Pocklington's Primality criterion
authorchaieb
Mon, 25 Feb 2008 12:04:09 +0100
changeset 26126f536ac0f92ca
parent 26125 345465cc9e79
child 26127 70ef56eb650a
Pocklington's Primality criterion
src/HOL/Library/Pocklington.thy
     1.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.2 +++ b/src/HOL/Library/Pocklington.thy	Mon Feb 25 12:04:09 2008 +0100
     1.3 @@ -0,0 +1,1330 @@
     1.4 +(*  Title:      HOL/Library/Pocklington.thy
     1.5 +    ID:         $Id: 
     1.6 +    Author:     Amine Chaieb 
     1.7 +*)
     1.8 +
     1.9 +header {* Pocklington's Theorem for Primes *}
    1.10 +
    1.11 +
    1.12 +theory Pocklington
    1.13 +imports List Primes
    1.14 +begin
    1.15 +
    1.16 +definition modeq:: "nat => nat => nat => bool"    ("(1[_ = _] '(mod _'))")
    1.17 +  where "[a = b] (mod p) == ((a mod p) = (b mod p))"
    1.18 +
    1.19 +definition modneq:: "nat => nat => nat => bool"    ("(1[_ \<noteq> _] '(mod _'))")
    1.20 +  where "[a \<noteq> b] (mod p) == ((a mod p) \<noteq> (b mod p))"
    1.21 +
    1.22 +lemma modeq_trans:
    1.23 +  "\<lbrakk> [a = b] (mod p); [b = c] (mod p) \<rbrakk> \<Longrightarrow> [a = c] (mod p)"
    1.24 +  by (simp add:modeq_def)
    1.25 +
    1.26 +lemma zmod_eq_dvd_iff: "(x::int) mod n = y mod n \<longleftrightarrow> n dvd x - y"
    1.27 +proof
    1.28 +  assume H: "x mod n = y mod n"
    1.29 +  hence "x mod n - y mod n = 0" by simp
    1.30 +  hence "(x mod n - y mod n) mod n = 0" by simp 
    1.31 +  hence "(x - y) mod n = 0" by (simp add: zmod_zdiff1_eq[symmetric])
    1.32 +  thus "n dvd x - y" by (simp add: zdvd_iff_zmod_eq_0)
    1.33 +next
    1.34 +  assume H: "n dvd x - y"
    1.35 +  then obtain k where k: "x-y = n*k" unfolding dvd_def by blast
    1.36 +  hence "x = n*k + y" by simp
    1.37 +  hence "x mod n = (n*k + y) mod n" by simp
    1.38 +  thus "x mod n = y mod n" by (simp add: zmod_zadd_left_eq)
    1.39 +qed
    1.40 +
    1.41 +lemma nat_mod_lemma: assumes xyn: "[x = y] (mod n)" and xy:"y \<le> x"
    1.42 +  shows "\<exists>q. x = y + n * q"
    1.43 +proof-
    1.44 +  from xy have th: "int x - int y = int (x - y)" by presburger
    1.45 +  from xyn have "int x mod int n = int y mod int n" 
    1.46 +    by (simp add: modeq_def zmod_int[symmetric])
    1.47 +  hence "int n dvd int x - int y" by (simp only: zmod_eq_dvd_iff[symmetric]) 
    1.48 +  hence "n dvd x - y" by (simp add: th zdvd_int)
    1.49 +  then show ?thesis using xy unfolding dvd_def apply clarsimp apply (rule_tac x="k" in exI) by arith
    1.50 +qed
    1.51 +
    1.52 +lemma nat_mod: "[x = y] (mod n) \<longleftrightarrow> (\<exists>q1 q2. x + n * q1 = y + n * q2)" 
    1.53 +  (is "?lhs = ?rhs")
    1.54 +proof
    1.55 +  assume H: "[x = y] (mod n)"
    1.56 +  {assume xy: "x \<le> y"
    1.57 +    from H have th: "[y = x] (mod n)" by (simp add: modeq_def)
    1.58 +    from nat_mod_lemma[OF th xy] have ?rhs 
    1.59 +      apply clarify  apply (rule_tac x="q" in exI) by (rule exI[where x="0"], simp)}
    1.60 +  moreover
    1.61 +  {assume xy: "y \<le> x"
    1.62 +    from nat_mod_lemma[OF H xy] have ?rhs 
    1.63 +      apply clarify  apply (rule_tac x="0" in exI) by (rule_tac x="q" in exI, simp)}
    1.64 +  ultimately  show ?rhs using linear[of x y] by blast  
    1.65 +next
    1.66 +  assume ?rhs then obtain q1 q2 where q12: "x + n * q1 = y + n * q2" by blast
    1.67 +  hence "(x + n * q1) mod n = (y + n * q2) mod n" by simp
    1.68 +  thus  ?lhs by (simp add: modeq_def)
    1.69 +qed
    1.70 +
    1.71 +(* Lemmas about previously defined terms.                                    *)
    1.72 +
    1.73 +lemma prime: "prime p \<longleftrightarrow> p \<noteq> 0 \<and> p\<noteq>1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)" 
    1.74 +  (is "?lhs \<longleftrightarrow> ?rhs") 
    1.75 +proof-
    1.76 +  {assume "p=0 \<or> p=1" hence ?thesis using prime_0 prime_1 by (cases "p=0", simp_all)}
    1.77 +  moreover
    1.78 +  {assume p0: "p\<noteq>0" "p\<noteq>1"
    1.79 +    {assume H: "?lhs"
    1.80 +      {fix m assume m: "m > 0" "m < p"
    1.81 +	{assume "m=1" hence "coprime p m" by simp}
    1.82 +	moreover
    1.83 +	{assume "p dvd m" hence "p \<le> m" using dvd_imp_le m by blast with m(2) 
    1.84 +	  have "coprime p m" by simp}
    1.85 +	ultimately have "coprime p m" using prime_coprime[OF H, of m] by blast}
    1.86 +      hence ?rhs using p0 by auto}
    1.87 +    moreover
    1.88 +    { assume H: "\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m"
    1.89 +      from prime_factor[OF p0(2)] obtain q where q: "prime q" "q dvd p" by blast
    1.90 +      from prime_ge_2[OF q(1)] have q0: "q > 0" by arith
    1.91 +      from dvd_imp_le[OF q(2)] p0 have qp: "q \<le> p" by arith
    1.92 +      {assume "q = p" hence ?lhs using q(1) by blast}
    1.93 +      moreover
    1.94 +      {assume "q\<noteq>p" with qp have qplt: "q < p" by arith
    1.95 +	from H[rule_format, of q] qplt q0 have "coprime p q" by arith
    1.96 +	with coprime_prime[of p q q] q have False by simp hence ?lhs by blast}
    1.97 +      ultimately have ?lhs by blast}
    1.98 +    ultimately have ?thesis by blast}
    1.99 +  ultimately show ?thesis  by (cases"p=0 \<or> p=1", auto)
   1.100 +qed
   1.101 +
   1.102 +lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
   1.103 +proof-
   1.104 +  have "{ m. 0 < m \<and> m < n } = {1..<n}" by auto
   1.105 +  thus ?thesis by simp
   1.106 +qed
   1.107 +
   1.108 +lemma coprime_mod: assumes n: "n \<noteq> 0" shows "coprime (a mod n) n \<longleftrightarrow> coprime a n"
   1.109 +  using n dvd_mod_iff[of _ n a] by (auto simp add: coprime)
   1.110 +
   1.111 +(* Congruences.                                                              *)
   1.112 +
   1.113 +lemma cong_mod_01[simp,presburger]: 
   1.114 +  "[x = y] (mod 0) \<longleftrightarrow> x = y" "[x = y] (mod 1)" "[x = 0] (mod n) \<longleftrightarrow> n dvd x"
   1.115 +  by (simp_all add: modeq_def, presburger)
   1.116 +
   1.117 +lemma cong_sub_cases: 
   1.118 +  "[x = y] (mod n) \<longleftrightarrow> (if x <= y then [y - x = 0] (mod n) else [x - y = 0] (mod n))"
   1.119 +apply (auto simp add: nat_mod)
   1.120 +apply (rule_tac x="q2" in exI)
   1.121 +apply (rule_tac x="q1" in exI, simp)
   1.122 +apply (rule_tac x="q2" in exI)
   1.123 +apply (rule_tac x="q1" in exI, simp)
   1.124 +apply (rule_tac x="q1" in exI)
   1.125 +apply (rule_tac x="q2" in exI, simp)
   1.126 +apply (rule_tac x="q1" in exI)
   1.127 +apply (rule_tac x="q2" in exI, simp)
   1.128 +done
   1.129 +
   1.130 +lemma cong_mult_lcancel: assumes an: "coprime a n" and axy:"[a * x = a * y] (mod n)"
   1.131 +  shows "[x = y] (mod n)"
   1.132 +proof-
   1.133 +  {assume "a = 0" with an axy coprime_0'[of n] have ?thesis by (simp add: modeq_def) }
   1.134 +  moreover
   1.135 +  {assume az: "a\<noteq>0"
   1.136 +    {assume xy: "x \<le> y" hence axy': "a*x \<le> a*y" by simp
   1.137 +      with axy cong_sub_cases[of "a*x" "a*y" n]  have "[a*(y - x) = 0] (mod n)"
   1.138 +	by (simp only: if_True diff_mult_distrib2) 
   1.139 +      hence th: "n dvd a*(y -x)" by simp 
   1.140 +      from coprime_divprod[OF th] an have "n dvd y - x"
   1.141 +	by (simp add: coprime_commute)
   1.142 +      hence ?thesis using xy cong_sub_cases[of x y n] by simp}
   1.143 +    moreover
   1.144 +    {assume H: "\<not>x \<le> y" hence xy: "y \<le> x"  by arith 
   1.145 +      from H az have axy': "\<not> a*x \<le> a*y" by auto
   1.146 +      with axy H cong_sub_cases[of "a*x" "a*y" n]  have "[a*(x - y) = 0] (mod n)"
   1.147 +	by (simp only: if_False diff_mult_distrib2) 
   1.148 +      hence th: "n dvd a*(x - y)" by simp 
   1.149 +      from coprime_divprod[OF th] an have "n dvd x - y"
   1.150 +	by (simp add: coprime_commute)
   1.151 +      hence ?thesis using xy cong_sub_cases[of x y n] by simp}
   1.152 +    ultimately have ?thesis by blast}
   1.153 +  ultimately show ?thesis by blast
   1.154 +qed
   1.155 +
   1.156 +lemma cong_mult_rcancel: assumes an: "coprime a n" and axy:"[x*a = y*a] (mod n)"
   1.157 +  shows "[x = y] (mod n)"
   1.158 +  using cong_mult_lcancel[OF an axy[unfolded mult_commute[of _a]]] .
