*** empty log message ***
authornipkow
Sat, 06 Jan 2001 12:39:05 +0100
changeset 10801c00ac928fc6f
parent 10800 2d4c058749a7
child 10802 7fa042e28c43
*** empty log message ***
doc-src/TutorialI/CTL/CTL.thy
doc-src/TutorialI/CTL/PDL.thy
doc-src/TutorialI/CTL/document/CTL.tex
doc-src/TutorialI/CTL/document/PDL.tex
doc-src/TutorialI/appendix.tex
     1.1 --- a/doc-src/TutorialI/CTL/CTL.thy	Sat Jan 06 11:27:09 2001 +0100
     1.2 +++ b/doc-src/TutorialI/CTL/CTL.thy	Sat Jan 06 12:39:05 2001 +0100
     1.3 @@ -39,7 +39,7 @@
     1.4  "s \<Turnstile> Neg f   = (~(s \<Turnstile> f))"
     1.5  "s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
     1.6  "s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
     1.7 -"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)"
     1.8 +"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)"
     1.9  (*>*)
    1.10  "s \<Turnstile> AF f    = (\<forall>p \<in> Paths s. \<exists>i. p i \<Turnstile> f)";
    1.11  
    1.12 @@ -62,7 +62,7 @@
    1.13  "mc(Neg f)   = -mc f"
    1.14  "mc(And f g) = mc f \<inter> mc g"
    1.15  "mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
    1.16 -"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ``` T)"(*>*)
    1.17 +"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M\<inverse> ``` T)"(*>*)
    1.18  "mc(AF f)    = lfp(af(mc f))";
    1.19  
    1.20  text{*\noindent
    1.21 @@ -75,12 +75,12 @@
    1.22  apply blast;
    1.23  done
    1.24  (*<*)
    1.25 -lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ``` T)";
    1.26 +lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> ``` T)";
    1.27  apply(rule monoI);
    1.28  by(blast);
    1.29  
    1.30  lemma EF_lemma:
    1.31 -  "lfp(\<lambda>T. A \<union> M^-1 ``` T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}";
    1.32 +  "lfp(\<lambda>T. A \<union> M\<inverse> ``` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}";
    1.33  apply(rule equalityI);
    1.34   apply(rule subsetI);
    1.35   apply(simp);
    1.36 @@ -366,7 +366,7 @@
    1.37  Note that @{term EU} is not definable in terms of the other operators!
    1.38  
    1.39  Model checking @{term EU} is again a least fixed point construction:
    1.40 -@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M^-1 ``` T))"}
    1.41 +@{text[display]"mc(EU f g) = lfp(\<lambda>T. mc g \<union> mc f \<inter> (M\<inverse> ``` T))"}
    1.42  
    1.43  \begin{exercise}
    1.44  Extend the datatype of formulae by the above until operator
    1.45 @@ -382,7 +382,7 @@
    1.46  (*<*)
    1.47  constdefs
    1.48   eufix :: "state set \<Rightarrow> state set \<Rightarrow> state set \<Rightarrow> state set"
    1.49 -"eufix A B T \<equiv> B \<union> A \<inter> (M^-1 ``` T)"
    1.50 +"eufix A B T \<equiv> B \<union> A \<inter> (M\<inverse> ``` T)"
    1.51  
    1.52  lemma "lfp(eufix A B) \<subseteq> eusem A B"
    1.53  apply(rule lfp_lowerbound)
     2.1 --- a/doc-src/TutorialI/CTL/PDL.thy	Sat Jan 06 11:27:09 2001 +0100
     2.2 +++ b/doc-src/TutorialI/CTL/PDL.thy	Sat Jan 06 12:39:05 2001 +0100
     2.3 @@ -38,13 +38,13 @@
     2.4  "s \<Turnstile> Neg f   = (\<not>(s \<Turnstile> f))"
     2.5  "s \<Turnstile> And f g = (s \<Turnstile> f \<and> s \<Turnstile> g)"
     2.6  "s \<Turnstile> AX f    = (\<forall>t. (s,t) \<in> M \<longrightarrow> t \<Turnstile> f)"
     2.7 -"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M^* \<and> t \<Turnstile> f)";
     2.8 +"s \<Turnstile> EF f    = (\<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<Turnstile> f)";
     2.9  
    2.10  text{*\noindent
    2.11  The first three equations should be self-explanatory. The temporal formula
    2.12  @{term"AX f"} means that @{term f} is true in all next states whereas
    2.13  @{term"EF f"} means that there exists some future state in which @{term f} is
    2.14 -true. The future is expressed via @{text"^*"}, the transitive reflexive
    2.15 +true. The future is expressed via @{text"\<^sup>*"}, the transitive reflexive
    2.16  closure. Because of reflexivity, the future includes the present.
