HOL part moved to 'logics-HOL' manual;
authorwenzelm
Tue, 04 May 1999 18:05:34 +0200
changeset 658275f31d45fb8b
parent 6581 27d6e5d6a4a6
child 6583 4ac69ed20120
HOL part moved to 'logics-HOL' manual;
doc-src/Logics/HOL-eg.txt
doc-src/Logics/HOL-rules.txt
doc-src/Logics/HOL.tex
doc-src/Logics/logics.ind
doc-src/Logics/logics.tex
doc-src/Logics/preface.tex
     1.1 --- a/doc-src/Logics/HOL-eg.txt	Tue May 04 18:04:45 1999 +0200
     1.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     1.3 @@ -1,151 +0,0 @@
     1.4 -(**** HOL examples -- process using Doc/tout HOL-eg.txt  ****)
     1.5 -
     1.6 -Pretty.setmargin 72;  (*existing macros just allow this margin*)
     1.7 -print_depth 0;
     1.8 -
     1.9 -
    1.10 -(*** Conjunction rules ***)
    1.11 -
    1.12 -val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
    1.13 -by (resolve_tac [and_def RS ssubst] 1);
    1.14 -by (resolve_tac [allI] 1);
    1.15 -by (resolve_tac [impI] 1);
    1.16 -by (eresolve_tac [mp RS mp] 1);
    1.17 -by (REPEAT (resolve_tac prems 1));
    1.18 -val conjI = result();
    1.19 -
    1.20 -val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
    1.21 -prths (prems RL [and_def RS subst]);
    1.22 -prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
    1.23 -by (resolve_tac it 1);
    1.24 -by (REPEAT (ares_tac [impI] 1));
    1.25 -val conjunct1 = result();
    1.26 -
    1.27 -
    1.28 -(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***)
    1.29 -
    1.30 -goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
    1.31 -by (resolve_tac [notI] 1);
    1.32 -by (eresolve_tac [rangeE] 1);
    1.33 -by (eresolve_tac [equalityCE] 1);
    1.34 -by (dresolve_tac [CollectD] 1);
    1.35 -by (contr_tac 1);
    1.36 -by (swap_res_tac [CollectI] 1);
    1.37 -by (assume_tac 1);
    1.38 -
    1.39 -choplev 0;
    1.40 -by (best_tac (set_cs addSEs [equalityCE]) 1);
    1.41 -
    1.42 -
    1.43 -goal Set.thy "! f:: 'a=>'a set. ! x. ~ f(x) = ?S(f)";
    1.44 -by (REPEAT (resolve_tac [allI,notI] 1));
    1.45 -by (eresolve_tac [equalityCE] 1);
    1.46 -by (dresolve_tac [CollectD] 1);
    1.47 -by (contr_tac 1);
    1.48 -by (swap_res_tac [CollectI] 1);
    1.49 -by (assume_tac 1);
    1.50 -
    1.51 -choplev 0;
    1.52 -by (best_tac (set_cs addSEs [equalityCE]) 1);
    1.53 -
    1.54 -
    1.55 -goal Set.thy "~ (? f:: 'a=>'a set. ! S. ? a. f(a) = S)";
    1.56 -by (best_tac (set_cs addSEs [equalityCE]) 1);
    1.57 -
    1.58 -
    1.59 -
    1.60 -
    1.61 -> val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q";
    1.62 -Level 0
    1.63 -P & Q
    1.64 - 1. P & Q
    1.65 -> by (resolve_tac [and_def RS ssubst] 1);
    1.66 -Level 1
    1.67 -P & Q
    1.68 - 1. ! R. (P --> Q --> R) --> R
    1.69 -> by (resolve_tac [allI] 1);
    1.70 -Level 2
    1.71 -P & Q
    1.72 - 1. !!R. (P --> Q --> R) --> R
    1.73 -> by (resolve_tac [impI] 1);
    1.74 -Level 3
    1.75 -P & Q
    1.76 - 1. !!R. P --> Q --> R ==> R
    1.77 -> by (eresolve_tac [mp RS mp] 1);
    1.78 -Level 4
    1.79 -P & Q
    1.80 - 1. !!R. P
    1.81 - 2. !!R. Q
    1.82 -> by (REPEAT (resolve_tac prems 1));
    1.83 -Level 5
    1.84 -P & Q
    1.85 -No subgoals!
    1.86 -
    1.87 -
    1.88 -
    1.89 -> val prems = goal HOL_Rule.thy "[| P & Q |] ==> P";
    1.90 -Level 0
    1.91 -P
    1.92 - 1. P
    1.93 -> prths (prems RL [and_def RS subst]);
    1.94 -! R. (P --> Q --> R) --> R  [P & Q]
    1.95 -P & Q  [P & Q]
    1.96 -
    1.97 -> prths (prems RL [and_def RS subst] RL [spec] RL [mp]);
    1.98 -P --> Q --> ?Q ==> ?Q  [P & Q]
    1.99 -
   1.100 -> by (resolve_tac it 1);
   1.101 -Level 1
   1.102 -P
   1.103 - 1. P --> Q --> P
   1.104 -> by (REPEAT (ares_tac [impI] 1));
   1.105 -Level 2
   1.106 -P
   1.107 -No subgoals!
   1.108 -
   1.109 -
   1.110 -
   1.111 -
   1.112 -> goal Set.thy "~ ?S : range(f :: 'a=>'a set)";
   1.113 -Level 0
   1.114 -~?S : range(f)
   1.115 - 1. ~?S : range(f)
   1.116 -> by (resolve_tac [notI] 1);
   1.117 -Level 1
   1.118 -~?S : range(f)
   1.119 - 1. ?S : range(f) ==> False
   1.120 -> by (eresolve_tac [rangeE] 1);
   1.121 -Level 2
   1.122 -~?S : range(f)
   1.123 - 1. !!x. ?S = f(x) ==> False
   1.124 -> by (eresolve_tac [equalityCE] 1);
   1.125 -Level 3
   1.126 -~?S : range(f)
   1.127 - 1. !!x. [| ?c3(x) : ?S; ?c3(x) : f(x) |] ==> False
   1.128 - 2. !!x. [| ~?c3(x) : ?S; ~?c3(x) : f(x) |] ==> False
   1.129 -> by (dresolve_tac [CollectD] 1);
   1.130 -Level 4
   1.131 -~{x. ?P7(x)} : range(f)
   1.132 - 1. !!x. [| ?c3(x) : f(x); ?P7(?c3(x)) |] ==> False
   1.133 - 2. !!x. [| ~?c3(x) : {x. ?P7(x)}; ~?c3(x) : f(x) |] ==> False
   1.134 -> by (contr_tac 1);
   1.135 -Level 5
   1.136 -~{x. ~x : f(x)} : range(f)
   1.137 - 1. !!x. [| ~x : {x. ~x : f(x)}; ~x : f(x) |] ==> False
   1.138 -> by (swap_res_tac [CollectI] 1);
   1.139 -Level 6
   1.140 -~{x. ~x : f(x)} : range(f)
   1.141 - 1. !!x. [| ~x : f(x); ~False |] ==> ~x : f(x)
   1.142 -> by (assume_tac 1);
   1.143 -Level 7
   1.144 -~{x. ~x : f(x)} : range(f)
   1.145 -No subgoals!
   1.146 -
   1.147 -> choplev 0;
   1.148 -Level 0
   1.149 -~?S : range(f)
   1.150 - 1. ~?S : range(f)
   1.151 -> by (best_tac (set_cs addSEs [equalityCE]) 1);
   1.152 -Level 1
   1.153 -~{x. ~x : f(x)} : range(f)
   1.154 -No subgoals!
     2.1 --- a/doc-src/Logics/HOL-rules.txt	Tue May 04 18:04:45 1999 +0200
     2.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     2.3 @@ -1,403 +0,0 @@
     2.4 -ruleshell.ML lemmas.ML set.ML fun.ML subset.ML equalities.ML prod.ML sum.ML wf.ML mono.ML fixedpt.ML nat.ML list.ML
     2.5 -----------------------------------------------------------------
     2.6 -ruleshell.ML
     2.7 -
     2.8 -\idx{refl}      t = t::'a
     2.9 -\idx{subst}     [| s = t; P(s) |] ==> P(t::'a)
    2.10 -\idx{abs},!!x::'a. f(x)::'b = g(x)) ==> (%x.f(x)) = (%x.g(x)))
    2.11 -\idx{disch}     (P ==> Q) ==> P-->Q
    2.12 -\idx{mp}        [| P-->Q;  P |] ==> Q
    2.13 -
    2.14 -\idx{True_def}  True = ((%x.x)=(%x.x))
    2.15 -\idx{All_def}   All  = (%P. P = (%x.True))
    2.16 -\idx{Ex_def}    Ex   = (%P. P(Eps(P)))
    2.17 -\idx{False_def} False = (!P.P)
    2.18 -\idx{not_def}   not  = (%P. P-->False)
    2.19 -\idx{and_def}   op & = (%P Q. !R. (P-->Q-->R) --> R)
    2.20 -\idx{or_def}    op | = (%P Q. !R. (P-->R) --> (Q-->R) --> R)
    2.21 -\idx{Ex1_def}   Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x))
    2.22 -
    2.23 -\idx{iff}       (P-->Q) --> (Q-->P) --> (P=Q)
    2.24 -\idx{True_or_False}     (P=True) | (P=False)
    2.25 -\idx{select}    P(x::'a) --> P(Eps(P))
    2.26 -
    2.27 -\idx{Inv_def}   Inv = (%(f::'a=>'b) y. @x. f(x)=y)
    2.28 -\idx{o_def}     op o = (%(f::'b=>'c) g (x::'a). f(g(x)))
    2.29 -\idx{Cond_def}  Cond = (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y))
    2.30 -
    2.31 -----------------------------------------------------------------
    2.32 -lemmas.ML
    2.33 -
    2.34 -\idx{sym}    s=t ==> t=s
    2.35 -\idx{trans}    [| r=s; s=t |] ==> r=t
    2.36 -\idx{box_equals}    
    2.37 -    [| a=b;  a=c;  b=d |] ==> c=d  
    2.38 -\idx{ap_term}    s=t ==> f(s)=f(t)
    2.39 -\idx{ap_thm}    s::'a=>'b = t ==> s(x)=t(x)
    2.40 -\idx{cong}    
    2.41 -   [| f = g; x::'a = y |] ==> f(x) = g(y)
    2.42 -\idx{iffI}    
    2.43 -   [| P ==> Q;  Q ==> P |] ==> P=Q
    2.44 -\idx{iffD1}    [| P=Q; Q |] ==> P
    2.45 -\idx{iffE}    
    2.46 -    [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
    2.47 -\idx{eqTrueI}    P ==> P=True 
    2.48 -\idx{eqTrueE}    P=True ==> P 
    2.49 -\idx{allI}    (!!x::'a. P(x)) ==> !x. P(x)
    2.50 -\idx{spec}    !x::'a.P(x) ==> P(x)
    2.51 -\idx{allE}    [| !x.P(x);  P(x) ==> R |] ==> R
    2.52 -\idx{all_dupE}    
    2.53 -    [| ! x.P(x);  [| P(x); ! x.P(x) |] ==> R 
    2.54 -    |] ==> R
    2.55 -\idx{FalseE}    False ==> P
    2.56 -\idx{False_neq_True}    False=True ==> P
    2.57 -\idx{notI}    (P ==> False) ==> ~P
    2.58 -\idx{notE}    [| ~P;  P |] ==> R
    2.59 -\idx{impE}    [| P-->Q;  P;  Q ==> R |] ==> R
    2.60 -\idx{rev_mp}    [| P;  P --> Q |] ==> Q
    2.61 -\idx{contrapos}    [| ~Q;  P==>Q |] ==> ~P
    2.62 -\idx{exI}    P(x) ==> ? x::'a.P(x)
    2.63 -\idx{exE}    [| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q
    2.64 -
    2.65 -\idx{conjI}    [| P; Q |] ==> P&Q
    2.66 -\idx{conjunct1}    [| P & Q |] ==> P
    2.67 -\idx{conjunct2}    [| P & Q |] ==> Q 
    2.68 -\idx{conjE}    [| P&Q;  [| P; Q |] ==> R |] ==> R
    2.69 -\idx{disjI1}    P ==> P|Q
    2.70 -\idx{disjI2}    Q ==> P|Q
    2.71 -\idx{disjE}    [| P | Q; P ==> R; Q ==> R |] ==> R
    2.72 -\idx{ccontr}    (~P ==> False) ==> P
    2.73 -\idx{classical}    (~P ==> P) ==> P
    2.74 -\idx{notnotD}    ~~P ==> P
    2.75 -\idx{ex1I}    
    2.76 -    [| P(a);  !!x. P(x) ==> x=a |] ==> ?! x. P(x)
    2.77 -\idx{ex1E}    
    2.78 -    [| ?! x.P(x);  !!x. [| P(x);  ! y. P(y) --> y=x |] ==> R |] ==> R
    2.79 -\idx{select_equality}    
    2.80 -    [| P(a);  !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a
    2.81 -\idx{disjCI}    (~Q ==> P) ==> P|Q
    2.82 -\idx{excluded_middle}    ~P | P
    2.83 -\idx{impCE}    [| P-->Q; ~P ==> R; Q ==> R |] ==> R 
    2.84 -\idx{iffCE}    
    2.85 -    [| P=Q;  [| P; Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
    2.86 -\idx{exCI}    (! x. ~P(x) ==> P(a)) ==> ? x.P(x)
    2.87 -\idx{swap}    ~P ==> (~Q ==> P) ==> Q
    2.88 -
    2.89 -----------------------------------------------------------------
    2.90 -simpdata.ML
    2.91 -
    2.92 -\idx{if_True}    Cond(True,x,y) = x
    2.93 -\idx{if_False}    Cond(False,x,y) = y
    2.94 -\idx{if_P}    P ==> Cond(P,x,y) = x
    2.95 -\idx{if_not_P}    ~P ==> Cond(P,x,y) = y
    2.96 -\idx{expand_if}    
    2.97 -    P(Cond(Q,x,y)) = ((Q --> P(x)) & (~Q --> P(y)))
    2.98 -
    2.99 -----------------------------------------------------------------
   2.100 -\idx{set.ML}
   2.101 -
   2.102 -\idx{CollectI}          [| P(a) |] ==> a : \{x.P(x)\}
   2.103 -\idx{CollectD}          [| a : \{x.P(x)\} |] ==> P(a)
   2.104 -\idx{set_ext}           [| !!x. (x:A) = (x:B) |] ==> A = B
   2.105 -
   2.106 -\idx{Ball_def}          Ball(A,P)  == ! x. x:A --> P(x)
   2.107 -\idx{Bex_def}           Bex(A,P)   == ? x. x:A & P(x)
   2.108 -\idx{subset_def}        A <= B     == ! x:A. x:B
   2.109 -\idx{Un_def}            A Un B     == \{x.x:A | x:B\}
   2.110 -\idx{Int_def}           A Int B    == \{x.x:A & x:B\}
   2.111 -\idx{Compl_def}         Compl(A)   == \{x. ~x:A\}
   2.112 -\idx{Inter_def}         Inter(S)   == \{x. ! A:S. x:A\}
   2.113 -\idx{Union_def}         Union(S)   == \{x. ? A:S. x:A\}
   2.114 -\idx{INTER_def}         INTER(A,B) == \{y. ! x:A. y: B(x)\}
   2.115 -\idx{UNION_def}         UNION(A,B) == \{y. ? x:A. y: B(x)\}
   2.116 -\idx{mono_def}          mono(f)    == (!A B. A <= B --> f(A) <= f(B))
   2.117 -\idx{image_def}         f``A       == \{y. ? x:A. y=f(x)\}
   2.118 -\idx{singleton_def}     \{a\}      == \{x.x=a\}
   2.119 -\idx{range_def}         range(f)   == \{y. ? x. y=f(x)\}
   2.120 -\idx{One_One_def}       One_One(f) == ! x y. f(x)=f(y) --> x=y
   2.121 -\idx{One_One_on_def}    One_One_on(f,A) == !x y. x:A --> y:A --> f(x)=f(y) --> x=y
   2.122 -\idx{Onto_def}          Onto(f) == ! y. ? x. y=f(x)
   2.123 -
   2.124 -
   2.125 -\idx{Collect_cong}    [| !!x. P(x)=Q(x) |] ==> \{x. P(x)\} = \{x. Q(x)\}
   2.126 -
   2.127 -\idx{ballI}    [| !!x. x:A ==> P(x) |] ==> ! x:A. P(x)
   2.128 -\idx{bspec}    [| ! x:A. P(x);  x:A |] ==> P(x)
   2.129 -\idx{ballE}    [| ! x:A. P(x);  P(x) ==> Q;  ~ x:A ==> Q |] ==> Q
   2.130 -
   2.131 -\idx{bexI}     [| P(x);  x:A |] ==> ? x:A. P(x)
   2.132 -\idx{bexCI}    [| ! x:A. ~P(x) ==> P(a);  a:A |] ==> ? x:A.P(x)
   2.133 -\idx{bexE}     [| ? x:A. P(x);  !!x. [| x:A; P(x) |] ==> Q  |] ==> Q
   2.134 -
   2.135 -\idx{ball_cong}
   2.136 -    [| A=A';  !!x. x:A' ==> P(x) = P'(x) |] ==> 
   2.137 -    (! x:A. P(x)) = (! x:A'. P'(x))
   2.138 -
   2.139 -\idx{bex_cong}
   2.140 -    [| A=A';  !!x. x:A' ==> P(x) = P'(x) |] ==> 
   2.141 -    (? x:A. P(x)) = (? x:A'. P'(x))
   2.142 -
   2.143 -\idx{subsetI}         (!!x.x:A ==> x:B) ==> A <= B
   2.144 -\idx{subsetD}         [| A <= B;  c:A |] ==> c:B
   2.145 -\idx{subsetCE}        [| A <= B;  ~(c:A) ==> P;  c:B ==> P |] ==> P
   2.146 -
   2.147 -\idx{subset_refl}     A <= A
   2.148 -\idx{subset_antisym}  [| A <= B;  B <= A |] ==> A = B
   2.149 -\idx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
   2.150 -
   2.151 -\idx{equalityD1}      A = B ==> A<=B
   2.152 -\idx{equalityD2}      A = B ==> B<=A
   2.153 -\idx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   2.154 -
   2.155 -\idx{singletonI}      a : \{a\}
   2.156 -\idx{singletonD}      b : \{a\} ==> b=a
   2.157 -
   2.158 -\idx{imageI}    [| x:A |] ==> f(x) : f``A
   2.159 -\idx{imageE}    [| b : f``A;  !!x.[| b=f(x);  x:A |] ==> P |] ==> P
   2.160 -
   2.161 -\idx{rangeI}    f(x) : range(f)
   2.162 -\idx{rangeE}    [| b : range(f);  !!x.[| b=f(x) |] ==> P |] ==> P
   2.163 -
   2.164 -\idx{UnionI}    [| X:C;  A:X |] ==> A : Union(C)
   2.165 -\idx{UnionE}    [| A : Union(C);  !!X.[| A:X;  X:C |] ==> R |] ==> R
   2.166 -
   2.167 -\idx{InterI}    [| !!X. X:C ==> A:X |] ==> A : Inter(C)
   2.168 -\idx{InterD}    [| A : Inter(C);  X:C |] ==> A:X
   2.169 -\idx{InterE}    [| A : Inter(C);  A:X ==> R;  ~ X:C ==> R |] ==> R
   2.170 -
   2.171 -\idx{UN_I}    [| a:A;  b: B(a) |] ==> b: (UN x:A. B(x))
   2.172 -\idx{UN_E}    [| b : (UN x:A. B(x));  !!x.[| x:A;  b: B(x) |] ==> R |] ==> R
   2.173 -
   2.174 -\idx{INT_I}    (!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))
   2.175 -\idx{INT_D}    [| b : (INT x:A. B(x));  a:A |] ==> b: B(a)
   2.176 -\idx{INT_E}    [| b : (INT x:A. B(x));  b: B(a) ==> R;  ~ a:A ==> R |] ==> R
   2.177 -
   2.178 -\idx{UnI1}    c:A ==> c : A Un B
   2.179 -\idx{UnI2}    c:B ==> c : A Un B
   2.180 -\idx{UnCI}    (~c:B ==> c:A) ==> c : A Un B
   2.181 -\idx{UnE}    [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   2.182 -
   2.183 -\idx{IntI}    [| c:A;  c:B |] ==> c : A Int B
   2.184 -\idx{IntD1}    c : A Int B ==> c:A
   2.185 -\idx{IntD2}    c : A Int B ==> c:B
   2.186 -\idx{IntE}    [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   2.187 -
   2.188 -\idx{ComplI}    [| c:A ==> False |] ==> c : Compl(A)
   2.189 -\idx{ComplD}    [| c : Compl(A) |] ==> ~c:A
   2.190 -
   2.191 -\idx{monoI}    [| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)
   2.192 -\idx{monoD}    [| mono(f);  A <= B |] ==> f(A) <= f(B)
   2.193 -
   2.194 -
   2.195 -----------------------------------------------------------------
   2.196 -\idx{fun.ML}
   2.197 -
   2.198 -\idx{One_OneI}            [| !! x y. f(x) = f(y) ==> x=y |] ==> One_One(f)
   2.199 -\idx{One_One_inverseI}    (!!x. g(f(x)) = x) ==> One_One(f)
   2.200 -\idx{One_OneD}            [| One_One(f); f(x) = f(y) |] ==> x=y
   2.201 -
   2.202 -\idx{Inv_f_f}             One_One(f)   ==> Inv(f,f(x)) = x
   2.203 -\idx{f_Inv_f}             y : range(f) ==> f(Inv(f,y)) = y
   2.204 -
   2.205 -\idx{Inv_injective}
   2.206 -    [| Inv(f,x)=Inv(f,y); x: range(f);  y: range(f) |] ==> x=y
   2.207 -
   2.208 -\idx{One_One_onI}
   2.209 -    (!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> One_One_on(f,A)
   2.210 -
   2.211 -\idx{One_One_on_inverseI}
   2.212 -    (!!x. x:A ==> g(f(x)) = x) ==> One_One_on(f,A)
   2.213 -
   2.214 -\idx{One_One_onD}
   2.215 -    [| One_One_on(f,A);  f(x)=f(y);  x:A;  y:A |] ==> x=y
   2.216 -
   2.217 -\idx{One_One_on_contraD}
   2.218 -    [| One_One_on(f,A);  ~x=y;  x:A;  y:A |] ==> ~ f(x)=f(y)
   2.219 -
   2.220 -
   2.221 -----------------------------------------------------------------
   2.222 -\idx{subset.ML}
   2.223 -
   2.224 -\idx{Union_upper}     B:A ==> B <= Union(A)
   2.225 -\idx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union(A) <= C
   2.226 -
   2.227 -\idx{Inter_lower}     B:A ==> Inter(A) <= B
   2.228 -\idx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter(A)
   2.229 -
   2.230 -\idx{Un_upper1}       A <= A Un B
   2.231 -\idx{Un_upper2}       B <= A Un B
   2.232 -\idx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
   2.233 -
   2.234 -\idx{Int_lower1}      A Int B <= A
   2.235 -\idx{Int_lower2}      A Int B <= B
   2.236 -\idx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
   2.237 -
   2.238 -
   2.239 -----------------------------------------------------------------
   2.240 -\idx{equalities.ML}
   2.241 -
   2.242 -\idx{Int_absorb}        A Int A = A
   2.243 -\idx{Int_commute}       A Int B  =  B Int A
   2.244 -\idx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
   2.245 -\idx{Int_Un_distrib}    (A Un B) Int C  =  (A Int C) Un (B Int C)
   2.246 -
   2.247 -\idx{Un_absorb}         A Un A = A
   2.248 -\idx{Un_commute}        A Un B  =  B Un A
   2.249 -\idx{Un_assoc}          (A Un B) Un C  =  A Un (B Un C)
   2.250 -\idx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
   2.251 -
   2.252 -\idx{Compl_disjoint}    A Int Compl(A) = \{x.False\}
   2.253 -\idx{Compl_partition    A Un Compl(A) = \{x.True\}
   2.254 -\idx{double_complement} Compl(Compl(A)) = A
   2.255 -
   2.256 -
   2.257 -\idx{Compl_Un}          Compl(A Un B) = Compl(A) Int Compl(B)
   2.258 -\idx{Compl_Int}         Compl(A Int B) = Compl(A) Un Compl(B)
   2.259 -
   2.260 -\idx{Union_Un_distrib}  Union(A Un B) = Union(A) Un Union(B)
   2.261 -\idx{Int_Union_image}   A Int Union(B) = (UN C:B. A Int C)
   2.262 -\idx{Un_Union_image}    (UN x:C. A(x) Un B(x)) = Union(A``C)  Un  Union(B``C)
   2.263 -
   2.264 -\idx{Inter_Un_distrib}  Inter(A Un B) = Inter(A) Int Inter(B)
   2.265 -\idx{Un_Inter_image}    A Un Inter(B) = (INT C:B. A Un C)
   2.266 -\idx{Int_Inter_image}   (INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C)
   2.267 -
   2.268 -
   2.269 -----------------------------------------------------------------
   2.270 -prod.ML
   2.271 -
   2.272 -      mixfix = [ Delimfix((1<_,/_>), ['a,'b] => ('a,'b)prod, Pair),
   2.273 -                 TInfixl(*, prod, 20) ],
   2.274 -thy = extend_theory Set.thy Prod
   2.275 -  [([prod],([[term],[term]],term))],
   2.276 -   ([fst],              'a * 'b => 'a),
   2.277 -   ([snd],              'a * 'b => 'b),
   2.278 -   ([split],            ['a * 'b, ['a,'b]=>'c] => 'c)],
   2.279 -\idx{fst_def}             fst(p) == @a. ? b. p = <a,b>),
   2.280 -\idx{snd_def}             snd(p) == @b. ? a. p = <a,b>),
   2.281 -\idx{split_def}           split(p,c) == c(fst(p),snd(p)))
   2.282 -
   2.283 -\idx{Pair_inject}  [| <a, b> = <a',b'>;  [| a=a';  b=b' |] ==> R |] ==> R
   2.284 -
   2.285 -\idx{fst_conv}     fst(<a,b>) = a
   2.286 -\idx{snd_conv}     snd(<a,b>) = b
   2.287 -\idx{split_conv}   split(<a,b>, c) = c(a,b)
   2.288 -
   2.289 -\idx{surjective_pairing}    p = <fst(p),snd(p)>
   2.290 -
   2.291 -----------------------------------------------------------------
   2.292 -sum.ML
   2.293 -
   2.294 -      mixfix = [TInfixl(+, sum, 10)],
   2.295 -thy = extend_theory Prod.thy sum
   2.296 -  [([sum], ([[term],[term]],term))],
   2.297 - [Inl],              'a => 'a+'b),
   2.298 - [Inr],              'b => 'a+'b),
   2.299 - [when],             ['a+'b, 'a=>'c, 'b=>'c] =>'c)],
   2.300 -\idx{when_def}    when == (%p f g. @z.  (!x. p=Inl(x) --> z=f(x))
   2.301 -                                    & (!y. p=Inr(y) --> z=g(y))))
   2.302 -
   2.303 -\idx{Inl_not_Inr}    ~ (Inl(a) = Inr(b))
   2.304 -
   2.305 -\idx{One_One_Inl}    One_One(Inl)
   2.306 -
   2.307 -\idx{One_One_Inr}    One_One(Inr)
   2.308 -
   2.309 -\idx{when_Inl_conv}    when(Inl(x), f, g) = f(x)
   2.310 -
   2.311 -\idx{when_Inr_conv}    when(Inr(x), f, g) = g(x)
   2.312 -
   2.313 -\idx{sumE}
   2.314 -    [| !!x::'a. P(Inl(x));  !!y::'b. P(Inr(y)) 
   2.315 -    |] ==> P(s)
   2.316 -
   2.317 -\idx{surjective_sum}    when(s, %x::'a. f(Inl(x)), %y::'b. f(Inr(y))) = f(s)
   2.318 -
   2.319 -
   2.320 -????????????????????????????????????????????????????????????????
   2.321 -trancl?