   1.159 +
   1.160 +lemma cong_refl: "[x = x] (mod n)" by (simp add: modeq_def)
   1.161 +
   1.162 +lemma eq_imp_cong: "a = b \<Longrightarrow> [a = b] (mod n)" by (simp add: cong_refl)
   1.163 +
   1.164 +lemma cong_commute: "[x = y] (mod n) \<longleftrightarrow> [y = x] (mod n)" 
   1.165 +  by (auto simp add: modeq_def)
   1.166 +
   1.167 +lemma cong_trans[trans]: "[x = y] (mod n) \<Longrightarrow> [y = z] (mod n) \<Longrightarrow> [x = z] (mod n)"
   1.168 +  by (simp add: modeq_def)
   1.169 +
   1.170 +lemma cong_add: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)"
   1.171 +  shows "[x + y = x' + y'] (mod n)"
   1.172 +proof-
   1.173 +  have "(x + y) mod n = (x mod n + y mod n) mod n"
   1.174 +    by (simp add: mod_add_left_eq[of x y n] mod_add_right_eq[of "x mod n" y n])
   1.175 +  also have "\<dots> = (x' mod n + y' mod n) mod n" using xx' yy' modeq_def by simp 
   1.176 +  also have "\<dots> = (x' + y') mod n"
   1.177 +    by (simp add: mod_add_left_eq[of x' y' n] mod_add_right_eq[of "x' mod n" y' n])
   1.178 +  finally show ?thesis unfolding modeq_def . 
   1.179 +qed
   1.180 +
   1.181 +lemma cong_mult: assumes xx': "[x = x'] (mod n)" and yy':"[y = y'] (mod n)"
   1.182 +  shows "[x * y = x' * y'] (mod n)"
   1.183 +proof-
   1.184 +  have "(x * y) mod n = (x mod n) * (y mod n) mod n"  
   1.185 +    by (simp add: mod_mult1_eq'[of x y n] mod_mult1_eq[of "x mod n" y n])
   1.186 +  also have "\<dots> = (x' mod n) * (y' mod n) mod n" using xx'[unfolded modeq_def] yy'[unfolded modeq_def] by simp  
   1.187 +  also have "\<dots> = (x' * y') mod n"
   1.188 +    by (simp add: mod_mult1_eq'[of x' y' n] mod_mult1_eq[of "x' mod n" y' n])
   1.189 +  finally show ?thesis unfolding modeq_def . 
   1.190 +qed
   1.191 +
   1.192 +lemma cong_exp: "[x = y] (mod n) \<Longrightarrow> [x^k = y^k] (mod n)"
   1.193 +  by (induct k, auto simp add: cong_refl cong_mult)
   1.194 +lemma cong_sub: assumes xx': "[x = x'] (mod n)" and yy': "[y = y'] (mod n)"
   1.195 +  and yx: "y <= x" and yx': "y' <= x'"
   1.196 +  shows "[x - y = x' - y'] (mod n)"
   1.197 +proof-
   1.198 +  { fix x a x' a' y b y' b' 
   1.199 +    have "(x::nat) + a = x' + a' \<Longrightarrow> y + b = y' + b' \<Longrightarrow> y <= x \<Longrightarrow> y' <= x'
   1.200 +      \<Longrightarrow> (x - y) + (a + b') = (x' - y') + (a' + b)" by arith}
   1.201 +  note th = this
   1.202 +  from xx' yy' obtain q1 q2 q1' q2' where q12: "x + n*q1 = x'+n*q2" 
   1.203 +    and q12': "y + n*q1' = y'+n*q2'" unfolding nat_mod by blast+
   1.204 +  from th[OF q12 q12' yx yx']
   1.205 +  have "(x - y) + n*(q1 + q2') = (x' - y') + n*(q2 + q1')" 
   1.206 +    by (simp add: right_distrib)
   1.207 +  thus ?thesis unfolding nat_mod by blast
   1.208 +qed
   1.209 +
   1.210 +lemma cong_mult_lcancel_eq: assumes an: "coprime a n" 
   1.211 +  shows "[a * x = a * y] (mod n) \<longleftrightarrow> [x = y] (mod n)" (is "?lhs \<longleftrightarrow> ?rhs")
   1.212 +proof
   1.213 +  assume H: "?rhs" from cong_mult[OF cong_refl[of a n] H] show ?lhs .
   1.214 +next
   1.215 +  assume H: "?lhs" hence H': "[x*a = y*a] (mod n)" by (simp add: mult_commute)
   1.216 +  from cong_mult_rcancel[OF an H'] show ?rhs  .
   1.217 +qed
   1.218 +
   1.219 +lemma cong_mult_rcancel_eq: assumes an: "coprime a n" 
   1.220 +  shows "[x * a = y * a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
   1.221 +using cong_mult_lcancel_eq[OF an, of x y] by (simp add: mult_commute)
   1.222 +
   1.223 +lemma cong_add_lcancel_eq: "[a + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)" 
   1.224 +  by (simp add: nat_mod)
   1.225 +
   1.226 +lemma cong_add_rcancel_eq: "[x + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
   1.227 +  by (simp add: nat_mod)
   1.228 +
   1.229 +lemma cong_add_rcancel: "[x + a = y + a] (mod n) \<Longrightarrow> [x = y] (mod n)" 
   1.230 +  by (simp add: nat_mod)
   1.231 +
   1.232 +lemma cong_add_lcancel: "[a + x = a + y] (mod n) \<Longrightarrow> [x = y] (mod n)"
   1.233 +  by (simp add: nat_mod)
   1.234 +
   1.235 +lemma cong_add_lcancel_eq_0: "[a + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)" 
   1.236 +  by (simp add: nat_mod)
   1.237 +
   1.238 +lemma cong_add_rcancel_eq_0: "[x + a = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
   1.239 +  by (simp add: nat_mod)
   1.240 +
   1.241 +lemma cong_imp_eq: assumes xn: "x < n" and yn: "y < n" and xy: "[x = y] (mod n)"
   1.242 +  shows "x = y"
   1.243 +  using xy[unfolded modeq_def mod_less[OF xn] mod_less[OF yn]] . 
   1.244 +
   1.245 +lemma cong_divides_modulus: "[x = y] (mod m) \<Longrightarrow> n dvd m ==> [x = y] (mod n)"
   1.246 +  apply (auto simp add: nat_mod dvd_def)
   1.247 +  apply (rule_tac x="k*q1" in exI)
   1.248 +  apply (rule_tac x="k*q2" in exI)
   1.249 +  by simp
   1.250 +  
   1.251 +lemma cong_0_divides: "[x = 0] (mod n) \<longleftrightarrow> n dvd x" by simp
   1.252 +
   1.253 +lemma cong_1_divides:"[x = 1] (mod n) ==> n dvd x - 1"
   1.254 +  apply (cases "x\<le>1", simp_all)
   1.255 +  using cong_sub_cases[of x 1 n] by auto
   1.256 +
   1.257 +lemma cong_divides: "[x = y] (mod n) \<Longrightarrow> n dvd x \<longleftrightarrow> n dvd y"
   1.258 +apply (auto simp add: nat_mod dvd_def)
   1.259 +apply (rule_tac x="k + q1 - q2" in exI, simp add: add_mult_distrib2 diff_mult_distrib2)
   1.260 +apply (rule_tac x="k + q2 - q1" in exI, simp add: add_mult_distrib2 diff_mult_distrib2)
   1.261 +done
   1.262 +
   1.263 +lemma cong_coprime: assumes xy: "[x = y] (mod n)" 
   1.264 +  shows "coprime n x \<longleftrightarrow> coprime n y"
   1.265 +proof-
   1.266 +  {assume "n=0" hence ?thesis using xy by simp}
   1.267 +  moreover
   1.268 +  {assume nz: "n \<noteq> 0"
   1.269 +  have "coprime n x \<longleftrightarrow> coprime (x mod n) n" 
   1.270 +    by (simp add: coprime_mod[OF nz, of x] coprime_commute[of n x])
   1.271 +  also have "\<dots> \<longleftrightarrow> coprime (y mod n) n" using xy[unfolded modeq_def] by simp
   1.272 +  also have "\<dots> \<longleftrightarrow> coprime y n" by (simp add: coprime_mod[OF nz, of y])
   1.273 +  finally have ?thesis by (simp add: coprime_commute) }
   1.274 +ultimately show ?thesis by blast
   1.275 +qed
   1.276 +
   1.277 +lemma cong_mod: "~(n = 0) \<Longrightarrow> [a mod n = a] (mod n)" by (simp add: modeq_def)
   1.278 +
   1.279 +lemma mod_mult_cong: "~(a = 0) \<Longrightarrow> ~(b = 0) 
   1.280 +  \<Longrightarrow> [x mod (a * b) = y] (mod a) \<longleftrightarrow> [x = y] (mod a)"
   1.281 +  by (simp add: modeq_def mod_mult2_eq mod_add_left_eq)
   1.282 +
   1.283 +lemma cong_mod_mult: "[x = y] (mod n) \<Longrightarrow> m dvd n \<Longrightarrow> [x = y] (mod m)"
   1.284 +  apply (auto simp add: nat_mod dvd_def)
   1.285 +  apply (rule_tac x="k*q1" in exI)
   1.286 +  apply (rule_tac x="k*q2" in exI, simp)
   1.287 +  done
   1.288 +
   1.289 +(* Some things when we know more about the order.                            *)
   1.290 +
   1.291 +lemma cong_le: "y <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
   1.292 +  using nat_mod_lemma[of x y n]
   1.293 +  apply auto
   1.294 +  apply (simp add: nat_mod)
   1.295 +  apply (rule_tac x="q" in exI)
   1.296 +  apply (rule_tac x="q + q" in exI)
   1.297 +  by (auto simp: ring_simps)
   1.298 +
   1.299 +lemma cong_to_1: "[a = 1] (mod n) \<longleftrightarrow> a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
   1.300 +proof-
   1.301 +  {assume "n = 0 \<or> n = 1\<or> a = 0 \<or> a = 1" hence ?thesis 
   1.302 +      apply (cases "n=0", simp_all add: cong_commute)
   1.303 +      apply (cases "n=1", simp_all add: cong_commute modeq_def)
   1.304 +      apply arith 
   1.305 +      by (cases "a=1", simp_all add: modeq_def cong_commute)}
   1.306 +  moreover
   1.307 +  {assume n: "n\<noteq>0" "n\<noteq>1" and a:"a\<noteq>0" "a \<noteq> 1" hence a': "a \<ge> 1" by simp
   1.308 +    hence ?thesis using cong_le[OF a', of n] by auto }
   1.309 +  ultimately show ?thesis by auto
   1.310 +qed
   1.311 +
   1.312 +(* Some basic theorems about solving congruences.                            *)
   1.313 +
   1.314 +
   1.315 +lemma cong_solve: assumes an: "coprime a n" shows "\<exists>x. [a * x = b] (mod n)"
   1.316 +proof-
   1.317 +  {assume "a=0" hence ?thesis using an by (simp add: modeq_def)}
   1.318 +  moreover
   1.319 +  {assume az: "a\<noteq>0"
   1.320 +  from bezout_add_strong[OF az, of n] 
   1.321 +  obtain d x y where dxy: "d dvd a" "d dvd n" "a*x = n*y + d" by blast
   1.322 +  from an[unfolded coprime, rule_format, of d] dxy(1,2) have d1: "d = 1" by blast
   1.323 +  hence "a*x*b = (n*y + 1)*b" using dxy(3) by simp
   1.324 +  hence "a*(x*b) = n*(y*b) + b" by algebra
   1.325 +  hence "a*(x*b) mod n = (n*(y*b) + b) mod n" by simp
   1.326 +  hence "a*(x*b) mod n = b mod n" by (simp add: mod_add_left_eq)
   1.327 +  hence "[a*(x*b) = b] (mod n)" unfolding modeq_def .
