removed duplication and tuned
authorhaftmann
Wed, 09 Apr 2014 14:08:18 +0200
changeset 57870f732e6f3bf7f
parent 57869 907f04603177
child 57871 aff193f53a64
removed duplication and tuned
src/HOL/Library/Mapping.thy
     1.1 --- a/src/HOL/Library/Mapping.thy	Thu Apr 10 17:48:54 2014 +0200
     1.2 +++ b/src/HOL/Library/Mapping.thy	Wed Apr 09 14:08:18 2014 +0200
     1.3 @@ -12,61 +12,70 @@
     1.4  
     1.5  context
     1.6  begin
     1.7 +
     1.8  interpretation lifting_syntax .
     1.9  
    1.10 -lemma empty_transfer: "(A ===> rel_option B) Map.empty Map.empty" by transfer_prover
    1.11 +lemma empty_transfer:
    1.12 +  "(A ===> rel_option B) Map.empty Map.empty"
    1.13 +  by transfer_prover
    1.14  
    1.15 -lemma lookup_transfer: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)" by transfer_prover
    1.16 +lemma lookup_transfer: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)"
    1.17 +  by transfer_prover
    1.18  
    1.19  lemma update_transfer:
    1.20    assumes [transfer_rule]: "bi_unique A"
    1.21 -  shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B) 
    1.22 -          (\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))"
    1.23 -by transfer_prover
    1.24 +  shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B)
    1.25 +    (\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))"
    1.26 +  by transfer_prover
    1.27  
    1.28  lemma delete_transfer:
    1.29    assumes [transfer_rule]: "bi_unique A"
    1.30    shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B) 
    1.31 -          (\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))"
    1.32 -by transfer_prover
    1.33 +    (\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))"
    1.34 +  by transfer_prover
    1.35  
    1.36 -definition equal_None :: "'a option \<Rightarrow> bool" where "equal_None x \<equiv> x = None"
    1.37 -
    1.38 -lemma [transfer_rule]: "(rel_option A ===> op=) equal_None equal_None" 
    1.39 -unfolding rel_fun_def rel_option_iff equal_None_def by (auto split: option.split)
    1.40 +lemma is_none_parametric [transfer_rule]:
    1.41 +  "(rel_option A ===> HOL.eq) Option.is_none Option.is_none"
    1.42 +  by (auto simp add: is_none_def rel_fun_def rel_option_iff split: option.split)
    1.43  
    1.44  lemma dom_transfer:
    1.45    assumes [transfer_rule]: "bi_total A"
    1.46    shows "((A ===> rel_option B) ===> rel_set A) dom dom" 
    1.47 -unfolding dom_def[abs_def] equal_None_def[symmetric] 
    1.48 -by transfer_prover
    1.49 +  unfolding dom_def [abs_def] is_none_def [symmetric] by transfer_prover
    1.50  
    1.51  lemma map_of_transfer [transfer_rule]:
    1.52    assumes [transfer_rule]: "bi_unique R1"
    1.53    shows "(list_all2 (rel_prod R1 R2) ===> R1 ===> rel_option R2) map_of map_of"
    1.54 -unfolding map_of_def by transfer_prover
    1.55 +  unfolding map_of_def by transfer_prover
    1.56  
    1.57  lemma tabulate_transfer: 
    1.58    assumes [transfer_rule]: "bi_unique A"
    1.59    shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B) 
    1.60 -    (\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks)))"
    1.61 -by transfer_prover
    1.62 +    (\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (map (\<lambda>k. (k, f k)) ks)))"
    1.63 +  by transfer_prover
    1.64  
    1.65  lemma bulkload_transfer: 
    1.66 -  "(list_all2 A ===> op= ===> rel_option A) 
    1.67 +  "(list_all2 A ===> HOL.eq ===> rel_option A) 
    1.68      (\<lambda>xs k. if k < length xs then Some (xs ! k) else None) (\<lambda>xs k. if k < length xs then Some (xs ! k) else None)"
    1.69 -unfolding rel_fun_def 
    1.70 -apply clarsimp 
    1.71 -apply (erule list_all2_induct) 
    1.72 -  apply simp 
    1.73 -apply (case_tac xa) 
    1.74 -  apply simp 
    1.75 -by (auto dest: list_all2_lengthD list_all2_nthD)
    1.76 +proof
    1.77 +  fix xs ys
    1.78 +  assume "list_all2 A xs ys"
    1.79 +  then show "(HOL.eq ===> rel_option A)
    1.80 +    (\<lambda>k. if k < length xs then Some (xs ! k) else None)
