tuned;
authorwenzelm
Wed, 05 Jan 2000 12:02:24 +0100
changeset 8104d9b3a224c0e6
parent 8103 86f94a8116a9
child 8105 2dda3e88d23f
tuned;
src/HOL/Real/HahnBanach/HahnBanach.thy
src/HOL/Real/HahnBanach/ZornLemma.thy
     1.1 --- a/src/HOL/Real/HahnBanach/HahnBanach.thy	Wed Jan 05 12:01:14 2000 +0100
     1.2 +++ b/src/HOL/Real/HahnBanach/HahnBanach.thy	Wed Jan 05 12:02:24 2000 +0100
     1.3 @@ -86,15 +86,15 @@
     1.4    
     1.5  txt {* With Zorn's Lemma we can conclude that there is a maximal element $g$ in $M$. *};
     1.6  
     1.7 -  hence "EX g:M. ALL x:M. g <= x --> g = x"; 
     1.8 +  hence "EX g:M. ALL x:M. g <= x --> g = x";
     1.9    proof (rule Zorn's_Lemma);
    1.10 -    txt{* We show that $M$ is non-empty: *};
    1.11 +    txt {* We show that $M$ is non-empty: *};
    1.12      have "graph F f : norm_pres_extensions E p F f";
    1.13      proof (rule norm_pres_extensionI2);
    1.14        have "is_vectorspace F"; ..;
    1.15        thus "is_subspace F F"; ..;
    1.16      qed (blast!)+; 
    1.17 -    thus  "graph F f : M"; by (simp!);
    1.18 +    thus "graph F f : M"; by (simp!);
    1.19    qed;
    1.20    thus ?thesis;
    1.21    proof;
    1.22 @@ -104,7 +104,10 @@
    1.23      fix g; assume "g:M" "ALL x:M. g <= x --> g = x";
    1.24      show ?thesis;
    1.25  
    1.26 -txt_raw {* \isamarkuptxt{$g$ is a norm-preserving extension of $f$, that is: $g$ is the graph of a linear form $h$, defined on a subspace $H$ of $E$, which is a superspace of $F$. $h$ is an extension of $f$ and $h$ is again bounded by $p$.}  *};
    1.27 +      txt {* $g$ is a norm-preserving extension of $f$, that is: $g$
    1.28 +      is the graph of a linear form $h$, defined on a subspace $H$ of
    1.29 +      $E$, which is a superspace of $F$. $h$ is an extension of $f$
    1.30 +      and $h$ is again bounded by $p$. *};
    1.31  
    1.32        obtain H h in "graph H h = g" and "is_linearform H h" 
    1.33          "is_subspace H E" "is_subspace F H" "graph F f <= graph H h" 
    1.34 @@ -114,7 +117,7 @@
    1.35            & is_subspace H E & is_subspace F H
    1.36            & graph F f <= graph H h
    1.37            & (ALL x:H. h x <= p x)"; by (simp! add: norm_pres_extension_D);
    1.38 -        thus ?thesis; by (elim exE conjE) (rule that);
    1.39 +        thus ?thesis; by blast;
    1.40        qed;
    1.41        have h: "is_vectorspace H"; ..;
    1.42  
    1.43 @@ -123,7 +126,7 @@
    1.44        have "H = E"; 
    1.45        proof (rule classical);
    1.46  
    1.47 -txt_raw {* \isamarkuptxt{Assume $h$ is not defined on whole $E$.} *};
    1.48 +	txt {* Assume $h$ is not defined on whole $E$. *};
    1.49  
    1.50          assume "H ~= E";
    1.51  
    1.52 @@ -131,7 +134,7 @@
    1.53  
    1.54          have "EX g_h0 : M. g <= g_h0 & g ~= g_h0"; 
    1.55  
    1.56 -txt_raw {* \isamarkuptxt{Take $x_0 \in E \setminus H$.} *};
    1.57 +	  txt {* Consider $x_0 \in E \setminus H$. *};
    1.58  
    1.59            obtain x0 in "x0:E" "x0~:H"; 
    1.60            proof -;
    1.61 @@ -140,7 +143,7 @@
    1.62                have "H <= E"; ..;
    1.63                thus "H < E"; ..;
    1.64              qed;
    1.65 -            thus ?thesis; by (elim bexE) (rule that);