   1.328 +  hence ?thesis by blast}
   1.329 +ultimately  show ?thesis by blast
   1.330 +qed
   1.331 +
   1.332 +lemma cong_solve_unique: assumes an: "coprime a n" and nz: "n \<noteq> 0"
   1.333 +  shows "\<exists>!x. x < n \<and> [a * x = b] (mod n)"
   1.334 +proof-
   1.335 +  let ?P = "\<lambda>x. x < n \<and> [a * x = b] (mod n)"
   1.336 +  from cong_solve[OF an] obtain x where x: "[a*x = b] (mod n)" by blast
   1.337 +  let ?x = "x mod n"
   1.338 +  from x have th: "[a * ?x = b] (mod n)"
   1.339 +    by (simp add: modeq_def mod_mult1_eq[of a x n])
   1.340 +  from mod_less_divisor[ of n x] nz th have Px: "?P ?x" by simp
   1.341 +  {fix y assume Py: "y < n" "[a * y = b] (mod n)"
   1.342 +    from Py(2) th have "[a * y = a*?x] (mod n)" by (simp add: modeq_def)
   1.343 +    hence "[y = ?x] (mod n)" by (simp add: cong_mult_lcancel_eq[OF an])
   1.344 +    with mod_less[OF Py(1)] mod_less_divisor[ of n x] nz
   1.345 +    have "y = ?x" by (simp add: modeq_def)}
   1.346 +  with Px show ?thesis by blast
   1.347 +qed
   1.348 +
   1.349 +lemma cong_solve_unique_nontrivial:
   1.350 +  assumes p: "prime p" and pa: "coprime p a" and x0: "0 < x" and xp: "x < p"
   1.351 +  shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = a] (mod p)"
   1.352 +proof-
   1.353 +  from p have p1: "p > 1" using prime_ge_2[OF p] by arith
   1.354 +  hence p01: "p \<noteq> 0" "p \<noteq> 1" by arith+
   1.355 +  from pa have ap: "coprime a p" by (simp add: coprime_commute)
   1.356 +  from prime_coprime[OF p, of x] dvd_imp_le[of p x] x0 xp have px:"coprime x p"
   1.357 +    by (auto simp add: coprime_commute)
   1.358 +  from cong_solve_unique[OF px p01(1)] 
   1.359 +  obtain y where y: "y < p" "[x * y = a] (mod p)" "\<forall>z. z < p \<and> [x * z = a] (mod p) \<longrightarrow> z = y" by blast
   1.360 +  {assume y0: "y = 0"
   1.361 +    with y(2) have th: "p dvd a" by (simp add: cong_commute[of 0 a p])
   1.362 +    with p coprime_prime[OF pa, of p] have False by simp}
   1.363 +  with y show ?thesis unfolding Ex1_def using neq0_conv by blast 
   1.364 +qed
   1.365 +lemma cong_unique_inverse_prime:
   1.366 +  assumes p: "prime p" and x0: "0 < x" and xp: "x < p"
   1.367 +  shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = 1] (mod p)"
   1.368 +  using cong_solve_unique_nontrivial[OF p coprime_1[of p] x0 xp] .
   1.369 +
   1.370 +(* Forms of the Chinese remainder theorem.                                   *)
   1.371 +
   1.372 +lemma cong_chinese: 
   1.373 +  assumes ab: "coprime a b" and  xya: "[x = y] (mod a)" 
   1.374 +  and xyb: "[x = y] (mod b)"
   1.375 +  shows "[x = y] (mod a*b)"
   1.376 +  using ab xya xyb
   1.377 +  by (simp add: cong_sub_cases[of x y a] cong_sub_cases[of x y b] 
   1.378 +    cong_sub_cases[of x y "a*b"]) 
   1.379 +(cases "x \<le> y", simp_all add: divides_mul[of a _ b])
   1.380 +
   1.381 +lemma chinese_remainder_unique:
   1.382 +  assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b\<noteq>0"
   1.383 +  shows "\<exists>!x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
   1.384 +proof-
   1.385 +  from az bz have abpos: "a*b > 0" by simp
   1.386 +  from chinese_remainder[OF ab az bz] obtain x q1 q2 where 
   1.387 +    xq12: "x = m + q1 * a" "x = n + q2 * b" by blast
   1.388 +  let ?w = "x mod (a*b)" 
   1.389 +  have wab: "?w < a*b" by (simp add: mod_less_divisor[OF abpos])
   1.390 +  from xq12(1) have "?w mod a = ((m + q1 * a) mod (a*b)) mod a" by simp
   1.391 +  also have "\<dots> = m mod a" apply (simp add: mod_mult2_eq)
   1.392 +    apply (subst mod_add_left_eq)
   1.393 +    by simp
   1.394 +  finally have th1: "[?w = m] (mod a)" by (simp add: modeq_def)
   1.395 +  from xq12(2) have "?w mod b = ((n + q2 * b) mod (a*b)) mod b" by simp
   1.396 +  also have "\<dots> = ((n + q2 * b) mod (b*a)) mod b" by (simp add: mult_commute)
   1.397 +  also have "\<dots> = n mod b" apply (simp add: mod_mult2_eq)
   1.398 +    apply (subst mod_add_left_eq)
   1.399 +    by simp
   1.400 +  finally have th2: "[?w = n] (mod b)" by (simp add: modeq_def)
   1.401 +  {fix y assume H: "y < a*b" "[y = m] (mod a)" "[y = n] (mod b)"
   1.402 +    with th1 th2 have H': "[y = ?w] (mod a)" "[y = ?w] (mod b)"
   1.403 +      by (simp_all add: modeq_def)
   1.404 +    from cong_chinese[OF ab H'] mod_less[OF H(1)] mod_less[OF wab] 
   1.405 +    have "y = ?w" by (simp add: modeq_def)}
   1.406 +  with th1 th2 wab show ?thesis by blast
   1.407 +qed
   1.408 +
   1.409 +lemma chinese_remainder_coprime_unique:
   1.410 +  assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b \<noteq> 0" 
   1.411 +  and ma: "coprime m a" and nb: "coprime n b"
   1.412 +  shows "\<exists>!x. coprime x (a * b) \<and> x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
   1.413 +proof-
   1.414 +  let ?P = "\<lambda>x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
   1.415 +  from chinese_remainder_unique[OF ab az bz]
   1.416 +  obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)" 
   1.417 +    "\<forall>y. ?P y \<longrightarrow> y = x" by blast
   1.418 +  from ma nb cong_coprime[OF x(2)] cong_coprime[OF x(3)]
   1.419 +  have "coprime x a" "coprime x b" by (simp_all add: coprime_commute)
   1.420 +  with coprime_mul[of x a b] have "coprime x (a*b)" by simp
   1.421 +  with x show ?thesis by blast
   1.422 +qed
   1.423 +
   1.424 +(* Euler totient function.                                                   *)
   1.425 +
   1.426 +definition phi_def: "\<phi> n = card { m. 0 < m \<and> m <= n \<and> coprime m n }"
   1.427 +lemma phi_0[simp]: "\<phi> 0 = 0"
   1.428 +  unfolding phi_def by (auto simp add: card_eq_0_iff)
   1.429 +
   1.430 +lemma phi_finite[simp]: "finite ({ m. 0 < m \<and> m <= n \<and> coprime m n })"
   1.431 +proof-
   1.432 +  have "{ m. 0 < m \<and> m <= n \<and> coprime m n } \<subseteq> {0..n}" by auto
   1.433 +  thus ?thesis by (auto intro: finite_subset)
   1.434 +qed
   1.435 +
   1.436 +declare coprime_1[presburger]
   1.437 +lemma phi_1[simp]: "\<phi> 1 = 1"
   1.438 +proof-
   1.439 +  {fix m 
   1.440 +    have "0 < m \<and> m <= 1 \<and> coprime m 1 \<longleftrightarrow> m = 1" by presburger }
   1.441 +  thus ?thesis by (simp add: phi_def)
   1.442 +qed
   1.443 +
   1.444 +lemma [simp]: "\<phi> (Suc 0) = Suc 0" using phi_1 by simp
   1.445 +
   1.446 +lemma phi_alt: "\<phi>(n) = card { m. coprime m n \<and> m < n}"
   1.447 +proof-
   1.448 +  {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=0", simp_all)}
   1.449 +  moreover
   1.450 +  {assume n: "n\<noteq>0" "n\<noteq>1"
   1.451 +    {fix m
   1.452 +      from n have "0 < m \<and> m <= n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n"
   1.453 +	apply (cases "m = 0", simp_all)
   1.454 +	apply (cases "m = 1", simp_all)
   1.455 +	apply (cases "m = n", auto)
   1.456 +	done }
   1.457 +    hence ?thesis unfolding phi_def by simp}
   1.458 +  ultimately show ?thesis by auto
   1.459 +qed
   1.460 +
   1.461 +lemma phi_finite_lemma[simp]: "finite {m. coprime m n \<and>  m < n}" (is "finite ?S")
   1.462 +  by (rule finite_subset[of "?S" "{0..n}"], auto)
   1.463 +
   1.464 +lemma phi_another: assumes n: "n\<noteq>1"
   1.465 +  shows "\<phi> n = card {m. 0 < m \<and> m < n \<and> coprime m n }"
   1.466 +proof-
   1.467 +  {fix m 
   1.468 +    from n have "0 < m \<and> m < n \<and> coprime m n \<longleftrightarrow> coprime m n \<and> m < n"
   1.469 +      by (cases "m=0", auto)}
   1.470 +  thus ?thesis unfolding phi_alt by auto
   1.471 +qed
   1.472 +
   1.473 +lemma phi_limit: "\<phi> n \<le> n"
   1.474 +proof-
   1.475 +  have "{ m. coprime m n \<and> m < n} \<subseteq> {0 ..<n}" by auto
   1.476 +  with card_mono[of "{0 ..<n}" "{ m. coprime m n \<and> m < n}"]
   1.477 +  show ?thesis unfolding phi_alt by auto
   1.478 +qed
   1.479 +
   1.480 +lemma stupid[simp]: "{m. (0::nat) < m \<and> m < n} = {1..<n}"
   1.481 +  by auto
   1.482 +
   1.483 +lemma phi_limit_strong: assumes n: "n\<noteq>1" 
   1.484 +  shows "\<phi>(n) \<le> n - 1"
   1.485 +proof-
   1.486 +  show ?thesis
   1.487 +    unfolding phi_another[OF n] finite_number_segment[of n, symmetric] 
   1.488 +    by (rule card_mono[of "{m. 0 < m \<and> m < n}" "{m. 0 < m \<and> m < n \<and> coprime m n}"], auto)
   1.489 +qed
   1.490 +
   1.491 +lemma phi_lowerbound_1_strong: assumes n: "n \<ge> 1"
   1.492 +  shows "\<phi>(n) \<ge> 1"
   1.493 +proof-
   1.494 +  let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
   1.495 +  from card_0_eq[of ?S] n have "\<phi> n \<noteq> 0" unfolding phi_alt 
   1.496 +    apply auto
   1.497 +    apply (cases "n=1", simp_all)
   1.498 +    apply (rule exI[where x=1], simp)
   1.499 +    done
   1.500 +  thus ?thesis by arith
   1.501 +qed
   1.502 +
   1.503 +lemma phi_lowerbound_1: "2 <= n ==> 1 <= \<phi>(n)"
   1.504 +  using phi_lowerbound_1_strong[of n] by auto
   1.505 +
   1.506 +lemma phi_lowerbound_2: assumes n: "3 <= n" shows "2 <= \<phi> (n)"
   1.507 +proof-
   1.508 +  let ?S = "{ m. 0 < m \<and> m <= n \<and> coprime m n }"
   1.509 +  have inS: "{1, n - 1} \<subseteq> ?S" using n coprime_plus1[of "n - 1"] 