   2.322 -
   2.323 -----------------------------------------------------------------
   2.324 -nat.ML
   2.325 -
   2.326 -  Sext\{mixfix=[Delimfix(0, nat, 0),
   2.327 -               Infixl(<,[nat,nat] => bool,50)],
   2.328 -thy = extend_theory Trancl.thy Nat
   2.329 -[nat], ([],term))
   2.330 -[nat_case],          [nat, 'a, nat=>'a] =>'a),
   2.331 -[pred_nat],nat*nat) set),
   2.332 -[nat_rec],           [nat, 'a, [nat, 'a]=>'a] => 'a)
   2.333 -
   2.334 -\idx{nat_case_def}        nat_case == (%n a f. @z.  (n=0 --> z=a)  
   2.335 -                                          & (!x. n=Suc(x) --> z=f(x)))),
   2.336 -\idx{pred_nat_def}        pred_nat == \{p. ? n. p = <n, Suc(n)>\} ),
   2.337 -\idx{less_def} m<n == <m,n>:trancl(pred_nat)),
   2.338 -\idx{nat_rec_def} 
   2.339 -   nat_rec(n,c,d) == wfrec(trancl(pred_nat), 
   2.340 -                        %rec l. nat_case(l, c, %m. d(m,rec(m))), 
   2.341 -                        n) )
   2.342 -
   2.343 -\idx{nat_induct}    [| P(0); !!k. [| P(k) |] ==> P(Suc(k)) |]  ==> P(n)
   2.344 -
   2.345 -
   2.346 -\idx{Suc_not_Zero}    ~ (Suc(m) = 0)
   2.347 -\idx{One_One_Suc}    One_One(Suc)
   2.348 -\idx{n_not_Suc_n}    ~(n=Suc(n))
   2.349 -
   2.350 -\idx{nat_case_0_conv}    nat_case(0, a, f) = a
   2.351 -
   2.352 -\idx{nat_case_Suc_conv}    nat_case(Suc(k), a, f) = f(k)
   2.353 -
   2.354 -\idx{pred_natI}    <n, Suc(n)> : pred_nat
   2.355 -\idx{pred_natE}
   2.356 -    [| p : pred_nat;  !!x n. [| p = <n, Suc(n)> |] ==> R 
   2.357 -    |] ==> R
   2.358 -
   2.359 -\idx{wf_pred_nat}    wf(pred_nat)
   2.360 -
   2.361 -\idx{nat_rec_0_conv}    nat_rec(0,c,h) = c
   2.362 -
   2.363 -\idx{nat_rec_Suc_conv}    nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h))
   2.364 -
   2.365 -
   2.366 -(*** Basic properties of less than ***)
   2.367 -\idx{less_trans}     [| i<j;  j<k |] ==> i<k
   2.368 -\idx{lessI}          n < Suc(n)
   2.369 -\idx{zero_less_Suc}  0 < Suc(n)
   2.370 -
   2.371 -\idx{less_not_sym}   n<m --> ~m<n 
   2.372 -\idx{less_not_refl}  ~ (n<n)
   2.373 -\idx{not_less0}      ~ (n<0)
   2.374 -
   2.375 -\idx{Suc_less_eq}    (Suc(m) < Suc(n)) = (m<n)
   2.376 -\idx{less_induct}    [| !!n. [| ! m. m<n --> P(m) |] ==> P(n) |]  ==>  P(n)
   2.377 -
   2.378 -\idx{less_linear}    m<n | m=n | n<m
   2.379 -
   2.380 -
   2.381 -----------------------------------------------------------------
   2.382 -list.ML
   2.383 -
   2.384 - [([list], ([[term]],term))],
   2.385 -  ([Nil],       'a list),
   2.386 -  ([Cons],      ['a, 'a list] => 'a list),
   2.387 -  ([list_rec],        ['a list, 'b, ['a ,'a list, 'b]=>'b] => 'b),
   2.388 -  ([list_all],        ('a => bool) => ('a list => bool)),
   2.389 -  ([map],               ('a=>'b) => ('a list => 'b list))
   2.390 -
   2.391 -\idx{map_def}     map(f,xs) == list_rec(xs, Nil, %x l r. Cons(f(x), r)) )
   2.392 -
   2.393 -\idx{list_induct}
   2.394 -    [| P(Nil);   
   2.395 -       !!x xs. [| P(xs) |] ==> P(Cons(x,xs)) |]  ==> P(l)
   2.396 -
   2.397 -\idx{Cons_not_Nil}   ~ Cons(x,xs) = Nil
   2.398 -\idx{Cons_Cons_eq}   (Cons(x,xs)=Cons(y,ys)) = (x=y & xs=ys)
   2.399 -
   2.400 -\idx{list_rec_Nil_conv}    list_rec(Nil,c,h) = c
   2.401 -\idx{list_rec_Cons_conv}   list_rec(Cons(a,l), c, h) = 
   2.402 -                               h(a, l, list_rec(l,c,h))
   2.403 -
   2.404 -\idx{map_Nil_conv}   map(f,Nil) = Nil
   2.405 -\idx{map_Cons_conv}  map(f, Cons(x,xs)) = Cons(f(x), map(f,xs))
   2.406 -
     3.1 --- a/doc-src/Logics/HOL.tex	Tue May 04 18:04:45 1999 +0200
     3.2 +++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
     3.3 @@ -1,2981 +0,0 @@
     3.4 -%% $Id$
     3.5 -\chapter{Higher-Order Logic}
     3.6 -\index{higher-order logic|(}
     3.7 -\index{HOL system@{\sc hol} system}
     3.8 -
     3.9 -The theory~\thydx{HOL} implements higher-order logic.  It is based on
    3.10 -Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on
    3.11 -Church's original paper~\cite{church40}.  Andrews's
    3.12 -book~\cite{andrews86} is a full description of the original
    3.13 -Church-style higher-order logic.  Experience with the {\sc hol} system
    3.14 -has demonstrated that higher-order logic is widely applicable in many
    3.15 -areas of mathematics and computer science, not just hardware
    3.16 -verification, {\sc hol}'s original \textit{raison d'\^etre\/}.  It is
    3.17 -weaker than {\ZF} set theory but for most applications this does not
    3.18 -matter.  If you prefer {\ML} to Lisp, you will probably prefer \HOL\ 
    3.19 -to~{\ZF}.
    3.20 -
    3.21 -The syntax of \HOL\footnote{Earlier versions of Isabelle's \HOL\ used a
    3.22 -different syntax.  Ancient releases of Isabelle included still another version
    3.23 -of~\HOL, with explicit type inference rules~\cite{paulson-COLOG}.  This
    3.24 -version no longer exists, but \thydx{ZF} supports a similar style of
    3.25 -reasoning.} follows $\lambda$-calculus and functional programming.  Function
    3.26 -application is curried.  To apply the function~$f$ of type
    3.27 -$\tau@1\To\tau@2\To\tau@3$ to the arguments~$a$ and~$b$ in \HOL, you simply
    3.28 -write $f\,a\,b$.  There is no `apply' operator as in \thydx{ZF}.  Note that
    3.29 -$f(a,b)$ means ``$f$ applied to the pair $(a,b)$'' in \HOL.  We write ordered
    3.30 -pairs as $(a,b)$, not $\langle a,b\rangle$ as in {\ZF}.
    3.31 -
    3.32 -\HOL\ has a distinct feel, compared with {\ZF} and {\CTT}.  It
    3.33 -identifies object-level types with meta-level types, taking advantage of
    3.34 -Isabelle's built-in type-checker.  It identifies object-level functions
    3.35 -with meta-level functions, so it uses Isabelle's operations for abstraction
    3.36 -and application.
    3.37 -
    3.38 -These identifications allow Isabelle to support \HOL\ particularly
    3.39 -nicely, but they also mean that \HOL\ requires more sophistication
    3.40 -from the user --- in particular, an understanding of Isabelle's type
    3.41 -system.  Beginners should work with \texttt{show_types} (or even
    3.42 -\texttt{show_sorts}) set to \texttt{true}.
    3.43 -%  Gain experience by
    3.44 -%working in first-order logic before attempting to use higher-order logic.
    3.45 -%This chapter assumes familiarity with~{\FOL{}}.
    3.46 -
    3.47 -
    3.48 -\begin{figure}
    3.49 -\begin{constants}
    3.50 -  \it name      &\it meta-type  & \it description \\
    3.51 -  \cdx{Trueprop}& $bool\To prop$                & coercion to $prop$\\
    3.52 -  \cdx{Not}     & $bool\To bool$                & negation ($\neg$) \\
    3.53 -  \cdx{True}    & $bool$                        & tautology ($\top$) \\
    3.54 -  \cdx{False}   & $bool$                        & absurdity ($\bot$) \\
    3.55 -  \cdx{If}      & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\
    3.56 -  \cdx{Let}     & $[\alpha,\alpha\To\beta]\To\beta$ & let binder
    3.57 -\end{constants}
    3.58 -\subcaption{Constants}
    3.59 -
    3.60 -\begin{constants}
    3.61 -\index{"@@{\tt\at} symbol}
    3.62 -\index{*"! symbol}\index{*"? symbol}
    3.63 -\index{*"?"! symbol}\index{*"E"X"! symbol}
    3.64 -  \it symbol &\it name     &\it meta-type & \it description \\
    3.65 -  \tt\at & \cdx{Eps}  & $(\alpha\To bool)\To\alpha$ & 
    3.66 -        Hilbert description ($\varepsilon$) \\
    3.67 -  {\tt!~} or \sdx{ALL}  & \cdx{All}  & $(\alpha\To bool)\To bool$ & 
    3.68 -        universal quantifier ($\forall$) \\
    3.69 -  {\tt?~} or \sdx{EX}   & \cdx{Ex}   & $(\alpha\To bool)\To bool$ & 
    3.70 -        existential quantifier ($\exists$) \\
    3.71 -  {\tt?!} or \texttt{EX!}  & \cdx{Ex1}  & $(\alpha\To bool)\To bool$ & 
    3.72 -        unique existence ($\exists!$)\\
    3.73 -  \texttt{LEAST}  & \cdx{Least}  & $(\alpha::ord \To bool)\To\alpha$ & 
    3.74 -        least element
    3.75 -\end{constants}
    3.76 -\subcaption{Binders} 
    3.77 -
    3.78 -\begin{constants}
    3.79 -\index{*"= symbol}
    3.80 -\index{&@{\tt\&} symbol}
    3.81 -\index{*"| symbol}
    3.82 -\index{*"-"-"> symbol}
    3.83 -  \it symbol    & \it meta-type & \it priority & \it description \\ 
    3.84 -  \sdx{o}       & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & 
    3.85 -        Left 55 & composition ($\circ$) \\
    3.86 -  \tt =         & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\
    3.87 -  \tt <         & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\
    3.88 -  \tt <=        & $[\alpha::ord,\alpha]\To bool$ & Left 50 & 
    3.89 -                less than or equals ($\leq$)\\
    3.90 -  \tt \&        & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\
    3.91 -  \tt |         & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\
    3.92 -  \tt -->       & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$)
    3.93 -\end{constants}
    3.94 -\subcaption{Infixes}
    3.95 -\caption{Syntax of \texttt{HOL}} \label{hol-constants}
    3.96 -\end{figure}
    3.97 -
    3.98 -
    3.99 -\begin{figure}
   3.100 -\index{*let symbol}
   3.101 -\index{*in symbol}
   3.102 -\dquotes
   3.103 -\[\begin{array}{rclcl}
   3.104 -    term & = & \hbox{expression of class~$term$} \\
   3.105 -         & | & "\at~" id " . " formula \\
   3.106 -         & | & 
   3.107 -    \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\
   3.108 -         & | & 
   3.109 -    \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\
   3.110 -         & | & "LEAST"~ id " . " formula \\[2ex]
   3.111 - formula & = & \hbox{expression of type~$bool$} \\
   3.112 -         & | & term " = " term \\
   3.113 -         & | & term " \ttilde= " term \\
   3.114 -         & | & term " < " term \\
   3.115 -         & | & term " <= " term \\
   3.116 -         & | & "\ttilde\ " formula \\
   3.117 -         & | & formula " \& " formula \\
   3.118 -         & | & formula " | " formula \\
   3.119 -         & | & formula " --> " formula \\
   3.120 -         & | & "!~~~" id~id^* " . " formula 
   3.121 -         & | & "ALL~" id~id^* " . " formula \\
   3.122 -         & | & "?~~~" id~id^* " . " formula 
   3.123 -         & | & "EX~~" id~id^* " . " formula \\
   3.124 -         & | & "?!~~" id~id^* " . " formula 
   3.125 -         & | & "EX!~" id~id^* " . " formula
   3.126 -  \end{array}
   3.127 -\]
   3.128 -\caption{Full grammar for \HOL} \label{hol-grammar}
   3.129 -\end{figure} 
   3.130 -
   3.131 -
   3.132 -\section{Syntax}
   3.133 -
   3.134 -Figure~\ref{hol-constants} lists the constants (including infixes and
   3.135 -binders), while Fig.\ts\ref{hol-grammar} presents the grammar of
   3.136 -higher-order logic.  Note that $a$\verb|~=|$b$ is translated to
   3.137 -$\neg(a=b)$.
   3.138 -
   3.139 -\begin{warn}
   3.140 -  \HOL\ has no if-and-only-if connective; logical equivalence is expressed
   3.141 -  using equality.  But equality has a high priority, as befitting a
   3.142 -  relation, while if-and-only-if typically has the lowest priority.  Thus,
   3.143 -  $\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$.
   3.144 -  When using $=$ to mean logical equivalence, enclose both operands in
   3.145 -  parentheses.
   3.146 -\end{warn}
   3.147 -
   3.148 -\subsection{Types and classes}
   3.149 -The universal type class of higher-order terms is called~\cldx{term}.
   3.150 -By default, explicit type variables have class \cldx{term}.  In
   3.151 -particular the equality symbol and quantifiers are polymorphic over
   3.152 -class \texttt{term}.
   3.153 -
   3.154 -The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus,
   3.155 -formulae are terms.  The built-in type~\tydx{fun}, which constructs
   3.156 -function types, is overloaded with arity {\tt(term,\thinspace
   3.157 -  term)\thinspace term}.  Thus, $\sigma\To\tau$ belongs to class~{\tt
   3.158 -  term} if $\sigma$ and~$\tau$ do, allowing quantification over
   3.159 -functions.
   3.160 -
   3.161 -\HOL\ offers various methods for introducing new types.
   3.162 -See~\S\ref{sec:HOL:Types} and~\S\ref{sec:HOL:datatype}.
   3.163 -
   3.164 -Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order
   3.165 -signatures; the relations $<$ and $\leq$ are polymorphic over this
   3.166 -class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and
   3.167 -the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass
   3.168 -\cldx{order} of \cldx{ord} which axiomatizes partially ordered types
   3.169 -(w.r.t.\ $\le$).
   3.170 -
   3.171 -Three other syntactic type classes --- \cldx{plus}, \cldx{minus} and
   3.172 -\cldx{times} --- permit overloading of the operators {\tt+},\index{*"+
   3.173 -  symbol} {\tt-}\index{*"- symbol} and {\tt*}.\index{*"* symbol} In
   3.174 -particular, {\tt-} is instantiated for set difference and subtraction
   3.175 -on natural numbers.
   3.176 -
   3.177 -If you state a goal containing overloaded functions, you may need to include
   3.178 -type constraints.  Type inference may otherwise make the goal more
   3.179 -polymorphic than you intended, with confusing results.  For example, the
   3.180 -variables $i$, $j$ and $k$ in the goal $i \le j \Imp i \le j+k$ have type
   3.181 -$\alpha::\{ord,plus\}$, although you may have expected them to have some
   3.182 -numeric type, e.g. $nat$.  Instead you should have stated the goal as
   3.183 -$(i::nat) \le j \Imp i \le j+k$, which causes all three variables to have
   3.184 -type $nat$.
   3.185 -
   3.186 -\begin{warn}
   3.187 -  If resolution fails for no obvious reason, try setting
   3.188 -  \ttindex{show_types} to \texttt{true}, causing Isabelle to display
   3.189 -  types of terms.  Possibly set \ttindex{show_sorts} to \texttt{true} as
   3.190 -  well, causing Isabelle to display type classes and sorts.
   3.191 -
   3.192 -  \index{unification!incompleteness of}
   3.193 -  Where function types are involved, Isabelle's unification code does not
   3.194 -  guarantee to find instantiations for type variables automatically.  Be
   3.195 -  prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac},
   3.196 -  possibly instantiating type variables.  Setting
   3.197 -  \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report
   3.198 -  omitted search paths during unification.\index{tracing!of unification}
   3.199 -\end{warn}
   3.200 -
   3.201 -
   3.202 -\subsection{Binders}
   3.203 -
   3.204 -Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for
   3.205 -some~$x$ satisfying~$P$, if such exists.  Since all terms in \HOL\ 
   3.206 -denote something, a description is always meaningful, but we do not
   3.207 -know its value unless $P$ defines it uniquely.  We may write
   3.208 -descriptions as \cdx{Eps}($\lambda x. P[x]$) or use the syntax
   3.209 -\hbox{\tt \at $x$.\ $P[x]$}.
   3.210 -
   3.211 -Existential quantification is defined by
   3.212 -\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \]
   3.213 -The unique existence quantifier, $\exists!x. P$, is defined in terms
   3.214 -of~$\exists$ and~$\forall$.  An Isabelle binder, it admits nested
   3.215 -quantifications.  For instance, $\exists!x\,y. P\,x\,y$ abbreviates
   3.216 -$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there
   3.217 -exists a unique pair $(x,y)$ satisfying~$P\,x\,y$.
   3.218 -
   3.219 -\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system}
   3.220 -Quantifiers have two notations.  As in Gordon's {\sc hol} system, \HOL\
   3.221 -uses~{\tt!}\ and~{\tt?}\ to stand for $\forall$ and $\exists$.  The
   3.222 -existential quantifier must be followed by a space; thus {\tt?x} is an
   3.223 -unknown, while \verb'? x. f x=y' is a quantification.  Isabelle's usual
   3.224 -notation for quantifiers, \sdx{ALL} and \sdx{EX}, is also
   3.225 -available.  Both notations are accepted for input.  The {\ML} reference
   3.226 -\ttindexbold{HOL_quantifiers} governs the output notation.  If set to {\tt
   3.227 -true}, then~{\tt!}\ and~{\tt?}\ are displayed; this is the default.  If set
   3.228 -to \texttt{false}, then~\texttt{ALL} and~\texttt{EX} are displayed.
   3.229 -
   3.230 -If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a
   3.231 -variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined
   3.232 -to be the least (w.r.t.\ $\le$) $x$ such that $P~x$ holds (see
   3.233 -Fig.~\ref{hol-defs}).  The definition uses Hilbert's $\varepsilon$
   3.234 -choice operator, so \texttt{Least} is always meaningful, but may yield
   3.235 -nothing useful in case there is not a unique least element satisfying
   3.236 -$P$.\footnote{Class $ord$ does not require much of its instances, so
   3.237 -  $\le$ need not be a well-ordering, not even an order at all!}
   3.238 -
   3.239 -\medskip All these binders have priority 10.
   3.240 -
   3.241 -\begin{warn}
   3.242 -The low priority of binders means that they need to be enclosed in
   3.243 -parenthesis when they occur in the context of other operations.  For example,
   3.244 -instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$.
   3.245 -\end{warn}
   3.246 -
   3.247 -
   3.248 -\subsection{The \sdx{let} and \sdx{case} constructions}
   3.249 -Local abbreviations can be introduced by a \texttt{let} construct whose
   3.250 -syntax appears in Fig.\ts\ref{hol-grammar}.  Internally it is translated into
   3.251 -the constant~\cdx{Let}.  It can be expanded by rewriting with its
   3.252 -definition, \tdx{Let_def}.
   3.253 -
   3.254 -\HOL\ also defines the basic syntax
   3.255 -\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] 
   3.256 -as a uniform means of expressing \texttt{case} constructs.  Therefore \texttt{case}
   3.257 -and \sdx{of} are reserved words.  Initially, this is mere syntax and has no
   3.258 -logical meaning.  By declaring translations, you can cause instances of the
   3.259 -\texttt{case} construct to denote applications of particular case operators.
   3.260 -This is what happens automatically for each \texttt{datatype} definition
   3.261 -(see~\S\ref{sec:HOL:datatype}).
   3.262 -
   3.263 -\begin{warn}
   3.264 -Both \texttt{if} and \texttt{case} constructs have as low a priority as
   3.265 -quantifiers, which requires additional enclosing parentheses in the context
   3.266 -of most other operations.  For example, instead of $f~x = {\tt if\dots
   3.267 -then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots
   3.268 -else\dots})$.
   3.269 -\end{warn}
   3.270 -
   3.271 -\section{Rules of inference}
   3.272 -
   3.273 -\begin{figure}
   3.274 -\begin{ttbox}\makeatother
   3.275 -\tdx{refl}           t = (t::'a)
   3.276 -\tdx{subst}          [| s = t; P s |] ==> P (t::'a)
   3.277 -\tdx{ext}            (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x)
   3.278 -\tdx{impI}           (P ==> Q) ==> P-->Q
   3.279 -\tdx{mp}             [| P-->Q;  P |] ==> Q
   3.280 -\tdx{iff}            (P-->Q) --> (Q-->P) --> (P=Q)
   3.281 -\tdx{selectI}        P(x::'a) ==> P(@x. P x)
   3.282 -\tdx{True_or_False}  (P=True) | (P=False)
   3.283 -\end{ttbox}
   3.284 -\caption{The \texttt{HOL} rules} \label{hol-rules}
   3.285 -\end{figure}
   3.286 -
   3.287 -Figure~\ref{hol-rules} shows the primitive inference rules of~\HOL{},
   3.288 -with their~{\ML} names.  Some of the rules deserve additional
   3.289 -comments:
   3.290 -\begin{ttdescription}
   3.291 -\item[\tdx{ext}] expresses extensionality of functions.
   3.292 -\item[\tdx{iff}] asserts that logically equivalent formulae are
   3.293 -  equal.
   3.294 -\item[\tdx{selectI}] gives the defining property of the Hilbert
   3.295 -  $\varepsilon$-operator.  It is a form of the Axiom of Choice.  The derived rule
   3.296 -  \tdx{select_equality} (see below) is often easier to use.
   3.297 -\item[\tdx{True_or_False}] makes the logic classical.\footnote{In
   3.298 -    fact, the $\varepsilon$-operator already makes the logic classical, as
   3.299 -    shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.}
   3.300 -\end{ttdescription}
   3.301 -
   3.302 -
   3.303 -\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message
   3.304 -\begin{ttbox}\makeatother
   3.305 -\tdx{True_def}   True     == ((\%x::bool. x)=(\%x. x))
   3.306 -\tdx{All_def}    All      == (\%P. P = (\%x. True))
   3.307 -\tdx{Ex_def}     Ex       == (\%P. P(@x. P x))
   3.308 -\tdx{False_def}  False    == (!P. P)
   3.309 -\tdx{not_def}    not      == (\%P. P-->False)
   3.310 -\tdx{and_def}    op &     == (\%P Q. !R. (P-->Q-->R) --> R)
   3.311 -\tdx{or_def}     op |     == (\%P Q. !R. (P-->R) --> (Q-->R) --> R)
   3.312 -\tdx{Ex1_def}    Ex1      == (\%P. ? x. P x & (! y. P y --> y=x))
   3.313 -
   3.314 -\tdx{o_def}      op o     == (\%(f::'b=>'c) g x::'a. f(g x))
   3.315 -\tdx{if_def}     If P x y ==
   3.316 -              (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y))
   3.317 -\tdx{Let_def}    Let s f  == f s
   3.318 -\tdx{Least_def}  Least P  == @x. P(x) & (ALL y. P(y) --> x <= y)"
   3.319 -\end{ttbox}
   3.320 -\caption{The \texttt{HOL} definitions} \label{hol-defs}
   3.321 -\end{figure}
   3.322 -
   3.323 -
   3.324 -\HOL{} follows standard practice in higher-order logic: only a few
   3.325 -connectives are taken as primitive, with the remainder defined obscurely
   3.326 -(Fig.\ts\ref{hol-defs}).  Gordon's {\sc hol} system expresses the
   3.327 -corresponding definitions \cite[page~270]{mgordon-hol} using
   3.328 -object-equality~({\tt=}), which is possible because equality in
   3.329 -higher-order logic may equate formulae and even functions over formulae.
   3.330 -But theory~\HOL{}, like all other Isabelle theories, uses
   3.331 -meta-equality~({\tt==}) for definitions.
   3.332 -\begin{warn}
   3.333 -The definitions above should never be expanded and are shown for completeness
   3.334 -only.  Instead users should reason in terms of the derived rules shown below
   3.335 -or, better still, using high-level tactics
   3.336 -(see~\S\ref{sec:HOL:generic-packages}).
   3.337 -\end{warn}
   3.338 -
   3.339 -Some of the rules mention type variables; for example, \texttt{refl}
   3.340 -mentions the type variable~{\tt'a}.  This allows you to instantiate
   3.341 -type variables explicitly by calling \texttt{res_inst_tac}.
   3.342 -
   3.343 -
   3.344 -\begin{figure}
   3.345 -\begin{ttbox}
   3.346 -\tdx{sym}         s=t ==> t=s
   3.347 -\tdx{trans}       [| r=s; s=t |] ==> r=t
   3.348 -\tdx{ssubst}      [| t=s; P s |] ==> P t
   3.349 -\tdx{box_equals}  [| a=b;  a=c;  b=d |] ==> c=d  
   3.350 -\tdx{arg_cong}    x = y ==> f x = f y
   3.351 -\tdx{fun_cong}    f = g ==> f x = g x
   3.352 -\tdx{cong}        [| f = g; x = y |] ==> f x = g y
   3.353 -\tdx{not_sym}     t ~= s ==> s ~= t
   3.354 -\subcaption{Equality}
   3.355 -
   3.356 -\tdx{TrueI}       True 
   3.357 -\tdx{FalseE}      False ==> P
   3.358 -
   3.359 -\tdx{conjI}       [| P; Q |] ==> P&Q
   3.360 -\tdx{conjunct1}   [| P&Q |] ==> P
   3.361 -\tdx{conjunct2}   [| P&Q |] ==> Q 
   3.362 -\tdx{conjE}       [| P&Q;  [| P; Q |] ==> R |] ==> R
   3.363 -
   3.364 -\tdx{disjI1}      P ==> P|Q
   3.365 -\tdx{disjI2}      Q ==> P|Q
   3.366 -\tdx{disjE}       [| P | Q; P ==> R; Q ==> R |] ==> R
   3.367 -
   3.368 -\tdx{notI}        (P ==> False) ==> ~ P
   3.369 -\tdx{notE}        [| ~ P;  P |] ==> R
   3.370 -\tdx{impE}        [| P-->Q;  P;  Q ==> R |] ==> R
   3.371 -\subcaption{Propositional logic}
   3.372 -
   3.373 -\tdx{iffI}        [| P ==> Q;  Q ==> P |] ==> P=Q
   3.374 -\tdx{iffD1}       [| P=Q; P |] ==> Q
   3.375 -\tdx{iffD2}       [| P=Q; Q |] ==> P
   3.376 -\tdx{iffE}        [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R
   3.377 -%
   3.378 -%\tdx{eqTrueI}     P ==> P=True 
   3.379 -%\tdx{eqTrueE}     P=True ==> P 
   3.380 -\subcaption{Logical equivalence}
   3.381 -
   3.382 -\end{ttbox}
   3.383 -\caption{Derived rules for \HOL} \label{hol-lemmas1}
   3.384 -\end{figure}
   3.385 -
   3.386 -
   3.387 -\begin{figure}
   3.388 -\begin{ttbox}\makeatother
   3.389 -\tdx{allI}      (!!x. P x) ==> !x. P x
   3.390 -\tdx{spec}      !x. P x ==> P x
   3.391 -\tdx{allE}      [| !x. P x;  P x ==> R |] ==> R
   3.392 -\tdx{all_dupE}  [| !x. P x;  [| P x; !x. P x |] ==> R |] ==> R
   3.393 -
   3.394 -\tdx{exI}       P x ==> ? x. P x
   3.395 -\tdx{exE}       [| ? x. P x; !!x. P x ==> Q |] ==> Q
   3.396 -
   3.397 -\tdx{ex1I}      [| P a;  !!x. P x ==> x=a |] ==> ?! x. P x
   3.398 -\tdx{ex1E}      [| ?! x. P x;  !!x. [| P x;  ! y. P y --> y=x |] ==> R 
   3.399 -          |] ==> R
   3.400 -
   3.401 -\tdx{select_equality} [| P a;  !!x. P x ==> x=a |] ==> (@x. P x) = a
   3.402 -\subcaption{Quantifiers and descriptions}
   3.403 -
   3.404 -\tdx{ccontr}          (~P ==> False) ==> P
   3.405 -\tdx{classical}       (~P ==> P) ==> P
   3.406 -\tdx{excluded_middle} ~P | P
   3.407 -
   3.408 -\tdx{disjCI}          (~Q ==> P) ==> P|Q
   3.409 -\tdx{exCI}            (! x. ~ P x ==> P a) ==> ? x. P x
   3.410 -\tdx{impCE}           [| P-->Q; ~ P ==> R; Q ==> R |] ==> R
   3.411 -\tdx{iffCE}           [| P=Q;  [| P;Q |] ==> R;  [| ~P; ~Q |] ==> R |] ==> R
   3.412 -\tdx{notnotD}         ~~P ==> P
   3.413 -\tdx{swap}            ~P ==> (~Q ==> P) ==> Q
   3.414 -\subcaption{Classical logic}
   3.415 -
   3.416 -%\tdx{if_True}         (if True then x else y) = x
   3.417 -%\tdx{if_False}        (if False then x else y) = y
   3.418 -\tdx{if_P}            P ==> (if P then x else y) = x
   3.419 -\tdx{if_not_P}        ~ P ==> (if P then x else y) = y
   3.420 -\tdx{split_if}        P(if Q then x else y) = ((Q --> P x) & (~Q --> P y))
   3.421 -\subcaption{Conditionals}
   3.422 -\end{ttbox}
   3.423 -\caption{More derived rules} \label{hol-lemmas2}
   3.424 -\end{figure}
   3.425 -
   3.426 -Some derived rules are shown in Figures~\ref{hol-lemmas1}
   3.427 -and~\ref{hol-lemmas2}, with their {\ML} names.  These include natural rules
   3.428 -for the logical connectives, as well as sequent-style elimination rules for
   3.429 -conjunctions, implications, and universal quantifiers.  
   3.430 -
   3.431 -Note the equality rules: \tdx{ssubst} performs substitution in
   3.432 -backward proofs, while \tdx{box_equals} supports reasoning by
   3.433 -simplifying both sides of an equation.
   3.434 -
   3.435 -The following simple tactics are occasionally useful:
   3.436 -\begin{ttdescription}
   3.437 -\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI}
   3.438 -  repeatedly to remove all outermost universal quantifiers and implications
   3.439 -  from subgoal $i$.
