moved some set lemmas to Set.thy
authorhaftmann
Tue, 26 Feb 2008 20:38:12 +0100
changeset 26147ae2bf929e33c
parent 26146 61cb176d0385
child 26148 cbe6f8af8db2
moved some set lemmas to Set.thy
src/HOL/Fun.thy
     1.1 --- a/src/HOL/Fun.thy	Tue Feb 26 20:38:10 2008 +0100
     1.2 +++ b/src/HOL/Fun.thy	Tue Feb 26 20:38:12 2008 +0100
     1.3 @@ -10,40 +10,45 @@
     1.4  imports Set
     1.5  begin
     1.6  
     1.7 -constdefs
     1.8 -  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
     1.9 -  "fun_upd f a b == % x. if x=a then b else f x"
    1.10 +text{*As a simplification rule, it replaces all function equalities by
    1.11 +  first-order equalities.*}
    1.12 +lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
    1.13 +apply (rule iffI)
    1.14 +apply (simp (no_asm_simp))
    1.15 +apply (rule ext)
    1.16 +apply (simp (no_asm_simp))
    1.17 +done
    1.18  
    1.19 -nonterminals
    1.20 -  updbinds updbind
    1.21 -syntax
    1.22 -  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
    1.23 -  ""         :: "updbind => updbinds"             ("_")
    1.24 -  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
    1.25 -  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
    1.26 +lemma apply_inverse:
    1.27 +  "f x =u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"
    1.28 +  by auto
    1.29  
    1.30 -translations
    1.31 -  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
    1.32 -  "f(x:=y)"                     == "fun_upd f x y"
    1.33  
    1.34 -(* Hint: to define the sum of two functions (or maps), use sum_case.
    1.35 -         A nice infix syntax could be defined (in Datatype.thy or below) by
    1.36 -consts
    1.37 -  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
    1.38 -translations
    1.39 - "fun_sum" == sum_case
    1.40 -*)
    1.41 -
    1.42 -definition
    1.43 -  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
    1.44 -where
    1.45 -  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
    1.46 +subsection {* The Identity Function @{text id} *}
    1.47  
    1.48  definition
    1.49    id :: "'a \<Rightarrow> 'a"
    1.50  where
    1.51    "id = (\<lambda>x. x)"
    1.52  
    1.53 +lemma id_apply [simp]: "id x = x"
    1.54 +  by (simp add: id_def)
    1.55 +
    1.56 +lemma image_ident [simp]: "(%x. x) ` Y = Y"
    1.57 +by blast
    1.58 +
    1.59 +lemma image_id [simp]: "id ` Y = Y"
    1.60 +by (simp add: id_def)
    1.61 +
    1.62 +lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
    1.63 +by blast
    1.64 +
    1.65 +lemma vimage_id [simp]: "id -` A = A"
    1.66 +by (simp add: id_def)
    1.67 +
    1.68 +
    1.69 +subsection {* The Composition Operator @{text "f \<circ> g"} *}
    1.70 +
    1.71  definition
    1.72    comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
    1.73  where
    1.74 @@ -58,63 +63,6 @@
    1.75  text{*compatibility*}
    1.76  lemmas o_def = comp_def
    1.77  
    1.78 -constdefs
    1.79 -  inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
    1.80 -  "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
    1.81 -
    1.82 -definition
    1.83 -  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
    1.84 -  "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
    1.85 -
    1.86 -
    1.87 -text{*A common special case: functions injective over the entire domain type.*}
    1.88 -
    1.89 -abbreviation
    1.90 -  "inj f == inj_on f UNIV"
    1.91 -
    1.92 -constdefs
    1.93 -  surj :: "('a => 'b) => bool"                   (*surjective*)
    1.94 -  "surj f == ! y. ? x. y=f(x)"
    1.95 -
    1.96 -  bij :: "('a => 'b) => bool"                    (*bijective*)
    1.97 -  "bij f == inj f & surj f"
    1.98 -
    1.99 -
   1.100 -
   1.101 -text{*As a simplification rule, it replaces all function equalities by
   1.102 -  first-order equalities.*}
   1.103 -lemma expand_fun_eq: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)"
   1.104 -apply (rule iffI)
   1.105 -apply (simp (no_asm_simp))
   1.106 -apply (rule ext)
   1.107 -apply (simp (no_asm_simp))
   1.108 -done
   1.109 -