   1.510 +    by (auto simp add: coprime_commute)
   1.511 +  from n have c2: "card {1, n - 1} = 2" by (auto simp add: card_insert_if)
   1.512 +  from card_mono[of ?S "{1, n - 1}", simplified inS c2] show ?thesis 
   1.513 +    unfolding phi_def by auto
   1.514 +qed
   1.515 +
   1.516 +lemma phi_prime: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1 \<longleftrightarrow> prime n"
   1.517 +proof-
   1.518 +  {assume "n=0 \<or> n=1" hence ?thesis by (cases "n=1", simp_all)}
   1.519 +  moreover
   1.520 +  {assume n: "n\<noteq>0" "n\<noteq>1"
   1.521 +    let ?S = "{m. 0 < m \<and> m < n}"
   1.522 +    have fS: "finite ?S" by simp
   1.523 +    let ?S' = "{m. 0 < m \<and> m < n \<and> coprime m n}"
   1.524 +    have fS':"finite ?S'" apply (rule finite_subset[of ?S' ?S]) by auto
   1.525 +    {assume H: "\<phi> n = n - 1 \<and> n\<noteq>0 \<and> n\<noteq>1"
   1.526 +      hence ceq: "card ?S' = card ?S" 
   1.527 +      using n finite_number_segment[of n] phi_another[OF n(2)] by simp
   1.528 +      {fix m assume m: "0 < m" "m < n" "\<not> coprime m n"
   1.529 +	hence mS': "m \<notin> ?S'" by auto
   1.530 +	have "insert m ?S' \<le> ?S" using m by auto
   1.531 +	from m have "card (insert m ?S') \<le> card ?S" 
   1.532 +	  by - (rule card_mono[of ?S "insert m ?S'"], auto)
   1.533 +	hence False
   1.534 +	  unfolding card_insert_disjoint[of "?S'" m, OF fS' mS'] ceq
   1.535 +	  by simp }
   1.536 +      hence "\<forall>m. 0 <m \<and> m < n \<longrightarrow> coprime m n" by blast
   1.537 +      hence "prime n" unfolding prime using n by (simp add: coprime_commute)}
   1.538 +    moreover
   1.539 +    {assume H: "prime n"
   1.540 +      hence "?S = ?S'" unfolding prime using n 
   1.541 +	by (auto simp add: coprime_commute)
   1.542 +      hence "card ?S = card ?S'" by simp
   1.543 +      hence "\<phi> n = n - 1" unfolding phi_another[OF n(2)] by simp}
   1.544 +    ultimately have ?thesis using n by blast}
   1.545 +  ultimately show ?thesis by (cases "n=0") blast+
   1.546 +qed
   1.547 +
   1.548 +(* Multiplicativity property.                                                *)
   1.549 +
   1.550 +lemma phi_multiplicative: assumes ab: "coprime a b"
   1.551 +  shows "\<phi> (a * b) = \<phi> a * \<phi> b"
   1.552 +proof-
   1.553 +  {assume "a = 0 \<or> b = 0 \<or> a = 1 \<or> b = 1" 
   1.554 +    hence ?thesis
   1.555 +      by (cases "a=0", simp, cases "b=0", simp, cases"a=1", simp_all) }
   1.556 +  moreover
   1.557 +  {assume a: "a\<noteq>0" "a\<noteq>1" and b: "b\<noteq>0" "b\<noteq>1"
   1.558 +    hence ab0: "a*b \<noteq> 0" by simp
   1.559 +    let ?S = "\<lambda>k. {m. coprime m k \<and> m < k}"
   1.560 +    let ?f = "\<lambda>x. (x mod a, x mod b)"
   1.561 +    have eq: "?f ` (?S (a*b)) = (?S a \<times> ?S b)"
   1.562 +    proof-
   1.563 +      {fix x assume x:"x \<in> ?S (a*b)"
   1.564 +	hence x': "coprime x (a*b)" "x < a*b" by simp_all
   1.565 +	hence xab: "coprime x a" "coprime x b" by (simp_all add: coprime_mul_eq)
   1.566 +	from mod_less_divisor a b have xab':"x mod a < a" "x mod b < b" by auto
   1.567 +	from xab xab' have "?f x \<in> (?S a \<times> ?S b)" 
   1.568 +	  by (simp add: coprime_mod[OF a(1)] coprime_mod[OF b(1)])}
   1.569 +      moreover
   1.570 +      {fix x y assume x: "x \<in> ?S a" and y: "y \<in> ?S b"
   1.571 +	hence x': "coprime x a" "x < a" and y': "coprime y b" "y < b" by simp_all	
   1.572 +	from chinese_remainder_coprime_unique[OF ab a(1) b(1) x'(1) y'(1)]
   1.573 +	obtain z where z: "coprime z (a * b)" "z < a * b" "[z = x] (mod a)"
   1.574 +	  "[z = y] (mod b)" by blast
   1.575 +	hence "(x,y) \<in> ?f ` (?S (a*b))"
   1.576 +	  using y'(2) mod_less_divisor[of b y] x'(2) mod_less_divisor[of a x]
   1.577 +	  by (auto simp add: image_iff modeq_def)}
   1.578 +      ultimately show ?thesis by auto
   1.579 +    qed
   1.580 +    have finj: "inj_on ?f (?S (a*b))"
   1.581 +      unfolding inj_on_def
   1.582 +    proof(clarify)
   1.583 +      fix x y assume H: "coprime x (a * b)" "x < a * b" "coprime y (a * b)" 
   1.584 +	"y < a * b" "x mod a = y mod a" "x mod b = y mod b"
   1.585 +      hence cp: "coprime x a" "coprime x b" "coprime y a" "coprime y b" 
   1.586 +	by (simp_all add: coprime_mul_eq)
   1.587 +      from chinese_remainder_coprime_unique[OF ab a(1) b(1) cp(3,4)] H
   1.588 +      show "x = y" unfolding modeq_def by blast
   1.589 +    qed
   1.590 +    from card_image[OF finj, unfolded eq] have ?thesis
   1.591 +      unfolding phi_alt by simp }
   1.592 +  ultimately show ?thesis by auto
   1.593 +qed
   1.594 +
   1.595 +(* Fermat's Little theorem / Fermat-Euler theorem.                           *)
   1.596 +
   1.597 +lemma (in comm_monoid_mult) fold_related: 
   1.598 +  assumes Re: "R e e" 
   1.599 +  and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" 
   1.600 +  and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)"
   1.601 +  shows "R (fold (op *) h e S) (fold (op *) g e S)"
   1.602 +  using prems
   1.603 +  by -(rule finite_subset_induct,auto)
   1.604 +
   1.605 +
   1.606 +lemma nproduct_mod:
   1.607 +  assumes fS: "finite S" and n0: "n \<noteq> 0"
   1.608 +  shows "[setprod (\<lambda>m. a(m) mod n) S = setprod a S] (mod n)"
   1.609 +proof-
   1.610 +  have th1:"[1 = 1] (mod n)" by (simp add: modeq_def)
   1.611 +  from cong_mult
   1.612 +  have th3:"\<forall>x1 y1 x2 y2.
   1.613 +    [x1 = x2] (mod n) \<and> [y1 = y2] (mod n) \<longrightarrow> [x1 * y1 = x2 * y2] (mod n)"
   1.614 +    by blast
   1.615 +  have th4:"\<forall>x\<in>S. [a x mod n = a x] (mod n)" by (simp add: modeq_def)
   1.616 +  from fold_related[where h="(\<lambda>m. a(m) mod n)" and g=a, OF th1 th3 fS, OF th4] show ?thesis unfolding setprod_def by (simp add: fS)
   1.617 +qed
   1.618 +
   1.619 +lemma nproduct_cmul:
   1.620 +  assumes fS:"finite S"
   1.621 +  shows "setprod (\<lambda>m. (c::'a::{comm_monoid_mult,recpower})* a(m)) S = c ^ (card S) * setprod a S"
   1.622 +unfolding setprod_timesf setprod_constant[OF fS, of c] ..
   1.623 +
   1.624 +lemma coprime_nproduct:
   1.625 +  assumes fS: "finite S" and Sn: "\<forall>x\<in>S. coprime n (a x)"
   1.626 +  shows "coprime n (setprod a S)"
   1.627 +  using fS Sn
   1.628 +unfolding setprod_def
   1.629 +apply -
   1.630 +apply (rule finite_subset_induct)
   1.631 +by (auto simp add: coprime_mul)
   1.632 +
   1.633 +lemma (in comm_monoid_mult) 
   1.634 +  fold_eq_general:
   1.635 +  assumes fS: "finite S"
   1.636 +  and h: "\<forall>y\<in>S'. \<exists>!x. x\<in> S \<and> h(x) = y" 
   1.637 +  and f12:  "\<forall>x\<in>S. h x \<in> S' \<and> f2(h x) = f1 x"
   1.638 +  shows "fold (op *) f1 e S = fold (op *) f2 e S'"
   1.639 +proof-
   1.640 +  from h f12 have hS: "h ` S = S'" by auto
   1.641 +  {fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y"
   1.642 +    from f12 h H  have "x = y" by auto }
   1.643 +  hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast
   1.644 +  from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto 
   1.645 +  from hS have "fold (op *) f2 e S' = fold (op *) f2 e (h ` S)" by simp
   1.646 +  also have "\<dots> = fold (op *) (f2 o h) e S" 
   1.647 +    using fold_reindex[OF fS hinj, of f2 e] .
   1.648 +  also have "\<dots> = fold (op *) f1 e S " using th fold_cong[OF fS, of "f2 o h" f1 e]
   1.649 +    by blast
   1.650 +  finally show ?thesis ..
   1.651 +qed
   1.652 +
   1.653 +lemma fermat_little: assumes an: "coprime a n"
   1.654 +  shows "[a ^ (\<phi> n) = 1] (mod n)"
   1.655 +proof-
   1.656 +  {assume "n=0" hence ?thesis by simp}
   1.657 +  moreover
   1.658 +  {assume "n=1" hence ?thesis by (simp add: modeq_def)}
   1.659 +  moreover
   1.660 +  {assume nz: "n \<noteq> 0" and n1: "n \<noteq> 1"
   1.661 +    let ?S = "{m. coprime m n \<and> m < n}"
   1.662 +    let ?P = "\<Prod> ?S"
   1.663 +    have fS: "finite ?S" by simp
   1.664 +    have cardfS: "\<phi> n = card ?S" unfolding phi_alt ..
   1.665 +    {fix m assume m: "m \<in> ?S"
   1.666 +      hence "coprime m n" by simp
   1.667 +      with coprime_mul[of n a m] an have "coprime (a*m) n" 
   1.668 +	by (simp add: coprime_commute)}
   1.669 +    hence Sn: "\<forall>m\<in> ?S. coprime (a*m) n " by blast
   1.670 +    from coprime_nproduct[OF fS, of n "\<lambda>m. m"] have nP:"coprime ?P n"
   1.671 +      by (simp add: coprime_commute)
   1.672 +    have Paphi: "[?P*a^ (\<phi> n) = ?P*1] (mod n)"
   1.673 +    proof-
   1.674 +      let ?h = "\<lambda>m. m mod n"
   1.675 +      {fix m assume mS: "m\<in> ?S"
   1.676 +	hence "?h m \<in> ?S" by simp}
   1.677 +      hence hS: "?h ` ?S = ?S"by (auto simp add: image_iff)
   1.678 +      have "a\<noteq>0" using an n1 nz apply- apply (rule ccontr) by simp
   1.679 +      hence inj: "inj_on (op * a) ?S" unfolding inj_on_def by simp
   1.680 +      
   1.681 +      have eq0: "fold op * (?h \<circ> op * a) 1 {m. coprime m n \<and> m < n} =
   1.682 +     fold op * (\<lambda>m. m) 1 {m. coprime m n \<and> m < n}"
   1.683 +      proof (rule fold_eq_general[where h="?h o (op * a)"])
   1.684 +	show "finite ?S" using fS .