   3.440 -\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction
   3.441 -  on $P$ for subgoal $i$: the latter is replaced by two identical subgoals
   3.442 -  with the added assumptions $P$ and $\neg P$, respectively.
   3.443 -\end{ttdescription}
   3.444 -
   3.445 -
   3.446 -\begin{figure} 
   3.447 -\begin{center}
   3.448 -\begin{tabular}{rrr}
   3.449 -  \it name      &\it meta-type  & \it description \\ 
   3.450 -\index{{}@\verb'{}' symbol}
   3.451 -  \verb|{}|     & $\alpha\,set$         & the empty set \\
   3.452 -  \cdx{insert}  & $[\alpha,\alpha\,set]\To \alpha\,set$
   3.453 -        & insertion of element \\
   3.454 -  \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$
   3.455 -        & comprehension \\
   3.456 -  \cdx{Compl}   & $\alpha\,set\To\alpha\,set$
   3.457 -        & complement \\
   3.458 -  \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   3.459 -        & intersection over a set\\
   3.460 -  \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$
   3.461 -        & union over a set\\
   3.462 -  \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$
   3.463 -        &set of sets intersection \\
   3.464 -  \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$
   3.465 -        &set of sets union \\
   3.466 -  \cdx{Pow}   & $\alpha\,set \To (\alpha\,set)set$
   3.467 -        & powerset \\[1ex]
   3.468 -  \cdx{range}   & $(\alpha\To\beta )\To\beta\,set$
   3.469 -        & range of a function \\[1ex]
   3.470 -  \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$
   3.471 -        & bounded quantifiers
   3.472 -\end{tabular}
   3.473 -\end{center}
   3.474 -\subcaption{Constants}
   3.475 -
   3.476 -\begin{center}
   3.477 -\begin{tabular}{llrrr} 
   3.478 -  \it symbol &\it name     &\it meta-type & \it priority & \it description \\
   3.479 -  \sdx{INT}  & \cdx{INTER1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   3.480 -        intersection over a type\\
   3.481 -  \sdx{UN}  & \cdx{UNION1}  & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & 
   3.482 -        union over a type
   3.483 -\end{tabular}
   3.484 -\end{center}
   3.485 -\subcaption{Binders} 
   3.486 -
   3.487 -\begin{center}
   3.488 -\index{*"`"` symbol}
   3.489 -\index{*": symbol}
   3.490 -\index{*"<"= symbol}
   3.491 -\begin{tabular}{rrrr} 
   3.492 -  \it symbol    & \it meta-type & \it priority & \it description \\ 
   3.493 -  \tt ``        & $[\alpha\To\beta ,\alpha\,set]\To  \beta\,set$
   3.494 -        & Left 90 & image \\
   3.495 -  \sdx{Int}     & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   3.496 -        & Left 70 & intersection ($\int$) \\
   3.497 -  \sdx{Un}      & $[\alpha\,set,\alpha\,set]\To\alpha\,set$
   3.498 -        & Left 65 & union ($\un$) \\
   3.499 -  \tt:          & $[\alpha ,\alpha\,set]\To bool$       
   3.500 -        & Left 50 & membership ($\in$) \\
   3.501 -  \tt <=        & $[\alpha\,set,\alpha\,set]\To bool$
   3.502 -        & Left 50 & subset ($\subseteq$) 
   3.503 -\end{tabular}
   3.504 -\end{center}
   3.505 -\subcaption{Infixes}
   3.506 -\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax}
   3.507 -\end{figure} 
   3.508 -
   3.509 -
   3.510 -\begin{figure} 
   3.511 -\begin{center} \tt\frenchspacing
   3.512 -\index{*"! symbol}
   3.513 -\begin{tabular}{rrr} 
   3.514 -  \it external          & \it internal  & \it description \\ 
   3.515 -  $a$ \ttilde: $b$      & \ttilde($a$ : $b$)    & \rm non-membership\\
   3.516 -  {\ttlbrace}$a@1$, $\ldots${\ttrbrace}  &  insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\
   3.517 -  {\ttlbrace}$x$. $P[x]${\ttrbrace}        &  Collect($\lambda x. P[x]$) &
   3.518 -        \rm comprehension \\
   3.519 -  \sdx{INT} $x$:$A$. $B[x]$      & INTER $A$ $\lambda x. B[x]$ &
   3.520 -        \rm intersection \\
   3.521 -  \sdx{UN}{\tt\ }  $x$:$A$. $B[x]$      & UNION $A$ $\lambda x. B[x]$ &
   3.522 -        \rm union \\
   3.523 -  \tt ! $x$:$A$. $P[x]$ or \sdx{ALL} $x$:$A$. $P[x]$ & 
   3.524 -        Ball $A$ $\lambda x. P[x]$ & 
   3.525 -        \rm bounded $\forall$ \\
   3.526 -  \sdx{?} $x$:$A$. $P[x]$ or \sdx{EX}{\tt\ } $x$:$A$. $P[x]$ & 
   3.527 -        Bex $A$ $\lambda x. P[x]$ & \rm bounded $\exists$
   3.528 -\end{tabular}
   3.529 -\end{center}
   3.530 -\subcaption{Translations}
   3.531 -
   3.532 -\dquotes
   3.533 -\[\begin{array}{rclcl}
   3.534 -    term & = & \hbox{other terms\ldots} \\
   3.535 -         & | & "{\ttlbrace}{\ttrbrace}" \\
   3.536 -         & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\
   3.537 -         & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\
   3.538 -         & | & term " `` " term \\
   3.539 -         & | & term " Int " term \\
   3.540 -         & | & term " Un " term \\
   3.541 -         & | & "INT~~"  id ":" term " . " term \\
   3.542 -         & | & "UN~~~"  id ":" term " . " term \\
   3.543 -         & | & "INT~~"  id~id^* " . " term \\
   3.544 -         & | & "UN~~~"  id~id^* " . " term \\[2ex]
   3.545 - formula & = & \hbox{other formulae\ldots} \\
   3.546 -         & | & term " : " term \\
   3.547 -         & | & term " \ttilde: " term \\
   3.548 -         & | & term " <= " term \\
   3.549 -         & | & "!~" id ":" term " . " formula 
   3.550 -         & | & "ALL " id ":" term " . " formula \\
   3.551 -         & | & "?~" id ":" term " . " formula 
   3.552 -         & | & "EX~~" id ":" term " . " formula
   3.553 -  \end{array}
   3.554 -\]
   3.555 -\subcaption{Full Grammar}
   3.556 -\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2}
   3.557 -\end{figure} 
   3.558 -
   3.559 -
   3.560 -\section{A formulation of set theory}
   3.561 -Historically, higher-order logic gives a foundation for Russell and
   3.562 -Whitehead's theory of classes.  Let us use modern terminology and call them
   3.563 -{\bf sets}, but note that these sets are distinct from those of {\ZF} set
   3.564 -theory, and behave more like {\ZF} classes.
   3.565 -\begin{itemize}
   3.566 -\item
   3.567 -Sets are given by predicates over some type~$\sigma$.  Types serve to
   3.568 -define universes for sets, but type-checking is still significant.
   3.569 -\item
   3.570 -There is a universal set (for each type).  Thus, sets have complements, and
   3.571 -may be defined by absolute comprehension.
   3.572 -\item
   3.573 -Although sets may contain other sets as elements, the containing set must
   3.574 -have a more complex type.
   3.575 -\end{itemize}
   3.576 -Finite unions and intersections have the same behaviour in \HOL\ as they
   3.577 -do in~{\ZF}.  In \HOL\ the intersection of the empty set is well-defined,
   3.578 -denoting the universal set for the given type.
   3.579 -
   3.580 -\subsection{Syntax of set theory}\index{*set type}
   3.581 -\HOL's set theory is called \thydx{Set}.  The type $\alpha\,set$ is
   3.582 -essentially the same as $\alpha\To bool$.  The new type is defined for
   3.583 -clarity and to avoid complications involving function types in unification.
   3.584 -The isomorphisms between the two types are declared explicitly.  They are
   3.585 -very natural: \texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while
   3.586 -\hbox{\tt op :} maps in the other direction (ignoring argument order).
   3.587 -
   3.588 -Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax
   3.589 -translations.  Figure~\ref{hol-set-syntax2} presents the grammar of the new
   3.590 -constructs.  Infix operators include union and intersection ($A\un B$
   3.591 -and $A\int B$), the subset and membership relations, and the image
   3.592 -operator~{\tt``}\@.  Note that $a$\verb|~:|$b$ is translated to
   3.593 -$\neg(a\in b)$.  
   3.594 -
   3.595 -The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in
   3.596 -the obvious manner using~\texttt{insert} and~$\{\}$:
   3.597 -\begin{eqnarray*}
   3.598 -  \{a, b, c\} & \equiv &
   3.599 -  \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\}))
   3.600 -\end{eqnarray*}
   3.601 -
   3.602 -The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of suitable type)
   3.603 -that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free
   3.604 -occurrences of~$x$.  This syntax expands to \cdx{Collect}$(\lambda
   3.605 -x. P[x])$.  It defines sets by absolute comprehension, which is impossible
   3.606 -in~{\ZF}; the type of~$x$ implicitly restricts the comprehension.
   3.607 -
   3.608 -The set theory defines two {\bf bounded quantifiers}:
   3.609 -\begin{eqnarray*}
   3.610 -   \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\
   3.611 -   \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x]
   3.612 -\end{eqnarray*}
   3.613 -The constants~\cdx{Ball} and~\cdx{Bex} are defined
   3.614 -accordingly.  Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may
   3.615 -write\index{*"! symbol}\index{*"? symbol}
   3.616 -\index{*ALL symbol}\index{*EX symbol} 
   3.617 -%
   3.618 -\hbox{\tt !~$x$:$A$.\ $P[x]$} and \hbox{\tt ?~$x$:$A$.\ $P[x]$}.  Isabelle's
   3.619 -usual quantifier symbols, \sdx{ALL} and \sdx{EX}, are also accepted
   3.620 -for input.  As with the primitive quantifiers, the {\ML} reference
   3.621 -\ttindex{HOL_quantifiers} specifies which notation to use for output.
   3.622 -
   3.623 -Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and
   3.624 -$\bigcap@{x\in A}B[x]$, are written 
   3.625 -\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and
   3.626 -\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}.  
   3.627 -
   3.628 -Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x
   3.629 -B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and
   3.630 -\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}.  They are equivalent to the previous
   3.631 -union and intersection operators when $A$ is the universal set.
   3.632 -
   3.633 -The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets.  They are
   3.634 -not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$,
   3.635 -respectively.
   3.636 -
   3.637 -
   3.638 -
   3.639 -\begin{figure} \underscoreon
   3.640 -\begin{ttbox}
   3.641 -\tdx{mem_Collect_eq}    (a : {\ttlbrace}x. P x{\ttrbrace}) = P a
   3.642 -\tdx{Collect_mem_eq}    {\ttlbrace}x. x:A{\ttrbrace} = A
   3.643 -
   3.644 -\tdx{empty_def}         {\ttlbrace}{\ttrbrace}          == {\ttlbrace}x. False{\ttrbrace}
   3.645 -\tdx{insert_def}        insert a B  == {\ttlbrace}x. x=a{\ttrbrace} Un B
   3.646 -\tdx{Ball_def}          Ball A P    == ! x. x:A --> P x
   3.647 -\tdx{Bex_def}           Bex A P     == ? x. x:A & P x
   3.648 -\tdx{subset_def}        A <= B      == ! x:A. x:B
   3.649 -\tdx{Un_def}            A Un B      == {\ttlbrace}x. x:A | x:B{\ttrbrace}
   3.650 -\tdx{Int_def}           A Int B     == {\ttlbrace}x. x:A & x:B{\ttrbrace}
   3.651 -\tdx{set_diff_def}      A - B       == {\ttlbrace}x. x:A & x~:B{\ttrbrace}
   3.652 -\tdx{Compl_def}         Compl A     == {\ttlbrace}x. ~ x:A{\ttrbrace}
   3.653 -\tdx{INTER_def}         INTER A B   == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace}
   3.654 -\tdx{UNION_def}         UNION A B   == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace}
   3.655 -\tdx{INTER1_def}        INTER1 B    == INTER {\ttlbrace}x. True{\ttrbrace} B 
   3.656 -\tdx{UNION1_def}        UNION1 B    == UNION {\ttlbrace}x. True{\ttrbrace} B 
   3.657 -\tdx{Inter_def}         Inter S     == (INT x:S. x)
   3.658 -\tdx{Union_def}         Union S     == (UN  x:S. x)
   3.659 -\tdx{Pow_def}           Pow A       == {\ttlbrace}B. B <= A{\ttrbrace}
   3.660 -\tdx{image_def}         f``A        == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace}
   3.661 -\tdx{range_def}         range f     == {\ttlbrace}y. ? x. y=f x{\ttrbrace}
   3.662 -\end{ttbox}
   3.663 -\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules}
   3.664 -\end{figure}
   3.665 -
   3.666 -
   3.667 -\begin{figure} \underscoreon
   3.668 -\begin{ttbox}
   3.669 -\tdx{CollectI}        [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace}
   3.670 -\tdx{CollectD}        [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a
   3.671 -\tdx{CollectE}        [| a : {\ttlbrace}x. P x{\ttrbrace};  P a ==> W |] ==> W
   3.672 -
   3.673 -\tdx{ballI}           [| !!x. x:A ==> P x |] ==> ! x:A. P x
   3.674 -\tdx{bspec}           [| ! x:A. P x;  x:A |] ==> P x
   3.675 -\tdx{ballE}           [| ! x:A. P x;  P x ==> Q;  ~ x:A ==> Q |] ==> Q
   3.676 -
   3.677 -\tdx{bexI}            [| P x;  x:A |] ==> ? x:A. P x
   3.678 -\tdx{bexCI}           [| ! x:A. ~ P x ==> P a;  a:A |] ==> ? x:A. P x
   3.679 -\tdx{bexE}            [| ? x:A. P x;  !!x. [| x:A; P x |] ==> Q  |] ==> Q
   3.680 -\subcaption{Comprehension and Bounded quantifiers}
   3.681 -
   3.682 -\tdx{subsetI}         (!!x. x:A ==> x:B) ==> A <= B
   3.683 -\tdx{subsetD}         [| A <= B;  c:A |] ==> c:B
   3.684 -\tdx{subsetCE}        [| A <= B;  ~ (c:A) ==> P;  c:B ==> P |] ==> P
   3.685 -
   3.686 -\tdx{subset_refl}     A <= A
   3.687 -\tdx{subset_trans}    [| A<=B;  B<=C |] ==> A<=C
   3.688 -
   3.689 -\tdx{equalityI}       [| A <= B;  B <= A |] ==> A = B
   3.690 -\tdx{equalityD1}      A = B ==> A<=B
   3.691 -\tdx{equalityD2}      A = B ==> B<=A
   3.692 -\tdx{equalityE}       [| A = B;  [| A<=B; B<=A |] ==> P |]  ==>  P
   3.693 -
   3.694 -\tdx{equalityCE}      [| A = B;  [| c:A; c:B |] ==> P;  
   3.695 -                           [| ~ c:A; ~ c:B |] ==> P 
   3.696 -                |]  ==>  P
   3.697 -\subcaption{The subset and equality relations}
   3.698 -\end{ttbox}
   3.699 -\caption{Derived rules for set theory} \label{hol-set1}
   3.700 -\end{figure}
   3.701 -
   3.702 -
   3.703 -\begin{figure} \underscoreon
   3.704 -\begin{ttbox}
   3.705 -\tdx{emptyE}   a : {\ttlbrace}{\ttrbrace} ==> P
   3.706 -
   3.707 -\tdx{insertI1} a : insert a B
   3.708 -\tdx{insertI2} a : B ==> a : insert b B
   3.709 -\tdx{insertE}  [| a : insert b A;  a=b ==> P;  a:A ==> P |] ==> P
   3.710 -
   3.711 -\tdx{ComplI}   [| c:A ==> False |] ==> c : Compl A
   3.712 -\tdx{ComplD}   [| c : Compl A |] ==> ~ c:A
   3.713 -
   3.714 -\tdx{UnI1}     c:A ==> c : A Un B
   3.715 -\tdx{UnI2}     c:B ==> c : A Un B
   3.716 -\tdx{UnCI}     (~c:B ==> c:A) ==> c : A Un B
   3.717 -\tdx{UnE}      [| c : A Un B;  c:A ==> P;  c:B ==> P |] ==> P
   3.718 -
   3.719 -\tdx{IntI}     [| c:A;  c:B |] ==> c : A Int B
   3.720 -\tdx{IntD1}    c : A Int B ==> c:A
   3.721 -\tdx{IntD2}    c : A Int B ==> c:B
   3.722 -\tdx{IntE}     [| c : A Int B;  [| c:A; c:B |] ==> P |] ==> P
   3.723 -
   3.724 -\tdx{UN_I}     [| a:A;  b: B a |] ==> b: (UN x:A. B x)
   3.725 -\tdx{UN_E}     [| b: (UN x:A. B x);  !!x.[| x:A;  b:B x |] ==> R |] ==> R
   3.726 -
   3.727 -\tdx{INT_I}    (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x)
   3.728 -\tdx{INT_D}    [| b: (INT x:A. B x);  a:A |] ==> b: B a
   3.729 -\tdx{INT_E}    [| b: (INT x:A. B x);  b: B a ==> R;  ~ a:A ==> R |] ==> R
   3.730 -
   3.731 -\tdx{UnionI}   [| X:C;  A:X |] ==> A : Union C
   3.732 -\tdx{UnionE}   [| A : Union C;  !!X.[| A:X;  X:C |] ==> R |] ==> R
   3.733 -
   3.734 -\tdx{InterI}   [| !!X. X:C ==> A:X |] ==> A : Inter C
   3.735 -\tdx{InterD}   [| A : Inter C;  X:C |] ==> A:X
   3.736 -\tdx{InterE}   [| A : Inter C;  A:X ==> R;  ~ X:C ==> R |] ==> R
   3.737 -
   3.738 -\tdx{PowI}     A<=B ==> A: Pow B
   3.739 -\tdx{PowD}     A: Pow B ==> A<=B
   3.740 -
   3.741 -\tdx{imageI}   [| x:A |] ==> f x : f``A
   3.742 -\tdx{imageE}   [| b : f``A;  !!x.[| b=f x;  x:A |] ==> P |] ==> P
   3.743 -
   3.744 -\tdx{rangeI}   f x : range f
   3.745 -\tdx{rangeE}   [| b : range f;  !!x.[| b=f x |] ==> P |] ==> P
   3.746 -\end{ttbox}
   3.747 -\caption{Further derived rules for set theory} \label{hol-set2}
   3.748 -\end{figure}
   3.749 -
   3.750 -
   3.751 -\subsection{Axioms and rules of set theory}
   3.752 -Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}.  The
   3.753 -axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert
   3.754 -that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms.  Of
   3.755 -course, \hbox{\tt op :} also serves as the membership relation.
   3.756 -
   3.757 -All the other axioms are definitions.  They include the empty set, bounded
   3.758 -quantifiers, unions, intersections, complements and the subset relation.
   3.759 -They also include straightforward constructions on functions: image~({\tt``})
   3.760 -and \texttt{range}.
   3.761 -
   3.762 -%The predicate \cdx{inj_on} is used for simulating type definitions.
   3.763 -%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the
   3.764 -%set~$A$, which specifies a subset of its domain type.  In a type
   3.765 -%definition, $f$ is the abstraction function and $A$ is the set of valid
   3.766 -%representations; we should not expect $f$ to be injective outside of~$A$.
   3.767 -
   3.768 -%\begin{figure} \underscoreon
   3.769 -%\begin{ttbox}
   3.770 -%\tdx{Inv_f_f}    inj f ==> Inv f (f x) = x
   3.771 -%\tdx{f_Inv_f}    y : range f ==> f(Inv f y) = y
   3.772 -%
   3.773 -%\tdx{Inv_injective}
   3.774 -%    [| Inv f x=Inv f y; x: range f;  y: range f |] ==> x=y
   3.775 -%
   3.776 -%
   3.777 -%\tdx{monoI}      [| !!A B. A <= B ==> f A <= f B |] ==> mono f
   3.778 -%\tdx{monoD}      [| mono f;  A <= B |] ==> f A <= f B
   3.779 -%
   3.780 -%\tdx{injI}       [| !! x y. f x = f y ==> x=y |] ==> inj f
   3.781 -%\tdx{inj_inverseI}              (!!x. g(f x) = x) ==> inj f
   3.782 -%\tdx{injD}       [| inj f; f x = f y |] ==> x=y
   3.783 -%
   3.784 -%\tdx{inj_onI}  (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A
   3.785 -%\tdx{inj_onD}  [| inj_on f A;  f x=f y;  x:A;  y:A |] ==> x=y
   3.786 -%
   3.787 -%\tdx{inj_on_inverseI}
   3.788 -%    (!!x. x:A ==> g(f x) = x) ==> inj_on f A
   3.789 -%\tdx{inj_on_contraD}
   3.790 -%    [| inj_on f A;  x~=y;  x:A;  y:A |] ==> ~ f x=f y
   3.791 -%\end{ttbox}
   3.792 -%\caption{Derived rules involving functions} \label{hol-fun}
   3.793 -%\end{figure}
   3.794 -
   3.795 -
   3.796 -\begin{figure} \underscoreon
   3.797 -\begin{ttbox}
   3.798 -\tdx{Union_upper}     B:A ==> B <= Union A
   3.799 -\tdx{Union_least}     [| !!X. X:A ==> X<=C |] ==> Union A <= C
   3.800 -
   3.801 -\tdx{Inter_lower}     B:A ==> Inter A <= B
   3.802 -\tdx{Inter_greatest}  [| !!X. X:A ==> C<=X |] ==> C <= Inter A
   3.803 -
   3.804 -\tdx{Un_upper1}       A <= A Un B
   3.805 -\tdx{Un_upper2}       B <= A Un B
   3.806 -\tdx{Un_least}        [| A<=C;  B<=C |] ==> A Un B <= C
   3.807 -
   3.808 -\tdx{Int_lower1}      A Int B <= A
   3.809 -\tdx{Int_lower2}      A Int B <= B
   3.810 -\tdx{Int_greatest}    [| C<=A;  C<=B |] ==> C <= A Int B
   3.811 -\end{ttbox}
   3.812 -\caption{Derived rules involving subsets} \label{hol-subset}
   3.813 -\end{figure}
   3.814 -
   3.815 -
   3.816 -\begin{figure} \underscoreon   \hfuzz=4pt%suppress "Overfull \hbox" message
   3.817 -\begin{ttbox}
   3.818 -\tdx{Int_absorb}        A Int A = A
   3.819 -\tdx{Int_commute}       A Int B = B Int A
   3.820 -\tdx{Int_assoc}         (A Int B) Int C  =  A Int (B Int C)
   3.821 -\tdx{Int_Un_distrib}    (A Un B)  Int C  =  (A Int C) Un (B Int C)
   3.822 -
   3.823 -\tdx{Un_absorb}         A Un A = A
   3.824 -\tdx{Un_commute}        A Un B = B Un A
   3.825 -\tdx{Un_assoc}          (A Un B)  Un C  =  A Un (B Un C)
   3.826 -\tdx{Un_Int_distrib}    (A Int B) Un C  =  (A Un C) Int (B Un C)
   3.827 -
   3.828 -\tdx{Compl_disjoint}    A Int (Compl A) = {\ttlbrace}x. False{\ttrbrace}
   3.829 -\tdx{Compl_partition}   A Un  (Compl A) = {\ttlbrace}x. True{\ttrbrace}
   3.830 -\tdx{double_complement} Compl(Compl A) = A
   3.831 -\tdx{Compl_Un}          Compl(A Un B)  = (Compl A) Int (Compl B)
   3.832 -\tdx{Compl_Int}         Compl(A Int B) = (Compl A) Un (Compl B)
   3.833 -
   3.834 -\tdx{Union_Un_distrib}  Union(A Un B) = (Union A) Un (Union B)
   3.835 -\tdx{Int_Union}         A Int (Union B) = (UN C:B. A Int C)
   3.836 -\tdx{Un_Union_image}    (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C)
   3.837 -
   3.838 -\tdx{Inter_Un_distrib}  Inter(A Un B) = (Inter A) Int (Inter B)
   3.839 -\tdx{Un_Inter}          A Un (Inter B) = (INT C:B. A Un C)
   3.840 -\tdx{Int_Inter_image}   (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C)
   3.841 -\end{ttbox}
   3.842 -\caption{Set equalities} \label{hol-equalities}
   3.843 -\end{figure}
   3.844 -
   3.845 -
   3.846 -Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules.  Most are
   3.847 -obvious and resemble rules of Isabelle's {\ZF} set theory.  Certain rules,
   3.848 -such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI},
   3.849 -are designed for classical reasoning; the rules \tdx{subsetD},
   3.850 -\tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not
   3.851 -strictly necessary but yield more natural proofs.  Similarly,
   3.852 -\tdx{equalityCE} supports classical reasoning about extensionality,
   3.853 -after the fashion of \tdx{iffCE}.  See the file \texttt{HOL/Set.ML} for
   3.854 -proofs pertaining to set theory.
   3.855 -
   3.856 -Figure~\ref{hol-subset} presents lattice properties of the subset relation.
   3.857 -Unions form least upper bounds; non-empty intersections form greatest lower
   3.858 -bounds.  Reasoning directly about subsets often yields clearer proofs than
   3.859 -reasoning about the membership relation.  See the file \texttt{HOL/subset.ML}.
   3.860 -
   3.861 -Figure~\ref{hol-equalities} presents many common set equalities.  They
   3.862 -include commutative, associative and distributive laws involving unions,
   3.863 -intersections and complements.  For a complete listing see the file {\tt
   3.864 -HOL/equalities.ML}.
   3.865 -
   3.866 -\begin{warn}
   3.867 -\texttt{Blast_tac} proves many set-theoretic theorems automatically.
   3.868 -Hence you seldom need to refer to the theorems above.
   3.869 -\end{warn}
   3.870 -
   3.871 -\begin{figure}
   3.872 -\begin{center}
   3.873 -\begin{tabular}{rrr}
   3.874 -  \it name      &\it meta-type  & \it description \\ 
   3.875 -  \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$
   3.876 -        & injective/surjective \\
   3.877 -  \cdx{inj_on}        & $[\alpha\To\beta ,\alpha\,set]\To bool$
   3.878 -        & injective over subset\\
   3.879 -  \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function
   3.880 -\end{tabular}
   3.881 -\end{center}
   3.882 -
   3.883 -\underscoreon
   3.884 -\begin{ttbox}
   3.885 -\tdx{inj_def}         inj f      == ! x y. f x=f y --> x=y
   3.886 -\tdx{surj_def}        surj f     == ! y. ? x. y=f x
   3.887 -\tdx{inj_on_def}      inj_on f A == !x:A. !y:A. f x=f y --> x=y
   3.888 -\tdx{inv_def}         inv f      == (\%y. @x. f(x)=y)
   3.889 -\end{ttbox}
   3.890 -\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun}
   3.891 -\end{figure}
   3.892 -
   3.893 -\subsection{Properties of functions}\nopagebreak
   3.894 -Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions.
   3.895 -Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse
   3.896 -of~$f$.  See the file \texttt{HOL/Fun.ML} for a complete listing of the derived
   3.897 -rules.  Reasoning about function composition (the operator~\sdx{o}) and the
   3.898 -predicate~\cdx{surj} is done simply by expanding the definitions.
   3.899 -
   3.900 -There is also a large collection of monotonicity theorems for constructions
   3.901 -on sets in the file \texttt{HOL/mono.ML}.
   3.902 -
   3.903 -\section{Generic packages}
   3.904 -\label{sec:HOL:generic-packages}
   3.905 -
   3.906 -\HOL\ instantiates most of Isabelle's generic packages, making available the
   3.907 -simplifier and the classical reasoner.
   3.908 -
   3.909 -\subsection{Simplification and substitution}
   3.910 -
   3.911 -Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset
   3.912 -(\texttt{simpset()}), which works for most purposes.  A quite minimal
   3.913 -simplification set for higher-order logic is~\ttindexbold{HOL_ss};
   3.914 -even more frugal is \ttindexbold{HOL_basic_ss}.  Equality~($=$), which
   3.915 -also expresses logical equivalence, may be used for rewriting.  See
   3.916 -the file \texttt{HOL/simpdata.ML} for a complete listing of the basic
   3.917 -simplification rules.
   3.918 -
   3.919 -See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
   3.920 -{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution
   3.921 -and simplification.
   3.922 -
   3.923 -\begin{warn}\index{simplification!of conjunctions}%
   3.924 -  Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous.  The
   3.925 -  left part of a conjunction helps in simplifying the right part.  This effect
   3.926 -  is not available by default: it can be slow.  It can be obtained by
   3.927 -  including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$.
   3.928 -\end{warn}
   3.929 -
   3.930 -If the simplifier cannot use a certain rewrite rule --- either because
   3.931 -of nontermination or because its left-hand side is too flexible ---
   3.932 -then you might try \texttt{stac}:
   3.933 -\begin{ttdescription}
   3.934 -\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$,
   3.935 -  replaces in subgoal $i$ instances of $lhs$ by corresponding instances of
   3.936 -  $rhs$.  In case of multiple instances of $lhs$ in subgoal $i$, backtracking
   3.937 -  may be necessary to select the desired ones.
   3.938 -
   3.939 -If $thm$ is a conditional equality, the instantiated condition becomes an
   3.940 -additional (first) subgoal.
   3.941 -\end{ttdescription}
   3.942 -
   3.943 - \HOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes
   3.944 -  for an equality throughout a subgoal and its hypotheses.  This tactic uses
   3.945 -  \HOL's general substitution rule.
