Style><Code Formatter> accordingly !

13

The ISAC-charta contains all rules agreed upon by the members of the ISAC-team;
see sect.1 in this document.

The ISAC-diary gives an account on the activities going on across the different groups
(development of the front-end, of the mathematics engine, of math content, etc.) in the
project .

The todo-list contains tasks outside the sub-tasks defined; see the ISAC-charta pt.15.
Each project sometimes needs awful things to be done ;-(in order to succeed.

The protocols are written for each ISAC-meeting and for points of common interest
at a team-day (finally phase 2 convinced the team of the necessity of this document ;-);
see the ISAC-charta pt.14.

Add-ons to the protocols may contain more voluminous comments on discussions,
details of design considerations etc. than acceptable in the protocol. This add-on must
have the same date in the filename as the protocol it is added on.

The work-plans are set up separately for each sub-task. There was no need for a
formalized work-plan or a project plan over several sub-tasks so far.

The final reports conclude each sub-task, beeing it a seminar/project or practical
part of some kind of thesis; see sect.4.3. They are source of major updates of the ISAC
documentation (preferably by copy and past), and thus follow the same standards, see
sect.4.2

The work-reports contain information important for continuing work related to a
specific sub-task, if such information cannot becovered by TO*DOs and FIX*MEs in the code.

Administrative details on the documents: Most of the documents require version-
ing, thus they are located in the cvs-repository at /isac/admin and sub-directories included
in the field ’name’ of the table below.

14

document occasion author dispatch audience standard name
documen- sub-task finished act.mem ISAC-admin public documents ../doc/
-tation isac-docu.tex

../doc/
math-eng.tex

ISAC-charta start phase 3 ISAC-admin ISAC-admin public documents isac-rules.tex
ISAC-diary completion of act.mem. act.mem. act.mem.s template diary/

UCs, phases etc. yymm-mm.txt
meetings,
changes in team,
presentations

todo-list start phase 3 ISAC-admin ISAC-admin act.mem.s template TODO-list.txt
protocol meeting, act.mem. ISAC-admin act.mem.s template protocols/

yymmdd.txt
add-on meeting, act.mem. act.mem. act.mem.s none protocols/

team-day yymmdd-addon.txt
work-plan start sub-task new mem. ISAC-admin act.mem.s template projplans/NN.txt
final report sub-task mem. ISAC-admin act.mem.s documents ../doc/NN/

supervisor da-username.tex
work-report sub-task finished mem mem. act.mem.s template workreports/NN.*
responsibility code-
for code ISAC-admin ISAC-admin act.mem.s -responsibility.txt

A ’member’ of the ISAC-team is abbreviated by ’mem’ above. Templates are held in
the respective directoy with the name template.* or given by the initial entry in the
respective document.

4.2 Standards for the documentation

These standards hold for the ISAC design documents, i.e. the user requirements and the
software requirements document, the architectural design and software design document,
the use cases and test cases, and the final reports, see see sect.4.3 below.

These documents are written in LATEX, which is unfamiliar with many authors; thus the
standard is kept to a minimum of sophistication. The aim is to provide for easy merging
(parts of) the final reports into the ISAC-docu [iT02].

The structure into parts, chapters, sections is given by the ISAC-documentation.
The structure of the final reports should take the same levels.

Definitions are already given in the file isac-docu.tex (the definitions will be ex-
tracted into a separated file preample.tex as soon as some details with separate compila-
tion are solved,see ’LATEXing’ on p.17 below). In order to avoid conflicts, they must all be
copied into the separate reports at the very beginning of writing !

Logos i.e. ISAC and ISAC are fairly primitive LATEX-constructs. Both require a {}
for separating the subsequent word; ISAC (fixed size !) is for use within paragraphs, ISAC

15

for headlines.

User-requirements, software-requirements and use-cases have all their respec-
tive defintions by \newcommand and \newtheorem in preamble.tex; they must be used.
How to use, just look into the isac-docu.tex files ! See also ’labels’ below. 5

Labels and files-names must be headed by the name tag of the author, see sect.3.2
on p.8 — this is by no means an elegant way of avoiding conflicts when integrating the
final reports into the isac-docu.tex files, but who knows a better one ?

Moreover, labels of user-requirements start with UR, software-requirements start with
UR and use-cases start with UC. Thus a typical label is \label{UR.WN-short-description}
and the respective reference UR.\ref{UR.WN-short-description} — note the preceding
UR.

Files-names must not contain underscores () for the (rare) cases they have to be cited
within LATEX (otherwise we would have to use math-mode).

Figures should be generated using xfig. The source files should have the same name
as the *.eps-files generated for LATEX, and they both must be located in a sub-directory
fig of the root-directory of the respective report (as is with isac-docu.tex); And these
file names must start with a name tag and must not contain underscores according to
’labels and files-names’ above.

Diagrams should be created with the tools from http://uml.sourceforge.net/index.php.
Umbrello is open-source and seems to become the up-coming tool for UML-modeling.