   1.685 +      next
   1.686 +	{fix y assume yS: "y \<in> ?S" hence y: "coprime y n" "y < n" by simp_all
   1.687 +	  from cong_solve_unique[OF an nz, of y]
   1.688 +	  obtain x where x:"x < n" "[a * x = y] (mod n)" "\<forall>z. z < n \<and> [a * z = y] (mod n) \<longrightarrow> z=x" by blast  
   1.689 +	  from cong_coprime[OF x(2)] y(1)
   1.690 +	  have xm: "coprime x n" by (simp add: coprime_mul_eq coprime_commute)
   1.691 +	  {fix z assume "z \<in> ?S" "(?h \<circ> op * a) z = y"
   1.692 +	    hence z: "coprime z n" "z < n" "(?h \<circ> op * a) z = y" by simp_all
   1.693 +	    from x(3)[rule_format, of z] z(2,3) have "z=x" 
   1.694 +	      unfolding modeq_def mod_less[OF y(2)] by simp}
   1.695 +	  with xm x(1,2) have "\<exists>!x. x \<in> ?S \<and> (?h \<circ> op * a) x = y"
   1.696 +	    unfolding modeq_def mod_less[OF y(2)] by auto }
   1.697 +	thus "\<forall>y\<in>{m. coprime m n \<and> m < n}.
   1.698 +       \<exists>!x. x \<in> {m. coprime m n \<and> m < n} \<and> ((\<lambda>m. m mod n) \<circ> op * a) x = y" by blast
   1.699 +      next
   1.700 +	{fix x assume xS: "x\<in> ?S"
   1.701 +	  hence x: "coprime x n" "x < n" by simp_all
   1.702 +	  with an have "coprime (a*x) n"
   1.703 +	    by (simp add: coprime_mul_eq[of n a x] coprime_commute)
   1.704 +	  hence "?h (a*x) \<in> ?S" using nz 
   1.705 +	    by (simp add: coprime_mod[OF nz] mod_less_divisor)}
   1.706 +	thus " \<forall>x\<in>{m. coprime m n \<and> m < n}.
   1.707 +       ((\<lambda>m. m mod n) \<circ> op * a) x \<in> {m. coprime m n \<and> m < n} \<and>
   1.708 +       ((\<lambda>m. m mod n) \<circ> op * a) x = ((\<lambda>m. m mod n) \<circ> op * a) x" by simp
   1.709 +      qed
   1.710 +      from nproduct_mod[OF fS nz, of "op * a"]
   1.711 +      have "[(setprod (op *a) ?S) = (setprod (?h o (op * a)) ?S)] (mod n)"
   1.712 +	unfolding o_def
   1.713 +	by (simp add: cong_commute)
   1.714 +      also have "[setprod (?h o (op * a)) ?S = ?P ] (mod n)"
   1.715 +	using eq0 fS an by (simp add: setprod_def modeq_def o_def)
   1.716 +      finally show "[?P*a^ (\<phi> n) = ?P*1] (mod n)"
   1.717 +	unfolding cardfS mult_commute[of ?P "a^ (card ?S)"] 
   1.718 +	  nproduct_cmul[OF fS, symmetric] mult_1_right by simp
   1.719 +    qed
   1.720 +    from cong_mult_lcancel[OF nP Paphi] have ?thesis . }
   1.721 +  ultimately show ?thesis by blast
   1.722 +qed
   1.723 +
   1.724 +lemma fermat_little_prime: assumes p: "prime p" and ap: "coprime a p"
   1.725 +  shows "[a^ (p - 1) = 1] (mod p)"
   1.726 +  using fermat_little[OF ap] p[unfolded phi_prime[symmetric]]
   1.727 +by simp
   1.728 +
   1.729 +
   1.730 +(* Lucas's theorem.                                                          *)
   1.731 +
   1.732 +lemma lucas_coprime_lemma:
   1.733 +  assumes m: "m\<noteq>0" and am: "[a^m = 1] (mod n)"
   1.734 +  shows "coprime a n"
   1.735 +proof-
   1.736 +  {assume "n=1" hence ?thesis by simp}
   1.737 +  moreover
   1.738 +  {assume "n = 0" hence ?thesis using am m exp_eq_1[of a m] by simp}
   1.739 +  moreover
   1.740 +  {assume n: "n\<noteq>0" "n\<noteq>1"
   1.741 +    from m obtain m' where m': "m = Suc m'" by (cases m, blast+)
   1.742 +    {fix d
   1.743 +      assume d: "d dvd a" "d dvd n"
   1.744 +      from n have n1: "1 < n" by arith      
   1.745 +      from am mod_less[OF n1] have am1: "a^m mod n = 1" unfolding modeq_def by simp
   1.746 +      from dvd_mult2[OF d(1), of "a^m'"] have dam:"d dvd a^m" by (simp add: m')
   1.747 +      from dvd_mod_iff[OF d(2), of "a^m"] dam am1
   1.748 +      have "d = 1" by simp }
   1.749 +    hence ?thesis unfolding coprime by auto
   1.750 +  }
   1.751 +  ultimately show ?thesis by blast 
   1.752 +qed
   1.753 +
   1.754 +lemma lucas_weak:
   1.755 +  assumes n: "n \<ge> 2" and an:"[a^(n - 1) = 1] (mod n)" 
   1.756 +  and nm: "\<forall>m. 0 <m \<and> m < n - 1 \<longrightarrow> \<not> [a^m = 1] (mod n)"
   1.757 +  shows "prime n"
   1.758 +proof-
   1.759 +  from n have n1: "n \<noteq> 1" "n\<noteq>0" "n - 1 \<noteq> 0" "n - 1 > 0" "n - 1 < n" by arith+
   1.760 +  from lucas_coprime_lemma[OF n1(3) an] have can: "coprime a n" .
   1.761 +  from fermat_little[OF can] have afn: "[a ^ \<phi> n = 1] (mod n)" .
   1.762 +  {assume "\<phi> n \<noteq> n - 1"
   1.763 +    with phi_limit_strong[OF n1(1)] phi_lowerbound_1[OF n]
   1.764 +    have c:"\<phi> n > 0 \<and> \<phi> n < n - 1" by arith
   1.765 +    from nm[rule_format, OF c] afn have False ..}
   1.766 +  hence "\<phi> n = n - 1" by blast
   1.767 +  with phi_prime[of n] n1(1,2) show ?thesis by simp
   1.768 +qed
   1.769 +
   1.770 +lemma nat_exists_least_iff: "(\<exists>(n::nat). P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" 
   1.771 +  (is "?lhs \<longleftrightarrow> ?rhs")
   1.772 +proof
   1.773 +  assume ?rhs thus ?lhs by blast
   1.774 +next
   1.775 +  assume H: ?lhs then obtain n where n: "P n" by blast
   1.776 +  let ?x = "Least P"
   1.777 +  {fix m assume m: "m < ?x"
   1.778 +    from not_less_Least[OF m] have "\<not> P m" .}
   1.779 +  with LeastI_ex[OF H] show ?rhs by blast
   1.780 +qed
   1.781 +
   1.782 +lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> (P (Least P) \<and> (\<forall>m < (Least P). \<not> P m))" 
   1.783 +  (is "?lhs \<longleftrightarrow> ?rhs")
   1.784 +proof-
   1.785 +  {assume ?rhs hence ?lhs by blast}
   1.786 +  moreover 
   1.787 +  { assume H: ?lhs then obtain n where n: "P n" by blast
   1.788 +    let ?x = "Least P"
   1.789 +    {fix m assume m: "m < ?x"
   1.790 +      from not_less_Least[OF m] have "\<not> P m" .}
   1.791 +    with LeastI_ex[OF H] have ?rhs by blast}
   1.792 +  ultimately show ?thesis by blast
   1.793 +qed
   1.794 + 
   1.795 +lemma power_mod: "((x::nat) mod m)^n mod m = x^n mod m"
   1.796 +proof(induct n)
   1.797 +  case 0 thus ?case by simp
   1.798 +next
   1.799 +  case (Suc n) 
   1.800 +  have "(x mod m)^(Suc n) mod m = ((x mod m) * (((x mod m) ^ n) mod m)) mod m" 
   1.801 +    by (simp add: mod_mult1_eq[symmetric])
   1.802 +  also have "\<dots> = ((x mod m) * (x^n mod m)) mod m" using Suc.hyps by simp
   1.803 +  also have "\<dots> = x^(Suc n) mod m"
   1.804 +    by (simp add: mod_mult1_eq'[symmetric] mod_mult1_eq[symmetric])
   1.805 +  finally show ?case .
   1.806 +qed
   1.807 +
   1.808 +lemma lucas:
   1.809 +  assumes n2: "n \<ge> 2" and an1: "[a^(n - 1) = 1] (mod n)" 
   1.810 +  and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> \<not> [a^((n - 1) div p) = 1] (mod n)"
   1.811 +  shows "prime n"
   1.812 +proof-
   1.813 +  from n2 have n01: "n\<noteq>0" "n\<noteq>1" "n - 1 \<noteq> 0" by arith+
   1.814 +  from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1" by simp
   1.815 +  from lucas_coprime_lemma[OF n01(3) an1] cong_coprime[OF an1] 
   1.816 +  have an: "coprime a n" "coprime (a^(n - 1)) n" by (simp_all add: coprime_commute)
   1.817 +  {assume H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
   1.818 +    from H0[unfolded nat_exists_least_iff[of ?P]] obtain m where 
   1.819 +      m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k" by blast
   1.820 +    {assume nm1: "(n - 1) mod m > 0" 
   1.821 +      from mod_less_divisor[OF m(1)] have th0:"(n - 1) mod m < m" by blast 
   1.822 +      let ?y = "a^ ((n - 1) div m * m)"
   1.823 +      note mdeq = mod_div_equality[of "(n - 1)" m]
   1.824 +      from coprime_exp[OF an(1)[unfolded coprime_commute[of a n]], 
   1.825 +	of "(n - 1) div m * m"]
   1.826 +      have yn: "coprime ?y n" by (simp add: coprime_commute) 
   1.827 +      have "?y mod n = (a^m)^((n - 1) div m) mod n" 
   1.828 +	by (simp add: ring_simps power_mult)
   1.829 +      also have "\<dots> = (a^m mod n)^((n - 1) div m) mod n" 
   1.830 +	using power_mod[of "a^m" n "(n - 1) div m"] by simp
   1.831 +      also have "\<dots> = 1" using m(3)[unfolded modeq_def onen] onen by simp
   1.832 +      finally have th3: "?y mod n = 1"  . 
   1.833 +      have th2: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)" 
   1.834 +	using an1[unfolded modeq_def onen] onen
   1.835 +	  mod_div_equality[of "(n - 1)" m, symmetric]
   1.836 +	by (simp add:power_add[symmetric] modeq_def th3 del: One_nat_def)
   1.837 +      from cong_mult_lcancel[of ?y n "a^((n - 1) mod m)" 1, OF yn th2]
   1.838 +      have th1: "[a ^ ((n - 1) mod m) = 1] (mod n)"  . 