   3.946 -
   3.947 -\subsubsection{Case splitting}
   3.948 -\label{subsec:HOL:case:splitting}
   3.949 -
   3.950 -\HOL{} also provides convenient means for case splitting during
   3.951 -rewriting. Goals containing a subterm of the form \texttt{if}~$b$~{\tt
   3.952 -then\dots else\dots} often require a case distinction on $b$. This is
   3.953 -expressed by the theorem \tdx{split_if}:
   3.954 -$$
   3.955 -\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~
   3.956 -((\Var{b} \to \Var{P}(\Var{x})) \land (\neg \Var{b} \to \Var{P}(\Var{y})))
   3.957 -\eqno{(*)}
   3.958 -$$
   3.959 -For example, a simple instance of $(*)$ is
   3.960 -\[
   3.961 -x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~
   3.962 -((x \in A \to x \in A) \land (x \notin A \to x \in \{x\}))
   3.963 -\]
   3.964 -Because $(*)$ is too general as a rewrite rule for the simplifier (the
   3.965 -left-hand side is not a higher-order pattern in the sense of
   3.966 -\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}%
   3.967 -{Chap.\ts\ref{chap:simplification}}), there is a special infix function 
   3.968 -\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset}
   3.969 -(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a
   3.970 -simpset, as in
   3.971 -\begin{ttbox}
   3.972 -by(simp_tac (simpset() addsplits [split_if]) 1);
   3.973 -\end{ttbox}
   3.974 -The effect is that after each round of simplification, one occurrence of
   3.975 -\texttt{if} is split acording to \texttt{split_if}, until all occurences of
   3.976 -\texttt{if} have been eliminated.
   3.977 -
   3.978 -It turns out that using \texttt{split_if} is almost always the right thing to
   3.979 -do. Hence \texttt{split_if} is already included in the default simpset. If
   3.980 -you want to delete it from a simpset, use \ttindexbold{delsplits}, which is
   3.981 -the inverse of \texttt{addsplits}:
   3.982 -\begin{ttbox}
   3.983 -by(simp_tac (simpset() delsplits [split_if]) 1);
   3.984 -\end{ttbox}
   3.985 -
   3.986 -In general, \texttt{addsplits} accepts rules of the form
   3.987 -\[
   3.988 -\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs
   3.989 -\]
   3.990 -where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the
   3.991 -right form because internally the left-hand side is
   3.992 -$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples
   3.993 -are splitting rules for \texttt{case} expressions (see~\S\ref{subsec:list}
   3.994 -and~\S\ref{subsec:datatype:basics}).
   3.995 -
   3.996 -Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also
   3.997 -imperative versions of \texttt{addsplits} and \texttt{delsplits}
   3.998 -\begin{ttbox}
   3.999 -\ttindexbold{Addsplits}: thm list -> unit
  3.1000 -\ttindexbold{Delsplits}: thm list -> unit
  3.1001 -\end{ttbox}
  3.1002 -for adding splitting rules to, and deleting them from the current simpset.
  3.1003 -
  3.1004 -\subsection{Classical reasoning}
  3.1005 -
  3.1006 -\HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as
  3.1007 -well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap
  3.1008 -rule; recall Fig.\ts\ref{hol-lemmas2} above.
  3.1009 -
  3.1010 -The classical reasoner is installed.  Tactics such as \texttt{Blast_tac} and {\tt
  3.1011 -Best_tac} refer to the default claset (\texttt{claset()}), which works for most
  3.1012 -purposes.  Named clasets include \ttindexbold{prop_cs}, which includes the
  3.1013 -propositional rules, and \ttindexbold{HOL_cs}, which also includes quantifier
  3.1014 -rules.  See the file \texttt{HOL/cladata.ML} for lists of the classical rules,
  3.1015 -and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}%
  3.1016 -{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods.
  3.1017 -
  3.1018 -
  3.1019 -\section{Types}\label{sec:HOL:Types}
  3.1020 -This section describes \HOL's basic predefined types ($\alpha \times
  3.1021 -\beta$, $\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for
  3.1022 -introducing new types in general.  The most important type
  3.1023 -construction, the \texttt{datatype}, is treated separately in
  3.1024 -\S\ref{sec:HOL:datatype}.
  3.1025 -
  3.1026 -
  3.1027 -\subsection{Product and sum types}\index{*"* type}\index{*"+ type}
  3.1028 -\label{subsec:prod-sum}
  3.1029 -
  3.1030 -\begin{figure}[htbp]
  3.1031 -\begin{constants}
  3.1032 -  \it symbol    & \it meta-type &           & \it description \\ 
  3.1033 -  \cdx{Pair}    & $[\alpha,\beta]\To \alpha\times\beta$
  3.1034 -        & & ordered pairs $(a,b)$ \\
  3.1035 -  \cdx{fst}     & $\alpha\times\beta \To \alpha$        & & first projection\\
  3.1036 -  \cdx{snd}     & $\alpha\times\beta \To \beta$         & & second projection\\
  3.1037 -  \cdx{split}   & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ 
  3.1038 -        & & generalized projection\\
  3.1039 -  \cdx{Sigma}  & 
  3.1040 -        $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ &
  3.1041 -        & general sum of sets
  3.1042 -\end{constants}
  3.1043 -\begin{ttbox}\makeatletter
  3.1044 -%\tdx{fst_def}      fst p     == @a. ? b. p = (a,b)
  3.1045 -%\tdx{snd_def}      snd p     == @b. ? a. p = (a,b)
  3.1046 -%\tdx{split_def}    split c p == c (fst p) (snd p)
  3.1047 -\tdx{Sigma_def}    Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace}
  3.1048 -
  3.1049 -\tdx{Pair_eq}      ((a,b) = (a',b')) = (a=a' & b=b')
  3.1050 -\tdx{Pair_inject}  [| (a, b) = (a',b');  [| a=a';  b=b' |] ==> R |] ==> R
  3.1051 -\tdx{PairE}        [| !!x y. p = (x,y) ==> Q |] ==> Q
  3.1052 -
  3.1053 -\tdx{fst_conv}     fst (a,b) = a
  3.1054 -\tdx{snd_conv}     snd (a,b) = b
  3.1055 -\tdx{surjective_pairing}  p = (fst p,snd p)
  3.1056 -
  3.1057 -\tdx{split}        split c (a,b) = c a b
  3.1058 -\tdx{split_split}  R(split c p) = (! x y. p = (x,y) --> R(c x y))
  3.1059 -
  3.1060 -\tdx{SigmaI}    [| a:A;  b:B a |] ==> (a,b) : Sigma A B
  3.1061 -\tdx{SigmaE}    [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P
  3.1062 -\end{ttbox}
  3.1063 -\caption{Type $\alpha\times\beta$}\label{hol-prod}
  3.1064 -\end{figure} 
  3.1065 -
  3.1066 -Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type
  3.1067 -$\alpha\times\beta$, with the ordered pair syntax $(a, b)$.  General
  3.1068 -tuples are simulated by pairs nested to the right:
  3.1069 -\begin{center}
  3.1070 -\begin{tabular}{c|c}
  3.1071 -external & internal \\
  3.1072 -\hline
  3.1073 -$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\
  3.1074 -\hline
  3.1075 -$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\
  3.1076 -\end{tabular}
  3.1077 -\end{center}
  3.1078 -In addition, it is possible to use tuples
  3.1079 -as patterns in abstractions:
  3.1080 -\begin{center}
  3.1081 -{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} 
  3.1082 -\end{center}
  3.1083 -Nested patterns are also supported.  They are translated stepwise:
  3.1084 -{\tt\%($x$,$y$,$z$). $t$} $\leadsto$ {\tt\%($x$,($y$,$z$)). $t$} $\leadsto$
  3.1085 -{\tt split(\%$x$.\%($y$,$z$). $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$
  3.1086 -  $z$.\ $t$))}.  The reverse translation is performed upon printing.
  3.1087 -\begin{warn}
  3.1088 -  The translation between patterns and \texttt{split} is performed automatically
  3.1089 -  by the parser and printer.  Thus the internal and external form of a term
  3.1090 -  may differ, which can affects proofs.  For example the term {\tt
  3.1091 -  (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the
  3.1092 -  default simpset) to rewrite to {\tt(b,a)}.
  3.1093 -\end{warn}
  3.1094 -In addition to explicit $\lambda$-abstractions, patterns can be used in any
  3.1095 -variable binding construct which is internally described by a
  3.1096 -$\lambda$-abstraction.  Some important examples are
  3.1097 -\begin{description}
  3.1098 -\item[Let:] \texttt{let {\it pattern} = $t$ in $u$}
  3.1099 -\item[Quantifiers:] \texttt{!~{\it pattern}:$A$.~$P$}
  3.1100 -\item[Choice:] {\underscoreon \tt @~{\it pattern}~.~$P$}
  3.1101 -\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$}
  3.1102 -\item[Sets:] \texttt{{\ttlbrace}~{\it pattern}~.~$P$~{\ttrbrace}}
  3.1103 -\end{description}
  3.1104 -
  3.1105 -There is a simple tactic which supports reasoning about patterns:
  3.1106 -\begin{ttdescription}
  3.1107 -\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all
  3.1108 -  {\tt!!}-quantified variables of product type by individual variables for
  3.1109 -  each component.  A simple example:
  3.1110 -\begin{ttbox}
  3.1111 -{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p}
  3.1112 -by(split_all_tac 1);
  3.1113 -{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)}
  3.1114 -\end{ttbox}
  3.1115 -\end{ttdescription}
  3.1116 -
  3.1117 -Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit}
  3.1118 -which contains only a single element named {\tt()} with the property
  3.1119 -\begin{ttbox}
  3.1120 -\tdx{unit_eq}       u = ()
  3.1121 -\end{ttbox}
  3.1122 -\bigskip
  3.1123 -
  3.1124 -Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$
  3.1125 -which associates to the right and has a lower priority than $*$: $\tau@1 +
  3.1126 -\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$.
  3.1127 -
  3.1128 -The definition of products and sums in terms of existing types is not
  3.1129 -shown.  The constructions are fairly standard and can be found in the
  3.1130 -respective theory files.
  3.1131 -
  3.1132 -\begin{figure}
  3.1133 -\begin{constants}
  3.1134 -  \it symbol    & \it meta-type &           & \it description \\ 
  3.1135 -  \cdx{Inl}     & $\alpha \To \alpha+\beta$    & & first injection\\
  3.1136 -  \cdx{Inr}     & $\beta \To \alpha+\beta$     & & second injection\\
  3.1137 -  \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$
  3.1138 -        & & conditional
  3.1139 -\end{constants}
  3.1140 -\begin{ttbox}\makeatletter
  3.1141 -%\tdx{sum_case_def}   sum_case == (\%f g p. @z. (!x. p=Inl x --> z=f x) &
  3.1142 -%                                        (!y. p=Inr y --> z=g y))
  3.1143 -%
  3.1144 -\tdx{Inl_not_Inr}    Inl a ~= Inr b
  3.1145 -
  3.1146 -\tdx{inj_Inl}        inj Inl
  3.1147 -\tdx{inj_Inr}        inj Inr
  3.1148 -
  3.1149 -\tdx{sumE}           [| !!x. P(Inl x);  !!y. P(Inr y) |] ==> P s
  3.1150 -
  3.1151 -\tdx{sum_case_Inl}   sum_case f g (Inl x) = f x
  3.1152 -\tdx{sum_case_Inr}   sum_case f g (Inr x) = g x
  3.1153 -
  3.1154 -\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s
  3.1155 -\tdx{split_sum_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) &
  3.1156 -                                     (! y. s = Inr(y) --> R(g(y))))
  3.1157 -\end{ttbox}
  3.1158 -\caption{Type $\alpha+\beta$}\label{hol-sum}
  3.1159 -\end{figure}
  3.1160 -
  3.1161 -\begin{figure}
  3.1162 -\index{*"< symbol}
  3.1163 -\index{*"* symbol}
  3.1164 -\index{*div symbol}
  3.1165 -\index{*mod symbol}
  3.1166 -\index{*"+ symbol}
  3.1167 -\index{*"- symbol}
  3.1168 -\begin{constants}
  3.1169 -  \it symbol    & \it meta-type & \it priority & \it description \\ 
  3.1170 -  \cdx{0}       & $nat$         & & zero \\
  3.1171 -  \cdx{Suc}     & $nat \To nat$ & & successor function\\
  3.1172 -% \cdx{nat_case} & $[\alpha, nat\To\alpha, nat] \To\alpha$ & & conditional\\
  3.1173 -% \cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$
  3.1174 -%        & & primitive recursor\\
  3.1175 -  \tt *         & $[nat,nat]\To nat$    &  Left 70      & multiplication \\
  3.1176 -  \tt div       & $[nat,nat]\To nat$    &  Left 70      & division\\
  3.1177 -  \tt mod       & $[nat,nat]\To nat$    &  Left 70      & modulus\\
  3.1178 -  \tt +         & $[nat,nat]\To nat$    &  Left 65      & addition\\
  3.1179 -  \tt -         & $[nat,nat]\To nat$    &  Left 65      & subtraction
  3.1180 -\end{constants}
  3.1181 -\subcaption{Constants and infixes}
  3.1182 -
  3.1183 -\begin{ttbox}\makeatother
  3.1184 -\tdx{nat_induct}     [| P 0; !!n. P n ==> P(Suc n) |]  ==> P n
  3.1185 -
  3.1186 -\tdx{Suc_not_Zero}   Suc m ~= 0
  3.1187 -\tdx{inj_Suc}        inj Suc
  3.1188 -\tdx{n_not_Suc_n}    n~=Suc n
  3.1189 -\subcaption{Basic properties}
  3.1190 -\end{ttbox}
  3.1191 -\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1}
  3.1192 -\end{figure}
  3.1193 -
  3.1194 -
  3.1195 -\begin{figure}
  3.1196 -\begin{ttbox}\makeatother
  3.1197 -              0+n           = n
  3.1198 -              (Suc m)+n     = Suc(m+n)
  3.1199 -
  3.1200 -              m-0           = m
  3.1201 -              0-n           = n
  3.1202 -              Suc(m)-Suc(n) = m-n
  3.1203 -
  3.1204 -              0*n           = 0
  3.1205 -              Suc(m)*n      = n + m*n
  3.1206 -
  3.1207 -\tdx{mod_less}      m<n ==> m mod n = m
  3.1208 -\tdx{mod_geq}       [| 0<n;  ~m<n |] ==> m mod n = (m-n) mod n
  3.1209 -
  3.1210 -\tdx{div_less}      m<n ==> m div n = 0
  3.1211 -\tdx{div_geq}       [| 0<n;  ~m<n |] ==> m div n = Suc((m-n) div n)
  3.1212 -\end{ttbox}
  3.1213 -\caption{Recursion equations for the arithmetic operators} \label{hol-nat2}
  3.1214 -\end{figure}
  3.1215 -
  3.1216 -\subsection{The type of natural numbers, \textit{nat}}
  3.1217 -\index{nat@{\textit{nat}} type|(}
  3.1218 -
  3.1219 -The theory \thydx{NatDef} defines the natural numbers in a roundabout but
  3.1220 -traditional way.  The axiom of infinity postulates a type~\tydx{ind} of
  3.1221 -individuals, which is non-empty and closed under an injective operation.  The
  3.1222 -natural numbers are inductively generated by choosing an arbitrary individual
  3.1223 -for~0 and using the injective operation to take successors.  This is a least
  3.1224 -fixedpoint construction.  For details see the file \texttt{NatDef.thy}.
  3.1225 -
  3.1226 -Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the
  3.1227 -overloaded functions of this class (esp.\ \cdx{<} and \cdx{<=}, but also
  3.1228 -\cdx{min}, \cdx{max} and \cdx{LEAST}) available on \tydx{nat}.  Theory
  3.1229 -\thydx{Nat} builds on \texttt{NatDef} and shows that {\tt<=} is a partial order,
  3.1230 -so \tydx{nat} is also an instance of class \cldx{order}.
  3.1231 -
  3.1232 -Theory \thydx{Arith} develops arithmetic on the natural numbers.  It defines
  3.1233 -addition, multiplication and subtraction.  Theory \thydx{Divides} defines
  3.1234 -division, remainder and the ``divides'' relation.  The numerous theorems
  3.1235 -proved include commutative, associative, distributive, identity and
  3.1236 -cancellation laws.  See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}.  The
  3.1237 -recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on
  3.1238 -\texttt{nat} are part of the default simpset.
  3.1239 -
  3.1240 -Functions on \tydx{nat} can be defined by primitive or well-founded recursion;
  3.1241 -see \S\ref{sec:HOL:recursive}.  A simple example is addition.
  3.1242 -Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following
  3.1243 -the standard convention.
  3.1244 -\begin{ttbox}
  3.1245 -\sdx{primrec}
  3.1246 -  "    0 + n = n"
  3.1247 -  "Suc m + n = Suc(m + n)"
  3.1248 -\end{ttbox}
  3.1249 -There is also a \sdx{case}-construct
  3.1250 -of the form
  3.1251 -\begin{ttbox}
  3.1252 -case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\)
  3.1253 -\end{ttbox}
  3.1254 -Note that Isabelle insists on precisely this format; you may not even change
  3.1255 -the order of the two cases.
  3.1256 -Both \texttt{primrec} and \texttt{case} are realized by a recursion operator
  3.1257 -\cdx{nat_rec}, the details of which can be found in theory \texttt{NatDef}.
  3.1258 -
  3.1259 -%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded.
  3.1260 -%Recursion along this relation resembles primitive recursion, but is
  3.1261 -%stronger because we are in higher-order logic; using primitive recursion to
  3.1262 -%define a higher-order function, we can easily Ackermann's function, which
  3.1263 -%is not primitive recursive \cite[page~104]{thompson91}.
  3.1264 -%The transitive closure of \cdx{pred_nat} is~$<$.  Many functions on the
  3.1265 -%natural numbers are most easily expressed using recursion along~$<$.
  3.1266 -
  3.1267 -Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$
  3.1268 -in subgoal~$i$ using theorem \texttt{nat_induct}.  There is also the derived
  3.1269 -theorem \tdx{less_induct}:
  3.1270 -\begin{ttbox}
  3.1271 -[| !!n. [| ! m. m<n --> P m |] ==> P n |]  ==>  P n
  3.1272 -\end{ttbox}
  3.1273 -
  3.1274 -
  3.1275 -Reasoning about arithmetic inequalities can be tedious.  Fortunately HOL
  3.1276 -provides a decision procedure for quantifier-free linear arithmetic (i.e.\ 
  3.1277 -only addition and subtraction). The simplifier invokes a weak version of this
  3.1278 -decision procedure automatically. If this is not sufficent, you can invoke
  3.1279 -the full procedure \ttindex{arith_tac} explicitly.  It copes with arbitrary
  3.1280 -formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt
  3.1281 -  min}, {\tt max} and numerical constants; other subterms are treated as
  3.1282 -atomic; subformulae not involving type $nat$ are ignored; quantified
  3.1283 -subformulae are ignored unless they are positive universal or negative
  3.1284 -existential. Note that the running time is exponential in the number of
  3.1285 -occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case
  3.1286 -distinctions. Note also that \texttt{arith_tac} is not complete: if
  3.1287 -divisibility plays a role, it may fail to prove a valid formula, for example
  3.1288 -$m+m \neq n+n+1$. Fortunately such examples are rare in practice.
  3.1289 -
  3.1290 -If \texttt{arith_tac} fails you, try to find relevant arithmetic results in
  3.1291 -the library.  The theory \texttt{NatDef} contains theorems about {\tt<} and
  3.1292 -{\tt<=}, the theory \texttt{Arith} contains theorems about \texttt{+},
  3.1293 -\texttt{-} and \texttt{*}, and theory \texttt{Divides} contains theorems about
  3.1294 -\texttt{div} and \texttt{mod}.  Use the \texttt{find}-functions to locate them
  3.1295 -(see the {\em Reference Manual\/}).
  3.1296 -
  3.1297 -\begin{figure}
  3.1298 -\index{#@{\tt[]} symbol}
  3.1299 -\index{#@{\tt\#} symbol}
  3.1300 -\index{"@@{\tt\at} symbol}
  3.1301 -\index{*"! symbol}
  3.1302 -\begin{constants}
  3.1303 -  \it symbol & \it meta-type & \it priority & \it description \\
  3.1304 -  \tt[]    & $\alpha\,list$ & & empty list\\
  3.1305 -  \tt \#   & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & 
  3.1306 -        list constructor \\
  3.1307 -  \cdx{null}    & $\alpha\,list \To bool$ & & emptiness test\\
  3.1308 -  \cdx{hd}      & $\alpha\,list \To \alpha$ & & head \\
  3.1309 -  \cdx{tl}      & $\alpha\,list \To \alpha\,list$ & & tail \\
  3.1310 -  \cdx{last}    & $\alpha\,list \To \alpha$ & & last element \\
  3.1311 -  \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\
  3.1312 -  \tt\at  & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\
  3.1313 -  \cdx{map}     & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$
  3.1314 -        & & apply to all\\
  3.1315 -  \cdx{filter}  & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$
  3.1316 -        & & filter functional\\
  3.1317 -  \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\
  3.1318 -  \sdx{mem}  & $\alpha \To \alpha\,list \To bool$  &  Left 55   & membership\\
  3.1319 -  \cdx{foldl}   & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ &
  3.1320 -  & iteration \\
  3.1321 -  \cdx{concat}   & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\
  3.1322 -  \cdx{rev}     & $\alpha\,list \To \alpha\,list$ & & reverse \\
  3.1323 -  \cdx{length}  & $\alpha\,list \To nat$ & & length \\
  3.1324 -  \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\
  3.1325 -  \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ &&
  3.1326 -    take or drop a prefix \\
  3.1327 -  \cdx{takeWhile},\\
  3.1328 -  \cdx{dropWhile} &
  3.1329 -    $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ &&
  3.1330 -    take or drop a prefix
  3.1331 -\end{constants}
  3.1332 -\subcaption{Constants and infixes}
  3.1333 -
  3.1334 -\begin{center} \tt\frenchspacing
  3.1335 -\begin{tabular}{rrr} 
  3.1336 -  \it external        & \it internal  & \it description \\{}
  3.1337 -  [$x@1$, $\dots$, $x@n$]  &  $x@1$ \# $\cdots$ \# $x@n$ \# [] &
  3.1338 -        \rm finite list \\{}
  3.1339 -  [$x$:$l$. $P$]  & filter ($\lambda x{.}P$) $l$ & 
  3.1340 -        \rm list comprehension
  3.1341 -\end{tabular}
  3.1342 -\end{center}
  3.1343 -\subcaption{Translations}
  3.1344 -\caption{The theory \thydx{List}} \label{hol-list}
  3.1345 -\end{figure}
  3.1346 -
  3.1347 -
  3.1348 -\begin{figure}
  3.1349 -\begin{ttbox}\makeatother
  3.1350 -null [] = True
  3.1351 -null (x#xs) = False
  3.1352 -
  3.1353 -hd (x#xs) = x
  3.1354 -tl (x#xs) = xs
  3.1355 -tl [] = []
  3.1356 -
  3.1357 -[] @ ys = ys
  3.1358 -(x#xs) @ ys = x # xs @ ys
  3.1359 -
  3.1360 -map f [] = []
  3.1361 -map f (x#xs) = f x # map f xs
  3.1362 -
  3.1363 -filter P [] = []
  3.1364 -filter P (x#xs) = (if P x then x#filter P xs else filter P xs)
  3.1365 -
  3.1366 -set [] = \ttlbrace\ttrbrace
  3.1367 -set (x#xs) = insert x (set xs)
  3.1368 -
  3.1369 -x mem [] = False
  3.1370 -x mem (y#ys) = (if y=x then True else x mem ys)
  3.1371 -
  3.1372 -foldl f a [] = a
  3.1373 -foldl f a (x#xs) = foldl f (f a x) xs
  3.1374 -
  3.1375 -concat([]) = []
  3.1376 -concat(x#xs) = x @ concat(xs)
  3.1377 -
  3.1378 -rev([]) = []
  3.1379 -rev(x#xs) = rev(xs) @ [x]
  3.1380 -
  3.1381 -length([]) = 0
  3.1382 -length(x#xs) = Suc(length(xs))
  3.1383 -
  3.1384 -xs!0 = hd xs
  3.1385 -xs!(Suc n) = (tl xs)!n
  3.1386 -
  3.1387 -take n [] = []
  3.1388 -take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs)
  3.1389 -
  3.1390 -drop n [] = []
  3.1391 -drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs)
  3.1392 -
  3.1393 -takeWhile P [] = []
  3.1394 -takeWhile P (x#xs) = (if P x then x#takeWhile P xs else [])
  3.1395 -
  3.1396 -dropWhile P [] = []
  3.1397 -dropWhile P (x#xs) = (if P x then dropWhile P xs else xs)
  3.1398 -\end{ttbox}
  3.1399 -\caption{Recursions equations for list processing functions}
  3.1400 -\label{fig:HOL:list-simps}
  3.1401 -\end{figure}
  3.1402 -\index{nat@{\textit{nat}} type|)}
  3.1403 -
  3.1404 -
  3.1405 -\subsection{The type constructor for lists, \textit{list}}
  3.1406 -\label{subsec:list}
  3.1407 -\index{list@{\textit{list}} type|(}
  3.1408 -
  3.1409 -Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list
  3.1410 -operations with their types and syntax.  Type $\alpha \; list$ is
  3.1411 -defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}.
  3.1412 -As a result the generic structural induction and case analysis tactics
  3.1413 -\texttt{induct\_tac} and \texttt{exhaust\_tac} also become available for
  3.1414 -lists.  A \sdx{case} construct of the form
  3.1415 -\begin{center}\tt
  3.1416 -case $e$ of [] => $a$  |  \(x\)\#\(xs\) => b
  3.1417 -\end{center}
  3.1418 -is defined by translation.  For details see~\S\ref{sec:HOL:datatype}. There
  3.1419 -is also a case splitting rule \tdx{split_list_case}
  3.1420 -\[
  3.1421 -\begin{array}{l}
  3.1422 -P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~
  3.1423 -               x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\
  3.1424 -((e = \texttt{[]} \to P(a)) \land
  3.1425 - (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs)))
  3.1426 -\end{array}
  3.1427 -\]
  3.1428 -which can be fed to \ttindex{addsplits} just like
  3.1429 -\texttt{split_if} (see~\S\ref{subsec:HOL:case:splitting}).
  3.1430 -
  3.1431 -\texttt{List} provides a basic library of list processing functions defined by
  3.1432 -primitive recursion (see~\S\ref{sec:HOL:primrec}).  The recursion equations
  3.1433 -are shown in Fig.\ts\ref{fig:HOL:list-simps}.
  3.1434 -
  3.1435 -\index{list@{\textit{list}} type|)}
  3.1436 -
  3.1437 -
  3.1438 -\subsection{Introducing new types} \label{sec:typedef}
  3.1439 -
  3.1440 -The \HOL-methodology dictates that all extensions to a theory should
  3.1441 -be \textbf{definitional}.  The type definition mechanism that
  3.1442 -meets this criterion is \ttindex{typedef}.  Note that \emph{type synonyms},
  3.1443 -which are inherited from {\Pure} and described elsewhere, are just
  3.1444 -syntactic abbreviations that have no logical meaning.
  3.1445 -
  3.1446 -\begin{warn}
  3.1447 -  Types in \HOL\ must be non-empty; otherwise the quantifier rules would be
  3.1448 -  unsound, because $\exists x. x=x$ is a theorem \cite[\S7]{paulson-COLOG}.
  3.1449 -\end{warn}
  3.1450 -A \bfindex{type definition} identifies the new type with a subset of
  3.1451 -an existing type.  More precisely, the new type is defined by
  3.1452 -exhibiting an existing type~$\tau$, a set~$A::\tau\,set$, and a
  3.1453 -theorem of the form $x:A$.  Thus~$A$ is a non-empty subset of~$\tau$,
  3.1454 -and the new type denotes this subset.  New functions are defined that
  3.1455 -establish an isomorphism between the new type and the subset.  If
  3.1456 -type~$\tau$ involves type variables $\alpha@1$, \ldots, $\alpha@n$,
  3.1457 -then the type definition creates a type constructor
  3.1458 -$(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type.
  3.1459 -
  3.1460 -\begin{figure}[htbp]
  3.1461 -\begin{rail}
  3.1462 -typedef  : 'typedef' ( () | '(' name ')') type '=' set witness;
  3.1463 -
  3.1464 -type    : typevarlist name ( () | '(' infix ')' );
  3.1465 -set     : string;
  3.1466 -witness : () | '(' id ')';
  3.1467 -\end{rail}
  3.1468 -\caption{Syntax of type definitions}
  3.1469 -\label{fig:HOL:typedef}
  3.1470 -\end{figure}
  3.1471 -
  3.1472 -The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}.  For
  3.1473 -the definition of `typevarlist' and `infix' see
  3.1474 -\iflabelundefined{chap:classical}
  3.1475 -{the appendix of the {\em Reference Manual\/}}%
  3.1476 -{Appendix~\ref{app:TheorySyntax}}.  The remaining nonterminals have the
  3.1477 -following meaning:
  3.1478 -\begin{description}
  3.1479 -\item[\it type:] the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with
  3.1480 -  optional infix annotation.
  3.1481 -\item[\it name:] an alphanumeric name $T$ for the type constructor
  3.1482 -  $ty$, in case $ty$ is a symbolic name.  Defaults to $ty$.
  3.1483 -\item[\it set:] the representing subset $A$.
  3.1484 -\item[\it witness:] name of a theorem of the form $a:A$ proving
  3.1485 -  non-emptiness.  It can be omitted in case Isabelle manages to prove
  3.1486 -  non-emptiness automatically.