    1.81 +    (\<lambda>k. if k < length ys then Some (ys ! k) else None)"
    1.82 +    apply induct
    1.83 +    apply auto
    1.84 +    unfolding rel_fun_def
    1.85 +    apply clarsimp 
    1.86 +    apply (case_tac xa) 
    1.87 +    apply (auto dest: list_all2_lengthD list_all2_nthD)
    1.88 +    done
    1.89 +qed
    1.90  
    1.91  lemma map_transfer: 
    1.92    "((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D) 
    1.93 -    (\<lambda>f g m. (map_option g \<circ> m \<circ> f)) (\<lambda>f g m. (map_option g \<circ> m \<circ> f))"
    1.94 -by transfer_prover
    1.95 +     (\<lambda>f g m. (map_option g \<circ> m \<circ> f)) (\<lambda>f g m. (map_option g \<circ> m \<circ> f))"
    1.96 +  by transfer_prover
    1.97  
    1.98  lemma map_entry_transfer:
    1.99    assumes [transfer_rule]: "bi_unique A"
   1.100 @@ -74,38 +83,41 @@
   1.101      (\<lambda>k f m. (case m k of None \<Rightarrow> m
   1.102        | Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m
   1.103        | Some v \<Rightarrow> m (k \<mapsto> (f v))))"
   1.104 -by transfer_prover
   1.105 +  by transfer_prover
   1.106  
   1.107  end
   1.108  
   1.109  subsection {* Type definition and primitive operations *}
   1.110  
   1.111  typedef ('a, 'b) mapping = "UNIV :: ('a \<rightharpoonup> 'b) set"
   1.112 -  morphisms rep Mapping ..
   1.113 +  morphisms rep Mapping
   1.114 +  ..
   1.115  
   1.116 -setup_lifting(no_code) type_definition_mapping
   1.117 +setup_lifting (no_code) type_definition_mapping
   1.118  
   1.119 -lift_definition empty :: "('a, 'b) mapping" is Map.empty parametric empty_transfer .
   1.120 +lift_definition empty :: "('a, 'b) mapping"
   1.121 +  is Map.empty parametric empty_transfer .
   1.122  
   1.123 -lift_definition lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<Rightarrow> 'b option" is "\<lambda>m k. m k" 
   1.124 -  parametric lookup_transfer .
   1.125 +lift_definition lookup :: "('a, 'b) mapping \<Rightarrow> 'a \<Rightarrow> 'b option"
   1.126 +  is "\<lambda>m k. m k" parametric lookup_transfer .
   1.127  
   1.128 -lift_definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is "\<lambda>k v m. m(k \<mapsto> v)" 
   1.129 -  parametric update_transfer .
   1.130 +lift_definition update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
   1.131 +  is "\<lambda>k v m. m(k \<mapsto> v)" parametric update_transfer .
   1.132  
   1.133 -lift_definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is "\<lambda>k m. m(k := None)" 
   1.134 -  parametric delete_transfer .
   1.135 +lift_definition delete :: "'a \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
   1.136 +  is "\<lambda>k m. m(k := None)" parametric delete_transfer .
   1.137  
   1.138 -lift_definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set" is dom parametric dom_transfer .
   1.139 +lift_definition keys :: "('a, 'b) mapping \<Rightarrow> 'a set"
   1.140 +  is dom parametric dom_transfer .
   1.141  
   1.142 -lift_definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping" is
   1.143 -  "\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))" parametric tabulate_transfer .
   1.144 +lift_definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping"
   1.145 +  is "\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))" parametric tabulate_transfer .
   1.146  
   1.147 -lift_definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping" is
   1.148 -  "\<lambda>xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_transfer .
   1.149 +lift_definition bulkload :: "'a list \<Rightarrow> (nat, 'a) mapping"
   1.150 +  is "\<lambda>xs k. if k < length xs then Some (xs ! k) else None" parametric bulkload_transfer .
   1.151  
   1.152 -lift_definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping" is
   1.153 -  "\<lambda>f g m. (map_option g \<circ> m \<circ> f)" parametric map_transfer .
   1.154 +lift_definition map :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('c, 'd) mapping"
   1.155 +  is "\<lambda>f g m. (map_option g \<circ> m \<circ> f)" parametric map_transfer .
