split relevance filter code into three files
authorblanchet
Wed, 11 Jul 2012 21:43:19 +0200
changeset 49263b6eb45a52c28
parent 49262 8f37d2ddabc8
child 49264 2bd242c56c90
split relevance filter code into three files
src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML
src/HOL/Tools/Sledgehammer/sledgehammer_filter_iter.ML
src/HOL/Tools/Sledgehammer/sledgehammer_filter_mash.ML
     1.1 --- a/src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML	Wed Jul 11 21:43:19 2012 +0200
     1.2 +++ b/src/HOL/Tools/Sledgehammer/sledgehammer_filter.ML	Wed Jul 11 21:43:19 2012 +0200
     1.3 @@ -2,50 +2,17 @@
     1.4      Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
     1.5      Author:     Jasmin Blanchette, TU Muenchen
     1.6  
     1.7 -Sledgehammer's relevance filter.
     1.8 +Sledgehammer's hybrid relevance filter.
     1.9  *)
    1.10  
    1.11  signature SLEDGEHAMMER_FILTER =
    1.12  sig
    1.13    type status = ATP_Problem_Generate.status
    1.14    type stature = ATP_Problem_Generate.stature
    1.15 +  type relevance_fudge = Sledgehammer_Filter_Iter.relevance_fudge
    1.16 +  type relevance_override = Sledgehammer_Filter_Iter.relevance_override
    1.17  
    1.18 -  type relevance_fudge =
    1.19 -    {local_const_multiplier : real,
    1.20 -     worse_irrel_freq : real,
    1.21 -     higher_order_irrel_weight : real,
    1.22 -     abs_rel_weight : real,
    1.23 -     abs_irrel_weight : real,
    1.24 -     skolem_irrel_weight : real,
    1.25 -     theory_const_rel_weight : real,
    1.26 -     theory_const_irrel_weight : real,
    1.27 -     chained_const_irrel_weight : real,
    1.28 -     intro_bonus : real,
    1.29 -     elim_bonus : real,
    1.30 -     simp_bonus : real,
    1.31 -     local_bonus : real,
    1.32 -     assum_bonus : real,
    1.33 -     chained_bonus : real,
    1.34 -     max_imperfect : real,
    1.35 -     max_imperfect_exp : real,
    1.36 -     threshold_divisor : real,
    1.37 -     ridiculous_threshold : real}
    1.38 -
    1.39 -  type relevance_override =
    1.40 -    {add : (Facts.ref * Attrib.src list) list,
    1.41 -     del : (Facts.ref * Attrib.src list) list,
    1.42 -     only : bool}
    1.43 -
    1.44 -  val trace : bool Config.T
    1.45 -  val ignore_no_atp : bool Config.T
    1.46 -  val instantiate_inducts : bool Config.T
    1.47 -  val pseudo_abs_name : string
    1.48 -  val pseudo_skolem_prefix : string
    1.49    val no_relevance_override : relevance_override
    1.50 -  val const_names_in_fact :
    1.51 -    theory -> (string * typ -> term list -> bool * term list) -> term
    1.52 -    -> string list
    1.53 -  val clasimpset_rule_table_of : Proof.context -> status Termtab.table
    1.54    val fact_from_ref :
    1.55      Proof.context -> unit Symtab.table -> thm list -> status Termtab.table
    1.56      -> Facts.ref * Attrib.src list -> ((string * stature) * thm) list
    1.57 @@ -53,6 +20,7 @@
    1.58      Proof.context -> bool -> 'a Symtab.table -> bool -> thm list
    1.59      -> thm list -> status Termtab.table
    1.60      -> (((unit -> string) * stature) * thm) list
    1.61 +  val clasimpset_rule_table_of : Proof.context -> status Termtab.table
    1.62    val maybe_instantiate_inducts :
    1.63      Proof.context -> term list -> term -> (((unit -> string) * 'a) * thm) list
    1.64      -> (((unit -> string) * 'a) * thm) list
    1.65 @@ -74,104 +42,12 @@
    1.66  open ATP_Problem_Generate
    1.67  open Metis_Tactic
    1.68  open Sledgehammer_Util
    1.69 +open Sledgehammer_Filter_Iter
    1.70  
    1.71 -val trace =
    1.72 -  Attrib.setup_config_bool @{binding sledgehammer_filter_trace} (K false)
    1.73 -fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
    1.74 -
    1.75 -(* experimental features *)
    1.76 -val ignore_no_atp =
    1.77 -  Attrib.setup_config_bool @{binding sledgehammer_ignore_no_atp} (K false)
    1.78 -val instantiate_inducts =
    1.79 -  Attrib.setup_config_bool @{binding sledgehammer_instantiate_inducts} (K false)
    1.80 -
    1.81 -type relevance_fudge =
    1.82 -  {local_const_multiplier : real,
    1.83 -   worse_irrel_freq : real,
    1.84 -   higher_order_irrel_weight : real,
    1.85 -   abs_rel_weight : real,
    1.86 -   abs_irrel_weight : real,
    1.87 -   skolem_irrel_weight : real,
    1.88 -   theory_const_rel_weight : real,
    1.89 -   theory_const_irrel_weight : real,
    1.90 -   chained_const_irrel_weight : real,
    1.91 -   intro_bonus : real,
    1.92 -   elim_bonus : real,
    1.93 -   simp_bonus : real,
    1.94 -   local_bonus : real,
    1.95 -   assum_bonus : real,
    1.96 -   chained_bonus : real,
    1.97 -   max_imperfect : real,
    1.98 -   max_imperfect_exp : real,
    1.99 -   threshold_divisor : real,
   1.100 -   ridiculous_threshold : real}
   1.101 -
   1.102 -type relevance_override =
   1.103 -  {add : (Facts.ref * Attrib.src list) list,
   1.104 -   del : (Facts.ref * Attrib.src list) list,
   1.105 -   only : bool}
   1.106 +val sledgehammer_prefix = "Sledgehammer" ^ Long_Name.separator
   1.107  
   1.108  val no_relevance_override = {add = [], del = [], only = false}
   1.109  
   1.110 -val sledgehammer_prefix = "Sledgehammer" ^ Long_Name.separator
   1.111 -val pseudo_abs_name = sledgehammer_prefix ^ "abs"
   1.112 -val pseudo_skolem_prefix = sledgehammer_prefix ^ "sko"
   1.113 -val theory_const_suffix = Long_Name.separator ^ " 1"
   1.114 -
   1.115 -(* unfolding these can yield really huge terms *)
   1.116 -val risky_defs = @{thms Bit0_def Bit1_def}
   1.117 -
   1.118 -fun is_rec_eq lhs = Term.exists_subterm (curry (op =) (head_of lhs))
   1.119 -fun is_rec_def (@{const Trueprop} $ t) = is_rec_def t
   1.120 -  | is_rec_def (@{const ==>} $ _ $ t2) = is_rec_def t2
   1.121 -  | is_rec_def (Const (@{const_name "=="}, _) $ t1 $ t2) = is_rec_eq t1 t2
   1.122 -  | is_rec_def (Const (@{const_name HOL.eq}, _) $ t1 $ t2) = is_rec_eq t1 t2
   1.123 -  | is_rec_def _ = false
   1.124 -
   1.125 -fun clasimpset_rule_table_of ctxt =
   1.126 -  let
   1.127 -    val thy = Proof_Context.theory_of ctxt
   1.128 -    val atomize = HOLogic.mk_Trueprop o Object_Logic.atomize_term thy
   1.129 -    fun add stature normalizers get_th =
   1.130 -      fold (fn rule =>
   1.131 -               let
   1.132 -                 val th = rule |> get_th
   1.133 -                 val t =
   1.134 -                   th |> Thm.maxidx_of th > 0 ? zero_var_indexes |> prop_of
   1.135 -               in
   1.136 -                 fold (fn normalize => Termtab.update (normalize t, stature))
   1.137 -                      (I :: normalizers)
   1.138 -               end)
   1.139 -    val {safeIs, (* safeEs, *) hazIs, (* hazEs, *) ...} =
   1.140 -      ctxt |> claset_of |> Classical.rep_cs
   1.141 -    val intros = Item_Net.content safeIs @ Item_Net.content hazIs
   1.142 -(* Add once it is used:
   1.143 -    val elims =
   1.144 -      Item_Net.content safeEs @ Item_Net.content hazEs
   1.145 -      |> map Classical.classical_rule
   1.146 -*)
   1.147 -    val simps = ctxt |> simpset_of |> dest_ss |> #simps
   1.148 -    val specs = ctxt |> Spec_Rules.get
   1.149 -    val (rec_defs, nonrec_defs) =
   1.150 -      specs |> filter (curry (op =) Spec_Rules.Equational o fst)
   1.151 -            |> maps (snd o snd)
   1.152 -            |> filter_out (member Thm.eq_thm_prop risky_defs)
   1.153 -            |> List.partition (is_rec_def o prop_of)
   1.154 -    val spec_intros =
   1.155 -      specs |> filter (member (op =) [Spec_Rules.Inductive,
   1.156 -                                      Spec_Rules.Co_Inductive] o fst)
   1.157 -            |> maps (snd o snd)
   1.158 -  in
   1.159 -    Termtab.empty |> add Simp [atomize] snd simps
   1.160 -                  |> add Simp [] I rec_defs
   1.161 -                  |> add Def [] I nonrec_defs
   1.162 -(* Add once it is used:
   1.163 -                  |> add Elim [] I elims
   1.164 -*)
   1.165 -                  |> add Intro [] I intros
   1.166 -                  |> add Inductive [] I spec_intros
   1.167 -  end
   1.168 -
   1.169  fun needs_quoting reserved s =
   1.170    Symtab.defined reserved s orelse
   1.171    exists (not o Lexicon.is_identifier) (Long_Name.explode s)
   1.172 @@ -187,6 +63,16 @@
   1.173  val backquote =
   1.174    raw_explode #> map (fn "`" => "\\`" | s => s) #> implode #> enclose "`" "`"
   1.175  
   1.176 +(* unfolding these can yield really huge terms *)
   1.177 +val risky_defs = @{thms Bit0_def Bit1_def}
   1.178 +
   1.179 +fun is_rec_eq lhs = Term.exists_subterm (curry (op =) (head_of lhs))
   1.180 +fun is_rec_def (@{const Trueprop} $ t) = is_rec_def t
   1.181 +  | is_rec_def (@{const ==>} $ _ $ t2) = is_rec_def t2
   1.182 +  | is_rec_def (Const (@{const_name "=="}, _) $ t1 $ t2) = is_rec_eq t1 t2
   1.183 +  | is_rec_def (Const (@{const_name HOL.eq}, _) $ t1 $ t2) = is_rec_eq t1 t2
   1.184 +  | is_rec_def _ = false
   1.185 +
   1.186  fun is_assum assms th = exists (fn ct => prop_of th aconv term_of ct) assms
   1.187  fun is_chained chained_ths = member Thm.eq_thm_prop chained_ths
   1.188  
   1.189 @@ -240,571 +126,6 @@
   1.190      |> snd
   1.191    end
   1.192  
   1.193 -(* This is a terrible hack. Free variables are sometimes coded as "M__" when
   1.194 -   they are displayed as "M" and we want to avoid clashes with these. But
   1.195 -   sometimes it's even worse: "Ma__" encodes "M". So we simply reserve all
   1.196 -   prefixes of all free variables. In the worse case scenario, where the fact
   1.197 -   won't be resolved correctly, the user can fix it manually, e.g., by naming
   1.198 -   the fact in question. Ideally we would need nothing of it, but backticks
   1.199 -   simply don't work with schematic variables. *)