    2.17  
    2.18  Now we come to the model checker itself. It maps a formula into the set of
    2.19 @@ -58,14 +58,14 @@
    2.20  "mc(Neg f)   = -mc f"
    2.21  "mc(And f g) = mc f \<inter> mc g"
    2.22  "mc(AX f)    = {s. \<forall>t. (s,t) \<in> M  \<longrightarrow> t \<in> mc f}"
    2.23 -"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M^-1 ``` T)"
    2.24 +"mc(EF f)    = lfp(\<lambda>T. mc f \<union> M\<inverse> ``` T)"
    2.25  
    2.26  text{*\noindent
    2.27  Only the equation for @{term EF} deserves some comments. Remember that the
    2.28 -postfix @{text"^-1"} and the infix @{text"```"} are predefined and denote the
    2.29 +postfix @{text"\<inverse>"} and the infix @{text"```"} are predefined and denote the
    2.30  converse of a relation and the application of a relation to a set. Thus
    2.31 -@{term "M^-1 ``` T"} is the set of all predecessors of @{term T} and the least
    2.32 -fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M^-1 ``` T"} is the least set
    2.33 +@{term "M\<inverse> ``` T"} is the set of all predecessors of @{term T} and the least
    2.34 +fixed point (@{term lfp}) of @{term"\<lambda>T. mc f \<union> M\<inverse> ``` T"} is the least set
    2.35  @{term T} containing @{term"mc f"} and all predecessors of @{term T}. If you
    2.36  find it hard to see that @{term"mc(EF f)"} contains exactly those states from
    2.37  which there is a path to a state where @{term f} is true, do not worry---that
    2.38 @@ -74,7 +74,7 @@
    2.39  First we prove monotonicity of the function inside @{term lfp}
    2.40  *}
    2.41  
    2.42 -lemma mono_ef: "mono(\<lambda>T. A \<union> M^-1 ``` T)"
    2.43 +lemma mono_ef: "mono(\<lambda>T. A \<union> M\<inverse> ``` T)"
    2.44  apply(rule monoI)
    2.45  apply blast
    2.46  done
    2.47 @@ -87,7 +87,7 @@
    2.48  *}
    2.49  
    2.50  lemma EF_lemma:
    2.51 -  "lfp(\<lambda>T. A \<union> M^-1 ``` T) = {s. \<exists>t. (s,t) \<in> M^* \<and> t \<in> A}"
    2.52 +  "lfp(\<lambda>T. A \<union> M\<inverse> ``` T) = {s. \<exists>t. (s,t) \<in> M\<^sup>* \<and> t \<in> A}"
    2.53  
    2.54  txt{*\noindent
    2.55  The equality is proved in the canonical fashion by proving that each set
    2.56 @@ -112,11 +112,11 @@
    2.57  Having disposed of the monotonicity subgoal,
    2.58  simplification leaves us with the following main goal
    2.59  \begin{isabelle}
    2.60 -\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ A\ {\isasymor}\isanewline
    2.61 -\ \ \ \ \ \ \ \ \ s\ {\isasymin}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ {\isacharparenleft}lfp\ {\isacharparenleft}{\dots}{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
    2.62 -\ \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
    2.63 +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
    2.64 +\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
    2.65 +\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
    2.66  \end{isabelle}
    2.67 -which is proved by @{text blast} with the help of transitivity of @{text"^*"}:
    2.68 +which is proved by @{text blast} with the help of transitivity of @{text"\<^sup>*"}:
    2.69  *}
    2.70  
    2.71   apply(blast intro: rtrancl_trans);
    2.72 @@ -132,13 +132,13 @@
    2.73  txt{*\noindent
    2.74  After simplification and clarification we are left with
    2.75  @{subgoals[display,indent=0,goals_limit=1]}
    2.76 -This goal is proved by induction on @{term"(s,t)\<in>M^*"}. But since the model
    2.77 +This goal is proved by induction on @{term"(s,t)\<in>M\<^sup>*"}. But since the model
    2.78  checker works backwards (from @{term t} to @{term s}), we cannot use the
    2.79  induction theorem @{thm[source]rtrancl_induct} because it works in the
    2.80  forward direction. Fortunately the converse induction theorem
    2.81  @{thm[source]converse_rtrancl_induct} already exists:
    2.82  @{thm[display,margin=60]converse_rtrancl_induct[no_vars]}
    2.83 -It says that if @{prop"(a,b):r^*"} and we know @{prop"P b"} then we can infer
    2.84 +It says that if @{prop"(a,b):r\<^sup>*"} and we know @{prop"P b"} then we can infer
    2.85  @{prop"P a"} provided each step backwards from a predecessor @{term z} of
    2.86  @{term b} preserves @{term P}.