   1.839 +      from m(4)[rule_format, OF th0] nm1 
   1.840 +	less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] th1
   1.841 +      have False by blast }
   1.842 +    hence "(n - 1) mod m = 0" by auto
   1.843 +    then have mn: "m dvd n - 1" by presburger
   1.844 +    then obtain r where r: "n - 1 = m*r" unfolding dvd_def by blast
   1.845 +    from n01 r m(2) have r01: "r\<noteq>0" "r\<noteq>1" by - (rule ccontr, simp)+
   1.846 +    from prime_factor[OF r01(2)] obtain p where p: "prime p" "p dvd r" by blast
   1.847 +    hence th: "prime p \<and> p dvd n - 1" unfolding r by (auto intro: dvd_mult)
   1.848 +    have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n" using r
   1.849 +      by (simp add: power_mult)
   1.850 +    also have "\<dots> = (a^(m*(r div p))) mod n" using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0] by simp
   1.851 +    also have "\<dots> = ((a^m)^(r div p)) mod n" by (simp add: power_mult)
   1.852 +    also have "\<dots> = ((a^m mod n)^(r div p)) mod n" using power_mod[of "a^m" "n" "r div p" ] ..
   1.853 +    also have "\<dots> = 1" using m(3) onen by (simp add: modeq_def)
   1.854 +    finally have "[(a ^ ((n - 1) div p))= 1] (mod n)" 
   1.855 +      using onen by (simp add: modeq_def)
   1.856 +    with pn[rule_format, OF th] have False by blast}
   1.857 +  hence th: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)" by blast
   1.858 +  from lucas_weak[OF n2 an1 th] show ?thesis .
   1.859 +qed
   1.860 +
   1.861 +(* Definition of the order of a number mod n (0 in non-coprime case).        *)
   1.862 +
   1.863 +definition "ord n a = (if coprime n a then Least (\<lambda>d. d > 0 \<and> [a ^d = 1] (mod n)) else 0)"
   1.864 +
   1.865 +(* This has the expected properties.                                         *)
   1.866 +
   1.867 +lemma coprime_ord:
   1.868 +  assumes na: "coprime n a" 
   1.869 +  shows "ord n a > 0 \<and> [a ^(ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> \<not> [a^ m = 1] (mod n))"
   1.870 +proof-
   1.871 +  let ?P = "\<lambda>d. 0 < d \<and> [a ^ d = 1] (mod n)"
   1.872 +  from euclid[of a] obtain p where p: "prime p" "a < p" by blast
   1.873 +  from na have o: "ord n a = Least ?P" by (simp add: ord_def)
   1.874 +  {assume "n=0 \<or> n=1" with na have "\<exists>m>0. ?P m" apply auto apply (rule exI[where x=1]) by (simp  add: modeq_def)}
   1.875 +  moreover
   1.876 +  {assume "n\<noteq>0 \<and> n\<noteq>1" hence n2:"n \<ge> 2" by arith 
   1.877 +    from na have na': "coprime a n" by (simp add: coprime_commute)
   1.878 +    from phi_lowerbound_1[OF n2] fermat_little[OF na']
   1.879 +    have ex: "\<exists>m>0. ?P m" by - (rule exI[where x="\<phi> n"], auto) }
   1.880 +  ultimately have ex: "\<exists>m>0. ?P m" by blast
   1.881 +  from nat_exists_least_iff'[of ?P] ex na show ?thesis 
   1.882 +    unfolding o[symmetric] by auto
   1.883 +qed
   1.884 +(* With the special value 0 for non-coprime case, it's more convenient.      *)
   1.885 +lemma ord_works:
   1.886 + "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> ~[a^ m = 1] (mod n))"
   1.887 +apply (cases "coprime n a")
   1.888 +using coprime_ord[of n a]
   1.889 +by (blast, simp add: ord_def modeq_def)
   1.890 +
   1.891 +lemma ord: "[a^(ord n a) = 1] (mod n)" using ord_works by blast 
   1.892 +lemma ord_minimal: "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> ~[a^m = 1] (mod n)" 
   1.893 +  using ord_works by blast
   1.894 +lemma ord_eq_0: "ord n a = 0 \<longleftrightarrow> ~coprime n a"
   1.895 +by (cases "coprime n a", simp add: neq0_conv coprime_ord, simp add: neq0_conv ord_def)
   1.896 +
   1.897 +lemma ord_divides:
   1.898 + "[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d" (is "?lhs \<longleftrightarrow> ?rhs")
   1.899 +proof
   1.900 +  assume rh: ?rhs
   1.901 +  then obtain k where "d = ord n a * k" unfolding dvd_def by blast
   1.902 +  hence "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)"
   1.903 +    by (simp add : modeq_def power_mult power_mod)
   1.904 +  also have "[(a ^ (ord n a) mod n)^k = 1] (mod n)" 
   1.905 +    using ord[of a n, unfolded modeq_def] by (simp add: modeq_def power_mod)
   1.906 +  finally  show ?lhs .
   1.907 +next 
   1.908 +  assume lh: ?lhs
   1.909 +  { assume H: "\<not> coprime n a"
   1.910 +    hence o: "ord n a = 0" by (simp add: ord_def)
   1.911 +    {assume d: "d=0" with o H have ?rhs by (simp add: modeq_def)}
   1.912 +    moreover
   1.913 +    {assume d0: "d\<noteq>0" then obtain d' where d': "d = Suc d'" by (cases d, auto)
   1.914 +      from H[unfolded coprime] 
   1.915 +      obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto 
   1.916 +      from lh[unfolded nat_mod] 
   1.917 +      obtain q1 q2 where q12:"a ^ d + n * q1 = 1 + n * q2" by blast
   1.918 +      hence "a ^ d + n * q1 - n * q2 = 1" by simp
   1.919 +      with dvd_diff [OF dvd_add [OF divides_rexp[OF p(2), of d'] dvd_mult2[OF p(1), of q1]] dvd_mult2[OF p(1), of q2]] d' have "p dvd 1" by simp 
   1.920 +      with p(3) have False by simp
   1.921 +      hence ?rhs ..}
   1.922 +    ultimately have ?rhs by blast}
   1.923 +  moreover
   1.924 +  {assume H: "coprime n a"
   1.925 +    let ?o = "ord n a"
   1.926 +    let ?q = "d div ord n a"
   1.927 +    let ?r = "d mod ord n a"
   1.928 +    from cong_exp[OF ord[of a n], of ?q] 
   1.929 +    have eqo: "[(a^?o)^?q = 1] (mod n)"  by (simp add: modeq_def)
   1.930 +    from H have onz: "?o \<noteq> 0" by (simp add: ord_eq_0)
   1.931 +    hence op: "?o > 0" by simp
   1.932 +    from mod_div_equality[of d "ord n a"] lh
   1.933 +    have "[a^(?o*?q + ?r) = 1] (mod n)" by (simp add: modeq_def mult_commute)
   1.934 +    hence "[(a^?o)^?q * (a^?r) = 1] (mod n)" 
   1.935 +      by (simp add: modeq_def power_mult[symmetric] power_add[symmetric])
   1.936 +    hence th: "[a^?r = 1] (mod n)"
   1.937 +      using eqo mod_mult1_eq'[of "(a^?o)^?q" "a^?r" n]
   1.938 +      apply (simp add: modeq_def del: One_nat_def)
   1.939 +      by (simp add: mod_mult1_eq'[symmetric])
   1.940 +    {assume r: "?r = 0" hence ?rhs by (simp add: dvd_eq_mod_eq_0)}
   1.941 +    moreover
   1.942 +    {assume r: "?r \<noteq> 0" 
   1.943 +      with mod_less_divisor[OF op, of d] have r0o:"?r >0 \<and> ?r < ?o" by simp
   1.944 +      from conjunct2[OF ord_works[of a n], rule_format, OF r0o] th     
   1.945 +      have ?rhs by blast}
   1.946 +    ultimately have ?rhs by blast}
   1.947 +  ultimately  show ?rhs by blast
   1.948 +qed
   1.949 +
   1.950 +lemma order_divides_phi: "coprime n a \<Longrightarrow> ord n a dvd \<phi> n"
   1.951 +using ord_divides fermat_little coprime_commute by simp
   1.952 +lemma order_divides_expdiff: 
   1.953 +  assumes na: "coprime n a"
   1.954 +  shows "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
   1.955 +proof-
   1.956 +  {fix n a d e 
   1.957 +    assume na: "coprime n a" and ed: "(e::nat) \<le> d"
   1.958 +    hence "\<exists>c. d = e + c" by arith
   1.959 +    then obtain c where c: "d = e + c" by arith
   1.960 +    from na have an: "coprime a n" by (simp add: coprime_commute)
   1.961 +    from coprime_exp[OF na, of e] 
   1.962 +    have aen: "coprime (a^e) n" by (simp add: coprime_commute)
   1.963 +    from coprime_exp[OF na, of c] 
   1.964 +    have acn: "coprime (a^c) n" by (simp add: coprime_commute)
   1.965 +    have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)"
   1.966 +      using c by simp
   1.967 +    also have "\<dots> \<longleftrightarrow> [a^e* a^c = a^e *a^0] (mod n)" by (simp add: power_add)
   1.968 +    also have  "\<dots> \<longleftrightarrow> [a ^ c = 1] (mod n)"
   1.969 +      using cong_mult_lcancel_eq[OF aen, of "a^c" "a^0"] by simp
   1.970 +    also  have "\<dots> \<longleftrightarrow> ord n a dvd c" by (simp only: ord_divides)
   1.971 +    also have "\<dots> \<longleftrightarrow> [e + c = e + 0] (mod ord n a)"
   1.972 +      using cong_add_lcancel_eq[of e c 0 "ord n a", simplified cong_0_divides]
   1.973 +      by simp
   1.974 +    finally have "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
   1.975 +      using c by simp }
   1.976 +  note th = this
   1.977 +  have "e \<le> d \<or> d \<le> e" by arith
   1.978 +  moreover
   1.979 +  {assume ed: "e \<le> d" from th[OF na ed] have ?thesis .}
   1.980 +  moreover
   1.981 +  {assume de: "d \<le> e"
   1.982 +    from th[OF na de] have ?thesis by (simp add: cong_commute) }
   1.983 +  ultimately show ?thesis by blast
   1.984 +qed
   1.985 +
   1.986 +(* Another trivial primality characterization.                               *)
   1.987 +
   1.988 +lemma prime_prime_factor:
   1.989 +  "prime n \<longleftrightarrow> n \<noteq> 1\<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)"
   1.990 +proof-
   1.991 +  {assume n: "n=0 \<or> n=1" hence ?thesis using prime_0 two_is_prime by auto}
   1.992 +  moreover
   1.993 +  {assume n: "n\<noteq>0" "n\<noteq>1"
   1.994 +    {assume pn: "prime n"
   1.995 +      