   1.200 -fun all_prefixes_of s =
   1.201 -  map (fn i => String.extract (s, 0, SOME i)) (1 upto size s - 1)
   1.202 -fun close_form t =
   1.203 -  (t, [] |> Term.add_free_names t |> maps all_prefixes_of)
   1.204 -  |> fold (fn ((s, i), T) => fn (t', taken) =>
   1.205 -              let val s' = singleton (Name.variant_list taken) s in
   1.206 -                ((if fastype_of t' = HOLogic.boolT then HOLogic.all_const
   1.207 -                  else Logic.all_const) T
   1.208 -                 $ Abs (s', T, abstract_over (Var ((s, i), T), t')),
   1.209 -                 s' :: taken)
   1.210 -              end)
   1.211 -          (Term.add_vars t [] |> sort_wrt (fst o fst))
   1.212 -  |> fst
   1.213 -
   1.214 -fun string_for_term ctxt t =
   1.215 -  Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
   1.216 -                   (print_mode_value ())) (Syntax.string_of_term ctxt) t
   1.217 -  |> String.translate (fn c => if Char.isPrint c then str c else "")
   1.218 -  |> simplify_spaces
   1.219 -
   1.220 -(** Structural induction rules **)
   1.221 -
   1.222 -fun struct_induct_rule_on th =
   1.223 -  case Logic.strip_horn (prop_of th) of
   1.224 -    (prems, @{const Trueprop}
   1.225 -            $ ((p as Var ((p_name, 0), _)) $ (a as Var (_, ind_T)))) =>
   1.226 -    if not (is_TVar ind_T) andalso length prems > 1 andalso
   1.227 -       exists (exists_subterm (curry (op aconv) p)) prems andalso
   1.228 -       not (exists (exists_subterm (curry (op aconv) a)) prems) then
   1.229 -      SOME (p_name, ind_T)
   1.230 -    else
   1.231 -      NONE
   1.232 -  | _ => NONE
   1.233 -
   1.234 -fun instantiate_induct_rule ctxt concl_prop p_name ((name, stature), th) ind_x =
   1.235 -  let
   1.236 -    fun varify_noninducts (t as Free (s, T)) =
   1.237 -        if (s, T) = ind_x orelse can dest_funT T then t else Var ((s, 0), T)
   1.238 -      | varify_noninducts t = t
   1.239 -    val p_inst =
   1.240 -      concl_prop |> map_aterms varify_noninducts |> close_form
   1.241 -                 |> lambda (Free ind_x)
   1.242 -                 |> string_for_term ctxt
   1.243 -  in
   1.244 -    ((fn () => name () ^ "[where " ^ p_name ^ " = " ^ quote p_inst ^ "]",
   1.245 -      stature), th |> read_instantiate ctxt [((p_name, 0), p_inst)])
   1.246 -  end
   1.247 -
   1.248 -fun type_match thy (T1, T2) =
   1.249 -  (Sign.typ_match thy (T2, T1) Vartab.empty; true)
   1.250 -  handle Type.TYPE_MATCH => false
   1.251 -
   1.252 -fun instantiate_if_induct_rule ctxt stmt stmt_xs (ax as (_, th)) =
   1.253 -  case struct_induct_rule_on th of
   1.254 -    SOME (p_name, ind_T) =>
   1.255 -    let val thy = Proof_Context.theory_of ctxt in
   1.256 -      stmt_xs |> filter (fn (_, T) => type_match thy (T, ind_T))
   1.257 -              |> map_filter (try (instantiate_induct_rule ctxt stmt p_name ax))
   1.258 -    end
   1.259 -  | NONE => [ax]
   1.260 -
   1.261 -(***************************************************************)
   1.262 -(* Relevance Filtering                                         *)
   1.263 -(***************************************************************)
   1.264 -
   1.265 -(*** constants with types ***)
   1.266 -
   1.267 -fun order_of_type (Type (@{type_name fun}, [T1, T2])) =
   1.268 -    Int.max (order_of_type T1 + 1, order_of_type T2)
   1.269 -  | order_of_type (Type (_, Ts)) = fold (Integer.max o order_of_type) Ts 0
   1.270 -  | order_of_type _ = 0
   1.271 -
   1.272 -(* An abstraction of Isabelle types and first-order terms *)
   1.273 -datatype pattern = PVar | PApp of string * pattern list
   1.274 -datatype ptype = PType of int * pattern list
   1.275 -
   1.276 -fun string_for_pattern PVar = "_"
   1.277 -  | string_for_pattern (PApp (s, ps)) =
   1.278 -    if null ps then s else s ^ string_for_patterns ps
   1.279 -and string_for_patterns ps = "(" ^ commas (map string_for_pattern ps) ^ ")"
   1.280 -fun string_for_ptype (PType (_, ps)) = string_for_patterns ps
   1.281 -
   1.282 -(*Is the second type an instance of the first one?*)
   1.283 -fun match_pattern (PVar, _) = true
   1.284 -  | match_pattern (PApp _, PVar) = false
   1.285 -  | match_pattern (PApp (s, ps), PApp (t, qs)) =
   1.286 -    s = t andalso match_patterns (ps, qs)
   1.287 -and match_patterns (_, []) = true
   1.288 -  | match_patterns ([], _) = false
   1.289 -  | match_patterns (p :: ps, q :: qs) =
   1.290 -    match_pattern (p, q) andalso match_patterns (ps, qs)
   1.291 -fun match_ptype (PType (_, ps), PType (_, qs)) = match_patterns (ps, qs)
   1.292 -
   1.293 -(* Is there a unifiable constant? *)
   1.294 -fun pconst_mem f consts (s, ps) =
   1.295 -  exists (curry (match_ptype o f) ps)
   1.296 -         (map snd (filter (curry (op =) s o fst) consts))
   1.297 -fun pconst_hyper_mem f const_tab (s, ps) =
   1.298 -  exists (curry (match_ptype o f) ps) (these (Symtab.lookup const_tab s))
   1.299 -
   1.300 -fun pattern_for_type (Type (s, Ts)) = PApp (s, map pattern_for_type Ts)
   1.301 -  | pattern_for_type (TFree (s, _)) = PApp (s, [])
   1.302 -  | pattern_for_type (TVar _) = PVar
   1.303 -
   1.304 -(* Pairs a constant with the list of its type instantiations. *)
   1.305 -fun ptype thy const x =
   1.306 -  (if const then map pattern_for_type (these (try (Sign.const_typargs thy) x))
   1.307 -   else [])
   1.308 -fun rich_ptype thy const (s, T) =
   1.309 -  PType (order_of_type T, ptype thy const (s, T))
   1.310 -fun rich_pconst thy const (s, T) = (s, rich_ptype thy const (s, T))
   1.311 -
   1.312 -fun string_for_hyper_pconst (s, ps) =
   1.313 -  s ^ "{" ^ commas (map string_for_ptype ps) ^ "}"
   1.314 -
   1.315 -(* Add a pconstant to the table, but a [] entry means a standard
   1.316 -   connective, which we ignore.*)
   1.317 -fun add_pconst_to_table also_skolem (s, p) =
   1.318 -  if (not also_skolem andalso String.isPrefix pseudo_skolem_prefix s) then I
   1.319 -  else Symtab.map_default (s, [p]) (insert (op =) p)
   1.320 -
   1.321 -(* Set constants tend to pull in too many irrelevant facts. We limit the damage
   1.322 -   by treating them more or less as if they were built-in but add their
   1.323 -   axiomatization at the end. *)
   1.324 -val set_consts = [@{const_name Collect}, @{const_name Set.member}]
   1.325 -val set_thms = @{thms Collect_mem_eq mem_Collect_eq Collect_cong}
   1.326 -
   1.327 -fun add_pconsts_in_term thy is_built_in_const also_skolems pos =
   1.328 -  let
   1.329 -    val flip = Option.map not
   1.330 -    (* We include free variables, as well as constants, to handle locales. For
   1.331 -       each quantifiers that must necessarily be skolemized by the automatic
   1.332 -       prover, we introduce a fresh constant to simulate the effect of
   1.333 -       Skolemization. *)
   1.334 -    fun do_const const ext_arg (x as (s, _)) ts =
   1.335 -      let val (built_in, ts) = is_built_in_const x ts in
   1.336 -        if member (op =) set_consts s then
   1.337 -          fold (do_term ext_arg) ts
   1.338 -        else
   1.339 -          (not built_in
   1.340 -           ? add_pconst_to_table also_skolems (rich_pconst thy const x))
   1.341 -          #> fold (do_term false) ts
   1.342 -      end
   1.343 -    and do_term ext_arg t =
   1.344 -      case strip_comb t of
   1.345 -        (Const x, ts) => do_const true ext_arg x ts
   1.346 -      | (Free x, ts) => do_const false ext_arg x ts
   1.347 -      | (Abs (_, T, t'), ts) =>
   1.348 -        ((null ts andalso not ext_arg)
   1.349 -         (* Since lambdas on the right-hand side of equalities are usually
   1.350 -            extensionalized later by "abs_extensionalize_term", we don't
   1.351 -            penalize them here. *)
   1.352 -         ? add_pconst_to_table true (pseudo_abs_name,
   1.353 -                                     PType (order_of_type T + 1, [])))
   1.354 -        #> fold (do_term false) (t' :: ts)
   1.355 -      | (_, ts) => fold (do_term false) ts
   1.356 -    fun do_quantifier will_surely_be_skolemized abs_T body_t =
   1.357 -      do_formula pos body_t
   1.358 -      #> (if also_skolems andalso will_surely_be_skolemized then
   1.359 -            add_pconst_to_table true (pseudo_skolem_prefix ^ serial_string (),
   1.360 -                                      PType (order_of_type abs_T, []))
   1.361 -          else
   1.362 -            I)
   1.363 -    and do_term_or_formula ext_arg T =
   1.364 -      if T = HOLogic.boolT then do_formula NONE else do_term ext_arg
   1.365 -    and do_formula pos t =
   1.366 -      case t of
   1.367 -        Const (@{const_name all}, _) $ Abs (_, T, t') =>
   1.368 -        do_quantifier (pos = SOME false) T t'
   1.369 -      | @{const "==>"} $ t1 $ t2 =>
   1.370 -        do_formula (flip pos) t1 #> do_formula pos t2
   1.371 -      | Const (@{const_name "=="}, Type (_, [T, _])) $ t1 $ t2 =>
   1.372 -        do_term_or_formula false T t1 #> do_term_or_formula true T t2
   1.373 -      | @{const Trueprop} $ t1 => do_formula pos t1
   1.374 -      | @{const False} => I
   1.375 -      | @{const True} => I
   1.376 -      | @{const Not} $ t1 => do_formula (flip pos) t1
   1.377 -      | Const (@{const_name All}, _) $ Abs (_, T, t') =>
   1.378 -        do_quantifier (pos = SOME false) T t'
   1.379 -      | Const (@{const_name Ex}, _) $ Abs (_, T, t') =>
   1.380 -        do_quantifier (pos = SOME true) T t'
   1.381 -      | @{const HOL.conj} $ t1 $ t2 => fold (do_formula pos) [t1, t2]
   1.382 -      | @{const HOL.disj} $ t1 $ t2 => fold (do_formula pos) [t1, t2]
   1.383 -      | @{const HOL.implies} $ t1 $ t2 =>
   1.384 -        do_formula (flip pos) t1 #> do_formula pos t2
   1.385 -      | Const (@{const_name HOL.eq}, Type (_, [T, _])) $ t1 $ t2 =>