    2.87  *}
     3.1 --- a/doc-src/TutorialI/CTL/document/CTL.tex	Sat Jan 06 11:27:09 2001 +0100
     3.2 +++ b/doc-src/TutorialI/CTL/document/CTL.tex	Sat Jan 06 12:39:05 2001 +0100
     3.3 @@ -300,7 +300,7 @@
     3.4  
     3.5  Model checking \isa{EU} is again a least fixed point construction:
     3.6  \begin{isabelle}%
     3.7 -\ \ \ \ \ mc{\isacharparenleft}EU\ f\ g{\isacharparenright}\ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ g\ {\isasymunion}\ mc\ f\ {\isasyminter}\ {\isacharparenleft}M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}%
     3.8 +\ \ \ \ \ mc{\isacharparenleft}EU\ f\ g{\isacharparenright}\ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ g\ {\isasymunion}\ mc\ f\ {\isasyminter}\ {\isacharparenleft}M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isacharparenright}%
     3.9  \end{isabelle}
    3.10  
    3.11  \begin{exercise}
     4.1 --- a/doc-src/TutorialI/CTL/document/PDL.tex	Sat Jan 06 11:27:09 2001 +0100
     4.2 +++ b/doc-src/TutorialI/CTL/document/PDL.tex	Sat Jan 06 12:39:05 2001 +0100
     4.3 @@ -39,13 +39,13 @@
     4.4  {\isachardoublequote}s\ {\isasymTurnstile}\ Neg\ f\ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymnot}{\isacharparenleft}s\ {\isasymTurnstile}\ f{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
     4.5  {\isachardoublequote}s\ {\isasymTurnstile}\ And\ f\ g\ {\isacharequal}\ {\isacharparenleft}s\ {\isasymTurnstile}\ f\ {\isasymand}\ s\ {\isasymTurnstile}\ g{\isacharparenright}{\isachardoublequote}\isanewline
     4.6  {\isachardoublequote}s\ {\isasymTurnstile}\ AX\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ {\isasymlongrightarrow}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}\isanewline
     4.7 -{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
     4.8 +{\isachardoublequote}s\ {\isasymTurnstile}\ EF\ f\ \ \ \ {\isacharequal}\ {\isacharparenleft}{\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymTurnstile}\ f{\isacharparenright}{\isachardoublequote}%
     4.9  \begin{isamarkuptext}%
    4.10  \noindent
    4.11  The first three equations should be self-explanatory. The temporal formula
    4.12  \isa{AX\ f} means that \isa{f} is true in all next states whereas
    4.13  \isa{EF\ f} means that there exists some future state in which \isa{f} is
    4.14 -true. The future is expressed via \isa{{\isacharcircum}{\isacharasterisk}}, the transitive reflexive
    4.15 +true. The future is expressed via \isa{\isactrlsup {\isacharasterisk}}, the transitive reflexive
    4.16  closure. Because of reflexivity, the future includes the present.
    4.17  
    4.18  Now we come to the model checker itself. It maps a formula into the set of
    4.19 @@ -58,11 +58,11 @@
    4.20  {\isachardoublequote}mc{\isacharparenleft}Neg\ f{\isacharparenright}\ \ \ {\isacharequal}\ {\isacharminus}mc\ f{\isachardoublequote}\isanewline
    4.21  {\isachardoublequote}mc{\isacharparenleft}And\ f\ g{\isacharparenright}\ {\isacharequal}\ mc\ f\ {\isasyminter}\ mc\ g{\isachardoublequote}\isanewline
    4.22  {\isachardoublequote}mc{\isacharparenleft}AX\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymforall}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\ \ {\isasymlongrightarrow}\ t\ {\isasymin}\ mc\ f{\isacharbraceright}{\isachardoublequote}\isanewline
    4.23 -{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}%
    4.24 +{\isachardoublequote}mc{\isacharparenleft}EF\ f{\isacharparenright}\ \ \ \ {\isacharequal}\ lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}%
    4.25  \begin{isamarkuptext}%
    4.26  \noindent
    4.27  Only the equation for \isa{EF} deserves some comments. Remember that the
    4.28 -postfix \isa{{\isacharcircum}{\isacharminus}{\isadigit{1}}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
    4.29 +postfix \isa{{\isasyminverse}} and the infix \isa{{\isacharbackquote}{\isacharbackquote}{\isacharbackquote}} are predefined and denote the
    4.30  converse of a relation and the application of a relation to a set. Thus
    4.31  \isa{M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T} is the set of all predecessors of \isa{T} and the least