    1.66 +            thus ?thesis; by blast;
    1.67            qed;
    1.68            have x0: "x0 ~= <0>";
    1.69            proof (rule classical);
    1.70 @@ -154,7 +157,9 @@
    1.71            def H0 == "H + lin x0";
    1.72            show ?thesis;
    1.73  
    1.74 -txt_raw {* \isamarkuptxt{Chose a real number $\xi$ that fulfills certain inequations, which will be used to establish that $h_0$ is a norm-preserving extension of $h$.} *};
    1.75 +	    txt {* Pick a real number $\xi$ that fulfills certain
    1.76 +	    inequations, which will be used to establish that $h_0$ is
    1.77 +	    a norm-preserving extension of $h$. *};
    1.78  
    1.79              obtain xi in "ALL y:H. - p (y + x0) - h y <= xi 
    1.80                                & xi <= p (y + x0) - h y";
    1.81 @@ -180,7 +185,7 @@
    1.82                  thus "- p (u + x0) - h u <= p (v + x0) - h v";
    1.83                    by (rule real_diff_ineq_swap);
    1.84                qed;
    1.85 -              thus ?thesis; by (elim exE) (rule that);
    1.86 +              thus ?thesis; by blast;
    1.87              qed;
    1.88  
    1.89  txt {* Define the extension $h_0$ of $h$ to $H_0$ using $\xi$.  *};
     2.1 --- a/src/HOL/Real/HahnBanach/ZornLemma.thy	Wed Jan 05 12:01:14 2000 +0100
     2.2 +++ b/src/HOL/Real/HahnBanach/ZornLemma.thy	Wed Jan 05 12:02:24 2000 +0100
     2.3 @@ -7,24 +7,22 @@
     2.4  
     2.5  theory ZornLemma = Aux + Zorn:;
     2.6  
     2.7 -text{* 
     2.8 -Zorn's Lemmas states: if every linear ordered subset of an ordered set 
     2.9 -$S$ has an upper bound in $S$, then there exists a maximal element in $S$.
    2.10 -In our application, $S$ is a set of sets ordered by set inclusion. Since 
    2.11 -the union of a chain of sets is an upper bound for all elements of the 
    2.12 -chain, the conditions of Zorn's lemma can be modified:
    2.13 -if $S$ is non-empty, it suffices to show that for every non-empty 
    2.14 -chain $c$ in $S$ the union of $c$ also lies in $S$.
    2.15 -*};
    2.16 +text {* Zorn's Lemmas states: if every linear ordered subset of an
    2.17 +ordered set $S$ has an upper bound in $S$, then there exists a maximal
    2.18 +element in $S$.  In our application, $S$ is a set of sets ordered by
    2.19 +set inclusion. Since the union of a chain of sets is an upper bound
    2.20 +for all elements of the chain, the conditions of Zorn's lemma can be
    2.21 +modified: if $S$ is non-empty, it suffices to show that for every
    2.22 +non-empty chain $c$ in $S$ the union of $c$ also lies in $S$. *};
    2.23  
    2.24  theorem Zorn's_Lemma: 
    2.25 -  "a:S ==> (!!c. c: chain S ==> EX x. x:c ==> Union c : S) 
    2.26 +  "(!!c. c: chain S ==> EX x. x:c ==> Union c : S) ==> a:S
    2.27    ==>  EX y: S. ALL z: S. y <= z --> y = z";
    2.28  proof (rule Zorn_Lemma2);
    2.29 -  txt_raw{* \footnote{See
    2.30 +  txt_raw {* \footnote{See
    2.31    \url{http://isabelle.in.tum.de/library/HOL/HOL-Real/Zorn.html}}*};
    2.32 +  assume r: "!!c. c: chain S ==> EX x. x:c ==> Union c : S";
    2.33    assume aS: "a:S";
    2.34 -  assume r: "!!c. c: chain S ==> EX x. x:c ==> Union c : S";
    2.35    show "ALL c:chain S. EX y:S. ALL z:c. z <= y";
    2.36    proof;
    2.37      fix c; assume "c:chain S";