  3.1487 -\end{description}
  3.1488 -If all context conditions are met (no duplicate type variables in
  3.1489 -`typevarlist', no extra type variables in `set', and no free term variables
  3.1490 -in `set'), the following components are added to the theory:
  3.1491 -\begin{itemize}
  3.1492 -\item a type $ty :: (term,\dots,term)term$
  3.1493 -\item constants
  3.1494 -\begin{eqnarray*}
  3.1495 -T &::& \tau\;set \\
  3.1496 -Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\
  3.1497 -Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty
  3.1498 -\end{eqnarray*}
  3.1499 -\item a definition and three axioms
  3.1500 -\[
  3.1501 -\begin{array}{ll}
  3.1502 -T{\tt_def} & T \equiv A \\
  3.1503 -{\tt Rep_}T & Rep_T\,x \in T \\
  3.1504 -{\tt Rep_}T{\tt_inverse} & Abs_T\,(Rep_T\,x) = x \\
  3.1505 -{\tt Abs_}T{\tt_inverse} & y \in T \Imp Rep_T\,(Abs_T\,y) = y
  3.1506 -\end{array}
  3.1507 -\]
  3.1508 -stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$
  3.1509 -and its inverse $Abs_T$.
  3.1510 -\end{itemize}
  3.1511 -Below are two simple examples of \HOL\ type definitions.  Non-emptiness
  3.1512 -is proved automatically here.
  3.1513 -\begin{ttbox}
  3.1514 -typedef unit = "{\ttlbrace}True{\ttrbrace}"
  3.1515 -
  3.1516 -typedef (prod)
  3.1517 -  ('a, 'b) "*"    (infixr 20)
  3.1518 -      = "{\ttlbrace}f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b){\ttrbrace}"
  3.1519 -\end{ttbox}
  3.1520 -
  3.1521 -Type definitions permit the introduction of abstract data types in a safe
  3.1522 -way, namely by providing models based on already existing types.  Given some
  3.1523 -abstract axiomatic description $P$ of a type, this involves two steps:
  3.1524 -\begin{enumerate}
  3.1525 -\item Find an appropriate type $\tau$ and subset $A$ which has the desired
  3.1526 -  properties $P$, and make a type definition based on this representation.
  3.1527 -\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation.
  3.1528 -\end{enumerate}
  3.1529 -You can now forget about the representation and work solely in terms of the
  3.1530 -abstract properties $P$.
  3.1531 -
  3.1532 -\begin{warn}
  3.1533 -If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by
  3.1534 -declaring the type and its operations and by stating the desired axioms, you
  3.1535 -should make sure the type has a non-empty model.  You must also have a clause
  3.1536 -\par
  3.1537 -\begin{ttbox}
  3.1538 -arities \(ty\) :: (term,\thinspace\(\dots\),{\thinspace}term){\thinspace}term
  3.1539 -\end{ttbox}
  3.1540 -in your theory file to tell Isabelle that $ty$ is in class \texttt{term}, the
  3.1541 -class of all \HOL\ types.
  3.1542 -\end{warn}
  3.1543 -
  3.1544 -
  3.1545 -\section{Records}
  3.1546 -
  3.1547 -At a first approximation, records are just a minor generalisation of tuples,
  3.1548 -where components may be addressed by labels instead of just position (think of
  3.1549 -{\ML}, for example).  The version of records offered by Isabelle/HOL is
  3.1550 -slightly more advanced, though, supporting \emph{extensible record schemes}.
  3.1551 -This admits operations that are polymorphic with respect to record extension,
  3.1552 -yielding ``object-oriented'' effects like (single) inheritance.  See also
  3.1553 -\cite{Naraschewski-Wenzel:1998:TPHOL} for more details on object-oriented
  3.1554 -verification and record subtyping in HOL.
  3.1555 -
  3.1556 -
  3.1557 -\subsection{Basics}
  3.1558 -
  3.1559 -Isabelle/HOL supports fixed and schematic records both at the level of terms
  3.1560 -and types.  The concrete syntax is as follows:
  3.1561 -
  3.1562 -\begin{center}
  3.1563 -\begin{tabular}{l|l|l}
  3.1564 -  & record terms & record types \\ \hline
  3.1565 -  fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\
  3.1566 -  schematic & $\record{x = a\fs y = b\fs \more = m}$ &
  3.1567 -    $\record{x \ty A\fs y \ty B\fs \more \ty M}$ \\
  3.1568 -\end{tabular}
  3.1569 -\end{center}
  3.1570 -
  3.1571 -\noindent The \textsc{ascii} representation of $\record{x = a}$ is \texttt{(| x = a |)}.
  3.1572 -
  3.1573 -A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field
  3.1574 -$y$ of value $b$.  The corresponding type is $\record{x \ty A\fs y \ty B}$,
  3.1575 -assuming that $a \ty A$ and $b \ty B$.
  3.1576 -
  3.1577 -A record scheme like $\record{x = a\fs y = b\fs \more = m}$ contains fields
  3.1578 -$x$ and $y$ as before, but also possibly further fields as indicated by the
  3.1579 -``$\more$'' notation (which is actually part of the syntax).  The improper
  3.1580 -field ``$\more$'' of a record scheme is called the \emph{more part}.
  3.1581 -Logically it is just a free variable, which is occasionally referred to as
  3.1582 -\emph{row variable} in the literature.  The more part of a record scheme may
  3.1583 -be instantiated by zero or more further components.  For example, above scheme
  3.1584 -might get instantiated to $\record{x = a\fs y = b\fs z = c\fs \more = m'}$,
  3.1585 -where $m'$ refers to a different more part.  Fixed records are special
  3.1586 -instances of record schemes, where ``$\more$'' is properly terminated by the
  3.1587 -$() :: unit$ element.  Actually, $\record{x = a\fs y = b}$ is just an
  3.1588 -abbreviation for $\record{x = a\fs y = b\fs \more = ()}$.
  3.1589 -
  3.1590 -\medskip
  3.1591 -
  3.1592 -There are two key features that make extensible records in a simply typed
  3.1593 -language like HOL feasible:
  3.1594 -\begin{enumerate}
  3.1595 -\item the more part is internalised, as a free term or type variable,
  3.1596 -\item field names are externalised, they cannot be accessed within the logic
  3.1597 -  as first-class values.
  3.1598 -\end{enumerate}
  3.1599 -
  3.1600 -\medskip
  3.1601 -
  3.1602 -In Isabelle/HOL record types have to be defined explicitly, fixing their field
  3.1603 -names and types, and their (optional) parent record (see
  3.1604 -\S\ref{sec:HOL:record-def}).  Afterwards, records may be formed using above
  3.1605 -syntax, while obeying the canonical order of fields as given by their
  3.1606 -declaration.  The record package also provides several operations like
  3.1607 -selectors and updates (see \S\ref{sec:HOL:record-ops}), together with
  3.1608 -characteristic properties (see \S\ref{sec:HOL:record-thms}).
  3.1609 -
  3.1610 -There is an example theory demonstrating most basic aspects of extensible
  3.1611 -records (see theory \texttt{HOL/ex/Points} in the Isabelle sources).
  3.1612 -
  3.1613 -
  3.1614 -\subsection{Defining records}\label{sec:HOL:record-def}
  3.1615 -
  3.1616 -The theory syntax for record type definitions is shown in
  3.1617 -Fig.~\ref{fig:HOL:record}.  For the definition of `typevarlist' and `type' see
  3.1618 -\iflabelundefined{chap:classical}
  3.1619 -{the appendix of the {\em Reference Manual\/}}%
  3.1620 -{Appendix~\ref{app:TheorySyntax}}.
  3.1621 -
  3.1622 -\begin{figure}[htbp]
  3.1623 -\begin{rail}
  3.1624 -record  : 'record' typevarlist name '=' parent (field +);
  3.1625 -
  3.1626 -parent  : ( () | type '+');
  3.1627 -field   : name '::' type;
  3.1628 -\end{rail}
  3.1629 -\caption{Syntax of record type definitions}
  3.1630 -\label{fig:HOL:record}
  3.1631 -\end{figure}
  3.1632 -
  3.1633 -A general \ttindex{record} specification is of the following form:
  3.1634 -\[
  3.1635 -\mathtt{record}~(\alpha@1, \dots, \alpha@n) \, t ~=~
  3.1636 -  (\tau@1, \dots, \tau@m) \, s ~+~ c@1 :: \sigma@1 ~ \dots ~ c@l :: \sigma@l
  3.1637 -\]
  3.1638 -where $\vec\alpha@n$ are distinct type variables, and $\vec\tau@m$,
  3.1639 -$\vec\sigma@l$ are types containing at most variables from $\vec\alpha@n$.
  3.1640 -Type constructor $t$ has to be new, while $s$ has to specify an existing
  3.1641 -record type.  Furthermore, the $\vec c@l$ have to be distinct field names.
  3.1642 -There has to be at least one field.
  3.1643 -
  3.1644 -In principle, field names may never be shared with other records.  This is no
  3.1645 -actual restriction in practice, since $\vec c@l$ are internally declared
  3.1646 -within a separate name space qualified by the name $t$ of the record.
  3.1647 -
  3.1648 -\medskip
  3.1649 -
  3.1650 -Above definition introduces a new record type $(\vec\alpha@n) \, t$ by
  3.1651 -extending an existing one $(\vec\tau@m) \, s$ by new fields $\vec c@l \ty
  3.1652 -\vec\sigma@l$.  The parent record specification is optional, by omitting it
  3.1653 -$t$ becomes a \emph{root record}.  The hierarchy of all records declared
  3.1654 -within a theory forms a forest structure, i.e.\ a set of trees, where any of
  3.1655 -these is rooted by some root record.
  3.1656 -
  3.1657 -For convenience, $(\vec\alpha@n) \, t$ is made a type abbreviation for the
  3.1658 -fixed record type $\record{\vec c@l \ty \vec\sigma@l}$, and $(\vec\alpha@n,
  3.1659 -\zeta) \, t_scheme$ is made an abbreviation for $\record{\vec c@l \ty
  3.1660 -  \vec\sigma@l\fs \more \ty \zeta}$.
  3.1661 -
  3.1662 -\medskip
  3.1663 -
  3.1664 -The following simple example defines a root record type $point$ with fields $x
  3.1665 -\ty nat$ and $y \ty nat$, and record type $cpoint$ by extending $point$ with
  3.1666 -an additional $colour$ component.
  3.1667 -
  3.1668 -\begin{ttbox}
  3.1669 -  record point =
  3.1670 -    x :: nat
  3.1671 -    y :: nat
  3.1672 -
  3.1673 -  record cpoint = point +
  3.1674 -    colour :: string
  3.1675 -\end{ttbox}
  3.1676 -
  3.1677 -
  3.1678 -\subsection{Record operations}\label{sec:HOL:record-ops}
  3.1679 -
  3.1680 -Any record definition of the form presented above produces certain standard
  3.1681 -operations.  Selectors and updates are provided for any field, including the
  3.1682 -improper one ``$more$''.  There are also cumulative record constructor
  3.1683 -functions.
  3.1684 -
  3.1685 -To simplify the presentation below, we first assume that $(\vec\alpha@n) \, t$
  3.1686 -is a root record with fields $\vec c@l \ty \vec\sigma@l$.
  3.1687 -
  3.1688 -\medskip
  3.1689 -
  3.1690 -\textbf{Selectors} and \textbf{updates} are available for any field (including
  3.1691 -``$more$'') as follows:
  3.1692 -\begin{matharray}{lll}
  3.1693 -  c@i & \ty & \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To \sigma@i \\
  3.1694 -  c@i_update & \ty & \sigma@i \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To
  3.1695 -    \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  3.1696 -\end{matharray}
  3.1697 -
  3.1698 -There is some special syntax for updates: $r \, \record{x \asn a}$ abbreviates
  3.1699 -term $x_update \, a \, r$.  Repeated updates are also supported: $r \,
  3.1700 -\record{x \asn a} \, \record{y \asn b} \, \record{z \asn c}$ may be written as
  3.1701 -$r \, \record{x \asn a\fs y \asn b\fs z \asn c}$.  Note that because of
  3.1702 -postfix notation the order of fields shown here is reverse than in the actual
  3.1703 -term.  This might lead to confusion in conjunction with proof tools like
  3.1704 -ordered rewriting.
  3.1705 -
  3.1706 -Since repeated updates are just function applications, fields may be freely
  3.1707 -permuted in $\record{x \asn a\fs y \asn b\fs z \asn c}$, as far as the logic
  3.1708 -is concerned.  Thus commutativity of updates can be proven within the logic
  3.1709 -for any two fields, but not as a general theorem: fields are not first-class
  3.1710 -values.
  3.1711 -
  3.1712 -\medskip
  3.1713 -
  3.1714 -\textbf{Make} operations provide cumulative record constructor functions:
  3.1715 -\begin{matharray}{lll}
  3.1716 -  make & \ty & \vec\sigma@l \To \record{\vec c@l \ty \vec \sigma@l} \\
  3.1717 -  make_scheme & \ty & \vec\sigma@l \To
  3.1718 -    \zeta \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \\
  3.1719 -\end{matharray}
  3.1720 -\noindent
  3.1721 -These functions are curried.  The corresponding definitions in terms of actual
  3.1722 -record terms are part of the standard simpset.  Thus $point\dtt make\,a\,b$
  3.1723 -rewrites to $\record{x = a\fs y = b}$.
  3.1724 -
  3.1725 -\medskip
  3.1726 -
  3.1727 -Any of above selector, update and make operations are declared within a local
  3.1728 -name space prefixed by the name $t$ of the record.  In case that different
  3.1729 -records share base names of fields, one has to qualify names explicitly (e.g.\ 
  3.1730 -$t\dtt c@i_update$).  This is recommended especially for operations like
  3.1731 -$make$ or $update_more$ that always have the same base name.  Just use $t\dtt
  3.1732 -make$ etc.\ to avoid confusion.
  3.1733 -
  3.1734 -\bigskip
  3.1735 -
  3.1736 -We reconsider the case of non-root records, which are derived of some parent
  3.1737 -record.  In general, the latter may depend on another parent as well,
  3.1738 -resulting in a list of \emph{ancestor records}.  Appending the lists of fields
  3.1739 -of all ancestors results in a certain field prefix.  The record package
  3.1740 -automatically takes care of this by lifting operations over this context of
  3.1741 -ancestor fields.  Assuming that $(\vec\alpha@n) \, t$ has ancestor fields
  3.1742 -$\vec d@k \ty \vec\rho@k$, selectors will get the following types:
  3.1743 -\begin{matharray}{lll}
  3.1744 -  c@i & \ty & \record{\vec d@k \ty \vec\rho@k, \vec c@l \ty \vec \sigma@l, \more \ty \zeta}
  3.1745 -    \To \sigma@i
  3.1746 -\end{matharray}
  3.1747 -\noindent
  3.1748 -Update and make operations are analogous.
  3.1749 -
  3.1750 -
  3.1751 -\subsection{Proof tools}\label{sec:HOL:record-thms}
  3.1752 -
  3.1753 -The record package provides the following proof rules for any record type $t$.
  3.1754 -\begin{enumerate}
  3.1755 -  
  3.1756 -\item Standard conversions (selectors or updates applied to record constructor
  3.1757 -  terms, make function definitions) are part of the standard simpset (via
  3.1758 -  \texttt{addsimps}).
  3.1759 -  
  3.1760 -\item Inject equations of a form analogous to $((x, y) = (x', y')) \equiv x=x'
  3.1761 -  \conj y=y'$ are made part of the standard simpset and claset (via
  3.1762 -  \texttt{addIffs}).
  3.1763 -  
  3.1764 -\item A tactic for record field splitting (\ttindex{record_split_tac}) is made
  3.1765 -  part of the standard claset (via \texttt{addSWrapper}).  This tactic is
  3.1766 -  based on rules analogous to $(\All x PROP~P~x) \equiv (\All{a~b} PROP~P(a,
  3.1767 -  b))$ for any field.
  3.1768 -\end{enumerate}
  3.1769 -
  3.1770 -The first two kinds of rules are stored within the theory as $t\dtt simps$ and
  3.1771 -$t\dtt iffs$, respectively.  In some situations it might be appropriate to
  3.1772 -expand the definitions of updates: $t\dtt updates$.  Following a new trend in
  3.1773 -Isabelle system architecture, these names are \emph{not} bound at the {\ML}
  3.1774 -level, though.
  3.1775 -
  3.1776 -\medskip
  3.1777 -
  3.1778 -The example theory \texttt{HOL/ex/Points} demonstrates typical proofs
  3.1779 -concerning records.  The basic idea is to make \ttindex{record_split_tac}
  3.1780 -expand quantified record variables and then simplify by the conversion rules.
  3.1781 -By using a combination of the simplifier and classical prover together with
  3.1782 -the default simpset and claset, record problems should be solved with a single
  3.1783 -stroke of \texttt{Auto_tac} or \texttt{Force_tac}.
  3.1784 -
  3.1785 -
  3.1786 -\section{Datatype definitions}
  3.1787 -\label{sec:HOL:datatype}
  3.1788 -\index{*datatype|(}
  3.1789 -
  3.1790 -Inductive datatypes, similar to those of \ML, frequently appear in 
  3.1791 -applications of Isabelle/HOL.  In principle, such types could be defined by
  3.1792 -hand via \texttt{typedef} (see \S\ref{sec:typedef}), but this would be far too
  3.1793 -tedious.  The \ttindex{datatype} definition package of \HOL\ automates such
  3.1794 -chores.  It generates an appropriate \texttt{typedef} based on a least
  3.1795 -fixed-point construction, and proves freeness theorems and induction rules, as
  3.1796 -well as theorems for recursion and case combinators.  The user just has to
  3.1797 -give a simple specification of new inductive types using a notation similar to
  3.1798 -{\ML} or Haskell.
  3.1799 -
  3.1800 -The current datatype package can handle both mutual and indirect recursion.
  3.1801 -It also offers to represent existing types as datatypes giving the advantage
  3.1802 -of a more uniform view on standard theories.
  3.1803 -
  3.1804 -
  3.1805 -\subsection{Basics}
  3.1806 -\label{subsec:datatype:basics}
  3.1807 -
  3.1808 -A general \texttt{datatype} definition is of the following form:
  3.1809 -\[
  3.1810 -\begin{array}{llcl}
  3.1811 -\mathtt{datatype} & (\alpha@1,\ldots,\alpha@h)t@1 & = &
  3.1812 -  C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~
  3.1813 -    C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\
  3.1814 - & & \vdots \\
  3.1815 -\mathtt{and} & (\alpha@1,\ldots,\alpha@h)t@n & = &
  3.1816 -  C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~
  3.1817 -    C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}}
  3.1818 -\end{array}
  3.1819 -\]
  3.1820 -where $\alpha@i$ are type variables, $C^j@i$ are distinct constructor
  3.1821 -names and $\tau^j@{i,i'}$ are {\em admissible} types containing at
  3.1822 -most the type variables $\alpha@1, \ldots, \alpha@h$. A type $\tau$
  3.1823 -occurring in a \texttt{datatype} definition is {\em admissible} iff
  3.1824 -\begin{itemize}
  3.1825 -\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the
  3.1826 -newly defined type constructors $t@1,\ldots,t@n$, or
  3.1827 -\item $\tau = (\alpha@1,\ldots,\alpha@h)t@{j'}$ where $1 \leq j' \leq n$, or
  3.1828 -\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is
  3.1829 -the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$
  3.1830 -are admissible types.
  3.1831 -\end{itemize}
  3.1832 -If some $(\alpha@1,\ldots,\alpha@h)t@{j'}$ occurs in a type $\tau^j@{i,i'}$
  3.1833 -of the form
  3.1834 -\[
  3.1835 -(\ldots,\ldots ~ (\alpha@1,\ldots,\alpha@h)t@{j'} ~ \ldots,\ldots)t'
  3.1836 -\]
  3.1837 -this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple
  3.1838 -example of a datatype is the type \texttt{list}, which can be defined by
  3.1839 -\begin{ttbox}
  3.1840 -datatype 'a list = Nil
  3.1841 -                 | Cons 'a ('a list)
  3.1842 -\end{ttbox}
  3.1843 -Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled
  3.1844 -by the mutually recursive datatype definition
  3.1845 -\begin{ttbox}
  3.1846 -datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp)
  3.1847 -                 | Sum ('a aexp) ('a aexp)
  3.1848 -                 | Diff ('a aexp) ('a aexp)
  3.1849 -                 | Var 'a
  3.1850 -                 | Num nat
  3.1851 -and      'a bexp = Less ('a aexp) ('a aexp)
  3.1852 -                 | And ('a bexp) ('a bexp)
  3.1853 -                 | Or ('a bexp) ('a bexp)
  3.1854 -\end{ttbox}
  3.1855 -The datatype \texttt{term}, which is defined by
  3.1856 -\begin{ttbox}
  3.1857 -datatype ('a, 'b) term = Var 'a
  3.1858 -                       | App 'b ((('a, 'b) term) list)
  3.1859 -\end{ttbox}
  3.1860 -is an example for a datatype with nested recursion.
  3.1861 -
  3.1862 -\medskip
  3.1863 -
  3.1864 -Types in HOL must be non-empty. Each of the new datatypes
  3.1865 -$(\alpha@1,\ldots,\alpha@h)t@j$ with $1 \le j \le n$ is non-empty iff it has a
  3.1866 -constructor $C^j@i$ with the following property: for all argument types
  3.1867 -$\tau^j@{i,i'}$ of the form $(\alpha@1,\ldots,\alpha@h)t@{j'}$ the datatype
  3.1868 -$(\alpha@1,\ldots,\alpha@h)t@{j'}$ is non-empty.
  3.1869 -
  3.1870 -If there are no nested occurrences of the newly defined datatypes, obviously
  3.1871 -at least one of the newly defined datatypes $(\alpha@1,\ldots,\alpha@h)t@j$
  3.1872 -must have a constructor $C^j@i$ without recursive arguments, a \emph{base
  3.1873 -  case}, to ensure that the new types are non-empty. If there are nested
  3.1874 -occurrences, a datatype can even be non-empty without having a base case
  3.1875 -itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t
  3.1876 -  list)} is non-empty as well.
  3.1877 -
  3.1878 -
  3.1879 -\subsubsection{Freeness of the constructors}
  3.1880 -
  3.1881 -The datatype constructors are automatically defined as functions of their
  3.1882 -respective type:
  3.1883 -\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \]
  3.1884 -These functions have certain {\em freeness} properties.  They construct
  3.1885 -distinct values:
  3.1886 -\[
  3.1887 -C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad
  3.1888 -\mbox{for all}~ i \neq i'.
  3.1889 -\]
  3.1890 -The constructor functions are injective:
  3.1891 -\[
  3.1892 -(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) =
  3.1893 -(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i})
  3.1894 -\]
  3.1895 -Because the number of distinctness inequalities is quadratic in the number of
  3.1896 -constructors, a different representation is used if there are $7$ or more of
  3.1897 -them.  In that case every constructor term is mapped to a natural number:
  3.1898 -\[
  3.1899 -t@j_ord \, (C^j@i \, x@1 \, \dots \, x@{m^j@i}) = i - 1
  3.1900 -\]
  3.1901 -Then distinctness of constructor terms is expressed by:
  3.1902 -\[
  3.1903 -t@j_ord \, x \neq t@j_ord \, y \Imp x \neq y.
  3.1904 -\]
  3.1905 -
  3.1906 -\subsubsection{Structural induction}
  3.1907 -
  3.1908 -The datatype package also provides structural induction rules.  For
  3.1909 -datatypes without nested recursion, this is of the following form:
  3.1910 -\[
  3.1911 -\infer{P@1~x@1 \wedge \dots \wedge P@n~x@n}
  3.1912 -  {\begin{array}{lcl}
  3.1913 -     \Forall x@1 \dots x@{m^1@1}.
  3.1914 -       \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots;
  3.1915 -         P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp &
  3.1916 -           P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\
  3.1917 -     & \vdots \\
  3.1918 -     \Forall x@1 \dots x@{m^1@{k@1}}.
  3.1919 -       \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots;
  3.1920 -         P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp &
  3.1921 -           P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\
  3.1922 -     & \vdots \\
  3.1923 -     \Forall x@1 \dots x@{m^n@1}.
  3.1924 -       \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots;
  3.1925 -         P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp &
  3.1926 -           P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\
  3.1927 -     & \vdots \\
  3.1928 -     \Forall x@1 \dots x@{m^n@{k@n}}.
  3.1929 -       \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots
  3.1930 -         P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp &
  3.1931 -           P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right)
  3.1932 -   \end{array}}
  3.1933 -\]
  3.1934 -where
  3.1935 -\[
  3.1936 -\begin{array}{rcl}
  3.1937 -Rec^j@i & := &
  3.1938 -   \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  3.1939 -     \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex]
  3.1940 -&& \left\{(i',i'')~\left|~
  3.1941 -     1\leq i' \leq m^j@i \wedge 1 \leq i'' \leq n \wedge
  3.1942 -       \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\}
  3.1943 -\end{array}
  3.1944 -\]
  3.1945 -i.e.\ the properties $P@j$ can be assumed for all recursive arguments.
  3.1946 -
  3.1947 -For datatypes with nested recursion, such as the \texttt{term} example from
  3.1948 -above, things are a bit more complicated.  Conceptually, Isabelle/HOL unfolds
  3.1949 -a definition like
  3.1950 -\begin{ttbox}
  3.1951 -datatype ('a, 'b) term = Var 'a
  3.1952 -                       | App 'b ((('a, 'b) term) list)
  3.1953 -\end{ttbox}
  3.1954 -to an equivalent definition without nesting:
  3.1955 -\begin{ttbox}
  3.1956 -datatype ('a, 'b) term      = Var
  3.1957 -                            | App 'b (('a, 'b) term_list)
  3.1958 -and      ('a, 'b) term_list = Nil'
  3.1959 -                            | Cons' (('a,'b) term) (('a,'b) term_list)
  3.1960 -\end{ttbox}
  3.1961 -Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt
  3.1962 -  Nil'} and \texttt{Cons'} are not really introduced.  One can directly work with
  3.1963 -the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing
  3.1964 -constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for
  3.1965 -\texttt{term} gets the form
  3.1966 -\[
  3.1967 -\infer{P@1~x@1 \wedge P@2~x@2}
  3.1968 -  {\begin{array}{l}
  3.1969 -     \Forall x.~P@1~(\mathtt{Var}~x) \\
  3.1970 -     \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\
  3.1971 -     P@2~\mathtt{Nil} \\
  3.1972 -     \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2)
  3.1973 -   \end{array}}
  3.1974 -\]
  3.1975 -Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term}
  3.1976 -and one for the type \texttt{(('a, 'b) term) list}.
  3.1977 -
  3.1978 -\medskip In principle, inductive types are already fully determined by
  3.1979 -freeness and structural induction.  For convenience in applications,
  3.1980 -the following derived constructions are automatically provided for any
  3.1981 -datatype.
  3.1982 -
  3.1983 -\subsubsection{The \sdx{case} construct}
  3.1984 -
  3.1985 -The type comes with an \ML-like \texttt{case}-construct:
  3.1986 -\[
  3.1987 -\begin{array}{rrcl}
  3.1988 -\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\
  3.1989 -                           \vdots \\
  3.1990 -                           \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j}
  3.1991 -\end{array}
  3.1992 -\]
  3.1993 -where the $x@{i,j}$ are either identifiers or nested tuple patterns as in
  3.1994 -\S\ref{subsec:prod-sum}.
  3.1995 -\begin{warn}
  3.1996 -  All constructors must be present, their order is fixed, and nested patterns
  3.1997 -  are not supported (with the exception of tuples).  Violating this
  3.1998 -  restriction results in strange error messages.
  3.1999 -\end{warn}
  3.2000 -
  3.2001 -To perform case distinction on a goal containing a \texttt{case}-construct,
  3.2002 -the theorem $t@j.$\texttt{split} is provided:
  3.2003 -\[
  3.2004 -\begin{array}{@{}rcl@{}}
  3.2005 -P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=&
  3.2006 -\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to
  3.2007 -                             P(f@1~x@1\dots x@{m^j@1})) \\
  3.2008 -&&\!\!\! ~\land~ \dots ~\land \\
  3.2009 -&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to
  3.2010 -                             P(f@{k@j}~x@1\dots x@{m^j@{k@j}})))
  3.2011 -\end{array}
  3.2012 -\]
  3.2013 -where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct.
  3.2014 -This theorem can be added to a simpset via \ttindex{addsplits}
  3.2015 -(see~\S\ref{subsec:HOL:case:splitting}).
  3.2016 -
  3.2017 -\subsubsection{The function \cdx{size}}\label{sec:HOL:size}
  3.2018 -
  3.2019 -Theory \texttt{Arith} declares a generic function \texttt{size} of type
  3.2020 -$\alpha\To nat$.  Each datatype defines a particular instance of \texttt{size}
  3.2021 -by overloading according to the following scheme:
  3.2022 -%%% FIXME: This formula is too big and is completely unreadable
  3.2023 -\[
  3.2024 -size(C^j@i~x@1~\dots~x@{m^j@i}) = \!
  3.2025 -\left\{
  3.2026 -\begin{array}{ll}
  3.2027 -0 & \!\mbox{if $Rec^j@i = \emptyset$} \\
  3.2028 -\!\!\begin{array}{l}
  3.2029 -size~x@{r^j@{i,1}} + \cdots \\
  3.2030 -\cdots + size~x@{r^j@{i,l^j@i}} + 1
  3.2031 -\end{array} &
  3.2032 - \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots,
  3.2033 -  \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$}
  3.2034 -\end{array}
  3.2035 -\right.