Reader’s marks are used in the (rare) cases, where a member of the ISAC-team
is authorized by the ISAC-admin to edit parts of the ISAC-documents directly. Then the
ISAC-admin will use the following, well proven, reader’s marks:

% legend to the reader’s marks:

%

% [] the brackets enclose comments additional to,

% and not belonging to the text

%

% {} the braces enclose exact proposals for new text,

% which are embedded into comments.

%

% / marks a character to be deleted in the line _above_

%

% ^ points to a certain position in the line above,

% usually concerning a comment or an insertion

5[Kre05] proposed more elegant definitions for them, which shall be introduced in the future.

16

The same marks are used for comments of the ISAC-admin within the final reports, if
desired.

LATEXing of the ISAC-documentation is done with ’latex isac-docu’ and ’latex

math-eng’. And each of the documents must be compiled with the LATEX-system actually
installed at IST — this is an indispensible prerequisite for maintainance of the documen-
tation.

Each part of the ISAC-documentation can be LATEXed separately, the User Requirements
Document by ’latex urd’ etc. This is due to a mechanism based on the file common.tex

copied from [Dil93].

Bib-texing of the ISAC-documentation is done with ’bibtex isac-docu’ and ’bibtex

math-eng’. The related bib-files are the files isac/doc/bib/isac.bib and
isac/doc/bib/from-theses maintained by the ISAC-admin.

All ISAC-related publications are in isac/doc/bib/isac.bib (otherwise urge the ISAC-
admin !), and \cite{xxx} must use the labels xxx already given.

Bib-tex files must be located in a sub-directory bib of the root-directory of the respec-
tive report (as is with isac-docu.tex).

4.3 Final reports

Most of the members of the ISAC-team work on sub-projects in ISAC within their regu-
lar studies, comprising a ‘Diplomarbeit’ (diploma thesis), a ‘Software-Projekt und Bakk.-
Arbeit B’, a ‘Seminar/Projekt’, or a ‘Praxis-Semester’. The latter usually is continued into
a diploma thesis, too. Thus most of the sub-tasks end up with a final written report.

In the sequel there are supporting aids and rules for these reports and theses.

Support for writing the final reports is given in several ways, most of them contained
in the versioning system, the CVS as checked out into isac/. There are

• a lot of documents and papers is avaiable on ISACs webspace www.ist.tugraz.at/projects/isac/www/content/publications.html
via download. Members of the ISAC-team obtain these papers, including LATEX-
sources, figures etc. from the CVS at isac/doc or directly from the ISAC-admin

• in particular, surveys on ISAC, introductions to ISAC, proposals on how to locate
sub-projects within ISAC etc. directly from the ISAC-admin

• stylesheets for the reports, including the definitions of ISAC, ISACetc. in the CVS at
isac/doc.

• a bib-file in the CVS at isac/doc/bib for easy generation of bibliographies. This
file is maintained by the ISAC-admin. Further bib-files can be supplied by the ISAC-
admin.

17

Coordination with the ISAC-documentation is both, helpful for writing a report or
thesis, and mandatory in order to keep the documentation up to date. The following rules
guide the coordination.

1. Terms used in the ISAC-project, as contained in an appendix of the ISAC-documentation,
provide for efficiency in internal communication and for uniformity and tracability
in presentation to the outside world. Thus, in particular, these terms must be used
in reports and in theses.

2. Writing access to the ISAC-documentation in the cvs at isac/doc is exclusively with
the ISAC-admin (who may delegate certain tasks).

3. The Requirements Document, both the user requirements and the software require-
ments in the ISAC-documentation, must provide justification for all design decisions
in a report. If gaps in the requirements document become apparent, they have to be
filled in coordination with the ISAC-admin.

4. The Architectural Design Document may overlap with design considerations in a
report or thesis. Respective parts of the document may be copied into the report
(and cited). And if there are changes or refinements in the design, the respective parts
of the report will be copied into the document in cooperation with the ISAC-admin.

5. The Software Design Document usually will be refined, updated and completed by
parts of a report; again, these parts of the report will be copied into the document
in cooperation with the ISAC-admin.

6. The Usecases are shifted into the code as soon as they are implemented: the practical
parts of the project/seminar or the thesis are defined by functional tests according
to sect.2. Nevertheless, a usecase must be referenced by the full LATEX-label, e.g.
\label{SPECIFY:check}.
TODO.WN050527 after decision for/against doxygen:

7. If a major part is copied from a final report to the ISAC-documentation, then such
a part is marked within both, in the source (the report) and in the destination (the
documentation), e.g.

%WN050518---AK04:thesis.p.67-76->isac-SDD------BEGIN don’t remove line

%WN050518---AK04:thesis.p.67-76->isac-SDD------END don’t remove line

5 Checklists

The first two checklists concern the begin and the end of a sub-task.

18

5.1 Checklist for assigning a sub-task

This checklist concerns the adoption of a sub-task as defined in pt.6 on p.2.