   1.386 -        do_term_or_formula false T t1 #> do_term_or_formula true T t2
   1.387 -      | Const (@{const_name If}, Type (_, [_, Type (_, [T, _])]))
   1.388 -        $ t1 $ t2 $ t3 =>
   1.389 -        do_formula NONE t1 #> fold (do_term_or_formula false T) [t2, t3]
   1.390 -      | Const (@{const_name Ex1}, _) $ Abs (_, T, t') =>
   1.391 -        do_quantifier (is_some pos) T t'
   1.392 -      | Const (@{const_name Ball}, _) $ t1 $ Abs (_, T, t') =>
   1.393 -        do_quantifier (pos = SOME false) T
   1.394 -                      (HOLogic.mk_imp (incr_boundvars 1 t1 $ Bound 0, t'))
   1.395 -      | Const (@{const_name Bex}, _) $ t1 $ Abs (_, T, t') =>
   1.396 -        do_quantifier (pos = SOME true) T
   1.397 -                      (HOLogic.mk_conj (incr_boundvars 1 t1 $ Bound 0, t'))
   1.398 -      | (t0 as Const (_, @{typ bool})) $ t1 =>
   1.399 -        do_term false t0 #> do_formula pos t1  (* theory constant *)
   1.400 -      | _ => do_term false t
   1.401 -  in do_formula pos end
   1.402 -
   1.403 -fun pconsts_in_fact thy is_built_in_const t =
   1.404 -  Symtab.fold (fn (s, pss) => fold (cons o pair s) pss)
   1.405 -              (Symtab.empty |> add_pconsts_in_term thy is_built_in_const true
   1.406 -                                                   (SOME true) t) []
   1.407 -
   1.408 -val const_names_in_fact = map fst ooo pconsts_in_fact
   1.409 -
   1.410 -(* Inserts a dummy "constant" referring to the theory name, so that relevance
   1.411 -   takes the given theory into account. *)
   1.412 -fun theory_constify ({theory_const_rel_weight, theory_const_irrel_weight, ...}
   1.413 -                     : relevance_fudge) thy_name t =
   1.414 -  if exists (curry (op <) 0.0) [theory_const_rel_weight,
   1.415 -                                theory_const_irrel_weight] then
   1.416 -    Const (thy_name ^ theory_const_suffix, @{typ bool}) $ t
   1.417 -  else
   1.418 -    t
   1.419 -
   1.420 -fun theory_const_prop_of fudge th =
   1.421 -  theory_constify fudge (Context.theory_name (theory_of_thm th)) (prop_of th)
   1.422 -
   1.423 -fun pair_consts_fact thy is_built_in_const fudge fact =
   1.424 -  case fact |> snd |> theory_const_prop_of fudge
   1.425 -            |> pconsts_in_fact thy is_built_in_const of
   1.426 -    [] => NONE
   1.427 -  | consts => SOME ((fact, consts), NONE)
   1.428 -
   1.429 -
   1.430 -(**** Constant / Type Frequencies ****)
   1.431 -
   1.432 -(* A two-dimensional symbol table counts frequencies of constants. It's keyed
   1.433 -   first by constant name and second by its list of type instantiations. For the
   1.434 -   latter, we need a linear ordering on "pattern list". *)
   1.435 -
   1.436 -fun pattern_ord p =
   1.437 -  case p of
   1.438 -    (PVar, PVar) => EQUAL
   1.439 -  | (PVar, PApp _) => LESS
   1.440 -  | (PApp _, PVar) => GREATER
   1.441 -  | (PApp q1, PApp q2) =>
   1.442 -    prod_ord fast_string_ord (dict_ord pattern_ord) (q1, q2)
   1.443 -fun ptype_ord (PType p, PType q) =
   1.444 -  prod_ord (dict_ord pattern_ord) int_ord (swap p, swap q)
   1.445 -
   1.446 -structure PType_Tab = Table(type key = ptype val ord = ptype_ord)
   1.447 -
   1.448 -fun count_fact_consts thy fudge =
   1.449 -  let
   1.450 -    fun do_const const (s, T) ts =
   1.451 -      (* Two-dimensional table update. Constant maps to types maps to count. *)
   1.452 -      PType_Tab.map_default (rich_ptype thy const (s, T), 0) (Integer.add 1)
   1.453 -      |> Symtab.map_default (s, PType_Tab.empty)
   1.454 -      #> fold do_term ts
   1.455 -    and do_term t =
   1.456 -      case strip_comb t of
   1.457 -        (Const x, ts) => do_const true x ts
   1.458 -      | (Free x, ts) => do_const false x ts
   1.459 -      | (Abs (_, _, t'), ts) => fold do_term (t' :: ts)
   1.460 -      | (_, ts) => fold do_term ts
   1.461 -  in do_term o theory_const_prop_of fudge o snd end
   1.462 -
   1.463 -
   1.464 -(**** Actual Filtering Code ****)
   1.465 -
   1.466 -fun pow_int _ 0 = 1.0
   1.467 -  | pow_int x 1 = x
   1.468 -  | pow_int x n = if n > 0 then x * pow_int x (n - 1) else pow_int x (n + 1) / x
   1.469 -
   1.470 -(*The frequency of a constant is the sum of those of all instances of its type.*)
   1.471 -fun pconst_freq match const_tab (c, ps) =
   1.472 -  PType_Tab.fold (fn (qs, m) => match (ps, qs) ? Integer.add m)
   1.473 -                 (the (Symtab.lookup const_tab c)) 0
   1.474 -
   1.475 -
   1.476 -(* A surprising number of theorems contain only a few significant constants.
   1.477 -   These include all induction rules, and other general theorems. *)
   1.478 -
   1.479 -(* "log" seems best in practice. A constant function of one ignores the constant
   1.480 -   frequencies. Rare constants give more points if they are relevant than less
   1.481 -   rare ones. *)
   1.482 -fun rel_weight_for _ freq = 1.0 + 2.0 / Math.ln (Real.fromInt freq + 1.0)
   1.483 -
   1.484 -(* Irrelevant constants are treated differently. We associate lower penalties to
   1.485 -   very rare constants and very common ones -- the former because they can't
   1.486 -   lead to the inclusion of too many new facts, and the latter because they are
   1.487 -   so common as to be of little interest. *)
   1.488 -fun irrel_weight_for ({worse_irrel_freq, higher_order_irrel_weight, ...}
   1.489 -                      : relevance_fudge) order freq =
   1.490 -  let val (k, x) = worse_irrel_freq |> `Real.ceil in
   1.491 -    (if freq < k then Math.ln (Real.fromInt (freq + 1)) / Math.ln x
   1.492 -     else rel_weight_for order freq / rel_weight_for order k)
   1.493 -    * pow_int higher_order_irrel_weight (order - 1)
   1.494 -  end
   1.495 -
   1.496 -fun multiplier_for_const_name local_const_multiplier s =
   1.497 -  if String.isSubstring "." s then 1.0 else local_const_multiplier
   1.498 -
   1.499 -(* Computes a constant's weight, as determined by its frequency. *)
   1.500 -fun generic_pconst_weight local_const_multiplier abs_weight skolem_weight
   1.501 -                          theory_const_weight chained_const_weight weight_for f
   1.502 -                          const_tab chained_const_tab (c as (s, PType (m, _))) =
   1.503 -  if s = pseudo_abs_name then
   1.504 -    abs_weight
   1.505 -  else if String.isPrefix pseudo_skolem_prefix s then
   1.506 -    skolem_weight
   1.507 -  else if String.isSuffix theory_const_suffix s then
   1.508 -    theory_const_weight
   1.509 -  else
   1.510 -    multiplier_for_const_name local_const_multiplier s
   1.511 -    * weight_for m (pconst_freq (match_ptype o f) const_tab c)
   1.512 -    |> (if chained_const_weight < 1.0 andalso
   1.513 -           pconst_hyper_mem I chained_const_tab c then
   1.514 -          curry (op *) chained_const_weight
   1.515 -        else
   1.516 -          I)
   1.517 -
   1.518 -fun rel_pconst_weight ({local_const_multiplier, abs_rel_weight,
   1.519 -                        theory_const_rel_weight, ...} : relevance_fudge)
   1.520 -                      const_tab =
   1.521 -  generic_pconst_weight local_const_multiplier abs_rel_weight 0.0
   1.522 -                        theory_const_rel_weight 0.0 rel_weight_for I const_tab
   1.523 -                        Symtab.empty
   1.524 -
   1.525 -fun irrel_pconst_weight (fudge as {local_const_multiplier, abs_irrel_weight,
   1.526 -                                   skolem_irrel_weight,
   1.527 -                                   theory_const_irrel_weight,
   1.528 -                                   chained_const_irrel_weight, ...})
   1.529 -                        const_tab chained_const_tab =
   1.530 -  generic_pconst_weight local_const_multiplier abs_irrel_weight
   1.531 -                        skolem_irrel_weight theory_const_irrel_weight
   1.532 -                        chained_const_irrel_weight (irrel_weight_for fudge) swap
   1.533 -                        const_tab chained_const_tab
   1.534 -
   1.535 -fun stature_bonus ({intro_bonus, ...} : relevance_fudge) (_, Intro) =
   1.536 -    intro_bonus
   1.537 -  | stature_bonus {elim_bonus, ...} (_, Elim) = elim_bonus
   1.538 -  | stature_bonus {simp_bonus, ...} (_, Simp) = simp_bonus
   1.539 -  | stature_bonus {local_bonus, ...} (Local, _) = local_bonus
   1.540 -  | stature_bonus {assum_bonus, ...} (Assum, _) = assum_bonus
   1.541 -  | stature_bonus {chained_bonus, ...} (Chained, _) = chained_bonus
   1.542 -  | stature_bonus _ _ = 0.0
   1.543 -
   1.544 -fun is_odd_const_name s =
   1.545 -  s = pseudo_abs_name orelse String.isPrefix pseudo_skolem_prefix s orelse
   1.546 -  String.isSuffix theory_const_suffix s
   1.547 -
   1.548 -fun fact_weight fudge stature const_tab relevant_consts chained_consts
   1.549 -                fact_consts =
   1.550 -  case fact_consts |> List.partition (pconst_hyper_mem I relevant_consts)
   1.551 -                   ||> filter_out (pconst_hyper_mem swap relevant_consts) of
   1.552 -    ([], _) => 0.0
   1.553 -  | (rel, irrel) =>
   1.554 -    if forall (forall (is_odd_const_name o fst)) [rel, irrel] then
   1.555 -      0.0
   1.556 -    else
   1.557 -      let
   1.558 -        val irrel = irrel |> filter_out (pconst_mem swap rel)
   1.559 -        val rel_weight =
   1.560 -          0.0 |> fold (curry (op +) o rel_pconst_weight fudge const_tab) rel
   1.561 -        val irrel_weight =
   1.562 -          ~ (stature_bonus fudge stature)
   1.563 -          |> fold (curry (op +)
   1.564 -                   o irrel_pconst_weight fudge const_tab chained_consts) irrel
   1.565 -        val res = rel_weight / (rel_weight + irrel_weight)
   1.566 -      in if Real.isFinite res then res else 0.0 end
   1.567 -
   1.568 -type annotated_thm =
   1.569 -  (((unit -> string) * stature) * thm) * (string * ptype) list