   1.110 -lemma apply_inverse:
   1.111 -    "[| f(x)=u;  !!x. P(x) ==> g(f(x)) = x;  P(x) |] ==> x=g(u)"
   1.112 -by auto
   1.113 -
   1.114 -
   1.115 -text{*The Identity Function: @{term id}*}
   1.116 -lemma id_apply [simp]: "id x = x"
   1.117 -by (simp add: id_def)
   1.118 -
   1.119 -lemma inj_on_id[simp]: "inj_on id A"
   1.120 -by (simp add: inj_on_def) 
   1.121 -
   1.122 -lemma inj_on_id2[simp]: "inj_on (%x. x) A"
   1.123 -by (simp add: inj_on_def) 
   1.124 -
   1.125 -lemma surj_id[simp]: "surj id"
   1.126 -by (simp add: surj_def) 
   1.127 -
   1.128 -lemma bij_id[simp]: "bij id"
   1.129 -by (simp add: bij_def inj_on_id surj_id) 
   1.130 -
   1.131 -
   1.132 -
   1.133 -subsection{*The Composition Operator: @{term "f \<circ> g"}*}
   1.134 -
   1.135  lemma o_apply [simp]: "(f o g) x = f (g x)"
   1.136  by (simp add: comp_def)
   1.137  
   1.138 @@ -130,17 +78,36 @@
   1.139  lemma image_compose: "(f o g) ` r = f`(g`r)"
   1.140  by (simp add: comp_def, blast)
   1.141  
   1.142 -lemma image_eq_UN: "f`A = (UN x:A. {f x})"
   1.143 -by blast
   1.144 -
   1.145  lemma UN_o: "UNION A (g o f) = UNION (f`A) g"
   1.146  by (unfold comp_def, blast)
   1.147  
   1.148  
   1.149 -subsection{*The Injectivity Predicate, @{term inj}*}
   1.150 +subsection {* Injectivity and Surjectivity *}
   1.151  
   1.152 -text{*NB: @{term inj} now just translates to @{term inj_on}*}
   1.153 +constdefs
   1.154 +  inj_on :: "['a => 'b, 'a set] => bool"  -- "injective"
   1.155 +  "inj_on f A == ! x:A. ! y:A. f(x)=f(y) --> x=y"
   1.156  
   1.157 +text{*A common special case: functions injective over the entire domain type.*}
   1.158 +
   1.159 +abbreviation
   1.160 +  "inj f == inj_on f UNIV"
   1.161 +
   1.162 +definition
   1.163 +  bij_betw :: "('a => 'b) => 'a set => 'b set => bool" where -- "bijective"
   1.164 +  "bij_betw f A B \<longleftrightarrow> inj_on f A & f ` A = B"
   1.165 +
   1.166 +constdefs
   1.167 +  surj :: "('a => 'b) => bool"                   (*surjective*)
   1.168 +  "surj f == ! y. ? x. y=f(x)"
   1.169 +
   1.170 +  bij :: "('a => 'b) => bool"                    (*bijective*)
   1.171 +  "bij f == inj f & surj f"
   1.172 +
   1.173 +lemma injI:
   1.174 +  assumes "\<And>x y. f x = f y \<Longrightarrow> x = y"
   1.175 +  shows "inj f"
   1.176 +  using assms unfolding inj_on_def by auto
   1.177  
   1.178  text{*For Proofs in @{text "Tools/datatype_rep_proofs"}*}
   1.179  lemma datatype_injI:
   1.180 @@ -157,8 +124,17 @@
   1.181  lemma inj_eq: "inj(f) ==> (f(x) = f(y)) = (x=y)"
   1.182  by (force simp add: inj_on_def)
   1.183  
   1.184 +lemma inj_on_id[simp]: "inj_on id A"
   1.185 +  by (simp add: inj_on_def) 
   1.186  
   1.187 -subsection{*The Predicate @{term inj_on}: Injectivity On A Restricted Domain*}
   1.188 +lemma inj_on_id2[simp]: "inj_on (%x. x) A"
   1.189 +by (simp add: inj_on_def) 
   1.190 +
   1.191 +lemma surj_id[simp]: "surj id"
   1.192 +by (simp add: surj_def) 
   1.193 +
   1.194 +lemma bij_id[simp]: "bij id"
   1.195 +by (simp add: bij_def inj_on_id surj_id) 
   1.196  
   1.197  lemma inj_onI:
   1.198      "(!! x y. [|  x:A;  y:A;  f(x) = f(y) |] ==> x=y) ==> inj_on f A"
   1.199 @@ -218,9 +194,6 @@
   1.200  apply (blast)
   1.201  done
   1.202  
   1.203 -
   1.204 -subsection{*The Predicate @{term surj}: Surjectivity*}
   1.205 -
   1.206  lemma surjI: "(!! x. g(f x) = x) ==> surj g"
   1.207  apply (simp add: surj_def)
   1.208  apply (blast intro: sym)
   1.209 @@ -241,9 +214,6 @@
   1.210  apply (drule_tac x = x in spec, blast)
   1.211  done
   1.212  
   1.213 -
   1.214 -subsection{*The Predicate @{const bij}: Bijectivity*}
   1.215 -
   1.216  lemma bijI: "[| inj f; surj f |] ==> bij f"
   1.217  by (simp add: bij_def)
   1.218  
   1.219 @@ -253,9 +223,6 @@
   1.220  lemma bij_is_surj: "bij f ==> surj f"
   1.221  by (simp add: bij_def)
   1.222  
   1.223 -
   1.224 -subsection{*The Predicate @{const bij_betw}: Bijectivity*}
   1.225 -
   1.226  lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"
   1.227  by (simp add: bij_betw_def)
   1.228  
   1.229 @@ -290,34 +257,6 @@