  3.2036 -\]
  3.2037 -where $Rec^j@i$ is defined above.  Viewing datatypes as generalised trees, the
  3.2038 -size of a leaf is 0 and the size of a node is the sum of the sizes of its
  3.2039 -subtrees ${}+1$.
  3.2040 -
  3.2041 -\subsection{Defining datatypes}
  3.2042 -
  3.2043 -The theory syntax for datatype definitions is shown in
  3.2044 -Fig.~\ref{datatype-grammar}.  In order to be well-formed, a datatype
  3.2045 -definition has to obey the rules stated in the previous section.  As a result
  3.2046 -the theory is extended with the new types, the constructors, and the theorems
  3.2047 -listed in the previous section.
  3.2048 -
  3.2049 -\begin{figure}
  3.2050 -\begin{rail}
  3.2051 -datatype : 'datatype' typedecls;
  3.2052 -
  3.2053 -typedecls: ( newtype '=' (cons + '|') ) + 'and'
  3.2054 -         ;
  3.2055 -newtype  : typevarlist id ( () | '(' infix ')' )
  3.2056 -         ;
  3.2057 -cons     : name (argtype *) ( () | ( '(' mixfix ')' ) )
  3.2058 -         ;
  3.2059 -argtype  : id | tid | ('(' typevarlist id ')')
  3.2060 -         ;
  3.2061 -\end{rail}
  3.2062 -\caption{Syntax of datatype declarations}
  3.2063 -\label{datatype-grammar}
  3.2064 -\end{figure}
  3.2065 -
  3.2066 -Most of the theorems about datatypes become part of the default simpset and
  3.2067 -you never need to see them again because the simplifier applies them
  3.2068 -automatically.  Only induction or exhaustion are usually invoked by hand.
  3.2069 -\begin{ttdescription}
  3.2070 -\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$]
  3.2071 - applies structural induction on variable $x$ to subgoal $i$, provided the
  3.2072 - type of $x$ is a datatype.
  3.2073 -\item[\ttindexbold{mutual_induct_tac}
  3.2074 -  {\tt["}$x@1${\tt",}$\ldots${\tt,"}$x@n${\tt"]} $i$] applies simultaneous
  3.2075 -  structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$.  This
  3.2076 -  is the canonical way to prove properties of mutually recursive datatypes
  3.2077 -  such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as
  3.2078 -  \texttt{term}.
  3.2079 -\end{ttdescription}
  3.2080 -In some cases, induction is overkill and a case distinction over all
  3.2081 -constructors of the datatype suffices.
  3.2082 -\begin{ttdescription}
  3.2083 -\item[\ttindexbold{exhaust_tac} {\tt"}$u${\tt"} $i$]
  3.2084 - performs an exhaustive case analysis for the term $u$ whose type
  3.2085 - must be a datatype.  If the datatype has $k@j$ constructors
  3.2086 - $C^j@1$, \dots $C^j@{k@j}$, subgoal $i$ is replaced by $k@j$ new subgoals which
  3.2087 - contain the additional assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for
  3.2088 - $i'=1$, $\dots$,~$k@j$.
  3.2089 -\end{ttdescription}
  3.2090 -
  3.2091 -Note that induction is only allowed on free variables that should not occur
  3.2092 -among the premises of the subgoal.  Exhaustion applies to arbitrary terms.
  3.2093 -
  3.2094 -\bigskip
  3.2095 -
  3.2096 -
  3.2097 -For the technically minded, we exhibit some more details.  Processing the
  3.2098 -theory file produces an \ML\ structure which, in addition to the usual
  3.2099 -components, contains a structure named $t$ for each datatype $t$ defined in
  3.2100 -the file.  Each structure $t$ contains the following elements:
  3.2101 -\begin{ttbox}
  3.2102 -val distinct : thm list
  3.2103 -val inject : thm list
  3.2104 -val induct : thm
  3.2105 -val exhaust : thm
  3.2106 -val cases : thm list
  3.2107 -val split : thm
  3.2108 -val split_asm : thm
  3.2109 -val recs : thm list
  3.2110 -val size : thm list
  3.2111 -val simps : thm list
  3.2112 -\end{ttbox}
  3.2113 -\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size}
  3.2114 -and \texttt{split} contain the theorems
  3.2115 -described above.  For user convenience, \texttt{distinct} contains
  3.2116 -inequalities in both directions.  The reduction rules of the {\tt
  3.2117 -  case}-construct are in \texttt{cases}.  All theorems from {\tt
  3.2118 -  distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}.
  3.2119 -In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct}
  3.2120 -and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$.
  3.2121 -
  3.2122 -
  3.2123 -\subsection{Representing existing types as datatypes}
  3.2124 -
  3.2125 -For foundational reasons, some basic types such as \texttt{nat}, \texttt{*}, {\tt
  3.2126 -  +}, \texttt{bool} and \texttt{unit} are not defined in a \texttt{datatype} section,
  3.2127 -but by more primitive means using \texttt{typedef}. To be able to use the
  3.2128 -tactics \texttt{induct_tac} and \texttt{exhaust_tac} and to define functions by
  3.2129 -primitive recursion on these types, such types may be represented as actual
  3.2130 -datatypes.  This is done by specifying an induction rule, as well as theorems
  3.2131 -stating the distinctness and injectivity of constructors in a {\tt
  3.2132 -  rep_datatype} section.  For type \texttt{nat} this works as follows:
  3.2133 -\begin{ttbox}
  3.2134 -rep_datatype nat
  3.2135 -  distinct Suc_not_Zero, Zero_not_Suc
  3.2136 -  inject   Suc_Suc_eq
  3.2137 -  induct   nat_induct
  3.2138 -\end{ttbox}
  3.2139 -The datatype package automatically derives additional theorems for recursion
  3.2140 -and case combinators from these rules.  Any of the basic HOL types mentioned
  3.2141 -above are represented as datatypes.  Try an induction on \texttt{bool}
  3.2142 -today.
  3.2143 -
  3.2144 -
  3.2145 -\subsection{Examples}
  3.2146 -
  3.2147 -\subsubsection{The datatype $\alpha~mylist$}
  3.2148 -
  3.2149 -We want to define a type $\alpha~mylist$. To do this we have to build a new
  3.2150 -theory that contains the type definition.  We start from the theory
  3.2151 -\texttt{Datatype} instead of \texttt{Main} in order to avoid clashes with the
  3.2152 -\texttt{List} theory of Isabelle/HOL.
  3.2153 -\begin{ttbox}
  3.2154 -MyList = Datatype +
  3.2155 -  datatype 'a mylist = Nil | Cons 'a ('a mylist)
  3.2156 -end
  3.2157 -\end{ttbox}
  3.2158 -After loading the theory, we can prove $Cons~x~xs\neq xs$, for example.  To
  3.2159 -ease the induction applied below, we state the goal with $x$ quantified at the
  3.2160 -object-level.  This will be stripped later using \ttindex{qed_spec_mp}.
  3.2161 -\begin{ttbox}
  3.2162 -Goal "!x. Cons x xs ~= xs";
  3.2163 -{\out Level 0}
  3.2164 -{\out ! x. Cons x xs ~= xs}
  3.2165 -{\out  1. ! x. Cons x xs ~= xs}
  3.2166 -\end{ttbox}
  3.2167 -This can be proved by the structural induction tactic:
  3.2168 -\begin{ttbox}
  3.2169 -by (induct_tac "xs" 1);
  3.2170 -{\out Level 1}
  3.2171 -{\out ! x. Cons x xs ~= xs}
  3.2172 -{\out  1. ! x. Cons x Nil ~= Nil}
  3.2173 -{\out  2. !!a mylist.}
  3.2174 -{\out        ! x. Cons x mylist ~= mylist ==>}
  3.2175 -{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  3.2176 -\end{ttbox}
  3.2177 -The first subgoal can be proved using the simplifier.  Isabelle/HOL has
  3.2178 -already added the freeness properties of lists to the default simplification
  3.2179 -set.
  3.2180 -\begin{ttbox}
  3.2181 -by (Simp_tac 1);
  3.2182 -{\out Level 2}
  3.2183 -{\out ! x. Cons x xs ~= xs}
  3.2184 -{\out  1. !!a mylist.}
  3.2185 -{\out        ! x. Cons x mylist ~= mylist ==>}
  3.2186 -{\out        ! x. Cons x (Cons a mylist) ~= Cons a mylist}
  3.2187 -\end{ttbox}
  3.2188 -Similarly, we prove the remaining goal.
  3.2189 -\begin{ttbox}
  3.2190 -by (Asm_simp_tac 1);
  3.2191 -{\out Level 3}
  3.2192 -{\out ! x. Cons x xs ~= xs}
  3.2193 -{\out No subgoals!}
  3.2194 -\ttbreak
  3.2195 -qed_spec_mp "not_Cons_self";
  3.2196 -{\out val not_Cons_self = "Cons x xs ~= xs" : thm}
  3.2197 -\end{ttbox}
  3.2198 -Because both subgoals could have been proved by \texttt{Asm_simp_tac}
  3.2199 -we could have done that in one step:
  3.2200 -\begin{ttbox}
  3.2201 -by (ALLGOALS Asm_simp_tac);
  3.2202 -\end{ttbox}
  3.2203 -
  3.2204 -
  3.2205 -\subsubsection{The datatype $\alpha~mylist$ with mixfix syntax}
  3.2206 -
  3.2207 -In this example we define the type $\alpha~mylist$ again but this time
  3.2208 -we want to write \texttt{[]} for \texttt{Nil} and we want to use infix
  3.2209 -notation \verb|#| for \texttt{Cons}.  To do this we simply add mixfix
  3.2210 -annotations after the constructor declarations as follows:
  3.2211 -\begin{ttbox}
  3.2212 -MyList = Datatype +
  3.2213 -  datatype 'a mylist =
  3.2214 -    Nil ("[]")  |
  3.2215 -    Cons 'a ('a mylist)  (infixr "#" 70)
  3.2216 -end
  3.2217 -\end{ttbox}
  3.2218 -Now the theorem in the previous example can be written \verb|x#xs ~= xs|.
  3.2219 -
  3.2220 -
  3.2221 -\subsubsection{A datatype for weekdays}
  3.2222 -
  3.2223 -This example shows a datatype that consists of 7 constructors:
  3.2224 -\begin{ttbox}
  3.2225 -Days = Main +
  3.2226 -  datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun
  3.2227 -end
  3.2228 -\end{ttbox}
  3.2229 -Because there are more than 6 constructors, inequality is expressed via a function
  3.2230 -\verb|days_ord|.  The theorem \verb|Mon ~= Tue| is not directly
  3.2231 -contained among the distinctness theorems, but the simplifier can
  3.2232 -prove it thanks to rewrite rules inherited from theory \texttt{Arith}:
  3.2233 -\begin{ttbox}
  3.2234 -Goal "Mon ~= Tue";
  3.2235 -by (Simp_tac 1);
  3.2236 -\end{ttbox}
  3.2237 -You need not derive such inequalities explicitly: the simplifier will dispose
  3.2238 -of them automatically.
  3.2239 -\index{*datatype|)}
  3.2240 -
  3.2241 -
  3.2242 -\section{Recursive function definitions}\label{sec:HOL:recursive}
  3.2243 -\index{recursive functions|see{recursion}}
  3.2244 -
  3.2245 -Isabelle/HOL provides two main mechanisms of defining recursive functions.
  3.2246 -\begin{enumerate}
  3.2247 -\item \textbf{Primitive recursion} is available only for datatypes, and it is
  3.2248 -  somewhat restrictive.  Recursive calls are only allowed on the argument's
  3.2249 -  immediate constituents.  On the other hand, it is the form of recursion most
  3.2250 -  often wanted, and it is easy to use.
  3.2251 -  
  3.2252 -\item \textbf{Well-founded recursion} requires that you supply a well-founded
  3.2253 -  relation that governs the recursion.  Recursive calls are only allowed if
  3.2254 -  they make the argument decrease under the relation.  Complicated recursion
  3.2255 -  forms, such as nested recursion, can be dealt with.  Termination can even be
  3.2256 -  proved at a later time, though having unsolved termination conditions around
  3.2257 -  can make work difficult.%
  3.2258 -  \footnote{This facility is based on Konrad Slind's TFL
  3.2259 -    package~\cite{slind-tfl}.  Thanks are due to Konrad for implementing TFL
  3.2260 -    and assisting with its installation.}
  3.2261 -\end{enumerate}
  3.2262 -
  3.2263 -Following good HOL tradition, these declarations do not assert arbitrary
  3.2264 -axioms.  Instead, they define the function using a recursion operator.  Both
  3.2265 -HOL and ZF derive the theory of well-founded recursion from first
  3.2266 -principles~\cite{paulson-set-II}.  Primitive recursion over some datatype
  3.2267 -relies on the recursion operator provided by the datatype package.  With
  3.2268 -either form of function definition, Isabelle proves the desired recursion
  3.2269 -equations as theorems.
  3.2270 -
  3.2271 -
  3.2272 -\subsection{Primitive recursive functions}
  3.2273 -\label{sec:HOL:primrec}
  3.2274 -\index{recursion!primitive|(}
  3.2275 -\index{*primrec|(}
  3.2276 -
  3.2277 -Datatypes come with a uniform way of defining functions, {\bf primitive
  3.2278 -  recursion}.  In principle, one could introduce primitive recursive functions
  3.2279 -by asserting their reduction rules as new axioms, but this is not recommended:
  3.2280 -\begin{ttbox}\slshape
  3.2281 -Append = Main +
  3.2282 -consts app :: ['a list, 'a list] => 'a list
  3.2283 -rules 
  3.2284 -   app_Nil   "app [] ys = ys"
  3.2285 -   app_Cons  "app (x#xs) ys = x#app xs ys"
  3.2286 -end
  3.2287 -\end{ttbox}
  3.2288 -Asserting axioms brings the danger of accidentally asserting nonsense, as
  3.2289 -in \verb$app [] ys = us$.
  3.2290 -
  3.2291 -The \ttindex{primrec} declaration is a safe means of defining primitive
  3.2292 -recursive functions on datatypes:
  3.2293 -\begin{ttbox}
  3.2294 -Append = Main +
  3.2295 -consts app :: ['a list, 'a list] => 'a list
  3.2296 -primrec
  3.2297 -   "app [] ys = ys"
  3.2298 -   "app (x#xs) ys = x#app xs ys"
  3.2299 -end
  3.2300 -\end{ttbox}
  3.2301 -Isabelle will now check that the two rules do indeed form a primitive
  3.2302 -recursive definition.  For example
  3.2303 -\begin{ttbox}
  3.2304 -primrec
  3.2305 -    "app [] ys = us"
  3.2306 -\end{ttbox}
  3.2307 -is rejected with an error message ``\texttt{Extra variables on rhs}''.
  3.2308 -
  3.2309 -\bigskip
  3.2310 -
  3.2311 -The general form of a primitive recursive definition is
  3.2312 -\begin{ttbox}
  3.2313 -primrec
  3.2314 -    {\it reduction rules}
  3.2315 -\end{ttbox}
  3.2316 -where \textit{reduction rules} specify one or more equations of the form
  3.2317 -\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \,
  3.2318 -\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$
  3.2319 -contains only the free variables on the left-hand side, and all recursive
  3.2320 -calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$.  There
  3.2321 -must be at most one reduction rule for each constructor.  The order is
  3.2322 -immaterial.  For missing constructors, the function is defined to return a
  3.2323 -default value.  
  3.2324 -
  3.2325 -If you would like to refer to some rule by name, then you must prefix
  3.2326 -the rule with an identifier.  These identifiers, like those in the
  3.2327 -\texttt{rules} section of a theory, will be visible at the \ML\ level.
  3.2328 -
  3.2329 -The primitive recursive function can have infix or mixfix syntax:
  3.2330 -\begin{ttbox}\underscoreon
  3.2331 -consts "@"  :: ['a list, 'a list] => 'a list  (infixr 60)
  3.2332 -primrec
  3.2333 -   "[] @ ys = ys"
  3.2334 -   "(x#xs) @ ys = x#(xs @ ys)"
  3.2335 -\end{ttbox}
  3.2336 -
  3.2337 -The reduction rules become part of the default simpset, which
  3.2338 -leads to short proof scripts:
  3.2339 -\begin{ttbox}\underscoreon
  3.2340 -Goal "(xs @ ys) @ zs = xs @ (ys @ zs)";
  3.2341 -by (induct\_tac "xs" 1);
  3.2342 -by (ALLGOALS Asm\_simp\_tac);
  3.2343 -\end{ttbox}
  3.2344 -
  3.2345 -\subsubsection{Example: Evaluation of expressions}
  3.2346 -Using mutual primitive recursion, we can define evaluation functions \texttt{eval_aexp}
  3.2347 -and \texttt{eval_bexp} for the datatypes of arithmetic and boolean expressions mentioned in
  3.2348 -\S\ref{subsec:datatype:basics}:
  3.2349 -\begin{ttbox}
  3.2350 -consts
  3.2351 -  eval_aexp :: "['a => nat, 'a aexp] => nat"
  3.2352 -  eval_bexp :: "['a => nat, 'a bexp] => bool"
  3.2353 -
  3.2354 -primrec
  3.2355 -  "eval_aexp env (If_then_else b a1 a2) =
  3.2356 -     (if eval_bexp env b then eval_aexp env a1 else eval_aexp env a2)"
  3.2357 -  "eval_aexp env (Sum a1 a2) = eval_aexp env a1 + eval_aexp env a2"
  3.2358 -  "eval_aexp env (Diff a1 a2) = eval_aexp env a1 - eval_aexp env a2"
  3.2359 -  "eval_aexp env (Var v) = env v"
  3.2360 -  "eval_aexp env (Num n) = n"
  3.2361 -
  3.2362 -  "eval_bexp env (Less a1 a2) = (eval_aexp env a1 < eval_aexp env a2)"
  3.2363 -  "eval_bexp env (And b1 b2) = (eval_bexp env b1 & eval_bexp env b2)"
  3.2364 -  "eval_bexp env (Or b1 b2) = (eval_bexp env b1 & eval_bexp env b2)"
  3.2365 -\end{ttbox}
  3.2366 -Since the value of an expression depends on the value of its variables,
  3.2367 -the functions \texttt{eval_aexp} and \texttt{eval_bexp} take an additional
  3.2368 -parameter, an {\em environment} of type \texttt{'a => nat}, which maps
  3.2369 -variables to their values.
  3.2370 -
  3.2371 -Similarly, we may define substitution functions \texttt{subst_aexp}
  3.2372 -and \texttt{subst_bexp} for expressions: The mapping \texttt{f} of type
  3.2373 -\texttt{'a => 'a aexp} given as a parameter is lifted canonically
  3.2374 -on the types {'a aexp} and {'a bexp}:
  3.2375 -\begin{ttbox}
  3.2376 -consts
  3.2377 -  subst_aexp :: "['a => 'b aexp, 'a aexp] => 'b aexp"
  3.2378 -  subst_bexp :: "['a => 'b aexp, 'a bexp] => 'b bexp"
  3.2379 -
  3.2380 -primrec
  3.2381 -  "subst_aexp f (If_then_else b a1 a2) =
  3.2382 -     If_then_else (subst_bexp f b) (subst_aexp f a1) (subst_aexp f a2)"
  3.2383 -  "subst_aexp f (Sum a1 a2) = Sum (subst_aexp f a1) (subst_aexp f a2)"
  3.2384 -  "subst_aexp f (Diff a1 a2) = Diff (subst_aexp f a1) (subst_aexp f a2)"
  3.2385 -  "subst_aexp f (Var v) = f v"
  3.2386 -  "subst_aexp f (Num n) = Num n"
  3.2387 -
  3.2388 -  "subst_bexp f (Less a1 a2) = Less (subst_aexp f a1) (subst_aexp f a2)"
  3.2389 -  "subst_bexp f (And b1 b2) = And (subst_bexp f b1) (subst_bexp f b2)"
  3.2390 -  "subst_bexp f (Or b1 b2) = Or (subst_bexp f b1) (subst_bexp f b2)"
  3.2391 -\end{ttbox}
  3.2392 -In textbooks about semantics one often finds {\em substitution theorems},
  3.2393 -which express the relationship between substitution and evaluation. For
  3.2394 -\texttt{'a aexp} and \texttt{'a bexp}, we can prove such a theorem by mutual
  3.2395 -induction, followed by simplification:
  3.2396 -\begin{ttbox}
  3.2397 -Goal
  3.2398 -  "eval_aexp env (subst_aexp (Var(v := a')) a) =
  3.2399 -     eval_aexp (env(v := eval_aexp env a')) a &
  3.2400 -   eval_bexp env (subst_bexp (Var(v := a')) b) =
  3.2401 -     eval_bexp (env(v := eval_aexp env a')) b";
  3.2402 -by (mutual_induct_tac ["a","b"] 1);
  3.2403 -by (ALLGOALS Asm_full_simp_tac);
  3.2404 -\end{ttbox}
  3.2405 -
  3.2406 -\subsubsection{Example: A substitution function for terms}
  3.2407 -Functions on datatypes with nested recursion, such as the type
  3.2408 -\texttt{term} mentioned in \S\ref{subsec:datatype:basics}, are
  3.2409 -also defined by mutual primitive recursion. A substitution
  3.2410 -function \texttt{subst_term} on type \texttt{term}, similar to the functions
  3.2411 -\texttt{subst_aexp} and \texttt{subst_bexp} described above, can
  3.2412 -be defined as follows:
  3.2413 -\begin{ttbox}
  3.2414 -consts
  3.2415 -  subst_term :: "['a => ('a, 'b) term, ('a, 'b) term] => ('a, 'b) term"
  3.2416 -  subst_term_list ::
  3.2417 -    "['a => ('a, 'b) term, ('a, 'b) term list] => ('a, 'b) term list"
  3.2418 -
  3.2419 -primrec
  3.2420 -  "subst_term f (Var a) = f a"
  3.2421 -  "subst_term f (App b ts) = App b (subst_term_list f ts)"
  3.2422 -
  3.2423 -  "subst_term_list f [] = []"
  3.2424 -  "subst_term_list f (t # ts) =
  3.2425 -     subst_term f t # subst_term_list f ts"
  3.2426 -\end{ttbox}
  3.2427 -The recursion scheme follows the structure of the unfolded definition of type
  3.2428 -\texttt{term} shown in \S\ref{subsec:datatype:basics}. To prove properties of
  3.2429 -this substitution function, mutual induction is needed:
  3.2430 -\begin{ttbox}
  3.2431 -Goal
  3.2432 -  "(subst_term ((subst_term f1) o f2) t) =
  3.2433 -     (subst_term f1 (subst_term f2 t)) &
  3.2434 -   (subst_term_list ((subst_term f1) o f2) ts) =
  3.2435 -     (subst_term_list f1 (subst_term_list f2 ts))";
  3.2436 -by (mutual_induct_tac ["t", "ts"] 1);
  3.2437 -by (ALLGOALS Asm_full_simp_tac);
  3.2438 -\end{ttbox}
  3.2439 -
  3.2440 -\index{recursion!primitive|)}
  3.2441 -\index{*primrec|)}
  3.2442 -
  3.2443 -
  3.2444 -\subsection{General recursive functions}
  3.2445 -\label{sec:HOL:recdef}
  3.2446 -\index{recursion!general|(}
  3.2447 -\index{*recdef|(}
  3.2448 -
  3.2449 -Using \texttt{recdef}, you can declare functions involving nested recursion
  3.2450 -and pattern-matching.  Recursion need not involve datatypes and there are few
  3.2451 -syntactic restrictions.  Termination is proved by showing that each recursive
  3.2452 -call makes the argument smaller in a suitable sense, which you specify by
  3.2453 -supplying a well-founded relation.
  3.2454 -
  3.2455 -Here is a simple example, the Fibonacci function.  The first line declares
  3.2456 -\texttt{fib} to be a constant.  The well-founded relation is simply~$<$ (on
  3.2457 -the natural numbers).  Pattern-matching is used here: \texttt{1} is a
  3.2458 -macro for \texttt{Suc~0}.
  3.2459 -\begin{ttbox}
  3.2460 -consts fib  :: "nat => nat"
  3.2461 -recdef fib "less_than"
  3.2462 -    "fib 0 = 0"
  3.2463 -    "fib 1 = 1"
  3.2464 -    "fib (Suc(Suc x)) = (fib x + fib (Suc x))"
  3.2465 -\end{ttbox}
  3.2466 -
  3.2467 -With \texttt{recdef}, function definitions may be incomplete, and patterns may
  3.2468 -overlap, as in functional programming.  The \texttt{recdef} package
  3.2469 -disambiguates overlapping patterns by taking the order of rules into account.
  3.2470 -For missing patterns, the function is defined to return a default value.
  3.2471 -
  3.2472 -%For example, here is a declaration of the list function \cdx{hd}:
  3.2473 -%\begin{ttbox}
  3.2474 -%consts hd :: 'a list => 'a
  3.2475 -%recdef hd "\{\}"
  3.2476 -%    "hd (x#l) = x"
  3.2477 -%\end{ttbox}
  3.2478 -%Because this function is not recursive, we may supply the empty well-founded
  3.2479 -%relation, $\{\}$.
  3.2480 -
  3.2481 -The well-founded relation defines a notion of ``smaller'' for the function's
  3.2482 -argument type.  The relation $\prec$ is \textbf{well-founded} provided it
  3.2483 -admits no infinitely decreasing chains
  3.2484 -\[ \cdots\prec x@n\prec\cdots\prec x@1. \]
  3.2485 -If the function's argument has type~$\tau$, then $\prec$ has to be a relation
  3.2486 -over~$\tau$: it must have type $(\tau\times\tau)set$.
  3.2487 -
  3.2488 -Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection
  3.2489 -of operators for building well-founded relations.  The package recognises
  3.2490 -these operators and automatically proves that the constructed relation is
  3.2491 -well-founded.  Here are those operators, in order of importance:
  3.2492 -\begin{itemize}
  3.2493 -\item \texttt{less_than} is ``less than'' on the natural numbers.
  3.2494 -  (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$.
  3.2495 -  
  3.2496 -\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the
  3.2497 -  relation~$\prec$ on type~$\tau$ such that $x\prec y$ iff $f(x)<f(y)$.
  3.2498 -  Typically, $f$ takes the recursive function's arguments (as a tuple) and
  3.2499 -  returns a result expressed in terms of the function \texttt{size}.  It is
  3.2500 -  called a \textbf{measure function}.  Recall that \texttt{size} is overloaded
  3.2501 -  and is defined on all datatypes (see \S\ref{sec:HOL:size}).
  3.2502 -                                                    
  3.2503 -\item $\mathop{\mathtt{inv_image}} f\;R$ is a generalisation of
  3.2504 -  \texttt{measure}.  It specifies a relation such that $x\prec y$ iff $f(x)$
  3.2505 -  is less than $f(y)$ according to~$R$, which must itself be a well-founded
  3.2506 -  relation.
  3.2507 -
  3.2508 -\item $R@1\texttt{**}R@2$ is the lexicographic product of two relations.  It
  3.2509 -  is a relation on pairs and satisfies $(x@1,x@2)\prec(y@1,y@2)$ iff $x@1$
  3.2510 -  is less than $y@1$ according to~$R@1$ or $x@1=y@1$ and $x@2$
  3.2511 -  is less than $y@2$ according to~$R@2$.
  3.2512 -
  3.2513 -\item \texttt{finite_psubset} is the proper subset relation on finite sets.
  3.2514 -\end{itemize}
  3.2515 -
  3.2516 -We can use \texttt{measure} to declare Euclid's algorithm for the greatest
  3.2517 -common divisor.  The measure function, $\lambda(m,n). n$, specifies that the
  3.2518 -recursion terminates because argument~$n$ decreases.
  3.2519 -\begin{ttbox}
  3.2520 -recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  3.2521 -    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  3.2522 -\end{ttbox}
  3.2523 -
  3.2524 -The general form of a well-founded recursive definition is
  3.2525 -\begin{ttbox}
  3.2526 -recdef {\it function} {\it rel}
  3.2527 -    congs   {\it congruence rules}      {\bf(optional)}
  3.2528 -    simpset {\it simplification set}      {\bf(optional)}
  3.2529 -   {\it reduction rules}
  3.2530 -\end{ttbox}
  3.2531 -where
  3.2532 -\begin{itemize}
  3.2533 -\item \textit{function} is the name of the function, either as an \textit{id}
  3.2534 -  or a \textit{string}.  
  3.2535 -  
  3.2536 -\item \textit{rel} is a {\HOL} expression for the well-founded termination
  3.2537 -  relation.
  3.2538 -  
  3.2539 -\item \textit{congruence rules} are required only in highly exceptional
  3.2540 -  circumstances.
  3.2541 -  
  3.2542 -\item The \textit{simplification set} is used to prove that the supplied
  3.2543 -  relation is well-founded.  It is also used to prove the \textbf{termination
  3.2544 -    conditions}: assertions that arguments of recursive calls decrease under
  3.2545 -  \textit{rel}.  By default, simplification uses \texttt{simpset()}, which
  3.2546 -  is sufficient to prove well-foundedness for the built-in relations listed
  3.2547 -  above. 
  3.2548 -  
  3.2549 -\item \textit{reduction rules} specify one or more recursion equations.  Each
  3.2550 -  left-hand side must have the form $f\,t$, where $f$ is the function and $t$
  3.2551 -  is a tuple of distinct variables.  If more than one equation is present then
  3.2552 -  $f$ is defined by pattern-matching on components of its argument whose type
  3.2553 -  is a \texttt{datatype}.  