   1.570 -
   1.571 -fun take_most_relevant ctxt max_relevant remaining_max
   1.572 -        ({max_imperfect, max_imperfect_exp, ...} : relevance_fudge)
   1.573 -        (candidates : (annotated_thm * real) list) =
   1.574 -  let
   1.575 -    val max_imperfect =
   1.576 -      Real.ceil (Math.pow (max_imperfect,
   1.577 -                    Math.pow (Real.fromInt remaining_max
   1.578 -                              / Real.fromInt max_relevant, max_imperfect_exp)))
   1.579 -    val (perfect, imperfect) =
   1.580 -      candidates |> sort (Real.compare o swap o pairself snd)
   1.581 -                 |> take_prefix (fn (_, w) => w > 0.99999)
   1.582 -    val ((accepts, more_rejects), rejects) =
   1.583 -      chop max_imperfect imperfect |>> append perfect |>> chop remaining_max
   1.584 -  in
   1.585 -    trace_msg ctxt (fn () =>
   1.586 -        "Actually passed (" ^ string_of_int (length accepts) ^ " of " ^
   1.587 -        string_of_int (length candidates) ^ "): " ^
   1.588 -        (accepts |> map (fn ((((name, _), _), _), weight) =>
   1.589 -                            name () ^ " [" ^ Real.toString weight ^ "]")
   1.590 -                 |> commas));
   1.591 -    (accepts, more_rejects @ rejects)
   1.592 -  end
   1.593 -
   1.594 -fun if_empty_replace_with_scope thy is_built_in_const facts sc tab =
   1.595 -  if Symtab.is_empty tab then
   1.596 -    Symtab.empty
   1.597 -    |> fold (add_pconsts_in_term thy is_built_in_const false (SOME false))
   1.598 -            (map_filter (fn ((_, (sc', _)), th) =>
   1.599 -                            if sc' = sc then SOME (prop_of th) else NONE) facts)
   1.600 -  else
   1.601 -    tab
   1.602 -
   1.603 -fun consider_arities is_built_in_const th =
   1.604 -  let
   1.605 -    fun aux _ _ NONE = NONE
   1.606 -      | aux t args (SOME tab) =
   1.607 -        case t of
   1.608 -          t1 $ t2 => SOME tab |> aux t1 (t2 :: args) |> aux t2 []
   1.609 -        | Const (x as (s, _)) =>
   1.610 -          (if is_built_in_const x args |> fst then
   1.611 -             SOME tab
   1.612 -           else case Symtab.lookup tab s of
   1.613 -             NONE => SOME (Symtab.update (s, length args) tab)
   1.614 -           | SOME n => if n = length args then SOME tab else NONE)
   1.615 -        | _ => SOME tab
   1.616 -  in aux (prop_of th) [] end
   1.617 -
   1.618 -(* FIXME: This is currently only useful for polymorphic type encodings. *)
   1.619 -fun could_benefit_from_ext is_built_in_const facts =
   1.620 -  fold (consider_arities is_built_in_const o snd) facts (SOME Symtab.empty)
   1.621 -  |> is_none
   1.622 -
   1.623 -(* High enough so that it isn't wrongly considered as very relevant (e.g., for E
   1.624 -   weights), but low enough so that it is unlikely to be truncated away if few
   1.625 -   facts are included. *)
   1.626 -val special_fact_index = 75
   1.627 -
   1.628 -fun relevance_filter ctxt threshold0 decay max_relevant is_built_in_const
   1.629 -        (fudge as {threshold_divisor, ridiculous_threshold, ...})
   1.630 -        ({add, del, ...} : relevance_override) facts chained_ts hyp_ts concl_t =
   1.631 -  let
   1.632 -    val thy = Proof_Context.theory_of ctxt
   1.633 -    val const_tab = fold (count_fact_consts thy fudge) facts Symtab.empty
   1.634 -    val add_pconsts = add_pconsts_in_term thy is_built_in_const false o SOME
   1.635 -    val chained_const_tab = Symtab.empty |> fold (add_pconsts true) chained_ts
   1.636 -    val goal_const_tab =
   1.637 -      Symtab.empty |> fold (add_pconsts true) hyp_ts
   1.638 -                   |> add_pconsts false concl_t
   1.639 -      |> (fn tab => if Symtab.is_empty tab then chained_const_tab else tab)
   1.640 -      |> fold (if_empty_replace_with_scope thy is_built_in_const facts)
   1.641 -              [Chained, Assum, Local]
   1.642 -    val add_ths = Attrib.eval_thms ctxt add
   1.643 -    val del_ths = Attrib.eval_thms ctxt del
   1.644 -    val facts = facts |> filter_out (member Thm.eq_thm_prop del_ths o snd)
   1.645 -    fun iter j remaining_max threshold rel_const_tab hopeless hopeful =
   1.646 -      let
   1.647 -        fun relevant [] _ [] =
   1.648 -            (* Nothing has been added this iteration. *)
   1.649 -            if j = 0 andalso threshold >= ridiculous_threshold then
   1.650 -              (* First iteration? Try again. *)
   1.651 -              iter 0 max_relevant (threshold / threshold_divisor) rel_const_tab
   1.652 -                   hopeless hopeful
   1.653 -            else
   1.654 -              []
   1.655 -          | relevant candidates rejects [] =
   1.656 -            let
   1.657 -              val (accepts, more_rejects) =
   1.658 -                take_most_relevant ctxt max_relevant remaining_max fudge
   1.659 -                                   candidates
   1.660 -              val rel_const_tab' =
   1.661 -                rel_const_tab
   1.662 -                |> fold (add_pconst_to_table false) (maps (snd o fst) accepts)
   1.663 -              fun is_dirty (c, _) =
   1.664 -                Symtab.lookup rel_const_tab' c <> Symtab.lookup rel_const_tab c
   1.665 -              val (hopeful_rejects, hopeless_rejects) =
   1.666 -                 (rejects @ hopeless, ([], []))
   1.667 -                 |-> fold (fn (ax as (_, consts), old_weight) =>
   1.668 -                              if exists is_dirty consts then
   1.669 -                                apfst (cons (ax, NONE))
   1.670 -                              else
   1.671 -                                apsnd (cons (ax, old_weight)))
   1.672 -                 |>> append (more_rejects
   1.673 -                             |> map (fn (ax as (_, consts), old_weight) =>
   1.674 -                                        (ax, if exists is_dirty consts then NONE
   1.675 -                                             else SOME old_weight)))
   1.676 -              val threshold =
   1.677 -                1.0 - (1.0 - threshold)
   1.678 -                      * Math.pow (decay, Real.fromInt (length accepts))
   1.679 -              val remaining_max = remaining_max - length accepts
   1.680 -            in
   1.681 -              trace_msg ctxt (fn () => "New or updated constants: " ^
   1.682 -                  commas (rel_const_tab' |> Symtab.dest
   1.683 -                          |> subtract (op =) (rel_const_tab |> Symtab.dest)
   1.684 -                          |> map string_for_hyper_pconst));
   1.685 -              map (fst o fst) accepts @
   1.686 -              (if remaining_max = 0 then
   1.687 -                 []
   1.688 -               else
   1.689 -                 iter (j + 1) remaining_max threshold rel_const_tab'
   1.690 -                      hopeless_rejects hopeful_rejects)
   1.691 -            end
   1.692 -          | relevant candidates rejects
   1.693 -                     (((ax as (((_, stature), _), fact_consts)), cached_weight)
   1.694 -                      :: hopeful) =
   1.695 -            let
   1.696 -              val weight =
   1.697 -                case cached_weight of
   1.698 -                  SOME w => w
   1.699 -                | NONE => fact_weight fudge stature const_tab rel_const_tab
   1.700 -                                      chained_const_tab fact_consts
   1.701 -            in
   1.702 -              if weight >= threshold then
   1.703 -                relevant ((ax, weight) :: candidates) rejects hopeful
   1.704 -              else
   1.705 -                relevant candidates ((ax, weight) :: rejects) hopeful
   1.706 -            end
   1.707 -        in
   1.708 -          trace_msg ctxt (fn () =>
   1.709 -              "ITERATION " ^ string_of_int j ^ ": current threshold: " ^
   1.710 -              Real.toString threshold ^ ", constants: " ^
   1.711 -              commas (rel_const_tab |> Symtab.dest
   1.712 -                      |> filter (curry (op <>) [] o snd)
   1.713 -                      |> map string_for_hyper_pconst));
   1.714 -          relevant [] [] hopeful
   1.715 -        end
   1.716 -    fun prepend_facts ths accepts =
   1.717 -      ((facts |> filter (member Thm.eq_thm_prop ths o snd)) @
   1.718 -       (accepts |> filter_out (member Thm.eq_thm_prop ths o snd)))
   1.719 -      |> take max_relevant
   1.720 -    fun uses_const s t =
   1.721 -      fold_aterms (curry (fn (Const (s', _), false) => s' = s | (_, b) => b)) t
   1.722 -                  false
   1.723 -    fun uses_const_anywhere accepts s =
   1.724 -      exists (uses_const s o prop_of o snd) accepts orelse
   1.725 -      exists (uses_const s) (concl_t :: hyp_ts)
   1.726 -    fun add_set_const_thms accepts =
   1.727 -      exists (uses_const_anywhere accepts) set_consts ? append set_thms
   1.728 -    fun insert_into_facts accepts [] = accepts
   1.729 -      | insert_into_facts accepts ths =
   1.730 -        let
   1.731 -          val add = facts |> filter (member Thm.eq_thm_prop ths o snd)
   1.732 -          val (bef, after) =
   1.733 -            accepts |> filter_out (member Thm.eq_thm_prop ths o snd)
   1.734 -                    |> take (max_relevant - length add)
   1.735 -                    |> chop special_fact_index
   1.736 -        in bef @ add @ after end
   1.737 -    fun insert_special_facts accepts =
   1.738 -       (* FIXME: get rid of "ext" here once it is treated as a helper *)
   1.739 -       [] |> could_benefit_from_ext is_built_in_const accepts ? cons @{thm ext}
   1.740 -          |> add_set_const_thms accepts
   1.741 -          |> insert_into_facts accepts
   1.742 -  in
   1.743 -    facts |> map_filter (pair_consts_fact thy is_built_in_const fudge)
   1.744 -          |> iter 0 max_relevant threshold0 goal_const_tab []