   1.156  
   1.157  
   1.158  subsection {* Functorial structure *}
   1.159 @@ -116,19 +128,24 @@
   1.160  
   1.161  subsection {* Derived operations *}
   1.162  
   1.163 -definition ordered_keys :: "('a\<Colon>linorder, 'b) mapping \<Rightarrow> 'a list" where
   1.164 +definition ordered_keys :: "('a\<Colon>linorder, 'b) mapping \<Rightarrow> 'a list"
   1.165 +where
   1.166    "ordered_keys m = (if finite (keys m) then sorted_list_of_set (keys m) else [])"
   1.167  
   1.168 -definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool" where
   1.169 +definition is_empty :: "('a, 'b) mapping \<Rightarrow> bool"
   1.170 +where
   1.171    "is_empty m \<longleftrightarrow> keys m = {}"
   1.172  
   1.173 -definition size :: "('a, 'b) mapping \<Rightarrow> nat" where
   1.174 +definition size :: "('a, 'b) mapping \<Rightarrow> nat"
   1.175 +where
   1.176    "size m = (if finite (keys m) then card (keys m) else 0)"
   1.177  
   1.178 -definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
   1.179 +definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
   1.180 +where
   1.181    "replace k v m = (if k \<in> keys m then update k v m else m)"
   1.182  
   1.183 -definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
   1.184 +definition default :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
   1.185 +where
   1.186    "default k v m = (if k \<in> keys m then m else update k v m)"
   1.187  
   1.188  lift_definition map_entry :: "'a \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" is
   1.189 @@ -139,15 +156,16 @@
   1.190      | Some v \<Rightarrow> update k (f v) m)"
   1.191    by transfer rule
   1.192  
   1.193 -definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping" where
   1.194 +definition map_default :: "'a \<Rightarrow> 'b \<Rightarrow> ('b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) mapping \<Rightarrow> ('a, 'b) mapping"
   1.195 +where
   1.196    "map_default k v f m = map_entry k f (default k v m)" 
   1.197  
   1.198  lift_definition of_alist :: "('k \<times> 'v) list \<Rightarrow> ('k, 'v) mapping"
   1.199 -is map_of parametric map_of_transfer .
   1.200 +  is map_of parametric map_of_transfer .
   1.201  
   1.202  lemma of_alist_code [code]:
   1.203    "of_alist xs = foldr (\<lambda>(k, v) m. update k v m) xs empty"
   1.204 -by transfer(simp add: map_add_map_of_foldr[symmetric])
   1.205 +  by transfer (simp add: map_add_map_of_foldr [symmetric])
   1.206  
   1.207  instantiation mapping :: (type, type) equal
   1.208  begin
   1.209 @@ -162,35 +180,36 @@
   1.210  
   1.211  context
   1.212  begin
   1.213 +
   1.214  interpretation lifting_syntax .
   1.215  
   1.216  lemma [transfer_rule]:
   1.217    assumes [transfer_rule]: "bi_total A"
   1.218    assumes [transfer_rule]: "bi_unique B"
   1.219 -  shows  "(pcr_mapping A B ===> pcr_mapping A B ===> op=) HOL.eq HOL.equal"
   1.220 -by (unfold equal) transfer_prover
   1.221 +  shows "(pcr_mapping A B ===> pcr_mapping A B ===> op=) HOL.eq HOL.equal"
   1.222 +  by (unfold equal) transfer_prover
   1.223  
   1.224  end
   1.225  
   1.226 +
   1.227  subsection {* Properties *}
   1.228  
   1.229 -lemma lookup_update: "lookup (update k v m) k = Some v" 
   1.230 +lemma lookup_update:
   1.231 +  "lookup (update k v m) k = Some v" 
   1.232    by transfer simp
   1.233  
   1.234 -lemma lookup_update_neq: "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'" 
   1.235 +lemma lookup_update_neq:
   1.236 +  "k \<noteq> k' \<Longrightarrow> lookup (update k v m) k' = lookup m k'" 
   1.237    by transfer simp