  3.2554 -
  3.2555 -  Unlike with \texttt{primrec}, the reduction rules are not added to the
  3.2556 -  default simpset, and individual rules may not be labelled with identifiers.
  3.2557 -  However, the identifier $f$\texttt{.rules} is visible at the \ML\ level
  3.2558 -  as a list of theorems.
  3.2559 -\end{itemize}
  3.2560 -
  3.2561 -With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to
  3.2562 -prove one termination condition.  It remains as a precondition of the
  3.2563 -recursion theorems.
  3.2564 -\begin{ttbox}
  3.2565 -gcd.rules;
  3.2566 -{\out ["! m n. n ~= 0 --> m mod n < n}
  3.2567 -{\out   ==> gcd (?m, ?n) = (if ?n = 0 then ?m else gcd (?n, ?m mod ?n))"] }
  3.2568 -{\out : thm list}
  3.2569 -\end{ttbox}
  3.2570 -The theory \texttt{HOL/ex/Primes} illustrates how to prove termination
  3.2571 -conditions afterwards.  The function \texttt{Tfl.tgoalw} is like the standard
  3.2572 -function \texttt{goalw}, which sets up a goal to prove, but its argument
  3.2573 -should be the identifier $f$\texttt{.rules} and its effect is to set up a
  3.2574 -proof of the termination conditions:
  3.2575 -\begin{ttbox}
  3.2576 -Tfl.tgoalw thy [] gcd.rules;
  3.2577 -{\out Level 0}
  3.2578 -{\out ! m n. n ~= 0 --> m mod n < n}
  3.2579 -{\out  1. ! m n. n ~= 0 --> m mod n < n}
  3.2580 -\end{ttbox}
  3.2581 -This subgoal has a one-step proof using \texttt{simp_tac}.  Once the theorem
  3.2582 -is proved, it can be used to eliminate the termination conditions from
  3.2583 -elements of \texttt{gcd.rules}.  Theory \texttt{HOL/Subst/Unify} is a much
  3.2584 -more complicated example of this process, where the termination conditions can
  3.2585 -only be proved by complicated reasoning involving the recursive function
  3.2586 -itself.
  3.2587 -
  3.2588 -Isabelle/HOL can prove the \texttt{gcd} function's termination condition
  3.2589 -automatically if supplied with the right simpset.
  3.2590 -\begin{ttbox}
  3.2591 -recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)"
  3.2592 -  simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]"
  3.2593 -    "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))"
  3.2594 -\end{ttbox}
  3.2595 -
  3.2596 -A \texttt{recdef} definition also returns an induction rule specialised for
  3.2597 -the recursive function.  For the \texttt{gcd} function above, the induction
  3.2598 -rule is
  3.2599 -\begin{ttbox}
  3.2600 -gcd.induct;
  3.2601 -{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm}
  3.2602 -\end{ttbox}
  3.2603 -This rule should be used to reason inductively about the \texttt{gcd}
  3.2604 -function.  It usually makes the induction hypothesis available at all
  3.2605 -recursive calls, leading to very direct proofs.  If any termination conditions
  3.2606 -remain unproved, they will become additional premises of this rule.
  3.2607 -
  3.2608 -\index{recursion!general|)}
  3.2609 -\index{*recdef|)}
  3.2610 -
  3.2611 -
  3.2612 -\section{Inductive and coinductive definitions}
  3.2613 -\index{*inductive|(}
  3.2614 -\index{*coinductive|(}
  3.2615 -
  3.2616 -An {\bf inductive definition} specifies the least set~$R$ closed under given
  3.2617 -rules.  (Applying a rule to elements of~$R$ yields a result within~$R$.)  For
  3.2618 -example, a structural operational semantics is an inductive definition of an
  3.2619 -evaluation relation.  Dually, a {\bf coinductive definition} specifies the
  3.2620 -greatest set~$R$ consistent with given rules.  (Every element of~$R$ can be
  3.2621 -seen as arising by applying a rule to elements of~$R$.)  An important example
  3.2622 -is using bisimulation relations to formalise equivalence of processes and
  3.2623 -infinite data structures.
  3.2624 -
  3.2625 -A theory file may contain any number of inductive and coinductive
  3.2626 -definitions.  They may be intermixed with other declarations; in
  3.2627 -particular, the (co)inductive sets {\bf must} be declared separately as
  3.2628 -constants, and may have mixfix syntax or be subject to syntax translations.
  3.2629 -
  3.2630 -Each (co)inductive definition adds definitions to the theory and also
  3.2631 -proves some theorems.  Each definition creates an \ML\ structure, which is a
  3.2632 -substructure of the main theory structure.
  3.2633 -
  3.2634 -This package is related to the \ZF\ one, described in a separate
  3.2635 -paper,%
  3.2636 -\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is
  3.2637 -  distributed with Isabelle.}  %
  3.2638 -which you should refer to in case of difficulties.  The package is simpler
  3.2639 -than \ZF's thanks to \HOL's extra-logical automatic type-checking.  The types
  3.2640 -of the (co)inductive sets determine the domain of the fixedpoint definition,
  3.2641 -and the package does not have to use inference rules for type-checking.
  3.2642 -
  3.2643 -
  3.2644 -\subsection{The result structure}
  3.2645 -Many of the result structure's components have been discussed in the paper;
  3.2646 -others are self-explanatory.
  3.2647 -\begin{description}
  3.2648 -\item[\tt defs] is the list of definitions of the recursive sets.
  3.2649 -
  3.2650 -\item[\tt mono] is a monotonicity theorem for the fixedpoint operator.
  3.2651 -
  3.2652 -\item[\tt unfold] is a fixedpoint equation for the recursive set (the union of
  3.2653 -the recursive sets, in the case of mutual recursion).
  3.2654 -
  3.2655 -\item[\tt intrs] is the list of introduction rules, now proved as theorems, for
  3.2656 -the recursive sets.  The rules are also available individually, using the
  3.2657 -names given them in the theory file. 
  3.2658 -
  3.2659 -\item[\tt elims] is the list of elimination rule.
  3.2660 -
  3.2661 -\item[\tt elim] is the head of the list \texttt{elims}.
  3.2662 -  
  3.2663 -\item[\tt mk_cases] is a function to create simplified instances of {\tt
  3.2664 -elim} using freeness reasoning on underlying datatypes.
  3.2665 -\end{description}
  3.2666 -
  3.2667 -For an inductive definition, the result structure contains the
  3.2668 -rule \texttt{induct}.  For a
  3.2669 -coinductive definition, it contains the rule \verb|coinduct|.
  3.2670 -
  3.2671 -Figure~\ref{def-result-fig} summarises the two result signatures,
  3.2672 -specifying the types of all these components.
  3.2673 -
  3.2674 -\begin{figure}
  3.2675 -\begin{ttbox}
  3.2676 -sig
  3.2677 -val defs         : thm list
  3.2678 -val mono         : thm
  3.2679 -val unfold       : thm
  3.2680 -val intrs        : thm list
  3.2681 -val elims        : thm list
  3.2682 -val elim         : thm
  3.2683 -val mk_cases     : string -> thm
  3.2684 -{\it(Inductive definitions only)} 
  3.2685 -val induct       : thm
  3.2686 -{\it(coinductive definitions only)}
  3.2687 -val coinduct     : thm
  3.2688 -end
  3.2689 -\end{ttbox}
  3.2690 -\hrule
  3.2691 -\caption{The {\ML} result of a (co)inductive definition} \label{def-result-fig}
  3.2692 -\end{figure}
  3.2693 -
  3.2694 -\subsection{The syntax of a (co)inductive definition}
  3.2695 -An inductive definition has the form
  3.2696 -\begin{ttbox}
  3.2697 -inductive    {\it inductive sets}
  3.2698 -  intrs      {\it introduction rules}
  3.2699 -  monos      {\it monotonicity theorems}
  3.2700 -  con_defs   {\it constructor definitions}
  3.2701 -\end{ttbox}
  3.2702 -A coinductive definition is identical, except that it starts with the keyword
  3.2703 -\texttt{coinductive}.  
  3.2704 -
  3.2705 -The \texttt{monos} and \texttt{con_defs} sections are optional.  If present,
  3.2706 -each is specified by a list of identifiers.
  3.2707 -
  3.2708 -\begin{itemize}
  3.2709 -\item The \textit{inductive sets} are specified by one or more strings.
  3.2710 -
  3.2711 -\item The \textit{introduction rules} specify one or more introduction rules in
  3.2712 -  the form \textit{ident\/}~\textit{string}, where the identifier gives the name of
  3.2713 -  the rule in the result structure.
  3.2714 -
  3.2715 -\item The \textit{monotonicity theorems} are required for each operator
  3.2716 -  applied to a recursive set in the introduction rules.  There {\bf must}
  3.2717 -  be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each
  3.2718 -  premise $t\in M(R@i)$ in an introduction rule!
  3.2719 -
  3.2720 -\item The \textit{constructor definitions} contain definitions of constants
  3.2721 -  appearing in the introduction rules.  In most cases it can be omitted.
  3.2722 -\end{itemize}
  3.2723 -
  3.2724 -
  3.2725 -\subsection{Example of an inductive definition}
  3.2726 -Two declarations, included in a theory file, define the finite powerset
  3.2727 -operator.  First we declare the constant~\texttt{Fin}.  Then we declare it
  3.2728 -inductively, with two introduction rules:
  3.2729 -\begin{ttbox}
  3.2730 -consts Fin :: 'a set => 'a set set
  3.2731 -inductive "Fin A"
  3.2732 -  intrs
  3.2733 -    emptyI  "{\ttlbrace}{\ttrbrace} : Fin A"
  3.2734 -    insertI "[| a: A;  b: Fin A |] ==> insert a b : Fin A"
  3.2735 -\end{ttbox}
  3.2736 -The resulting theory structure contains a substructure, called~\texttt{Fin}.
  3.2737 -It contains the \texttt{Fin}$~A$ introduction rules as the list \texttt{Fin.intrs},
  3.2738 -and also individually as \texttt{Fin.emptyI} and \texttt{Fin.consI}.  The induction
  3.2739 -rule is \texttt{Fin.induct}.
  3.2740 -
  3.2741 -For another example, here is a theory file defining the accessible
  3.2742 -part of a relation.  The main thing to note is the use of~\texttt{Pow} in
  3.2743 -the sole introduction rule, and the corresponding mention of the rule
  3.2744 -\verb|Pow_mono| in the \texttt{monos} list.  The paper
  3.2745 -\cite{paulson-CADE} discusses a \ZF\ version of this example in more
  3.2746 -detail.
  3.2747 -\begin{ttbox}
  3.2748 -Acc = WF + 
  3.2749 -consts pred :: "['b, ('a * 'b)set] => 'a set"   (*Set of predecessors*)
  3.2750 -       acc  :: "('a * 'a)set => 'a set"         (*Accessible part*)
  3.2751 -defs   pred_def  "pred x r == {y. (y,x):r}"
  3.2752 -inductive "acc r"
  3.2753 -  intrs
  3.2754 -     pred "pred a r: Pow(acc r) ==> a: acc r"
  3.2755 -  monos   Pow_mono
  3.2756 -end
  3.2757 -\end{ttbox}
  3.2758 -The Isabelle distribution contains many other inductive definitions.  Simple
  3.2759 -examples are collected on subdirectory \texttt{HOL/Induct}.  The theory
  3.2760 -\texttt{HOL/Induct/LList} contains coinductive definitions.  Larger examples
  3.2761 -may be found on other subdirectories of \texttt{HOL}, such as \texttt{IMP},
  3.2762 -\texttt{Lambda} and \texttt{Auth}.
  3.2763 -
  3.2764 -\index{*coinductive|)} \index{*inductive|)}
  3.2765 -
  3.2766 -
  3.2767 -\section{The examples directories}
  3.2768 -
  3.2769 -Directory \texttt{HOL/Auth} contains theories for proving the correctness of 
  3.2770 -cryptographic protocols.  The approach is based upon operational 
  3.2771 -semantics~\cite{paulson-security} rather than the more usual belief logics.
  3.2772 -On the same directory are proofs for some standard examples, such as the 
  3.2773 -Needham-Schroeder public-key authentication protocol~\cite{paulson-ns} 
  3.2774 -and the Otway-Rees protocol.
  3.2775 -
  3.2776 -Directory \texttt{HOL/IMP} contains a formalization of various denotational,
  3.2777 -operational and axiomatic semantics of a simple while-language, the necessary
  3.2778 -equivalence proofs, soundness and completeness of the Hoare rules with respect
  3.2779 -to the 
  3.2780 -denotational semantics, and soundness and completeness of a verification
  3.2781 -condition generator.  Much of development is taken from
  3.2782 -Winskel~\cite{winskel93}.  For details see~\cite{nipkow-IMP}.
  3.2783 -
  3.2784 -Directory \texttt{HOL/Hoare} contains a user friendly surface syntax for Hoare
  3.2785 -logic, including a tactic for generating verification-conditions.
  3.2786 -
  3.2787 -Directory \texttt{HOL/MiniML} contains a formalization of the type system of the
  3.2788 -core functional language Mini-ML and a correctness proof for its type
  3.2789 -inference algorithm $\cal W$~\cite{milner78,nazareth-nipkow}.
  3.2790 -
  3.2791 -Directory \texttt{HOL/Lambda} contains a formalization of untyped
  3.2792 -$\lambda$-calculus in de~Bruijn notation and Church-Rosser proofs for $\beta$
  3.2793 -and $\eta$ reduction~\cite{Nipkow-CR}.
  3.2794 -
  3.2795 -Directory \texttt{HOL/Subst} contains Martin Coen's mechanization of a theory of
  3.2796 -substitutions and unifiers.  It is based on Paulson's previous
  3.2797 -mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's
  3.2798 -theory~\cite{mw81}.  It demonstrates a complicated use of \texttt{recdef},
  3.2799 -with nested recursion.
  3.2800 -
  3.2801 -Directory \texttt{HOL/Induct} presents simple examples of (co)inductive
  3.2802 -definitions and datatypes.
  3.2803 -\begin{itemize}
  3.2804 -\item Theory \texttt{PropLog} proves the soundness and completeness of
  3.2805 -  classical propositional logic, given a truth table semantics.  The only
  3.2806 -  connective is $\imp$.  A Hilbert-style axiom system is specified, and its
  3.2807 -  set of theorems defined inductively.  A similar proof in \ZF{} is
  3.2808 -  described elsewhere~\cite{paulson-set-II}.
  3.2809 -
  3.2810 -\item Theory \texttt{Term} defines the datatype \texttt{term}.
  3.2811 -
  3.2812 -\item Theory \texttt{ABexp} defines arithmetic and boolean expressions
  3.2813 - as mutually recursive datatypes.
  3.2814 -
  3.2815 -\item The definition of lazy lists demonstrates methods for handling
  3.2816 -  infinite data structures and coinduction in higher-order
  3.2817 -  logic~\cite{paulson-coind}.%
  3.2818 -\footnote{To be precise, these lists are \emph{potentially infinite} rather
  3.2819 -  than lazy.  Lazy implies a particular operational semantics.}
  3.2820 -  Theory \thydx{LList} defines an operator for
  3.2821 -  corecursion on lazy lists, which is used to define a few simple functions
  3.2822 -  such as map and append.   A coinduction principle is defined
  3.2823 -  for proving equations on lazy lists.
  3.2824 -  
  3.2825 -\item Theory \thydx{LFilter} defines the filter functional for lazy lists.
  3.2826 -  This functional is notoriously difficult to define because finding the next
  3.2827 -  element meeting the predicate requires possibly unlimited search.  It is not
  3.2828 -  computable, but can be expressed using a combination of induction and
  3.2829 -  corecursion.  
  3.2830 -
  3.2831 -\item Theory \thydx{Exp} illustrates the use of iterated inductive definitions
  3.2832 -  to express a programming language semantics that appears to require mutual
  3.2833 -  induction.  Iterated induction allows greater modularity.
  3.2834 -\end{itemize}
  3.2835 -
  3.2836 -Directory \texttt{HOL/ex} contains other examples and experimental proofs in
  3.2837 -{\HOL}.  
  3.2838 -\begin{itemize}
  3.2839 -\item Theory \texttt{Recdef} presents many examples of using \texttt{recdef}
  3.2840 -  to define recursive functions.  Another example is \texttt{Fib}, which
  3.2841 -  defines the Fibonacci function.
  3.2842 -
  3.2843 -\item Theory \texttt{Primes} defines the Greatest Common Divisor of two
  3.2844 -  natural numbers and proves a key lemma of the Fundamental Theorem of
  3.2845 -  Arithmetic: if $p$ is prime and $p$ divides $m\times n$ then $p$ divides~$m$
  3.2846 -  or $p$ divides~$n$.
  3.2847 -
  3.2848 -\item Theory \texttt{Primrec} develops some computation theory.  It
  3.2849 -  inductively defines the set of primitive recursive functions and presents a
  3.2850 -  proof that Ackermann's function is not primitive recursive.
  3.2851 -
  3.2852 -\item File \texttt{cla.ML} demonstrates the classical reasoner on over sixty
  3.2853 -  predicate calculus theorems, ranging from simple tautologies to
  3.2854 -  moderately difficult problems involving equality and quantifiers.
  3.2855 -
  3.2856 -\item File \texttt{meson.ML} contains an experimental implementation of the {\sc
  3.2857 -    meson} proof procedure, inspired by Plaisted~\cite{plaisted90}.  It is
  3.2858 -  much more powerful than Isabelle's classical reasoner.  But it is less
  3.2859 -  useful in practice because it works only for pure logic; it does not
  3.2860 -  accept derived rules for the set theory primitives, for example.
  3.2861 -
  3.2862 -\item File \texttt{mesontest.ML} contains test data for the {\sc meson} proof
  3.2863 -  procedure.  These are mostly taken from Pelletier \cite{pelletier86}.
  3.2864 -
  3.2865 -\item File \texttt{set.ML} proves Cantor's Theorem, which is presented in
  3.2866 -  \S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem.
  3.2867 -
  3.2868 -\item Theory \texttt{MT} contains Jacob Frost's formalization~\cite{frost93} of
  3.2869 -  Milner and Tofte's coinduction example~\cite{milner-coind}.  This
  3.2870 -  substantial proof concerns the soundness of a type system for a simple
  3.2871 -  functional language.  The semantics of recursion is given by a cyclic
  3.2872 -  environment, which makes a coinductive argument appropriate.
  3.2873 -\end{itemize}
  3.2874 -
  3.2875 -
  3.2876 -\goodbreak
  3.2877 -\section{Example: Cantor's Theorem}\label{sec:hol-cantor}
  3.2878 -Cantor's Theorem states that every set has more subsets than it has
  3.2879 -elements.  It has become a favourite example in higher-order logic since
  3.2880 -it is so easily expressed:
  3.2881 -\[  \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool.
  3.2882 -    \forall x::\alpha. f~x \not= S 
  3.2883 -\] 
  3.2884 -%
  3.2885 -Viewing types as sets, $\alpha\To bool$ represents the powerset
  3.2886 -of~$\alpha$.  This version states that for every function from $\alpha$ to
  3.2887 -its powerset, some subset is outside its range.  
  3.2888 -
  3.2889 -The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and
  3.2890 -the operator \cdx{range}.
  3.2891 -\begin{ttbox}
  3.2892 -context Set.thy;
  3.2893 -\end{ttbox}
  3.2894 -The set~$S$ is given as an unknown instead of a
  3.2895 -quantified variable so that we may inspect the subset found by the proof.
  3.2896 -\begin{ttbox}
  3.2897 -Goal "?S ~: range\thinspace(f :: 'a=>'a set)";
  3.2898 -{\out Level 0}
  3.2899 -{\out ?S ~: range f}
  3.2900 -{\out  1. ?S ~: range f}
  3.2901 -\end{ttbox}
  3.2902 -The first two steps are routine.  The rule \tdx{rangeE} replaces
  3.2903 -$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$.
  3.2904 -\begin{ttbox}
  3.2905 -by (resolve_tac [notI] 1);
  3.2906 -{\out Level 1}
  3.2907 -{\out ?S ~: range f}
  3.2908 -{\out  1. ?S : range f ==> False}
  3.2909 -\ttbreak
  3.2910 -by (eresolve_tac [rangeE] 1);
  3.2911 -{\out Level 2}
  3.2912 -{\out ?S ~: range f}
  3.2913 -{\out  1. !!x. ?S = f x ==> False}
  3.2914 -\end{ttbox}
  3.2915 -Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$,
  3.2916 -we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for
  3.2917 -any~$\Var{c}$.
  3.2918 -\begin{ttbox}
  3.2919 -by (eresolve_tac [equalityCE] 1);
  3.2920 -{\out Level 3}
  3.2921 -{\out ?S ~: range f}
  3.2922 -{\out  1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False}
  3.2923 -{\out  2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False}
  3.2924 -\end{ttbox}
  3.2925 -Now we use a bit of creativity.  Suppose that~$\Var{S}$ has the form of a
  3.2926 -comprehension.  Then $\Var{c}\in\{x.\Var{P}~x\}$ implies
  3.2927 -$\Var{P}~\Var{c}$.   Destruct-resolution using \tdx{CollectD}
  3.2928 -instantiates~$\Var{S}$ and creates the new assumption.
  3.2929 -\begin{ttbox}
  3.2930 -by (dresolve_tac [CollectD] 1);
  3.2931 -{\out Level 4}
  3.2932 -{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f}
  3.2933 -{\out  1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False}
  3.2934 -{\out  2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False}
  3.2935 -\end{ttbox}
  3.2936 -Forcing a contradiction between the two assumptions of subgoal~1
  3.2937 -completes the instantiation of~$S$.  It is now the set $\{x. x\not\in
  3.2938 -f~x\}$, which is the standard diagonal construction.
  3.2939 -\begin{ttbox}
  3.2940 -by (contr_tac 1);
  3.2941 -{\out Level 5}
  3.2942 -{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2943 -{\out  1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False}
  3.2944 -\end{ttbox}
  3.2945 -The rest should be easy.  To apply \tdx{CollectI} to the negated
  3.2946 -assumption, we employ \ttindex{swap_res_tac}:
  3.2947 -\begin{ttbox}
  3.2948 -by (swap_res_tac [CollectI] 1);
  3.2949 -{\out Level 6}
  3.2950 -{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2951 -{\out  1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x}
  3.2952 -\ttbreak
  3.2953 -by (assume_tac 1);
  3.2954 -{\out Level 7}
  3.2955 -{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2956 -{\out No subgoals!}
  3.2957 -\end{ttbox}
  3.2958 -How much creativity is required?  As it happens, Isabelle can prove this
  3.2959 -theorem automatically.  The default classical set \texttt{claset()} contains rules
  3.2960 -for most of the constructs of \HOL's set theory.  We must augment it with
  3.2961 -\tdx{equalityCE} to break up set equalities, and then apply best-first
  3.2962 -search.  Depth-first search would diverge, but best-first search
  3.2963 -successfully navigates through the large search space.
  3.2964 -\index{search!best-first}
  3.2965 -\begin{ttbox}
  3.2966 -choplev 0;
  3.2967 -{\out Level 0}
  3.2968 -{\out ?S ~: range f}
  3.2969 -{\out  1. ?S ~: range f}
  3.2970 -\ttbreak
  3.2971 -by (best_tac (claset() addSEs [equalityCE]) 1);
  3.2972 -{\out Level 1}
  3.2973 -{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f}
  3.2974 -{\out No subgoals!}
  3.2975 -\end{ttbox}
  3.2976 -If you run this example interactively, make sure your current theory contains
  3.2977 -theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}.
  3.2978 -Otherwise the default claset may not contain the rules for set theory.