   1.745 -          |> not (null add_ths) ? prepend_facts add_ths
   1.746 -          |> insert_special_facts
   1.747 -          |> tap (fn accepts => trace_msg ctxt (fn () =>
   1.748 -                      "Total relevant: " ^ string_of_int (length accepts)))
   1.749 -  end
   1.750 -
   1.751 -
   1.752 -(***************************************************************)
   1.753 -(* Retrieving and filtering lemmas                             *)
   1.754 -(***************************************************************)
   1.755 -
   1.756 -(*** retrieve lemmas and filter them ***)
   1.757 -
   1.758  (*Reject theorems with names like "List.filter.filter_list_def" or
   1.759    "Accessible_Part.acc.defs", as these are definitions arising from packages.*)
   1.760  fun is_package_def a =
   1.761 @@ -813,10 +134,6 @@
   1.762       String.isSuffix "_def" a) orelse String.isSuffix "_defs" a
   1.763    end
   1.764  
   1.765 -fun uniquify xs =
   1.766 -  Termtab.fold (cons o snd)
   1.767 -               (fold (Termtab.update o `(prop_of o snd)) xs Termtab.empty) []
   1.768 -
   1.769  (* FIXME: put other record thms here, or declare as "no_atp" *)
   1.770  fun multi_base_blacklist ctxt ho_atp =
   1.771    ["defs", "select_defs", "update_defs", "split", "splits", "split_asm",
   1.772 @@ -877,9 +194,6 @@
   1.773    andalso exists_subterm (fn Free (s, _) => s = Name.skolem Auto_Bind.thesisN
   1.774                             | _ => false) (prop_of th)
   1.775  
   1.776 -(**** Predicates to detect unwanted facts (prolific or likely to cause
   1.777 -      unsoundness) ****)
   1.778 -
   1.779  fun is_theorem_bad_for_atps ho_atp exporter thm =
   1.780    is_metastrange_theorem thm orelse
   1.781    (not exporter andalso
   1.782 @@ -889,6 +203,34 @@
   1.783       is_that_fact thm
   1.784     end)
   1.785  
   1.786 +fun string_for_term ctxt t =
   1.787 +  Print_Mode.setmp (filter (curry (op =) Symbol.xsymbolsN)
   1.788 +                   (print_mode_value ())) (Syntax.string_of_term ctxt) t
   1.789 +  |> String.translate (fn c => if Char.isPrint c then str c else "")
   1.790 +  |> simplify_spaces
   1.791 +
   1.792 +(* This is a terrible hack. Free variables are sometimes coded as "M__" when
   1.793 +   they are displayed as "M" and we want to avoid clashes with these. But
   1.794 +   sometimes it's even worse: "Ma__" encodes "M". So we simply reserve all
   1.795 +   prefixes of all free variables. In the worse case scenario, where the fact
   1.796 +   won't be resolved correctly, the user can fix it manually, e.g., by naming
   1.797 +   the fact in question. Ideally we would need nothing of it, but backticks
   1.798 +   simply don't work with schematic variables. *)
   1.799 +fun all_prefixes_of s =
   1.800 +  map (fn i => String.extract (s, 0, SOME i)) (1 upto size s - 1)
   1.801 +
   1.802 +fun close_form t =
   1.803 +  (t, [] |> Term.add_free_names t |> maps all_prefixes_of)
   1.804 +  |> fold (fn ((s, i), T) => fn (t', taken) =>
   1.805 +              let val s' = singleton (Name.variant_list taken) s in
   1.806 +                ((if fastype_of t' = HOLogic.boolT then HOLogic.all_const
   1.807 +                  else Logic.all_const) T
   1.808 +                 $ Abs (s', T, abstract_over (Var ((s, i), T), t')),
   1.809 +                 s' :: taken)
   1.810 +              end)
   1.811 +          (Term.add_vars t [] |> sort_wrt (fst o fst))
   1.812 +  |> fst
   1.813 +
   1.814  fun all_facts ctxt ho_atp reserved exporter add_ths chained_ths css_table =
   1.815    let
   1.816      val thy = Proof_Context.theory_of ctxt
   1.817 @@ -960,6 +302,93 @@
   1.818               |> op @
   1.819    end
   1.820  
   1.821 +fun clasimpset_rule_table_of ctxt =
   1.822 +  let
   1.823 +    val thy = Proof_Context.theory_of ctxt
   1.824 +    val atomize = HOLogic.mk_Trueprop o Object_Logic.atomize_term thy
   1.825 +    fun add stature normalizers get_th =
   1.826 +      fold (fn rule =>
   1.827 +               let
   1.828 +                 val th = rule |> get_th
   1.829 +                 val t =
   1.830 +                   th |> Thm.maxidx_of th > 0 ? zero_var_indexes |> prop_of
   1.831 +               in
   1.832 +                 fold (fn normalize => Termtab.update (normalize t, stature))
   1.833 +                      (I :: normalizers)
   1.834 +               end)
   1.835 +    val {safeIs, (* safeEs, *) hazIs, (* hazEs, *) ...} =
   1.836 +      ctxt |> claset_of |> Classical.rep_cs
   1.837 +    val intros = Item_Net.content safeIs @ Item_Net.content hazIs
   1.838 +(* Add once it is used:
   1.839 +    val elims =
   1.840 +      Item_Net.content safeEs @ Item_Net.content hazEs
   1.841 +      |> map Classical.classical_rule
   1.842 +*)
   1.843 +    val simps = ctxt |> simpset_of |> dest_ss |> #simps
   1.844 +    val specs = ctxt |> Spec_Rules.get
   1.845 +    val (rec_defs, nonrec_defs) =
   1.846 +      specs |> filter (curry (op =) Spec_Rules.Equational o fst)
   1.847 +            |> maps (snd o snd)
   1.848 +            |> filter_out (member Thm.eq_thm_prop risky_defs)
   1.849 +            |> List.partition (is_rec_def o prop_of)
   1.850 +    val spec_intros =
   1.851 +      specs |> filter (member (op =) [Spec_Rules.Inductive,
   1.852 +                                      Spec_Rules.Co_Inductive] o fst)
   1.853 +            |> maps (snd o snd)
   1.854 +  in
   1.855 +    Termtab.empty |> add Simp [atomize] snd simps
   1.856 +                  |> add Simp [] I rec_defs
   1.857 +                  |> add Def [] I nonrec_defs
   1.858 +(* Add once it is used:
   1.859 +                  |> add Elim [] I elims
   1.860 +*)
   1.861 +                  |> add Intro [] I intros
   1.862 +                  |> add Inductive [] I spec_intros
   1.863 +  end
   1.864 +
   1.865 +fun uniquify xs =
   1.866 +  Termtab.fold (cons o snd)
   1.867 +               (fold (Termtab.update o `(prop_of o snd)) xs Termtab.empty) []
   1.868 +
   1.869 +fun struct_induct_rule_on th =
   1.870 +  case Logic.strip_horn (prop_of th) of
   1.871 +    (prems, @{const Trueprop}
   1.872 +            $ ((p as Var ((p_name, 0), _)) $ (a as Var (_, ind_T)))) =>
   1.873 +    if not (is_TVar ind_T) andalso length prems > 1 andalso
   1.874 +       exists (exists_subterm (curry (op aconv) p)) prems andalso
   1.875 +       not (exists (exists_subterm (curry (op aconv) a)) prems) then
   1.876 +      SOME (p_name, ind_T)
   1.877 +    else
   1.878 +      NONE
   1.879 +  | _ => NONE
   1.880 +
   1.881 +fun instantiate_induct_rule ctxt concl_prop p_name ((name, stature), th) ind_x =
   1.882 +  let
   1.883 +    fun varify_noninducts (t as Free (s, T)) =
   1.884 +        if (s, T) = ind_x orelse can dest_funT T then t else Var ((s, 0), T)
   1.885 +      | varify_noninducts t = t
   1.886 +    val p_inst =
   1.887 +      concl_prop |> map_aterms varify_noninducts |> close_form
   1.888 +                 |> lambda (Free ind_x)
   1.889 +                 |> string_for_term ctxt
   1.890 +  in
   1.891 +    ((fn () => name () ^ "[where " ^ p_name ^ " = " ^ quote p_inst ^ "]",
   1.892 +      stature), th |> read_instantiate ctxt [((p_name, 0), p_inst)])
   1.893 +  end
   1.894 +
   1.895 +fun type_match thy (T1, T2) =
   1.896 +  (Sign.typ_match thy (T2, T1) Vartab.empty; true)
   1.897 +  handle Type.TYPE_MATCH => false
   1.898 +
   1.899 +fun instantiate_if_induct_rule ctxt stmt stmt_xs (ax as (_, th)) =
   1.900 +  case struct_induct_rule_on th of
   1.901 +    SOME (p_name, ind_T) =>
   1.902 +    let val thy = Proof_Context.theory_of ctxt in
   1.903 +      stmt_xs |> filter (fn (_, T) => type_match thy (T, ind_T))
   1.904 +              |> map_filter (try (instantiate_induct_rule ctxt stmt p_name ax))
   1.905 +    end
   1.906 +  | NONE => [ax]
   1.907 +
   1.908  fun external_frees t =
   1.909    [] |> Term.add_frees t |> filter_out (can Name.dest_internal o fst)
   1.910  
   1.911 @@ -998,26 +427,6 @@
   1.912        |> uniquify
   1.913      end
   1.914  
   1.915 -fun relevant_facts ctxt (threshold0, threshold1) max_relevant is_built_in_const
   1.916 -                   fudge (override as {only, ...}) chained_ths hyp_ts concl_t
   1.917 -                   facts =
   1.918 -  let
   1.919 -    val thy = Proof_Context.theory_of ctxt
   1.920 -    val decay = Math.pow ((1.0 - threshold1) / (1.0 - threshold0),
   1.921 -                          1.0 / Real.fromInt (max_relevant + 1))
   1.922 -  in
   1.923 -    trace_msg ctxt (fn () => "Considering " ^ string_of_int (length facts) ^
   1.924 -                             " facts");
   1.925 -    (if only orelse threshold1 < 0.0 then
   1.926 -       facts
   1.927 -     else if threshold0 > 1.0 orelse threshold0 > threshold1 orelse
   1.928 -             max_relevant = 0 then
   1.929 -       []
   1.930 -     else
   1.931 -       relevance_filter ctxt threshold0 decay max_relevant is_built_in_const
   1.932 -           fudge override facts (chained_ths |> map prop_of) hyp_ts
   1.933 -           (concl_t |> theory_constify fudge (Context.theory_name thy)))
   1.934 -    |> map (apfst (apfst (fn f => f ())))
   1.935 -  end
   1.936 +val relevant_facts = iterative_relevant_facts
   1.937  
   1.938  end;
     2.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.2 +++ b/src/HOL/Tools/Sledgehammer/sledgehammer_filter_iter.ML	Wed Jul 11 21:43:19 2012 +0200
     2.3 @@ -0,0 +1,600 @@
     2.4 +(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_filter_iter.ML
     2.5 +    Author:     Jia Meng, Cambridge University Computer Laboratory and NICTA
     2.6 +    Author:     Jasmin Blanchette, TU Muenchen
     2.7 +
     2.8 +Sledgehammer's iterative relevance filter.