   1.996 +      from pn[unfolded prime_def] have "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
   1.997 +	using n 
   1.998 +	apply (cases "n = 0 \<or> n=1",simp)
   1.999 +	by (clarsimp, erule_tac x="p" in allE, auto)}
  1.1000 +    moreover
  1.1001 +    {assume H: "\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n"
  1.1002 +      from n have n1: "n > 1" by arith
  1.1003 +      {fix m assume m: "m dvd n" "m\<noteq>1"
  1.1004 +	from prime_factor[OF m(2)] obtain p where 
  1.1005 +	  p: "prime p" "p dvd m" by blast
  1.1006 +	from dvd_trans[OF p(2) m(1)] p(1) H have "p = n" by blast  
  1.1007 +	with p(2) have "n dvd m"  by simp
  1.1008 +	hence "m=n"  using dvd_anti_sym[OF m(1)] by simp }
  1.1009 +      with n1 have "prime n"  unfolding prime_def by auto }
  1.1010 +    ultimately have ?thesis using n by blast} 
  1.1011 +  ultimately       show ?thesis by auto 
  1.1012 +qed
  1.1013 +
  1.1014 +lemma prime_divisor_sqrt:
  1.1015 +  "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d^2 \<le> n \<longrightarrow> d = 1)"
  1.1016 +proof-
  1.1017 +  {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1 
  1.1018 +    by (auto simp add: nat_power_eq_0_iff)}
  1.1019 +  moreover
  1.1020 +  {assume n: "n\<noteq>0" "n\<noteq>1"
  1.1021 +    hence np: "n > 1" by arith
  1.1022 +    {fix d assume d: "d dvd n" "d^2 \<le> n" and H: "\<forall>m. m dvd n \<longrightarrow> m=1 \<or> m=n"
  1.1023 +      from H d have d1n: "d = 1 \<or> d=n" by blast
  1.1024 +      {assume dn: "d=n"
  1.1025 +	have "n^2 > n*1" using n 
  1.1026 +	  by (simp add: power2_eq_square mult_less_cancel1)
  1.1027 +	with dn d(2) have "d=1" by simp}
  1.1028 +      with d1n have "d = 1" by blast  }
  1.1029 +    moreover
  1.1030 +    {fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'^2 \<le> n \<longrightarrow> d' = 1"
  1.1031 +      from d n have "d \<noteq> 0" apply - apply (rule ccontr) by simp
  1.1032 +      hence dp: "d > 0" by simp
  1.1033 +      from d[unfolded dvd_def] obtain e where e: "n= d*e" by blast
  1.1034 +      from n dp e have ep:"e > 0" by simp
  1.1035 +      have "d^2 \<le> n \<or> e^2 \<le> n" using dp ep
  1.1036 +	by (auto simp add: e power2_eq_square mult_le_cancel_left)
  1.1037 +      moreover
  1.1038 +      {assume h: "d^2 \<le> n"
  1.1039 +	from H[rule_format, of d] h d have "d = 1" by blast}
  1.1040 +      moreover
  1.1041 +      {assume h: "e^2 \<le> n"
  1.1042 +	from e have "e dvd n" unfolding dvd_def by (simp add: mult_commute)
  1.1043 +	with H[rule_format, of e] h have "e=1" by simp
  1.1044 +	with e have "d = n" by simp}
  1.1045 +      ultimately have "d=1 \<or> d=n"  by blast}
  1.1046 +    ultimately have ?thesis unfolding prime_def using np n(2) by blast}
  1.1047 +  ultimately show ?thesis by auto
  1.1048 +qed
  1.1049 +lemma prime_prime_factor_sqrt:
  1.1050 +  "prime n \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p^2 \<le> n)" 
  1.1051 +  (is "?lhs \<longleftrightarrow>?rhs")
  1.1052 +proof-
  1.1053 +  {assume "n=0 \<or> n=1" hence ?thesis using prime_0 prime_1 by auto}
  1.1054 +  moreover
  1.1055 +  {assume n: "n\<noteq>0" "n\<noteq>1"
  1.1056 +    {assume H: ?lhs
  1.1057 +      from H[unfolded prime_divisor_sqrt] n 
  1.1058 +      have ?rhs  apply clarsimp by (erule_tac x="p" in allE, simp add: prime_1)
  1.1059 +    }
  1.1060 +    moreover
  1.1061 +    {assume H: ?rhs
  1.1062 +      {fix d assume d: "d dvd n" "d^2 \<le> n" "d\<noteq>1"
  1.1063 +	from prime_factor[OF d(3)] 
  1.1064 +	obtain p where p: "prime p" "p dvd d" by blast
  1.1065 +	from n have np: "n > 0" by arith
  1.1066 +	from d(1) n have "d \<noteq> 0" by - (rule ccontr, auto)
  1.1067 +	hence dp: "d > 0" by arith
  1.1068 +	from mult_mono[OF dvd_imp_le[OF p(2) dp] dvd_imp_le[OF p(2) dp]] d(2)
  1.1069 +	have "p^2 \<le> n" unfolding power2_eq_square by arith
  1.1070 +	with H n p(1) dvd_trans[OF p(2) d(1)] have False  by blast}
  1.1071 +      with n prime_divisor_sqrt  have ?lhs by auto}
  1.1072 +    ultimately have ?thesis by blast }
  1.1073 +  ultimately show ?thesis by (cases "n=0 \<or> n=1", auto)
  1.1074 +qed
  1.1075 +(* Pocklington theorem. *)
  1.1076 +
  1.1077 +lemma pocklington_lemma:
  1.1078 +  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and an: "[a^ (n - 1) = 1] (mod n)"
  1.1079 +  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
  1.1080 +  and pp: "prime p" and pn: "p dvd n"
  1.1081 +  shows "[p = 1] (mod q)"
  1.1082 +proof-
  1.1083 +  from pp prime_0 prime_1 have p01: "p \<noteq> 0" "p \<noteq> 1" by - (rule ccontr, simp)+
  1.1084 +  from cong_1_divides[OF an, unfolded nqr, unfolded dvd_def] 
  1.1085 +  obtain k where k: "a ^ (q * r) - 1 = n*k" by blast
  1.1086 +  from pn[unfolded dvd_def] obtain l where l: "n = p*l" by blast
  1.1087 +  {assume a0: "a = 0"
  1.1088 +    hence "a^ (n - 1) = 0" using n by (simp add: power_0_left)
  1.1089 +    with n an mod_less[of 1 n]  have False by (simp add: power_0_left modeq_def)}
  1.1090 +  hence a0: "a\<noteq>0" ..
  1.1091 +  from n nqr have aqr0: "a ^ (q * r) \<noteq> 0" using a0 by (simp add: neq0_conv)
  1.1092 +  hence "(a ^ (q * r) - 1) + 1  = a ^ (q * r)" by simp
  1.1093 +  with k l have "a ^ (q * r) = p*l*k + 1" by simp
  1.1094 +  hence "a ^ (r * q) + p * 0 = 1 + p * (l*k)" by (simp add: mult_ac)
  1.1095 +  hence odq: "ord p (a^r) dvd q"
  1.1096 +    unfolding ord_divides[symmetric] power_mult[symmetric] nat_mod  by blast
  1.1097 +  from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d" by blast
  1.1098 +  {assume d1: "d \<noteq> 1" 
  1.1099 +    from prime_factor[OF d1] obtain P where P: "prime P" "P dvd d" by blast
  1.1100 +    from d dvd_mult[OF P(2), of "ord p (a^r)"] have Pq: "P dvd q" by simp
  1.1101 +    from aq P(1) Pq have caP:"coprime (a^ ((n - 1) div P) - 1) n" by blast
  1.1102 +    from Pq obtain s where s: "q = P*s" unfolding dvd_def by blast
  1.1103 +    have P0: "P \<noteq> 0" using P(1) prime_0 by - (rule ccontr, simp)
  1.1104 +    from P(2) obtain t where t: "d = P*t" unfolding dvd_def by blast
  1.1105 +    from d s t P0  have s': "ord p (a^r) * t = s" by algebra
  1.1106 +    have "ord p (a^r) * t*r = r * ord p (a^r) * t" by algebra
  1.1107 +    hence exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t"
  1.1108 +      by (simp only: power_mult)
  1.1109 +    have "[((a ^ r) ^ ord p (a^r)) ^ t= 1^t] (mod p)" 
  1.1110 +      by (rule cong_exp, rule ord)
  1.1111 +    then have th: "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)" by simp
  1.1112 +    from cong_1_divides[OF th] exps have pd0: "p dvd a^(ord p (a^r) * t*r) - 1" by simp
  1.1113 +    from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r" using P0 by simp
  1.1114 +    with caP have "coprime (a^(ord p (a^r) * t*r) - 1) n" by simp
  1.1115 +    with p01 pn pd0 have False unfolding coprime by auto}
  1.1116 +  hence d1: "d = 1" by blast 
  1.1117 +  hence o: "ord p (a^r) = q" using d by simp  
  1.1118 +  from pp phi_prime[of p] have phip: " \<phi> p = p - 1" by simp
  1.1119 +  {fix d assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
  1.1120 +    from pp[unfolded prime_def] d have dp: "d = p" by blast
  1.1121 +    from n have n12:"Suc (n - 2) = n - 1" by arith
  1.1122 +    with divides_rexp[OF d(2)[unfolded dp], of "n - 2"]
  1.1123 +    have th0: "p dvd a ^ (n - 1)" by simp
  1.1124 +    from n have n0: "n \<noteq> 0" by simp
  1.1125 +    from d(2) an n12[symmetric] have a0: "a \<noteq> 0" 
  1.1126 +      by - (rule ccontr, simp add: modeq_def)
  1.1127 +    have th1: "a^ (n - 1) \<noteq> 0" using n d(2) dp a0 by (auto simp add: neq0_conv)
  1.1128 +    from coprime_minus1[OF th1, unfolded coprime] 
  1.1129 +      dvd_trans[OF pn cong_1_divides[OF an]] th0 d(3) dp
  1.1130 +    have False by auto}
  1.1131 +  hence cpa: "coprime p a" using coprime by auto 
  1.1132 +  from coprime_exp[OF cpa, of r] coprime_commute 
  1.1133 +  have arp: "coprime (a^r) p" by blast
  1.1134 +  from fermat_little[OF arp, simplified ord_divides] o phip
  1.1135 +  have "q dvd (p - 1)" by simp
  1.1136 +  then obtain d where d:"p - 1 = q * d" unfolding dvd_def by blast
  1.1137 +  from prime_0 pp have p0:"p \<noteq> 0" by -  (rule ccontr, auto)
  1.1138 +  from p0 d have "p + q * 0 = 1 + q * d" by simp
  1.1139 +  with nat_mod[of p 1 q, symmetric]
  1.1140 +  show ?thesis by blast
  1.1141 +qed
  1.1142 +
  1.1143 +lemma pocklington:
  1.1144 +  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2"
  1.1145 +  and an: "[a^ (n - 1) = 1] (mod n)"
  1.1146 +  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
  1.1147 +  shows "prime n"
  1.1148 +unfolding prime_prime_factor_sqrt[of n]
  1.1149 +proof-
  1.1150 +  let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<twosuperior> \<le> n)"
  1.1151 +  from n have n01: "n\<noteq>0" "n\<noteq>1" by arith+
  1.1152 +  {fix p assume p: "prime p" "p dvd n" "p^2 \<le> n"
  1.1153 +    from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)" by (simp add: power2_eq_square)
  1.1154 +    hence pq: "p \<le> q" unfolding exp_mono_le .