   1.238  
   1.239 -lemma lookup_empty: "lookup empty k = None" 
   1.240 +lemma lookup_empty:
   1.241 +  "lookup empty k = None" 
   1.242    by transfer simp
   1.243  
   1.244  lemma keys_is_none_rep [code_unfold]:
   1.245    "k \<in> keys m \<longleftrightarrow> \<not> (Option.is_none (lookup m k))"
   1.246    by transfer (auto simp add: is_none_def)
   1.247  
   1.248 -lemma tabulate_alt_def:
   1.249 -  "map_of (List.map (\<lambda>k. (k, f k)) ks) = (Some o f) |` set ks"
   1.250 -  by (induct ks) (auto simp add: tabulate_def restrict_map_def)
   1.251 -
   1.252  lemma update_update:
   1.253    "update k v (update k w m) = update k v m"
   1.254    "k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)"
   1.255 @@ -229,11 +248,11 @@
   1.256  
   1.257  lemma size_tabulate [simp]:
   1.258    "size (tabulate ks f) = length (remdups ks)"
   1.259 -  unfolding size_def by transfer (auto simp add: tabulate_alt_def card_set comp_def)
   1.260 +  unfolding size_def by transfer (auto simp add: map_of_map_restrict  card_set comp_def)
   1.261  
   1.262  lemma bulkload_tabulate:
   1.263    "bulkload xs = tabulate [0..<length xs] (nth xs)"
   1.264 -  by transfer (auto simp add: tabulate_alt_def)
   1.265 +  by transfer (auto simp add: map_of_map_restrict)
   1.266  
   1.267  lemma is_empty_empty [simp]:
   1.268    "is_empty empty"
   1.269 @@ -257,8 +276,7 @@
   1.270  
   1.271  lemma is_empty_map_entry [simp]:
   1.272    "is_empty (map_entry k f m) \<longleftrightarrow> is_empty m"
   1.273 -  unfolding is_empty_def 
   1.274 -  apply transfer by (case_tac "m k") auto
   1.275 +  unfolding is_empty_def by transfer (auto split: option.split)
   1.276  
   1.277  lemma is_empty_map_default [simp]:
   1.278    "\<not> is_empty (map_default k v f m)"
   1.279 @@ -286,7 +304,7 @@
   1.280  
   1.281  lemma keys_map_entry [simp]:
   1.282    "keys (map_entry k f m) = keys m"
   1.283 -  apply transfer by (case_tac "m k") auto
   1.284 +  by transfer (auto split: option.split)
   1.285  
   1.286  lemma keys_map_default [simp]:
   1.287    "keys (map_default k v f m) = insert k (keys m)"
   1.288 @@ -298,7 +316,7 @@
   1.289  
   1.290  lemma keys_bulkload [simp]:
   1.291    "keys (bulkload xs) = {0..<length xs}"
   1.292 -  by (simp add: keys_tabulate bulkload_tabulate)
   1.293 +  by (simp add: bulkload_tabulate)
   1.294  
   1.295  lemma distinct_ordered_keys [simp]:
   1.296    "distinct (ordered_keys m)"
   1.297 @@ -358,6 +376,22 @@
   1.298    "ordered_keys (bulkload ks) = [0..<length ks]"
   1.299    by (simp add: ordered_keys_def)
   1.300  
   1.301 +lemma tabulate_fold:
   1.302 +  "tabulate xs f = fold (\<lambda>k m. update k (f k) m) xs empty"
   1.303 +proof transfer
   1.304 +  fix f :: "'a \<Rightarrow> 'b" and xs
   1.305 +  from map_add_map_of_foldr
   1.306 +  have "Map.empty ++ map_of (List.map (\<lambda>k. (k, f k)) xs) =
   1.307 +    foldr (\<lambda>(k, v) m. m(k \<mapsto> v)) (List.map (\<lambda>k. (k, f k)) xs) Map.empty"
   1.308 +    .
   1.309 +  then have "map_of (List.map (\<lambda>k. (k, f k)) xs) = foldr (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty"
   1.310 +    by (simp add: foldr_map comp_def)
   1.311 +  also have "foldr (\<lambda>k m. m(k \<mapsto> f k)) xs = fold (\<lambda>k m. m(k \<mapsto> f k)) xs"
   1.312 +    by (rule foldr_fold) (simp add: fun_eq_iff)
   1.313 +  ultimately show "map_of (List.map (\<lambda>k. (k, f k)) xs) = fold (\<lambda>k m. m(k \<mapsto> f k)) xs Map.empty"
   1.314 +    by simp
   1.315 +qed
   1.316 +
   1.317  
   1.318  subsection {* Code generator setup *}
   1.319