     2.9 +*)
    2.10 +
    2.11 +signature SLEDGEHAMMER_FILTER_ITER =
    2.12 +sig
    2.13 +  type stature = ATP_Problem_Generate.stature
    2.14 +
    2.15 +  type relevance_fudge =
    2.16 +    {local_const_multiplier : real,
    2.17 +     worse_irrel_freq : real,
    2.18 +     higher_order_irrel_weight : real,
    2.19 +     abs_rel_weight : real,
    2.20 +     abs_irrel_weight : real,
    2.21 +     skolem_irrel_weight : real,
    2.22 +     theory_const_rel_weight : real,
    2.23 +     theory_const_irrel_weight : real,
    2.24 +     chained_const_irrel_weight : real,
    2.25 +     intro_bonus : real,
    2.26 +     elim_bonus : real,
    2.27 +     simp_bonus : real,
    2.28 +     local_bonus : real,
    2.29 +     assum_bonus : real,
    2.30 +     chained_bonus : real,
    2.31 +     max_imperfect : real,
    2.32 +     max_imperfect_exp : real,
    2.33 +     threshold_divisor : real,
    2.34 +     ridiculous_threshold : real}
    2.35 +
    2.36 +  type relevance_override =
    2.37 +    {add : (Facts.ref * Attrib.src list) list,
    2.38 +     del : (Facts.ref * Attrib.src list) list,
    2.39 +     only : bool}
    2.40 +
    2.41 +  val trace : bool Config.T
    2.42 +  val ignore_no_atp : bool Config.T
    2.43 +  val instantiate_inducts : bool Config.T
    2.44 +  val pseudo_abs_name : string
    2.45 +  val pseudo_skolem_prefix : string
    2.46 +  val const_names_in_fact :
    2.47 +    theory -> (string * typ -> term list -> bool * term list) -> term
    2.48 +    -> string list
    2.49 +  val iterative_relevant_facts :
    2.50 +    Proof.context -> real * real -> int
    2.51 +    -> (string * typ -> term list -> bool * term list) -> relevance_fudge
    2.52 +    -> relevance_override -> thm list -> term list -> term
    2.53 +    -> (((unit -> string) * stature) * thm) list
    2.54 +    -> ((string * stature) * thm) list
    2.55 +end;
    2.56 +
    2.57 +structure Sledgehammer_Filter_Iter : SLEDGEHAMMER_FILTER_ITER =
    2.58 +struct
    2.59 +
    2.60 +open ATP_Problem_Generate
    2.61 +
    2.62 +val trace =
    2.63 +  Attrib.setup_config_bool @{binding sledgehammer_filter_trace} (K false)
    2.64 +fun trace_msg ctxt msg = if Config.get ctxt trace then tracing (msg ()) else ()
    2.65 +
    2.66 +(* experimental features *)
    2.67 +val ignore_no_atp =
    2.68 +  Attrib.setup_config_bool @{binding sledgehammer_ignore_no_atp} (K false)
    2.69 +val instantiate_inducts =
    2.70 +  Attrib.setup_config_bool @{binding sledgehammer_instantiate_inducts} (K false)
    2.71 +
    2.72 +type relevance_fudge =
    2.73 +  {local_const_multiplier : real,
    2.74 +   worse_irrel_freq : real,
    2.75 +   higher_order_irrel_weight : real,
    2.76 +   abs_rel_weight : real,
    2.77 +   abs_irrel_weight : real,
    2.78 +   skolem_irrel_weight : real,
    2.79 +   theory_const_rel_weight : real,
    2.80 +   theory_const_irrel_weight : real,
    2.81 +   chained_const_irrel_weight : real,
    2.82 +   intro_bonus : real,
    2.83 +   elim_bonus : real,
    2.84 +   simp_bonus : real,
    2.85 +   local_bonus : real,
    2.86 +   assum_bonus : real,
    2.87 +   chained_bonus : real,
    2.88 +   max_imperfect : real,
    2.89 +   max_imperfect_exp : real,
    2.90 +   threshold_divisor : real,
    2.91 +   ridiculous_threshold : real}
    2.92 +
    2.93 +type relevance_override =
    2.94 +  {add : (Facts.ref * Attrib.src list) list,
    2.95 +   del : (Facts.ref * Attrib.src list) list,
    2.96 +   only : bool}
    2.97 +
    2.98 +val sledgehammer_prefix = "Sledgehammer" ^ Long_Name.separator
    2.99 +val pseudo_abs_name = sledgehammer_prefix ^ "abs"
   2.100 +val pseudo_skolem_prefix = sledgehammer_prefix ^ "sko"
   2.101 +val theory_const_suffix = Long_Name.separator ^ " 1"
   2.102 +
   2.103 +fun order_of_type (Type (@{type_name fun}, [T1, T2])) =
   2.104 +    Int.max (order_of_type T1 + 1, order_of_type T2)
   2.105 +  | order_of_type (Type (_, Ts)) = fold (Integer.max o order_of_type) Ts 0
   2.106 +  | order_of_type _ = 0
   2.107 +
   2.108 +(* An abstraction of Isabelle types and first-order terms *)
   2.109 +datatype pattern = PVar | PApp of string * pattern list
   2.110 +datatype ptype = PType of int * pattern list
   2.111 +
   2.112 +fun string_for_pattern PVar = "_"
   2.113 +  | string_for_pattern (PApp (s, ps)) =
   2.114 +    if null ps then s else s ^ string_for_patterns ps
   2.115 +and string_for_patterns ps = "(" ^ commas (map string_for_pattern ps) ^ ")"
   2.116 +fun string_for_ptype (PType (_, ps)) = string_for_patterns ps
   2.117 +
   2.118 +(*Is the second type an instance of the first one?*)
   2.119 +fun match_pattern (PVar, _) = true
   2.120 +  | match_pattern (PApp _, PVar) = false
   2.121 +  | match_pattern (PApp (s, ps), PApp (t, qs)) =
   2.122 +    s = t andalso match_patterns (ps, qs)
   2.123 +and match_patterns (_, []) = true
   2.124 +  | match_patterns ([], _) = false
   2.125 +  | match_patterns (p :: ps, q :: qs) =
   2.126 +    match_pattern (p, q) andalso match_patterns (ps, qs)
   2.127 +fun match_ptype (PType (_, ps), PType (_, qs)) = match_patterns (ps, qs)
   2.128 +
   2.129 +(* Is there a unifiable constant? *)
   2.130 +fun pconst_mem f consts (s, ps) =
   2.131 +  exists (curry (match_ptype o f) ps)
   2.132 +         (map snd (filter (curry (op =) s o fst) consts))
   2.133 +fun pconst_hyper_mem f const_tab (s, ps) =
   2.134 +  exists (curry (match_ptype o f) ps) (these (Symtab.lookup const_tab s))
   2.135 +
   2.136 +fun pattern_for_type (Type (s, Ts)) = PApp (s, map pattern_for_type Ts)
   2.137 +  | pattern_for_type (TFree (s, _)) = PApp (s, [])
   2.138 +  | pattern_for_type (TVar _) = PVar
   2.139 +
   2.140 +(* Pairs a constant with the list of its type instantiations. *)
   2.141 +fun ptype thy const x =
   2.142 +  (if const then map pattern_for_type (these (try (Sign.const_typargs thy) x))
   2.143 +   else [])
   2.144 +fun rich_ptype thy const (s, T) =
   2.145 +  PType (order_of_type T, ptype thy const (s, T))
   2.146 +fun rich_pconst thy const (s, T) = (s, rich_ptype thy const (s, T))
   2.147 +
   2.148 +fun string_for_hyper_pconst (s, ps) =
   2.149 +  s ^ "{" ^ commas (map string_for_ptype ps) ^ "}"
   2.150 +
   2.151 +(* Add a pconstant to the table, but a [] entry means a standard
   2.152 +   connective, which we ignore.*)
   2.153 +fun add_pconst_to_table also_skolem (s, p) =
   2.154 +  if (not also_skolem andalso String.isPrefix pseudo_skolem_prefix s) then I
   2.155 +  else Symtab.map_default (s, [p]) (insert (op =) p)
   2.156 +
   2.157 +(* Set constants tend to pull in too many irrelevant facts. We limit the damage
   2.158 +   by treating them more or less as if they were built-in but add their
   2.159 +   axiomatization at the end. *)
   2.160 +val set_consts = [@{const_name Collect}, @{const_name Set.member}]
   2.161 +val set_thms = @{thms Collect_mem_eq mem_Collect_eq Collect_cong}
   2.162 +
   2.163 +fun add_pconsts_in_term thy is_built_in_const also_skolems pos =
   2.164 +  let
   2.165 +    val flip = Option.map not
   2.166 +    (* We include free variables, as well as constants, to handle locales. For
   2.167 +       each quantifiers that must necessarily be skolemized by the automatic
   2.168 +       prover, we introduce a fresh constant to simulate the effect of
   2.169 +       Skolemization. *)
   2.170 +    fun do_const const ext_arg (x as (s, _)) ts =
   2.171 +      let val (built_in, ts) = is_built_in_const x ts in
   2.172 +        if member (op =) set_consts s then
   2.173 +          fold (do_term ext_arg) ts
   2.174 +        else
   2.175 +          (not built_in
   2.176 +           ? add_pconst_to_table also_skolems (rich_pconst thy const x))
   2.177 +          #> fold (do_term false) ts
   2.178 +      end
   2.179 +    and do_term ext_arg t =
   2.180 +      case strip_comb t of
   2.181 +        (Const x, ts) => do_const true ext_arg x ts
   2.182 +      | (Free x, ts) => do_const false ext_arg x ts
   2.183 +      | (Abs (_, T, t'), ts) =>
   2.184 +        ((null ts andalso not ext_arg)
   2.185 +         (* Since lambdas on the right-hand side of equalities are usually
   2.186 +            extensionalized later by "abs_extensionalize_term", we don't
   2.187 +            penalize them here. *)
   2.188 +         ? add_pconst_to_table true (pseudo_abs_name,
   2.189 +                                     PType (order_of_type T + 1, [])))
   2.190 +        #> fold (do_term false) (t' :: ts)
   2.191 +      | (_, ts) => fold (do_term false) ts
   2.192 +    fun do_quantifier will_surely_be_skolemized abs_T body_t =
   2.193 +      do_formula pos body_t
   2.194 +      #> (if also_skolems andalso will_surely_be_skolemized then
   2.195 +            add_pconst_to_table true (pseudo_skolem_prefix ^ serial_string (),
   2.196 +                                      PType (order_of_type abs_T, []))
   2.197 +          else
   2.198 +            I)
   2.199 +    and do_term_or_formula ext_arg T =
   2.200 +      if T = HOLogic.boolT then do_formula NONE else do_term ext_arg
   2.201 +    and do_formula pos t =
   2.202 +      case t of
   2.203 +        Const (@{const_name all}, _) $ Abs (_, T, t') =>
   2.204 +        do_quantifier (pos = SOME false) T t'
   2.205 +      | @{const "==>"} $ t1 $ t2 =>
   2.206 +        do_formula (flip pos) t1 #> do_formula pos t2
   2.207 +      | Const (@{const_name "=="}, Type (_, [T, _])) $ t1 $ t2 =>
   2.208 +        do_term_or_formula false T t1 #> do_term_or_formula true T t2
   2.209 +      | @{const Trueprop} $ t1 => do_formula pos t1
   2.210 +      | @{const False} => I
   2.211 +      | @{const True} => I
   2.212 +      | @{const Not} $ t1 => do_formula (flip pos) t1
   2.213 +      | Const (@{const_name All}, _) $ Abs (_, T, t') =>
   2.214 +        do_quantifier (pos = SOME false) T t'
   2.215 +      | Const (@{const_name Ex}, _) $ Abs (_, T, t') =>
   2.216 +        do_quantifier (pos = SOME true) T t'
   2.217 +      | @{const HOL.conj} $ t1 $ t2 => fold (do_formula pos) [t1, t2]
   2.218 +      | @{const HOL.disj} $ t1 $ t2 => fold (do_formula pos) [t1, t2]
   2.219 +      | @{const HOL.implies} $ t1 $ t2 =>
   2.220 +        do_formula (flip pos) t1 #> do_formula pos t2
   2.221 +      | Const (@{const_name HOL.eq}, Type (_, [T, _])) $ t1 $ t2 =>
   2.222 +        do_term_or_formula false T t1 #> do_term_or_formula true T t2
   2.223 +      | Const (@{const_name If}, Type (_, [_, Type (_, [T, _])]))
   2.224 +        $ t1 $ t2 $ t3 =>
   2.225 +        do_formula NONE t1 #> fold (do_term_or_formula false T) [t2, t3]