  1.1155 +    from pocklington_lemma[OF n nqr an aq p(1,2)]  cong_1_divides
  1.1156 +    have th: "q dvd p - 1" by blast
  1.1157 +    have "p - 1 \<noteq> 0"using prime_ge_2[OF p(1)] by arith
  1.1158 +    with divides_ge[OF th] pq have False by arith }
  1.1159 +  with n01 show ?ths by blast
  1.1160 +qed
  1.1161 +
  1.1162 +(* Variant for application, to separate the exponentiation.                  *)
  1.1163 +lemma pocklington_alt:
  1.1164 +  assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q^2"
  1.1165 +  and an: "[a^ (n - 1) = 1] (mod n)"
  1.1166 +  and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)"
  1.1167 +  shows "prime n"
  1.1168 +proof-
  1.1169 +  {fix p assume p: "prime p" "p dvd q"
  1.1170 +    from aq[rule_format] p obtain b where 
  1.1171 +      b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n" by blast
  1.1172 +    {assume a0: "a=0"
  1.1173 +      from n an have "[0 = 1] (mod n)" unfolding a0 power_0_left by auto
  1.1174 +      hence False using n by (simp add: modeq_def dvd_eq_mod_eq_0[symmetric])}
  1.1175 +    hence a0: "a\<noteq> 0" ..
  1.1176 +    hence a1: "a \<ge> 1" by arith
  1.1177 +    from one_le_power[OF a1] have ath: "1 \<le> a ^ ((n - 1) div p)" .
  1.1178 +    {assume b0: "b = 0"
  1.1179 +      from p(2) nqr have "(n - 1) mod p = 0" 
  1.1180 +	apply (simp only: dvd_eq_mod_eq_0[symmetric]) by (rule dvd_mult2, simp)
  1.1181 +      with mod_div_equality[of "n - 1" p] 
  1.1182 +      have "(n - 1) div p * p= n - 1" by auto 
  1.1183 +      hence eq: "(a^((n - 1) div p))^p = a^(n - 1)"
  1.1184 +	by (simp only: power_mult[symmetric])
  1.1185 +      from prime_ge_2[OF p(1)] have pS: "Suc (p - 1) = p" by arith
  1.1186 +      from b(1) have d: "n dvd a^((n - 1) div p)" unfolding b0 cong_0_divides .
  1.1187 +      from divides_rexp[OF d, of "p - 1"] pS eq cong_divides[OF an] n
  1.1188 +      have False by simp}
  1.1189 +    then have b0: "b \<noteq> 0" ..  
  1.1190 +    hence b1: "b \<ge> 1" by arith    
  1.1191 +    from cong_coprime[OF cong_sub[OF b(1) cong_refl[of 1] ath b1]] b(2) nqr
  1.1192 +    have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute)}
  1.1193 +  hence th: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n " 
  1.1194 +    by blast
  1.1195 +  from pocklington[OF n nqr sqr an th] show ?thesis .
  1.1196 +qed
  1.1197 +
  1.1198 +(* Prime factorizations.                                                     *)
  1.1199 +
  1.1200 +definition "primefact ps n = (foldr op * ps  1 = n \<and> (\<forall>p\<in> set ps. prime p))"
  1.1201 +
  1.1202 +lemma primefact: assumes n: "n \<noteq> 0"
  1.1203 +  shows "\<exists>ps. primefact ps n"
  1.1204 +using n
  1.1205 +proof(induct n rule: nat_less_induct)
  1.1206 +  fix n assume H: "\<forall>m<n. m \<noteq> 0 \<longrightarrow> (\<exists>ps. primefact ps m)" and n: "n\<noteq>0"
  1.1207 +  let ?ths = "\<exists>ps. primefact ps n"
  1.1208 +  {assume "n = 1" 
  1.1209 +    hence "primefact [] n" by (simp add: primefact_def)
  1.1210 +    hence ?ths by blast }
  1.1211 +  moreover
  1.1212 +  {assume n1: "n \<noteq> 1"
  1.1213 +    with n have n2: "n \<ge> 2" by arith
  1.1214 +    from prime_factor[OF n1] obtain p where p: "prime p" "p dvd n" by blast
  1.1215 +    from p(2) obtain m where m: "n = p*m" unfolding dvd_def by blast
  1.1216 +    from n m have m0: "m > 0" "m\<noteq>0" by auto
  1.1217 +    from prime_ge_2[OF p(1)] have "1 < p" by arith
  1.1218 +    with m0 m have mn: "m < n" by auto
  1.1219 +    from H[rule_format, OF mn m0(2)] obtain ps where ps: "primefact ps m" ..
  1.1220 +    from ps m p(1) have "primefact (p#ps) n" by (simp add: primefact_def)
  1.1221 +    hence ?ths by blast}
  1.1222 +  ultimately show ?ths by blast
  1.1223 +qed
  1.1224 +
  1.1225 +lemma primefact_contains: 
  1.1226 +  assumes pf: "primefact ps n" and p: "prime p" and pn: "p dvd n"
  1.1227 +  shows "p \<in> set ps"
  1.1228 +  using pf p pn
  1.1229 +proof(induct ps arbitrary: p n)
  1.1230 +  case Nil thus ?case by (auto simp add: primefact_def)
  1.1231 +next
  1.1232 +  case (Cons q qs p n)
  1.1233 +  from Cons.prems[unfolded primefact_def] 
  1.1234 +  have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p"  and p: "prime p" "p dvd q * foldr op * qs 1" by simp_all
  1.1235 +  {assume "p dvd q"
  1.1236 +    with p(1) q(1) have "p = q" unfolding prime_def by auto
  1.1237 +    hence ?case by simp}
  1.1238 +  moreover
  1.1239 +  { assume h: "p dvd foldr op * qs 1"
  1.1240 +    from q(3) have pqs: "primefact qs (foldr op * qs 1)" 
  1.1241 +      by (simp add: primefact_def)
  1.1242 +    from Cons.hyps[OF pqs p(1) h] have ?case by simp}
  1.1243 +  ultimately show ?case using prime_divprod[OF p] by blast
  1.1244 +qed
  1.1245 +
  1.1246 +lemma primefact_variant: "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> list_all prime ps" by (auto simp add: primefact_def list_all_iff)
  1.1247 +
  1.1248 +(* Variant of Lucas theorem.                                                 *)
  1.1249 +
  1.1250 +lemma lucas_primefact:
  1.1251 +  assumes n: "n \<ge> 2" and an: "[a^(n - 1) = 1] (mod n)" 
  1.1252 +  and psn: "foldr op * ps 1 = n - 1" 
  1.1253 +  and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps"
  1.1254 +  shows "prime n"
  1.1255 +proof-
  1.1256 +  {fix p assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
  1.1257 +    from psn psp have psn1: "primefact ps (n - 1)" 
  1.1258 +      by (auto simp add: list_all_iff primefact_variant)
  1.1259 +    from p(3) primefact_contains[OF psn1 p(1,2)] psp
  1.1260 +    have False by (induct ps, auto)}
  1.1261 +  with lucas[OF n an] show ?thesis by blast
  1.1262 +qed
  1.1263 +
  1.1264 +(* Variant of Pocklington theorem.                                           *)
  1.1265 +
  1.1266 +lemma mod_le: assumes n: "n \<noteq> (0::nat)" shows "m mod n \<le> m"
  1.1267 +proof-
  1.1268 +    from mod_div_equality[of m n]
  1.1269 +    have "\<exists>x. x + m mod n = m" by blast 
  1.1270 +    then show ?thesis by auto
  1.1271 +qed
  1.1272 +  
  1.1273 +
  1.1274 +lemma pocklington_primefact:
  1.1275 +  assumes n: "n \<ge> 2" and qrn: "q*r = n - 1" and nq2: "n \<le> q^2"
  1.1276 +  and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q" 
  1.1277 +  and bqn: "(b^q) mod n = 1"
  1.1278 +  and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps"
  1.1279 +  shows "prime n"
  1.1280 +proof-
  1.1281 +  from bqn psp qrn
  1.1282 +  have bqn: "a ^ (n - 1) mod n = 1"
  1.1283 +    and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps"  unfolding arnb[symmetric] power_mod 
  1.1284 +    by (simp_all add: power_mult[symmetric] ring_simps)
  1.1285 +  from n  have n0: "n > 0" by arith
  1.1286 +  from mod_div_equality[of "a^(n - 1)" n]
  1.1287 +    mod_less_divisor[OF n0, of "a^(n - 1)"]
  1.1288 +  have an1: "[a ^ (n - 1) = 1] (mod n)" 
  1.1289 +    unfolding nat_mod bqn
  1.1290 +    apply -
  1.1291 +    apply (rule exI[where x="0"])
  1.1292 +    apply (rule exI[where x="a^(n - 1) div n"])
  1.1293 +    by (simp add: ring_simps)
  1.1294 +  {fix p assume p: "prime p" "p dvd q"
  1.1295 +    from psp psq have pfpsq: "primefact ps q"
  1.1296 +      by (auto simp add: primefact_variant list_all_iff)
  1.1297 +    from psp primefact_contains[OF pfpsq p] 
  1.1298 +    have p': "coprime (a ^ (r * (q div p)) mod n - 1) n"
  1.1299 +      by (simp add: list_all_iff)
  1.1300 +    from prime_ge_2[OF p(1)] have p01: "p \<noteq> 0" "p \<noteq> 1" "p =Suc(p - 1)" by arith+
  1.1301 +    from div_mult1_eq[of r q p] p(2) 
  1.1302 +    have eq1: "r* (q div p) = (n - 1) div p"
  1.1303 +      unfolding qrn[symmetric] dvd_eq_mod_eq_0 by (simp add: mult_commute)
  1.1304 +    have ath: "\<And>a (b::nat). a <= b \<Longrightarrow> a \<noteq> 0 ==> 1 <= a \<and> 1 <= b" by arith
  1.1305 +    from n0 have n00: "n \<noteq> 0" by arith
  1.1306 +    from mod_le[OF n00]
  1.1307 +    have th10: "a ^ ((n - 1) div p) mod n \<le> a ^ ((n - 1) div p)" .
  1.1308 +    {assume "a ^ ((n - 1) div p) mod n = 0"
  1.1309 +      then obtain s where s: "a ^ ((n - 1) div p) = n*s"
  1.1310 +	unfolding mod_eq_0_iff by blast
  1.1311 +      hence eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp
  1.1312 +      from qrn[symmetric] have qn1: "q dvd n - 1" unfolding dvd_def by auto
  1.1313 +      from dvd_trans[OF p(2) qn1] div_mod_equality'[of "n - 1" p]
  1.1314 +      have npp: "(n - 1) div p * p = n - 1" by (simp add: dvd_eq_mod_eq_0)  
  1.1315 +      with eq0 have "a^ (n - 1) = (n*s)^p"
  1.1316 +	by (simp add: power_mult[symmetric])
  1.1317 +      hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp
  1.1318 +      also have "\<dots> = 0" by (simp add: mult_assoc mod_mult_self_is_0)
  1.1319 +      finally have False by simp }
  1.1320 +      then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto 
  1.1321 +    have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)"  
  1.1322 +      unfolding modeq_def by simp 
  1.1323 +    from cong_sub[OF th1 cong_refl[of 1]]  ath[OF th10 th11]
  1.1324 +    have th: "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)"
  1.1325 +      by blast 
  1.1326 +    from cong_coprime[OF th] p'[unfolded eq1] 
  1.1327 +    have "coprime (a ^ ((n - 1) div p) - 1) n" by (simp add: coprime_commute) }
  1.1328 +  with pocklington[OF n qrn[symmetric] nq2 an1]
  1.1329 +  show ?thesis by blast    
  1.1330 +qed
  1.1331 +
  1.1332 +
  1.1333 +end