   1.230    ultimately show ?thesis by(auto simp:bij_betw_def)
   1.231  qed
   1.232  
   1.233 -
   1.234 -subsection{*Facts About the Identity Function*}
   1.235 -
   1.236 -text{*We seem to need both the @{term id} forms and the @{term "\<lambda>x. x"}
   1.237 -forms. The latter can arise by rewriting, while @{term id} may be used
   1.238 -explicitly.*}
   1.239 -
   1.240 -lemma image_ident [simp]: "(%x. x) ` Y = Y"
   1.241 -by blast
   1.242 -
   1.243 -lemma image_id [simp]: "id ` Y = Y"
   1.244 -by (simp add: id_def)
   1.245 -
   1.246 -lemma vimage_ident [simp]: "(%x. x) -` Y = Y"
   1.247 -by blast
   1.248 -
   1.249 -lemma vimage_id [simp]: "id -` A = A"
   1.250 -by (simp add: id_def)
   1.251 -
   1.252 -lemma vimage_image_eq [noatp]: "f -` (f ` A) = {y. EX x:A. f x = f y}"
   1.253 -by (blast intro: sym)
   1.254 -
   1.255 -lemma image_vimage_subset: "f ` (f -` A) <= A"
   1.256 -by blast
   1.257 -
   1.258 -lemma image_vimage_eq [simp]: "f ` (f -` A) = A Int range f"
   1.259 -by blast
   1.260 -
   1.261  lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A"
   1.262  by (simp add: surj_range)
   1.263  
   1.264 @@ -337,12 +276,6 @@
   1.265  apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD)
   1.266  done
   1.267  
   1.268 -lemma image_Int_subset: "f`(A Int B) <= f`A Int f`B"
   1.269 -by blast
   1.270 -
   1.271 -lemma image_diff_subset: "f`A - f`B <= f`(A - B)"
   1.272 -by blast
   1.273 -
   1.274  lemma inj_on_image_Int:
   1.275     "[| inj_on f C;  A<=C;  B<=C |] ==> f`(A Int B) = f`A Int f`B"
   1.276  apply (simp add: inj_on_def, blast)
   1.277 @@ -368,9 +301,6 @@
   1.278  lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)"
   1.279  by (blast dest: injD)
   1.280  
   1.281 -lemma image_UN: "(f ` (UNION A B)) = (UN x:A.(f ` (B x)))"
   1.282 -by blast
   1.283 -
   1.284  (*injectivity's required.  Left-to-right inclusion holds even if A is empty*)
   1.285  lemma image_INT:
   1.286     "[| inj_on f C;  ALL x:A. B x <= C;  j:A |]
   1.287 @@ -400,6 +330,30 @@
   1.288  
   1.289  subsection{*Function Updating*}
   1.290  
   1.291 +constdefs
   1.292 +  fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)"
   1.293 +  "fun_upd f a b == % x. if x=a then b else f x"
   1.294 +
   1.295 +nonterminals
   1.296 +  updbinds updbind
   1.297 +syntax
   1.298 +  "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
   1.299 +  ""         :: "updbind => updbinds"             ("_")
   1.300 +  "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
   1.301 +  "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000,0] 900)
   1.302 +
   1.303 +translations
   1.304 +  "_Update f (_updbinds b bs)"  == "_Update (_Update f b) bs"
   1.305 +  "f(x:=y)"                     == "fun_upd f x y"
   1.306 +
   1.307 +(* Hint: to define the sum of two functions (or maps), use sum_case.
   1.308 +         A nice infix syntax could be defined (in Datatype.thy or below) by
   1.309 +consts
   1.310 +  fun_sum :: "('a => 'c) => ('b => 'c) => (('a+'b) => 'c)" (infixr "'(+')"80)
   1.311 +translations
   1.312 + "fun_sum" == sum_case
   1.313 +*)
   1.314 +
   1.315  lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)"
   1.316  apply (simp add: fun_upd_def, safe)
   1.317  apply (erule subst)
   1.318 @@ -437,7 +391,13 @@
   1.319       "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
   1.320  by auto
   1.321  
   1.322 -subsection{* @{text override_on} *}
   1.323 +
   1.324 +subsection {* @{text override_on} *}
   1.325 +
   1.326 +definition
   1.327 +  override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
   1.328 +where
   1.329 +  "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"
   1.330  
   1.331  lemma override_on_emptyset[simp]: "override_on f g {} = f"
   1.332  by(simp add:override_on_def)
   1.333 @@ -448,7 +408,8 @@
   1.334  lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a"
   1.335  by(simp add:override_on_def)
   1.336  
   1.337 -subsection{* swap *}
   1.338 +
   1.339 +subsection {* @{text swap} *}
   1.340  
   1.341  definition
   1.342    swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"