The examples in this subsection have been used for testing purposes by Matthias Goldgruber.


Add the fractions, and simplify them

No.1 (47/6 - 76/9 + 13/4) / (35/12) = ...

Or course, ISAC can calculate with numeral constants, too (even if they build a double fraction).
No.2 ((5/4) / (4+22/7) + 37/20) * (110/3 - 110/9 * 23/11) = ...

This term with numeral constants simplifies considerably.
No.3 4/x - 3/y - 1 = ...
No.4 (2*a + 3*b) / (b*c) + (3*c + a) / (a*c) - (2*a^2 + 3*b*c) / (a*b*c) = ...

Again an enjoyable simple result.
No.5 1/(x+1) + 1/(x+2) - 2/(x+3) = ...
No.6 (1+ x) / (1 - x) - (1 - x) / (1+ x) + 2*x / (1 - x^2) = ...

Another nice simplification !
No.7 (x + 2) / (x - 1) + (x - 3) / (x - 2) - (x + 1) / ((x - 1)*(x - 2)) = ...
No.8 (2*x + 3*y)/x + (4*x^3 - x*y^2 - 3*y^3)/(x^3 - 2*x^2*y + x*y^2) - (5*x + 6*y)/(x - y) = ...

Indeed, you can evaluate this term with any values for x and y and you will get 1 as a result any time !
No.9 1/(a - b)^2 + 1/(a+b)^2 - 2/(a^2 - b^2) - 4*(b^2 - 1)/(a^2 - b^2)^2 = ...
No.10 a^2/(a - 3*b) - 108*a*b^3/((a+3*b)*(a^2 - 9*b^2)) - 9*b^2*(a - 3*b)/(a+3*b)^2 = ...

This is another ultra simplification.
No.11 (a^2 + a*b)/(a^2 - b^2) - (b^2 - a*b)/(b^2 - a^2) + a^2*(a - b)/(a^3 - a^2*b) - 2*a*(a^2 - b^2)/(a^3 - a*b^2) - 2*b^2/(a^2 - b^2) = ...

And this just results in 0.