1. the ISAC-admin presents the essence and the most important rules of the ISAC-charta
www.ist.tugraz.at/projects/isac/publ/isac-rules.pdf

2. agree on an individual access to the practice of the rules in the ISAC-charta

3. receive an account at the Institute for Softwaretechnology, IST (the ISAC/admin
arranges an appointment with the IST-admin).

4. describe the sub-task: this usually is an interactive procedure within the team lasting
for some time. Anyway, it shall be finalised within 3 weeks. The description depends
on the specific sub-task and partially on the working style of the current ISAC-team.
Usually the description comprises some of the following tasks:

5. relate the sub-task to existing use-cases

6. relate the sub-task to existing parts of the isac-docsu.tex, i.e. the actual version of
www.ist.tugraz.at/projects/isac/publ/isac-docu.ps.gz

7. assign the source-directories and files the new member is responsible for

8. fix an appointment for a work-plan describing appropriate milestones for the sub-task
(should be within 4 weeks in general)

9. fix the type of documentation; this may be a thesis (see sect.4.3) or a work-report
only (see sect.4.1). The former is expected to be discussed with the ISAC-admin in
order to ensure compatibility with the ISAC-documents; see sect.4.2 for standards.

10. mail a personal web-page for
www.ist.tugraz.at/projects/isac/www/content/team.html (should be within 4
weeks in general); the ISAC-admin copies it into the webspace.

11. the ISAC-admin assigns a name tag to the new member (see the table in sect.3.2)

12. check if the administrative duties with the university are accomplished (enrolment
for semin/project, for Bakk or Diploma thesis etc.

13. introduce the new member of the ISAC-team on a ISAC-meeting (pt.12 on p.4)

14. introduce the new member to other members of the ISAC-team responsible for related
sub-tasks.

15. hand-over the work-plan to the ISAC-admin (who approves and publishes it – see
sect.4.1)

16. (ISAC-admin: update the web-pages, publish work-plan, announce in the isac-diary.tex)

19

5.2 Checklist for the final hand-over of a sub-task

This checklist concerns the final hand-over of a sub-task usually releasing an active member
(pt.10 on p.3).

1. check your code, i.e. the code you are responsible for (pt.7 of the ISAC-charta)

(a) general checks

i. the coding standards are met

ii. no warnings / errors

iii. remove all obsolete FIX*MEs and TO*DO (and oly these !) and comment the
others

iv. all outcommented code must have an extra comment indicating the reason.

(b) java-specific checks

i. the coding standards are met, in particular, all important classes and meth-
ods have a java-doc comment

ii. java-doc compiles both, the java-directory and the java-tests-directory
(separated following pt.17 on p.13)

iii. check your code via javadoc: each class and each method with a brief and
relevant comment

iv. remove all calls of the logger, except those with status ’fatal’ which have
(exclusively !) been managed by the ISAC-admin.

v. reduce the number of System.out.println’s to a reasonable amount of
output, which might help (and not overwhelm) your successors in develop-
ment.

(c) sml-specific checks

i. TODO

2. check the usecases done or not done (and comment the latter in the (JUnit-) test-
case !)

3. finialize the documentation, i.e. the final report and/or the assigned parts of the
isac-docu:

(a) check w.r.t. the standards in sect.4.2

(b) actually latex the report on the IST-system (indispensible for reuse of the text
and the figures !) and generate a ps-file by dvips da-NN.dvi -o, as an option a
pdf-file additionally (which causes additional effort with the figures, in general).

(c) hand over the sources to the ISAC-admin for publication and/or for integration
into the ISAC-docu.

4. finish your work-plan to your sub-task, see sect.4.1.

20

5. make an appointment with the ISAC-admin and discuss ...

(a) the work-plan

(b) specific points in your code

(c) each FIX*ME within your code

(d) each TO*DO in this code

(e) the test-cases

(f) the final-report

This meeting may take more than one appointment.

6. discuss the most important points from above at a team-day (pt.13 on p.4) or at an
isac-meeting (pt.12 on p.4).

7. optionally deposit a final work-report (see sect.4.1) on the sub-task, on experiences
with the ISAC-team etc.

8. if you are also a member of TU Graz, ask the ISAC-admin to arrange an appointment
for giving a presentation at an IST-meeting.

9. return the keys, books, cables etc. you have from the IST.

10. say goodbye at a team-day or at an ISAC-meeting.

References

[Bec00] Kent Beck. Extreme programming explained: embrace change. Addison-Wesely,
2000.

[Dil93] Antoni Diller. LATEX line by line. John Wiley & Sons, 1993.

[iT02] ISAC Team. ISAC – user requirements document, software requirements docu-
ment, architectural design document, software design document, use cases, test
cases. Technical report, Institute for Softwaretechnology, University of Technol-
ogy, 2002.
http://www.ist.tugraz.at/projects/isac/publ/appendices.ps.gz.

[Kre05] Alan Krempler. Architectural design for integrating an interactive dialogguide
into a mathematical tutoring system. Master’s thesis, University of Technology,
Institute for Softwaretechnology, Graz, Austria, March 2005.
http://www.ist.tugraz.at/projects/isac/publ/da-krempler.pdf.

[Pau91] L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
1991.

21