   2.226 +      | Const (@{const_name Ex1}, _) $ Abs (_, T, t') =>
   2.227 +        do_quantifier (is_some pos) T t'
   2.228 +      | Const (@{const_name Ball}, _) $ t1 $ Abs (_, T, t') =>
   2.229 +        do_quantifier (pos = SOME false) T
   2.230 +                      (HOLogic.mk_imp (incr_boundvars 1 t1 $ Bound 0, t'))
   2.231 +      | Const (@{const_name Bex}, _) $ t1 $ Abs (_, T, t') =>
   2.232 +        do_quantifier (pos = SOME true) T
   2.233 +                      (HOLogic.mk_conj (incr_boundvars 1 t1 $ Bound 0, t'))
   2.234 +      | (t0 as Const (_, @{typ bool})) $ t1 =>
   2.235 +        do_term false t0 #> do_formula pos t1  (* theory constant *)
   2.236 +      | _ => do_term false t
   2.237 +  in do_formula pos end
   2.238 +
   2.239 +fun pconsts_in_fact thy is_built_in_const t =
   2.240 +  Symtab.fold (fn (s, pss) => fold (cons o pair s) pss)
   2.241 +              (Symtab.empty |> add_pconsts_in_term thy is_built_in_const true
   2.242 +                                                   (SOME true) t) []
   2.243 +
   2.244 +val const_names_in_fact = map fst ooo pconsts_in_fact
   2.245 +
   2.246 +(* Inserts a dummy "constant" referring to the theory name, so that relevance
   2.247 +   takes the given theory into account. *)
   2.248 +fun theory_constify ({theory_const_rel_weight, theory_const_irrel_weight, ...}
   2.249 +                     : relevance_fudge) thy_name t =
   2.250 +  if exists (curry (op <) 0.0) [theory_const_rel_weight,
   2.251 +                                theory_const_irrel_weight] then
   2.252 +    Const (thy_name ^ theory_const_suffix, @{typ bool}) $ t
   2.253 +  else
   2.254 +    t
   2.255 +
   2.256 +fun theory_const_prop_of fudge th =
   2.257 +  theory_constify fudge (Context.theory_name (theory_of_thm th)) (prop_of th)
   2.258 +
   2.259 +fun pair_consts_fact thy is_built_in_const fudge fact =
   2.260 +  case fact |> snd |> theory_const_prop_of fudge
   2.261 +            |> pconsts_in_fact thy is_built_in_const of
   2.262 +    [] => NONE
   2.263 +  | consts => SOME ((fact, consts), NONE)
   2.264 +
   2.265 +(* A two-dimensional symbol table counts frequencies of constants. It's keyed
   2.266 +   first by constant name and second by its list of type instantiations. For the
   2.267 +   latter, we need a linear ordering on "pattern list". *)
   2.268 +
   2.269 +fun pattern_ord p =
   2.270 +  case p of
   2.271 +    (PVar, PVar) => EQUAL
   2.272 +  | (PVar, PApp _) => LESS
   2.273 +  | (PApp _, PVar) => GREATER
   2.274 +  | (PApp q1, PApp q2) =>
   2.275 +    prod_ord fast_string_ord (dict_ord pattern_ord) (q1, q2)
   2.276 +fun ptype_ord (PType p, PType q) =
   2.277 +  prod_ord (dict_ord pattern_ord) int_ord (swap p, swap q)
   2.278 +
   2.279 +structure PType_Tab = Table(type key = ptype val ord = ptype_ord)
   2.280 +
   2.281 +fun count_fact_consts thy fudge =
   2.282 +  let
   2.283 +    fun do_const const (s, T) ts =
   2.284 +      (* Two-dimensional table update. Constant maps to types maps to count. *)
   2.285 +      PType_Tab.map_default (rich_ptype thy const (s, T), 0) (Integer.add 1)
   2.286 +      |> Symtab.map_default (s, PType_Tab.empty)
   2.287 +      #> fold do_term ts
   2.288 +    and do_term t =
   2.289 +      case strip_comb t of
   2.290 +        (Const x, ts) => do_const true x ts
   2.291 +      | (Free x, ts) => do_const false x ts
   2.292 +      | (Abs (_, _, t'), ts) => fold do_term (t' :: ts)
   2.293 +      | (_, ts) => fold do_term ts
   2.294 +  in do_term o theory_const_prop_of fudge o snd end
   2.295 +
   2.296 +fun pow_int _ 0 = 1.0
   2.297 +  | pow_int x 1 = x
   2.298 +  | pow_int x n = if n > 0 then x * pow_int x (n - 1) else pow_int x (n + 1) / x
   2.299 +
   2.300 +(*The frequency of a constant is the sum of those of all instances of its type.*)
   2.301 +fun pconst_freq match const_tab (c, ps) =
   2.302 +  PType_Tab.fold (fn (qs, m) => match (ps, qs) ? Integer.add m)
   2.303 +                 (the (Symtab.lookup const_tab c)) 0
   2.304 +
   2.305 +
   2.306 +(* A surprising number of theorems contain only a few significant constants.
   2.307 +   These include all induction rules, and other general theorems. *)
   2.308 +
   2.309 +(* "log" seems best in practice. A constant function of one ignores the constant
   2.310 +   frequencies. Rare constants give more points if they are relevant than less
   2.311 +   rare ones. *)
   2.312 +fun rel_weight_for _ freq = 1.0 + 2.0 / Math.ln (Real.fromInt freq + 1.0)
   2.313 +
   2.314 +(* Irrelevant constants are treated differently. We associate lower penalties to
   2.315 +   very rare constants and very common ones -- the former because they can't
   2.316 +   lead to the inclusion of too many new facts, and the latter because they are
   2.317 +   so common as to be of little interest. *)
   2.318 +fun irrel_weight_for ({worse_irrel_freq, higher_order_irrel_weight, ...}
   2.319 +                      : relevance_fudge) order freq =
   2.320 +  let val (k, x) = worse_irrel_freq |> `Real.ceil in
   2.321 +    (if freq < k then Math.ln (Real.fromInt (freq + 1)) / Math.ln x
   2.322 +     else rel_weight_for order freq / rel_weight_for order k)
   2.323 +    * pow_int higher_order_irrel_weight (order - 1)
   2.324 +  end
   2.325 +
   2.326 +fun multiplier_for_const_name local_const_multiplier s =
   2.327 +  if String.isSubstring "." s then 1.0 else local_const_multiplier
   2.328 +
   2.329 +(* Computes a constant's weight, as determined by its frequency. *)
   2.330 +fun generic_pconst_weight local_const_multiplier abs_weight skolem_weight
   2.331 +                          theory_const_weight chained_const_weight weight_for f
   2.332 +                          const_tab chained_const_tab (c as (s, PType (m, _))) =
   2.333 +  if s = pseudo_abs_name then
   2.334 +    abs_weight
   2.335 +  else if String.isPrefix pseudo_skolem_prefix s then
   2.336 +    skolem_weight
   2.337 +  else if String.isSuffix theory_const_suffix s then
   2.338 +    theory_const_weight
   2.339 +  else
   2.340 +    multiplier_for_const_name local_const_multiplier s
   2.341 +    * weight_for m (pconst_freq (match_ptype o f) const_tab c)
   2.342 +    |> (if chained_const_weight < 1.0 andalso
   2.343 +           pconst_hyper_mem I chained_const_tab c then
   2.344 +          curry (op *) chained_const_weight
   2.345 +        else
   2.346 +          I)
   2.347 +
   2.348 +fun rel_pconst_weight ({local_const_multiplier, abs_rel_weight,
   2.349 +                        theory_const_rel_weight, ...} : relevance_fudge)
   2.350 +                      const_tab =
   2.351 +  generic_pconst_weight local_const_multiplier abs_rel_weight 0.0
   2.352 +                        theory_const_rel_weight 0.0 rel_weight_for I const_tab
   2.353 +                        Symtab.empty
   2.354 +
   2.355 +fun irrel_pconst_weight (fudge as {local_const_multiplier, abs_irrel_weight,
   2.356 +                                   skolem_irrel_weight,
   2.357 +                                   theory_const_irrel_weight,
   2.358 +                                   chained_const_irrel_weight, ...})
   2.359 +                        const_tab chained_const_tab =
   2.360 +  generic_pconst_weight local_const_multiplier abs_irrel_weight
   2.361 +                        skolem_irrel_weight theory_const_irrel_weight
   2.362 +                        chained_const_irrel_weight (irrel_weight_for fudge) swap
   2.363 +                        const_tab chained_const_tab
   2.364 +
   2.365 +fun stature_bonus ({intro_bonus, ...} : relevance_fudge) (_, Intro) =
   2.366 +    intro_bonus
   2.367 +  | stature_bonus {elim_bonus, ...} (_, Elim) = elim_bonus
   2.368 +  | stature_bonus {simp_bonus, ...} (_, Simp) = simp_bonus
   2.369 +  | stature_bonus {local_bonus, ...} (Local, _) = local_bonus
   2.370 +  | stature_bonus {assum_bonus, ...} (Assum, _) = assum_bonus
   2.371 +  | stature_bonus {chained_bonus, ...} (Chained, _) = chained_bonus
   2.372 +  | stature_bonus _ _ = 0.0
   2.373 +
   2.374 +fun is_odd_const_name s =
   2.375 +  s = pseudo_abs_name orelse String.isPrefix pseudo_skolem_prefix s orelse
   2.376 +  String.isSuffix theory_const_suffix s
   2.377 +
   2.378 +fun fact_weight fudge stature const_tab relevant_consts chained_consts
   2.379 +                fact_consts =
   2.380 +  case fact_consts |> List.partition (pconst_hyper_mem I relevant_consts)
   2.381 +                   ||> filter_out (pconst_hyper_mem swap relevant_consts) of
   2.382 +    ([], _) => 0.0
   2.383 +  | (rel, irrel) =>
   2.384 +    if forall (forall (is_odd_const_name o fst)) [rel, irrel] then
   2.385 +      0.0
   2.386 +    else
   2.387 +      let
   2.388 +        val irrel = irrel |> filter_out (pconst_mem swap rel)
   2.389 +        val rel_weight =
   2.390 +          0.0 |> fold (curry (op +) o rel_pconst_weight fudge const_tab) rel
   2.391 +        val irrel_weight =
   2.392 +          ~ (stature_bonus fudge stature)
   2.393 +          |> fold (curry (op +)
   2.394 +                   o irrel_pconst_weight fudge const_tab chained_consts) irrel
   2.395 +        val res = rel_weight / (rel_weight + irrel_weight)
   2.396 +      in if Real.isFinite res then res else 0.0 end
   2.397 +
   2.398 +type annotated_thm =
   2.399 +  (((unit -> string) * stature) * thm) * (string * ptype) list
   2.400 +
   2.401 +fun take_most_relevant ctxt max_relevant remaining_max
   2.402 +        ({max_imperfect, max_imperfect_exp, ...} : relevance_fudge)
   2.403 +        (candidates : (annotated_thm * real) list) =
   2.404 +  let
   2.405 +    val max_imperfect =
   2.406 +      Real.ceil (Math.pow (max_imperfect,
   2.407 +                    Math.pow (Real.fromInt remaining_max
   2.408 +                              / Real.fromInt max_relevant, max_imperfect_exp)))
   2.409 +    val (perfect, imperfect) =
   2.410 +      candidates |> sort (Real.compare o swap o pairself snd)
   2.411 +                 |> take_prefix (fn (_, w) => w > 0.99999)
   2.412 +    val ((accepts, more_rejects), rejects) =
   2.413 +      chop max_imperfect imperfect |>> append perfect |>> chop remaining_max
   2.414 +  in
   2.415 +    trace_msg ctxt (fn () =>
   2.416 +        "Actually passed (" ^ string_of_int (length accepts) ^ " of " ^
   2.417 +        string_of_int (length candidates) ^ "): " ^
   2.418 +        (accepts |> map (fn ((((name, _), _), _), weight) =>
   2.419 +                            name () ^ " [" ^ Real.toString weight ^ "]")
   2.420 +                 |> commas));
   2.421 +    (accepts, more_rejects @ rejects)
   2.422 +  end