    4.32  fixed point (\isa{lfp}) of \isa{{\isasymlambda}T{\isachardot}\ mc\ f\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T} is the least set
    4.33 @@ -73,7 +73,7 @@
    4.34  
    4.35  First we prove monotonicity of the function inside \isa{lfp}%
    4.36  \end{isamarkuptext}%
    4.37 -\isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}\isanewline
    4.38 +\isacommand{lemma}\ mono{\isacharunderscore}ef{\isacharcolon}\ {\isachardoublequote}mono{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}{\isachardoublequote}\isanewline
    4.39  \isacommand{apply}{\isacharparenleft}rule\ monoI{\isacharparenright}\isanewline
    4.40  \isacommand{apply}\ blast\isanewline
    4.41  \isacommand{done}%
    4.42 @@ -85,7 +85,7 @@
    4.43  a separate lemma:%
    4.44  \end{isamarkuptext}%
    4.45  \isacommand{lemma}\ EF{\isacharunderscore}lemma{\isacharcolon}\isanewline
    4.46 -\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isacharcircum}{\isacharminus}{\isadigit{1}}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
    4.47 +\ \ {\isachardoublequote}lfp{\isacharparenleft}{\isasymlambda}T{\isachardot}\ A\ {\isasymunion}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ T{\isacharparenright}\ {\isacharequal}\ {\isacharbraceleft}s{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isachardoublequote}%
    4.48  \begin{isamarkuptxt}%
    4.49  \noindent
    4.50  The equality is proved in the canonical fashion by proving that each set
    4.51 @@ -110,11 +110,11 @@
    4.52  Having disposed of the monotonicity subgoal,
    4.53  simplification leaves us with the following main goal
    4.54  \begin{isabelle}
    4.55 -\ \isadigit{1}{\isachardot}\ {\isasymAnd}s{\isachardot}\ s\ {\isasymin}\ A\ {\isasymor}\isanewline
    4.56 -\ \ \ \ \ \ \ \ \ s\ {\isasymin}\ M{\isacharcircum}{\isacharminus}\isadigit{1}\ {\isacharcircum}{\isacharcircum}\ {\isacharparenleft}lfp\ {\isacharparenleft}{\dots}{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
    4.57 -\ \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}s{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M{\isacharcircum}{\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
    4.58 +\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}x{\isachardot}\ x\ {\isasymin}\ A\ {\isasymor}\isanewline
    4.59 +\ \ \ \ \ \ \ \ \ x\ {\isasymin}\ M{\isasyminverse}\ {\isacharbackquote}{\isacharbackquote}{\isacharbackquote}\ {\isacharparenleft}lfp\ {\isacharparenleft}\dots{\isacharparenright}\ {\isasyminter}\ {\isacharbraceleft}x{\isachardot}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A{\isacharbraceright}{\isacharparenright}\isanewline
    4.60 +\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ {\isasymexists}t{\isachardot}\ {\isacharparenleft}x{\isacharcomma}\ t{\isacharparenright}\ {\isasymin}\ M\isactrlsup {\isacharasterisk}\ {\isasymand}\ t\ {\isasymin}\ A
    4.61  \end{isabelle}
    4.62 -which is proved by \isa{blast} with the help of transitivity of \isa{{\isacharcircum}{\isacharasterisk}}:%
    4.63 +which is proved by \isa{blast} with the help of transitivity of \isa{\isactrlsup {\isacharasterisk}}:%
    4.64  \end{isamarkuptxt}%
    4.65  \ \isacommand{apply}{\isacharparenleft}blast\ intro{\isacharcolon}\ rtrancl{\isacharunderscore}trans{\isacharparenright}%
    4.66  \begin{isamarkuptxt}%
     5.1 --- a/doc-src/TutorialI/appendix.tex	Sat Jan 06 11:27:09 2001 +0100
     5.2 +++ b/doc-src/TutorialI/appendix.tex	Sat Jan 06 12:39:05 2001 +0100
     5.3 @@ -89,6 +89,12 @@
     5.4  \isasymInter\index{$HOL3Set2@\isasymInter|bold}&
     5.5  \ttindexbold{INT}, \ttindexbold{Inter} &
     5.6  \verb$\<Inter>$\\
     5.7 +\isactrlsup{\isacharasterisk}\index{$HOL4star@\isactrlsup{\isacharasterisk}|bold}&
     5.8 +\verb$^*$\index{$HOL4star@\verb$^$\texttt{*}|bold} &
     5.9 +\verb$\<^sup>*$\\
    5.10 +\isasyminverse\index{$HOL4inv@\isasyminverse|bold}&
    5.11 +\verb$^-1$\index{$HOL4inv@\verb$^-1$|bold} &
    5.12 +\verb$\<inverse>$\\
    5.13  \hline
    5.14  \end{tabular}
    5.15  \end{center}