No.1 | (47/6
- 76/9 + 13/4) / (35/12) = ... |
|
Or course, ISAC can calculate
with numeral constants, too (even if they build a double fraction). |
No.2 | ((5/4) / (4+22/7) + 37/20) * (110/3 - 110/9 * 23/11) = ... |
|
This term with numeral constants
simplifies considerably. |
No.3 | 4/x - 3/y - 1 = ... |
No.4 | (2*a + 3*b) / (b*c) + (3*c + a) / (a*c) - (2*a^2 + 3*b*c) / (a*b*c) = ... |
|
Again an enjoyable simple
result. |
No.5 | 1/(x+1) + 1/(x+2) - 2/(x+3) = ... |
No.6 | (1+ x) / (1 - x) - (1 - x) / (1+ x) + 2*x / (1 - x^2) = ... |
|
Another nice simplification ! |
No.7 | (x + 2) / (x - 1) + (x - 3) / (x - 2) - (x + 1) / ((x - 1)*(x - 2)) = ... |
No.8 | (2*x + 3*y)/x + (4*x^3 - x*y^2 - 3*y^3)/(x^3 - 2*x^2*y + x*y^2) - (5*x + 6*y)/(x - y) = ... |
|
Indeed, you can evaluate this
term with any values for x
and y and you will get 1 as a result any time ! |
No.9 | 1/(a - b)^2 + 1/(a+b)^2 - 2/(a^2 - b^2) - 4*(b^2 - 1)/(a^2 - b^2)^2 = ... |
No.10 | a^2/(a - 3*b) - 108*a*b^3/((a+3*b)*(a^2 - 9*b^2)) - 9*b^2*(a - 3*b)/(a+3*b)^2 = ... |
|
This is another ultra
simplification. |
No.11 | (a^2 + a*b)/(a^2 - b^2) - (b^2 - a*b)/(b^2 - a^2) + a^2*(a - b)/(a^3 - a^2*b) - 2*a*(a^2 - b^2)/(a^3 - a*b^2) - 2*b^2/(a^2 - b^2) = ... |
|
And this just results in 0. |