   2.423 +
   2.424 +fun if_empty_replace_with_scope thy is_built_in_const facts sc tab =
   2.425 +  if Symtab.is_empty tab then
   2.426 +    Symtab.empty
   2.427 +    |> fold (add_pconsts_in_term thy is_built_in_const false (SOME false))
   2.428 +            (map_filter (fn ((_, (sc', _)), th) =>
   2.429 +                            if sc' = sc then SOME (prop_of th) else NONE) facts)
   2.430 +  else
   2.431 +    tab
   2.432 +
   2.433 +fun consider_arities is_built_in_const th =
   2.434 +  let
   2.435 +    fun aux _ _ NONE = NONE
   2.436 +      | aux t args (SOME tab) =
   2.437 +        case t of
   2.438 +          t1 $ t2 => SOME tab |> aux t1 (t2 :: args) |> aux t2 []
   2.439 +        | Const (x as (s, _)) =>
   2.440 +          (if is_built_in_const x args |> fst then
   2.441 +             SOME tab
   2.442 +           else case Symtab.lookup tab s of
   2.443 +             NONE => SOME (Symtab.update (s, length args) tab)
   2.444 +           | SOME n => if n = length args then SOME tab else NONE)
   2.445 +        | _ => SOME tab
   2.446 +  in aux (prop_of th) [] end
   2.447 +
   2.448 +(* FIXME: This is currently only useful for polymorphic type encodings. *)
   2.449 +fun could_benefit_from_ext is_built_in_const facts =
   2.450 +  fold (consider_arities is_built_in_const o snd) facts (SOME Symtab.empty)
   2.451 +  |> is_none
   2.452 +
   2.453 +(* High enough so that it isn't wrongly considered as very relevant (e.g., for E
   2.454 +   weights), but low enough so that it is unlikely to be truncated away if few
   2.455 +   facts are included. *)
   2.456 +val special_fact_index = 75
   2.457 +
   2.458 +fun relevance_filter ctxt threshold0 decay max_relevant is_built_in_const
   2.459 +        (fudge as {threshold_divisor, ridiculous_threshold, ...})
   2.460 +        ({add, del, ...} : relevance_override) facts chained_ts hyp_ts concl_t =
   2.461 +  let
   2.462 +    val thy = Proof_Context.theory_of ctxt
   2.463 +    val const_tab = fold (count_fact_consts thy fudge) facts Symtab.empty
   2.464 +    val add_pconsts = add_pconsts_in_term thy is_built_in_const false o SOME
   2.465 +    val chained_const_tab = Symtab.empty |> fold (add_pconsts true) chained_ts
   2.466 +    val goal_const_tab =
   2.467 +      Symtab.empty |> fold (add_pconsts true) hyp_ts
   2.468 +                   |> add_pconsts false concl_t
   2.469 +      |> (fn tab => if Symtab.is_empty tab then chained_const_tab else tab)
   2.470 +      |> fold (if_empty_replace_with_scope thy is_built_in_const facts)
   2.471 +              [Chained, Assum, Local]
   2.472 +    val add_ths = Attrib.eval_thms ctxt add
   2.473 +    val del_ths = Attrib.eval_thms ctxt del
   2.474 +    val facts = facts |> filter_out (member Thm.eq_thm_prop del_ths o snd)
   2.475 +    fun iter j remaining_max threshold rel_const_tab hopeless hopeful =
   2.476 +      let
   2.477 +        fun relevant [] _ [] =
   2.478 +            (* Nothing has been added this iteration. *)
   2.479 +            if j = 0 andalso threshold >= ridiculous_threshold then
   2.480 +              (* First iteration? Try again. *)
   2.481 +              iter 0 max_relevant (threshold / threshold_divisor) rel_const_tab
   2.482 +                   hopeless hopeful
   2.483 +            else
   2.484 +              []
   2.485 +          | relevant candidates rejects [] =
   2.486 +            let
   2.487 +              val (accepts, more_rejects) =
   2.488 +                take_most_relevant ctxt max_relevant remaining_max fudge
   2.489 +                                   candidates
   2.490 +              val rel_const_tab' =
   2.491 +                rel_const_tab
   2.492 +                |> fold (add_pconst_to_table false) (maps (snd o fst) accepts)
   2.493 +              fun is_dirty (c, _) =
   2.494 +                Symtab.lookup rel_const_tab' c <> Symtab.lookup rel_const_tab c
   2.495 +              val (hopeful_rejects, hopeless_rejects) =
   2.496 +                 (rejects @ hopeless, ([], []))
   2.497 +                 |-> fold (fn (ax as (_, consts), old_weight) =>
   2.498 +                              if exists is_dirty consts then
   2.499 +                                apfst (cons (ax, NONE))
   2.500 +                              else
   2.501 +                                apsnd (cons (ax, old_weight)))
   2.502 +                 |>> append (more_rejects
   2.503 +                             |> map (fn (ax as (_, consts), old_weight) =>
   2.504 +                                        (ax, if exists is_dirty consts then NONE
   2.505 +                                             else SOME old_weight)))
   2.506 +              val threshold =
   2.507 +                1.0 - (1.0 - threshold)
   2.508 +                      * Math.pow (decay, Real.fromInt (length accepts))
   2.509 +              val remaining_max = remaining_max - length accepts
   2.510 +            in
   2.511 +              trace_msg ctxt (fn () => "New or updated constants: " ^
   2.512 +                  commas (rel_const_tab' |> Symtab.dest
   2.513 +                          |> subtract (op =) (rel_const_tab |> Symtab.dest)
   2.514 +                          |> map string_for_hyper_pconst));
   2.515 +              map (fst o fst) accepts @
   2.516 +              (if remaining_max = 0 then
   2.517 +                 []
   2.518 +               else
   2.519 +                 iter (j + 1) remaining_max threshold rel_const_tab'
   2.520 +                      hopeless_rejects hopeful_rejects)
   2.521 +            end
   2.522 +          | relevant candidates rejects
   2.523 +                     (((ax as (((_, stature), _), fact_consts)), cached_weight)
   2.524 +                      :: hopeful) =
   2.525 +            let
   2.526 +              val weight =
   2.527 +                case cached_weight of
   2.528 +                  SOME w => w
   2.529 +                | NONE => fact_weight fudge stature const_tab rel_const_tab
   2.530 +                                      chained_const_tab fact_consts
   2.531 +            in
   2.532 +              if weight >= threshold then
   2.533 +                relevant ((ax, weight) :: candidates) rejects hopeful
   2.534 +              else
   2.535 +                relevant candidates ((ax, weight) :: rejects) hopeful
   2.536 +            end
   2.537 +        in
   2.538 +          trace_msg ctxt (fn () =>
   2.539 +              "ITERATION " ^ string_of_int j ^ ": current threshold: " ^
   2.540 +              Real.toString threshold ^ ", constants: " ^
   2.541 +              commas (rel_const_tab |> Symtab.dest
   2.542 +                      |> filter (curry (op <>) [] o snd)
   2.543 +                      |> map string_for_hyper_pconst));
   2.544 +          relevant [] [] hopeful
   2.545 +        end
   2.546 +    fun prepend_facts ths accepts =
   2.547 +      ((facts |> filter (member Thm.eq_thm_prop ths o snd)) @
   2.548 +       (accepts |> filter_out (member Thm.eq_thm_prop ths o snd)))
   2.549 +      |> take max_relevant
   2.550 +    fun uses_const s t =
   2.551 +      fold_aterms (curry (fn (Const (s', _), false) => s' = s | (_, b) => b)) t
   2.552 +                  false
   2.553 +    fun uses_const_anywhere accepts s =
   2.554 +      exists (uses_const s o prop_of o snd) accepts orelse
   2.555 +      exists (uses_const s) (concl_t :: hyp_ts)
   2.556 +    fun add_set_const_thms accepts =
   2.557 +      exists (uses_const_anywhere accepts) set_consts ? append set_thms
   2.558 +    fun insert_into_facts accepts [] = accepts
   2.559 +      | insert_into_facts accepts ths =
   2.560 +        let
   2.561 +          val add = facts |> filter (member Thm.eq_thm_prop ths o snd)
   2.562 +          val (bef, after) =
   2.563 +            accepts |> filter_out (member Thm.eq_thm_prop ths o snd)
   2.564 +                    |> take (max_relevant - length add)
   2.565 +                    |> chop special_fact_index
   2.566 +        in bef @ add @ after end
   2.567 +    fun insert_special_facts accepts =
   2.568 +       (* FIXME: get rid of "ext" here once it is treated as a helper *)
   2.569 +       [] |> could_benefit_from_ext is_built_in_const accepts ? cons @{thm ext}
   2.570 +          |> add_set_const_thms accepts
   2.571 +          |> insert_into_facts accepts
   2.572 +  in
   2.573 +    facts |> map_filter (pair_consts_fact thy is_built_in_const fudge)
   2.574 +          |> iter 0 max_relevant threshold0 goal_const_tab []
   2.575 +          |> not (null add_ths) ? prepend_facts add_ths
   2.576 +          |> insert_special_facts
   2.577 +          |> tap (fn accepts => trace_msg ctxt (fn () =>
   2.578 +                      "Total relevant: " ^ string_of_int (length accepts)))
   2.579 +  end
   2.580 +
   2.581 +fun iterative_relevant_facts ctxt (threshold0, threshold1) max_relevant
   2.582 +                             is_built_in_const fudge (override as {only, ...})
   2.583 +                             chained_ths hyp_ts concl_t facts =
   2.584 +  let
   2.585 +    val thy = Proof_Context.theory_of ctxt
   2.586 +    val decay = Math.pow ((1.0 - threshold1) / (1.0 - threshold0),
   2.587 +                          1.0 / Real.fromInt (max_relevant + 1))
   2.588 +  in
   2.589 +    trace_msg ctxt (fn () => "Considering " ^ string_of_int (length facts) ^
   2.590 +                             " facts");
   2.591 +    (if only orelse threshold1 < 0.0 then
   2.592 +       facts
   2.593 +     else if threshold0 > 1.0 orelse threshold0 > threshold1 orelse
   2.594 +             max_relevant = 0 then
   2.595 +       []
   2.596 +     else
   2.597 +       relevance_filter ctxt threshold0 decay max_relevant is_built_in_const
   2.598 +           fudge override facts (chained_ths |> map prop_of) hyp_ts
   2.599 +           (concl_t |> theory_constify fudge (Context.theory_name thy)))
   2.600 +    |> map (apfst (apfst (fn f => f ())))
   2.601 +  end
   2.602 +
   2.603 +end;
     3.1 --- /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.2 +++ b/src/HOL/Tools/Sledgehammer/sledgehammer_filter_mash.ML	Wed Jul 11 21:43:19 2012 +0200
     3.3 @@ -0,0 +1,13 @@
     3.4 +(*  Title:      HOL/Tools/Sledgehammer/sledgehammer_filter_mash.ML
     3.5 +    Author:     Jasmin Blanchette, TU Muenchen
     3.6 +
     3.7 +Sledgehammer's machine-learning-based relevance filter (MaSh).
     3.8 +*)
     3.9 +
    3.10 +signature SLEDGEHAMMER_FILTER_MASH =
    3.11 +sig
    3.12 +end;
    3.13 +
    3.14 +structure Sledgehammer_Filter_MaSh : SLEDGEHAMMER_FILTER_MASH =
    3.15 +struct
    3.16 +end;