  3.2979 -\index{higher-order logic|)}
  3.2980 -
  3.2981 -%%% Local Variables: 
  3.2982 -%%% mode: latex
  3.2983 -%%% TeX-master: "logics"
  3.2984 -%%% End: 
     4.1 --- a/doc-src/Logics/logics.ind	Tue May 04 18:04:45 1999 +0200
     4.2 +++ b/doc-src/Logics/logics.ind	Tue May 04 18:05:34 1999 +0200
     4.3 @@ -1,659 +1,307 @@
     4.4  \begin{theindex}
     4.5  
     4.6 -  \item {\tt !} symbol, 6, 8, 15, 16, 28
     4.7 -  \item {\tt[]} symbol, 28
     4.8 -  \item {\tt\#} symbol, 28
     4.9 -  \item {\tt\#*} symbol, 83
    4.10 -  \item {\tt\#+} symbol, 83
    4.11 -  \item {\tt\&} symbol, 6, 59
    4.12 -  \item {\tt *} symbol, 7, 25, 74
    4.13 -  \item {\tt *} type, 23
    4.14 -  \item {\tt +} symbol, 7, 25, 74
    4.15 -  \item {\tt +} type, 23
    4.16 -  \item {\tt -} symbol, 7, 25, 83
    4.17 -  \item {\tt -->} symbol, 6, 59, 74
    4.18 -  \item {\tt :} symbol, 14
    4.19 -  \item {\tt <} constant, 26
    4.20 -  \item {\tt <} symbol, 25
    4.21 -  \item {\tt <->} symbol, 59
    4.22 -  \item {\tt <=} constant, 26
    4.23 -  \item {\tt <=} symbol, 14
    4.24 -  \item {\tt =} symbol, 6, 59, 74
    4.25 -  \item {\tt ?} symbol, 6, 8, 15, 16
    4.26 -  \item {\tt ?!} symbol, 6
    4.27 -  \item {\tt\at} symbol, 6, 28
    4.28 -  \item {\tt `} symbol, 74
    4.29 -  \item {\tt ``} symbol, 14
    4.30 -  \item \verb'{}' symbol, 14
    4.31 -  \item {\tt |} symbol, 6, 59
    4.32 -  \item {\tt |-|} symbol, 83
    4.33 +  \item {\tt\#*} symbol, 30
    4.34 +  \item {\tt\#+} symbol, 30
    4.35 +  \item {\tt\&} symbol, 6
    4.36 +  \item {\tt *} symbol, 21
    4.37 +  \item {\tt +} symbol, 21
    4.38 +  \item {\tt -} symbol, 30
    4.39 +  \item {\tt -->} symbol, 6, 21
    4.40 +  \item {\tt <->} symbol, 6
    4.41 +  \item {\tt =} symbol, 6, 21
    4.42 +  \item {\tt `} symbol, 21
    4.43 +  \item {\tt |} symbol, 6
    4.44 +  \item {\tt |-|} symbol, 30
    4.45  
    4.46    \indexspace
    4.47  
    4.48 -  \item {\tt 0} constant, 25, 72
    4.49 +  \item {\tt 0} constant, 19
    4.50  
    4.51    \indexspace
    4.52  
    4.53 -  \item {\tt absdiff_def} theorem, 83
    4.54 -  \item {\tt add_assoc} theorem, 83
    4.55 -  \item {\tt add_commute} theorem, 83
    4.56 -  \item {\tt add_def} theorem, 83
    4.57 -  \item {\tt add_inverse_diff} theorem, 83
    4.58 -  \item {\tt add_mp_tac}, \bold{81}
    4.59 -  \item {\tt add_mult_dist} theorem, 83
    4.60 -  \item {\tt add_safes}, \bold{65}
    4.61 -  \item {\tt add_typing} theorem, 83
    4.62 -  \item {\tt add_unsafes}, \bold{65}
    4.63 -  \item {\tt addC0} theorem, 83
    4.64 -  \item {\tt addC_succ} theorem, 83
    4.65 -  \item {\tt Addsplits}, \bold{22}
    4.66 -  \item {\tt addsplits}, \bold{22}, 27, 39
    4.67 -  \item {\tt ALL} symbol, 6, 8, 15, 16, 59
    4.68 -  \item {\tt All} constant, 6, 59
    4.69 -  \item {\tt All_def} theorem, 10
    4.70 -  \item {\tt all_dupE} theorem, 12
    4.71 -  \item {\tt allE} theorem, 12
    4.72 -  \item {\tt allI} theorem, 12
    4.73 -  \item {\tt allL} theorem, 61, 65
    4.74 -  \item {\tt allL_thin} theorem, 62
    4.75 -  \item {\tt allR} theorem, 61
    4.76 -  \item {\tt and_def} theorem, 10
    4.77 -  \item {\tt arg_cong} theorem, 11
    4.78 -  \item {\tt Arith} theory, 26, 82
    4.79 -  \item {\tt arith_tac}, 27
    4.80 +  \item {\tt absdiff_def} theorem, 30
    4.81 +  \item {\tt add_assoc} theorem, 30
    4.82 +  \item {\tt add_commute} theorem, 30
    4.83 +  \item {\tt add_def} theorem, 30
    4.84 +  \item {\tt add_inverse_diff} theorem, 30
    4.85 +  \item {\tt add_mp_tac}, \bold{28}
    4.86 +  \item {\tt add_mult_dist} theorem, 30
    4.87 +  \item {\tt add_safes}, \bold{12}
    4.88 +  \item {\tt add_typing} theorem, 30
    4.89 +  \item {\tt add_unsafes}, \bold{12}
    4.90 +  \item {\tt addC0} theorem, 30
    4.91 +  \item {\tt addC_succ} theorem, 30
    4.92 +  \item {\tt ALL} symbol, 6
    4.93 +  \item {\tt All} constant, 6
    4.94 +  \item {\tt allL} theorem, 8, 12
    4.95 +  \item {\tt allL_thin} theorem, 9
    4.96 +  \item {\tt allR} theorem, 8
    4.97 +  \item {\tt Arith} theory, 29
    4.98    \item assumptions
    4.99 -    \subitem in {\CTT}, 71, 81
   4.100 +    \subitem in {\CTT}, 18, 28
   4.101  
   4.102    \indexspace
   4.103  
   4.104 -  \item {\tt Ball} constant, 14, 16
   4.105 -  \item {\tt Ball_def} theorem, 17
   4.106 -  \item {\tt ballE} theorem, 18
   4.107 -  \item {\tt ballI} theorem, 18
   4.108 -  \item {\tt basic} theorem, 61
   4.109 -  \item {\tt basic_defs}, \bold{79}
   4.110 -  \item {\tt best_tac}, \bold{66}
   4.111 -  \item {\tt Bex} constant, 14, 16
   4.112 -  \item {\tt Bex_def} theorem, 17
   4.113 -  \item {\tt bexCI} theorem, 16, 18
   4.114 -  \item {\tt bexE} theorem, 18
   4.115 -  \item {\tt bexI} theorem, 16, 18
   4.116 -  \item {\textit {bool}} type, 7
   4.117 -  \item {\tt box_equals} theorem, 11, 13
   4.118 -  \item {\tt bspec} theorem, 18
   4.119 -  \item {\tt butlast} constant, 28
   4.120 +  \item {\tt basic} theorem, 8
   4.121 +  \item {\tt basic_defs}, \bold{26}
   4.122 +  \item {\tt best_tac}, \bold{13}
   4.123  
   4.124    \indexspace
   4.125  
   4.126 -  \item {\tt case} symbol, 9, 26, 27, 39
   4.127 -  \item {\tt case_tac}, \bold{13}
   4.128    \item {\tt CCL} theory, 1
   4.129 -  \item {\tt ccontr} theorem, 12
   4.130 -  \item {\tt classical} theorem, 12
   4.131 -  \item {\tt coinductive}, 51--53
   4.132 -  \item {\tt Collect} constant, 14, 16
   4.133 -  \item {\tt Collect_mem_eq} theorem, 16, 17
   4.134 -  \item {\tt CollectD} theorem, 18, 56
   4.135 -  \item {\tt CollectE} theorem, 18
   4.136 -  \item {\tt CollectI} theorem, 18, 57
   4.137 -  \item {\tt comp_rls}, \bold{79}
   4.138 -  \item {\tt Compl} constant, 14
   4.139 -  \item {\tt Compl_def} theorem, 17
   4.140 -  \item {\tt Compl_disjoint} theorem, 20
   4.141 -  \item {\tt Compl_Int} theorem, 20
   4.142 -  \item {\tt Compl_partition} theorem, 20
   4.143 -  \item {\tt Compl_Un} theorem, 20
   4.144 -  \item {\tt ComplD} theorem, 19
   4.145 -  \item {\tt ComplI} theorem, 19
   4.146 -  \item {\tt concat} constant, 28
   4.147 -  \item {\tt cong} theorem, 11
   4.148 -  \item {\tt conj_cong}, 21
   4.149 -  \item {\tt conjE} theorem, 11
   4.150 -  \item {\tt conjI} theorem, 11
   4.151 -  \item {\tt conjL} theorem, 61
   4.152 -  \item {\tt conjR} theorem, 61
   4.153 -  \item {\tt conjunct1} theorem, 11
   4.154 -  \item {\tt conjunct2} theorem, 11
   4.155 -  \item {\tt conL} theorem, 62
   4.156 -  \item {\tt conR} theorem, 62
   4.157 -  \item Constructive Type Theory, 71--93
   4.158 -  \item {\tt context}, 57
   4.159 -  \item {\tt contr} constant, 72
   4.160 -  \item {\tt could_res}, \bold{64}
   4.161 -  \item {\tt could_resolve_seq}, \bold{64}
   4.162 -  \item {\tt CTT} theory, 1, 71
   4.163 +  \item {\tt comp_rls}, \bold{26}
   4.164 +  \item {\tt conjL} theorem, 8
   4.165 +  \item {\tt conjR} theorem, 8
   4.166 +  \item {\tt conL} theorem, 9
   4.167 +  \item {\tt conR} theorem, 9
   4.168 +  \item Constructive Type Theory, 18--40
   4.169 +  \item {\tt contr} constant, 19
   4.170 +  \item {\tt could_res}, \bold{11}
   4.171 +  \item {\tt could_resolve_seq}, \bold{11}
   4.172 +  \item {\tt CTT} theory, 1, 18
   4.173    \item {\tt Cube} theory, 1
   4.174 -  \item {\tt cut} theorem, 61
   4.175 -  \item {\tt cutL_tac}, \bold{63}
   4.176 -  \item {\tt cutR_tac}, \bold{63}
   4.177 +  \item {\tt cut} theorem, 8
   4.178 +  \item {\tt cutL_tac}, \bold{10}
   4.179 +  \item {\tt cutR_tac}, \bold{10}
   4.180  
   4.181    \indexspace
   4.182  
   4.183 -  \item {\tt datatype}, 36--44
   4.184 -  \item {\tt Delsplits}, \bold{22}
   4.185 -  \item {\tt delsplits}, \bold{22}
   4.186 -  \item {\tt diff_0_eq_0} theorem, 83
   4.187 -  \item {\tt diff_def} theorem, 83
   4.188 -  \item {\tt diff_self_eq_0} theorem, 83
   4.189 -  \item {\tt diff_succ_succ} theorem, 83
   4.190 -  \item {\tt diff_typing} theorem, 83
   4.191 -  \item {\tt diffC0} theorem, 83
   4.192 -  \item {\tt disjCI} theorem, 12
   4.193 -  \item {\tt disjE} theorem, 11
   4.194 -  \item {\tt disjI1} theorem, 11
   4.195 -  \item {\tt disjI2} theorem, 11
   4.196 -  \item {\tt disjL} theorem, 61
   4.197 -  \item {\tt disjR} theorem, 61
   4.198 -  \item {\tt div} symbol, 25, 83
   4.199 -  \item {\tt div_def} theorem, 83
   4.200 -  \item {\tt div_geq} theorem, 26
   4.201 -  \item {\tt div_less} theorem, 26
   4.202 -  \item {\tt Divides} theory, 26
   4.203 -  \item {\tt double_complement} theorem, 20
   4.204 -  \item {\tt drop} constant, 28
   4.205 -  \item {\tt dropWhile} constant, 28
   4.206 +  \item {\tt diff_0_eq_0} theorem, 30
   4.207 +  \item {\tt diff_def} theorem, 30
   4.208 +  \item {\tt diff_self_eq_0} theorem, 30
   4.209 +  \item {\tt diff_succ_succ} theorem, 30
   4.210 +  \item {\tt diff_typing} theorem, 30
   4.211 +  \item {\tt diffC0} theorem, 30
   4.212 +  \item {\tt disjL} theorem, 8
   4.213 +  \item {\tt disjR} theorem, 8
   4.214 +  \item {\tt div} symbol, 30
   4.215 +  \item {\tt div_def} theorem, 30
   4.216  
   4.217    \indexspace
   4.218  
   4.219 -  \item {\tt Elem} constant, 72
   4.220 -  \item {\tt elim_rls}, \bold{79}
   4.221 -  \item {\tt elimL_rls}, \bold{79}
   4.222 -  \item {\tt empty_def} theorem, 17
   4.223 -  \item {\tt empty_pack}, \bold{65}
   4.224 -  \item {\tt emptyE} theorem, 19
   4.225 -  \item {\tt Eps} constant, 6, 8
   4.226 -  \item {\tt Eq} constant, 72
   4.227 -  \item {\tt eq} constant, 72, 77
   4.228 -  \item {\tt EqC} theorem, 78
   4.229 -  \item {\tt EqE} theorem, 78
   4.230 -  \item {\tt Eqelem} constant, 72
   4.231 -  \item {\tt EqF} theorem, 78
   4.232 -  \item {\tt EqFL} theorem, 78
   4.233 -  \item {\tt EqI} theorem, 78
   4.234 -  \item {\tt Eqtype} constant, 72
   4.235 -  \item {\tt equal_tac}, \bold{80}
   4.236 -  \item {\tt equal_types} theorem, 75
   4.237 -  \item {\tt equal_typesL} theorem, 75
   4.238 -  \item {\tt equalityCE} theorem, 16, 18, 56, 57
   4.239 -  \item {\tt equalityD1} theorem, 18
   4.240 -  \item {\tt equalityD2} theorem, 18
   4.241 -  \item {\tt equalityE} theorem, 18
   4.242 -  \item {\tt equalityI} theorem, 18
   4.243 -  \item {\tt EX} symbol, 6, 8, 15, 16, 59
   4.244 -  \item {\tt Ex} constant, 6, 59
   4.245 -  \item {\tt EX!} symbol, 6
   4.246 -  \item {\tt Ex1} constant, 6
   4.247 -  \item {\tt Ex1_def} theorem, 10
   4.248 -  \item {\tt ex1E} theorem, 12
   4.249 -  \item {\tt ex1I} theorem, 12
   4.250 -  \item {\tt Ex_def} theorem, 10
   4.251 -  \item {\tt exCI} theorem, 12
   4.252 -  \item {\tt excluded_middle} theorem, 12
   4.253 -  \item {\tt exE} theorem, 12
   4.254 -  \item {\tt exhaust_tac}, \bold{40}
   4.255 -  \item {\tt exI} theorem, 12
   4.256 -  \item {\tt exL} theorem, 61
   4.257 -  \item {\tt Exp} theory, 55
   4.258 -  \item {\tt exR} theorem, 61, 65, 67
   4.259 -  \item {\tt exR_thin} theorem, 62, 67, 68
   4.260 -  \item {\tt ext} theorem, 9, 10
   4.261 +  \item {\tt Elem} constant, 19
   4.262 +  \item {\tt elim_rls}, \bold{26}
   4.263 +  \item {\tt elimL_rls}, \bold{26}
   4.264 +  \item {\tt empty_pack}, \bold{12}
   4.265 +  \item {\tt Eq} constant, 19
   4.266 +  \item {\tt eq} constant, 19, 24
   4.267 +  \item {\tt EqC} theorem, 25
   4.268 +  \item {\tt EqE} theorem, 25
   4.269 +  \item {\tt Eqelem} constant, 19
   4.270 +  \item {\tt EqF} theorem, 25
   4.271 +  \item {\tt EqFL} theorem, 25
   4.272 +  \item {\tt EqI} theorem, 25
   4.273 +  \item {\tt Eqtype} constant, 19
   4.274 +  \item {\tt equal_tac}, \bold{27}
   4.275 +  \item {\tt equal_types} theorem, 22
   4.276 +  \item {\tt equal_typesL} theorem, 22
   4.277 +  \item {\tt EX} symbol, 6
   4.278 +  \item {\tt Ex} constant, 6
   4.279 +  \item {\tt exL} theorem, 8
   4.280 +  \item {\tt exR} theorem, 8, 12, 14
   4.281 +  \item {\tt exR_thin} theorem, 9, 14, 15
   4.282  
   4.283    \indexspace
   4.284  
   4.285 -  \item {\tt F} constant, 72
   4.286 -  \item {\tt False} constant, 6, 59
   4.287 -  \item {\tt False_def} theorem, 10
   4.288 -  \item {\tt FalseE} theorem, 11
   4.289 -  \item {\tt FalseL} theorem, 61
   4.290 -  \item {\tt fast_tac}, \bold{66}
   4.291 -  \item {\tt FE} theorem, 78, 82
   4.292 -  \item {\tt FEL} theorem, 78
   4.293 -  \item {\tt FF} theorem, 78
   4.294 -  \item {\tt filseq_resolve_tac}, \bold{64}
   4.295 -  \item {\tt filt_resolve_tac}, 64, 80
   4.296 -  \item {\tt filter} constant, 28
   4.297 -  \item flex-flex constraints, 60
   4.298 -  \item {\tt FOL} theory, 81
   4.299 -  \item {\tt foldl} constant, 28
   4.300 -  \item {\tt form_rls}, \bold{79}
   4.301 -  \item {\tt formL_rls}, \bold{79}
   4.302 -  \item {\tt forms_of_seq}, \bold{63}
   4.303 -  \item {\tt fst} constant, 23, 72, 77
   4.304 -  \item {\tt fst_conv} theorem, 23
   4.305 -  \item {\tt fst_def} theorem, 77
   4.306 -  \item {\tt Fun} theory, 21
   4.307 -  \item {\textit {fun}} type, 7
   4.308 -  \item {\tt fun_cong} theorem, 11
   4.309 +  \item {\tt F} constant, 19
   4.310 +  \item {\tt False} constant, 6
   4.311 +  \item {\tt FalseL} theorem, 8
   4.312 +  \item {\tt fast_tac}, \bold{13}
   4.313 +  \item {\tt FE} theorem, 25, 29
   4.314 +  \item {\tt FEL} theorem, 25
   4.315 +  \item {\tt FF} theorem, 25
   4.316 +  \item {\tt filseq_resolve_tac}, \bold{11}
   4.317 +  \item {\tt filt_resolve_tac}, 11, 27
   4.318 +  \item flex-flex constraints, 7
   4.319 +  \item {\tt FOL} theory, 28
   4.320 +  \item {\tt form_rls}, \bold{26}
   4.321 +  \item {\tt formL_rls}, \bold{26}
   4.322 +  \item {\tt forms_of_seq}, \bold{10}
   4.323 +  \item {\tt fst} constant, 19, 24
   4.324 +  \item {\tt fst_def} theorem, 24
   4.325    \item function applications
   4.326 -    \subitem in \CTT, 74
   4.327 +    \subitem in \CTT, 21
   4.328  
   4.329    \indexspace
   4.330  
   4.331 -  \item {\tt hd} constant, 28
   4.332 -  \item higher-order logic, 5--57
   4.333 -  \item {\tt HOL} theory, 1, 5
   4.334 -  \item {\sc hol} system, 5, 8
   4.335 -  \item {\tt HOL_basic_ss}, \bold{21}
   4.336 -  \item {\tt HOL_cs}, \bold{22}
   4.337 -  \item {\tt HOL_quantifiers}, \bold{8}, 16
   4.338 -  \item {\tt HOL_ss}, \bold{21}
   4.339 +  \item {\tt HOL} theory, 1
   4.340    \item {\tt HOLCF} theory, 1
   4.341 -  \item {\tt hyp_rew_tac}, \bold{81}
   4.342 -  \item {\tt hyp_subst_tac}, 21
   4.343 +  \item {\tt hyp_rew_tac}, \bold{28}
   4.344  
   4.345    \indexspace
   4.346  
   4.347 -  \item {\textit {i}} type, 71
   4.348 -  \item {\tt If} constant, 6
   4.349 -  \item {\tt if_def} theorem, 10
   4.350 -  \item {\tt if_not_P} theorem, 12
   4.351 -  \item {\tt if_P} theorem, 12
   4.352 -  \item {\tt iff} theorem, 9, 10
   4.353 -  \item {\tt iff_def} theorem, 61
   4.354 -  \item {\tt iffCE} theorem, 12, 16
   4.355 -  \item {\tt iffD1} theorem, 11
   4.356 -  \item {\tt iffD2} theorem, 11
   4.357 -  \item {\tt iffE} theorem, 11
   4.358 -  \item {\tt iffI} theorem, 11
   4.359 -  \item {\tt iffL} theorem, 62, 69
   4.360 -  \item {\tt iffR} theorem, 62
   4.361 +  \item {\textit {i}} type, 18
   4.362 +  \item {\tt iff_def} theorem, 8
   4.363 +  \item {\tt iffL} theorem, 9, 16
   4.364 +  \item {\tt iffR} theorem, 9
   4.365    \item {\tt ILL} theory, 1
   4.366 -  \item {\tt image_def} theorem, 17
   4.367 -  \item {\tt imageE} theorem, 19
   4.368 -  \item {\tt imageI} theorem, 19
   4.369 -  \item {\tt impCE} theorem, 12
   4.370 -  \item {\tt impE} theorem, 11
   4.371 -  \item {\tt impI} theorem, 9
   4.372 -  \item {\tt impL} theorem, 61
   4.373 -  \item {\tt impR} theorem, 61
   4.374 -  \item {\tt in} symbol, 7
   4.375 -  \item {\textit {ind}} type, 24
   4.376 -  \item {\tt induct_tac}, 26, \bold{40}
   4.377 -  \item {\tt inductive}, 51--53
   4.378 -  \item {\tt inj} constant, 21
   4.379 -  \item {\tt inj_def} theorem, 21
   4.380 -  \item {\tt inj_Inl} theorem, 25
   4.381 -  \item {\tt inj_Inr} theorem, 25
   4.382 -  \item {\tt inj_on} constant, 21
   4.383 -  \item {\tt inj_on_def} theorem, 21
   4.384 -  \item {\tt inj_Suc} theorem, 25
   4.385 -  \item {\tt Inl} constant, 25
   4.386 -  \item {\tt inl} constant, 72, 77, 87
   4.387 -  \item {\tt Inl_not_Inr} theorem, 25
   4.388 -  \item {\tt Inr} constant, 25
   4.389 -  \item {\tt inr} constant, 72, 77
   4.390 -  \item {\tt insert} constant, 14
   4.391 -  \item {\tt insert_def} theorem, 17
   4.392 -  \item {\tt insertE} theorem, 19
   4.393 -  \item {\tt insertI1} theorem, 19
   4.394 -  \item {\tt insertI2} theorem, 19
   4.395 -  \item {\tt INT} symbol, 14--16
   4.396 -  \item {\tt Int} symbol, 14
   4.397 -  \item {\tt Int_absorb} theorem, 20
   4.398 -  \item {\tt Int_assoc} theorem, 20
   4.399 -  \item {\tt Int_commute} theorem, 20
   4.400 -  \item {\tt INT_D} theorem, 19
   4.401 -  \item {\tt Int_def} theorem, 17
   4.402 -  \item {\tt INT_E} theorem, 19
   4.403 -  \item {\tt Int_greatest} theorem, 20
   4.404 -  \item {\tt INT_I} theorem, 19
   4.405 -  \item {\tt Int_Inter_image} theorem, 20
   4.406 -  \item {\tt Int_lower1} theorem, 20
   4.407 -  \item {\tt Int_lower2} theorem, 20
   4.408 -  \item {\tt Int_Un_distrib} theorem, 20
   4.409 -  \item {\tt Int_Union} theorem, 20
   4.410 -  \item {\tt IntD1} theorem, 19
   4.411 -  \item {\tt IntD2} theorem, 19
   4.412 -  \item {\tt IntE} theorem, 19
   4.413 -  \item {\tt INTER} constant, 14
   4.414 -  \item {\tt Inter} constant, 14
   4.415 -  \item {\tt INTER1} constant, 14
   4.416 -  \item {\tt INTER1_def} theorem, 17
   4.417 -  \item {\tt INTER_def} theorem, 17
   4.418 -  \item {\tt Inter_def} theorem, 17
   4.419 -  \item {\tt Inter_greatest} theorem, 20
   4.420 -  \item {\tt Inter_lower} theorem, 20
   4.421 -  \item {\tt Inter_Un_distrib} theorem, 20
   4.422 -  \item {\tt InterD} theorem, 19
   4.423 -  \item {\tt InterE} theorem, 19
   4.424 -  \item {\tt InterI} theorem, 19
   4.425 -  \item {\tt IntI} theorem, 19
   4.426 -  \item {\tt intr_rls}, \bold{79}
   4.427 -  \item {\tt intr_tac}, \bold{80}, 89, 90
   4.428 -  \item {\tt intrL_rls}, \bold{79}
   4.429 -  \item {\tt inv} constant, 21
   4.430 -  \item {\tt inv_def} theorem, 21
   4.431 +  \item {\tt impL} theorem, 8
   4.432 +  \item {\tt impR} theorem, 8
   4.433 +  \item {\tt inl} constant, 19, 24, 34
   4.434 +  \item {\tt inr} constant, 19, 24
   4.435 +  \item {\tt intr_rls}, \bold{26}
   4.436 +  \item {\tt intr_tac}, \bold{27}, 36, 37
   4.437 +  \item {\tt intrL_rls}, \bold{26}
   4.438  
   4.439    \indexspace
   4.440  
   4.441 -  \item {\tt lam} symbol, 74
   4.442 -  \item {\tt lambda} constant, 72, 74
   4.443 +  \item {\tt lam} symbol, 21
   4.444 +  \item {\tt lambda} constant, 19, 21
   4.445    \item $\lambda$-abstractions
   4.446 -    \subitem in \CTT, 74
   4.447 -  \item {\tt last} constant, 28
   4.448 +    \subitem in \CTT, 21
   4.449    \item {\tt LCF} theory, 1
   4.450 -  \item {\tt LEAST} constant, 7, 8, 26
   4.451 -  \item {\tt Least} constant, 6
   4.452 -  \item {\tt Least_def} theorem, 10
   4.453 -  \item {\tt length} constant, 28
   4.454 -  \item {\tt less_induct} theorem, 27
   4.455 -  \item {\tt Let} constant, 6, 9
   4.456 -  \item {\tt let} symbol, 7, 9
   4.457 -  \item {\tt Let_def} theorem, 9, 10
   4.458 -  \item {\tt LFilter} theory, 55
   4.459 -  \item {\tt List} theory, 27, 28
   4.460 -  \item {\textit{list}} type, 27
   4.461 -  \item {\tt LK} theory, 1, 58, 62
   4.462 -  \item {\tt LK_dup_pack}, \bold{65}, 66
   4.463 -  \item {\tt LK_pack}, \bold{65}
   4.464 -  \item {\tt LList} theory, 54
   4.465 +  \item {\tt LK} theory, 1, 5, 9
   4.466 +  \item {\tt LK_dup_pack}, \bold{12}, 13
   4.467 +  \item {\tt LK_pack}, \bold{12}
   4.468  
   4.469    \indexspace
   4.470  
   4.471 -  \item {\tt map} constant, 28
   4.472 -  \item {\tt max} constant, 7, 26
   4.473 -  \item {\tt mem} symbol, 28
   4.474 -  \item {\tt mem_Collect_eq} theorem, 16, 17
   4.475 -  \item {\tt min} constant, 7, 26
   4.476 -  \item {\tt minus} class, 7
   4.477 -  \item {\tt mod} symbol, 25, 83
   4.478 -  \item {\tt mod_def} theorem, 83
   4.479 -  \item {\tt mod_geq} theorem, 26
   4.480 -  \item {\tt mod_less} theorem, 26
   4.481 +  \item {\tt mod} symbol, 30
   4.482 +  \item {\tt mod_def} theorem, 30
   4.483    \item {\tt Modal} theory, 1
   4.484 -  \item {\tt mono} constant, 7
   4.485 -  \item {\tt mp} theorem, 9
   4.486 -  \item {\tt mp_tac}, \bold{81}
   4.487 -  \item {\tt mult_assoc} theorem, 83
   4.488 -  \item {\tt mult_commute} theorem, 83
   4.489 -  \item {\tt mult_def} theorem, 83
   4.490 -  \item {\tt mult_typing} theorem, 83
   4.491 -  \item {\tt multC0} theorem, 83
   4.492 -  \item {\tt multC_succ} theorem, 83
   4.493 -  \item {\tt mutual_induct_tac}, \bold{40}
   4.494 +  \item {\tt mp_tac}, \bold{28}
   4.495 +  \item {\tt mult_assoc} theorem, 30
   4.496 +  \item {\tt mult_commute} theorem, 30
   4.497 +  \item {\tt mult_def} theorem, 30
   4.498 +  \item {\tt mult_typing} theorem, 30
   4.499 +  \item {\tt multC0} theorem, 30
   4.500 +  \item {\tt multC_succ} theorem, 30
   4.501  
   4.502    \indexspace
   4.503  
   4.504 -  \item {\tt N} constant, 72
   4.505 -  \item {\tt n_not_Suc_n} theorem, 25
   4.506 -  \item {\tt Nat} theory, 26
   4.507 -  \item {\textit {nat}} type, 25, 26
   4.508 -  \item {\textit{nat}} type, 24--27
   4.509 -  \item {\tt nat_induct} theorem, 25
   4.510 -  \item {\tt nat_rec} constant, 26
   4.511 -  \item {\tt NatDef} theory, 24
   4.512 -  \item {\tt NC0} theorem, 76
   4.513 -  \item {\tt NC_succ} theorem, 76
   4.514 -  \item {\tt NE} theorem, 75, 76, 84
   4.515 -  \item {\tt NEL} theorem, 76
   4.516 -  \item {\tt NF} theorem, 76, 85
   4.517 -  \item {\tt NI0} theorem, 76
   4.518 -  \item {\tt NI_succ} theorem, 76
   4.519 -  \item {\tt NI_succL} theorem, 76
   4.520 -  \item {\tt NIO} theorem, 84
   4.521 -  \item {\tt Not} constant, 6, 59
   4.522 -  \item {\tt not_def} theorem, 10
   4.523 -  \item {\tt not_sym} theorem, 11
   4.524 -  \item {\tt notE} theorem, 11
   4.525 -  \item {\tt notI} theorem, 11
   4.526 -  \item {\tt notL} theorem, 61
   4.527 -  \item {\tt notnotD} theorem, 12
   4.528 -  \item {\tt notR} theorem, 61
   4.529 -  \item {\tt null} constant, 28
   4.530 +  \item {\tt N} constant, 19
   4.531 +  \item {\tt NC0} theorem, 23
   4.532 +  \item {\tt NC_succ} theorem, 23
   4.533 +  \item {\tt NE} theorem, 22, 23, 31
   4.534 +  \item {\tt NEL} theorem, 23
   4.535 +  \item {\tt NF} theorem, 23, 32
   4.536 +  \item {\tt NI0} theorem, 23
   4.537 +  \item {\tt NI_succ} theorem, 23
   4.538 +  \item {\tt NI_succL} theorem, 23
   4.539 +  \item {\tt NIO} theorem, 31
   4.540 +  \item {\tt Not} constant, 6
   4.541 +  \item {\tt notL} theorem, 8
   4.542 +  \item {\tt notR} theorem, 8
   4.543  
   4.544    \indexspace
   4.545  
   4.546 -  \item {\textit {o}} type, 58
   4.547 -  \item {\tt o} symbol, 6, 17
   4.548 -  \item {\tt o_def} theorem, 10
   4.549 -  \item {\tt of} symbol, 9
   4.550 -  \item {\tt or_def} theorem, 10
   4.551 -  \item {\tt Ord} theory, 7
   4.552 -  \item {\tt ord} class, 7, 8, 26
   4.553 -  \item {\tt order} class, 7, 26
   4.554 +  \item {\textit {o}} type, 5
   4.555  
   4.556    \indexspace
   4.557  
   4.558 -  \item {\tt pack} ML type, 64
   4.559 -  \item {\tt Pair} constant, 23
   4.560 -  \item {\tt pair} constant, 72
   4.561 -  \item {\tt Pair_eq} theorem, 23
   4.562 -  \item {\tt Pair_inject} theorem, 23
   4.563 -  \item {\tt PairE} theorem, 23
   4.564 -  \item {\tt pc_tac}, \bold{66}, \bold{82}, 88, 89
   4.565 -  \item {\tt plus} class, 7
   4.566 -  \item {\tt PlusC_inl} theorem, 78
   4.567 -  \item {\tt PlusC_inr} theorem, 78
   4.568 -  \item {\tt PlusE} theorem, 78, 82, 86
   4.569 -  \item {\tt PlusEL} theorem, 78
   4.570 -  \item {\tt PlusF} theorem, 78
   4.571 -  \item {\tt PlusFL} theorem, 78
   4.572 -  \item {\tt PlusI_inl} theorem, 78, 87
   4.573 -  \item {\tt PlusI_inlL} theorem, 78
   4.574 -  \item {\tt PlusI_inr} theorem, 78
   4.575 -  \item {\tt PlusI_inrL} theorem, 78
   4.576 -  \item {\tt Pow} constant, 14
   4.577 -  \item {\tt Pow_def} theorem, 17
   4.578 -  \item {\tt PowD} theorem, 19
   4.579 -  \item {\tt PowI} theorem, 19
   4.580 -  \item {\tt primrec}, 45--48
   4.581 -  \item {\tt primrec} symbol, 26
   4.582 +  \item {\tt pack} ML type, 11
   4.583 +  \item {\tt pair} constant, 19
   4.584 +  \item {\tt pc_tac}, \bold{13}, \bold{29}, 35, 36
   4.585 +  \item {\tt PlusC_inl} theorem, 25
   4.586 +  \item {\tt PlusC_inr} theorem, 25
   4.587 +  \item {\tt PlusE} theorem, 25, 29, 33
   4.588 +  \item {\tt PlusEL} theorem, 25
   4.589 +  \item {\tt PlusF} theorem, 25
   4.590 +  \item {\tt PlusFL} theorem, 25
   4.591 +  \item {\tt PlusI_inl} theorem, 25, 34
   4.592 +  \item {\tt PlusI_inlL} theorem, 25
   4.593 +  \item {\tt PlusI_inr} theorem, 25
   4.594 +  \item {\tt PlusI_inrL} theorem, 25
   4.595    \item priorities, 3
   4.596 -  \item {\tt PROD} symbol, 73, 74
   4.597 -  \item {\tt Prod} constant, 72
   4.598 -  \item {\tt Prod} theory, 23
   4.599 -  \item {\tt ProdC} theorem, 76, 92
   4.600 -  \item {\tt ProdC2} theorem, 76
   4.601 -  \item {\tt ProdE} theorem, 76, 89, 91, 93
   4.602 -  \item {\tt ProdEL} theorem, 76
   4.603 -  \item {\tt ProdF} theorem, 76
   4.604 -  \item {\tt ProdFL} theorem, 76
   4.605 -  \item {\tt ProdI} theorem, 76, 82, 84
   4.606 -  \item {\tt ProdIL} theorem, 76
   4.607 -  \item {\tt prop_cs}, \bold{22}
   4.608 -  \item {\tt prop_pack}, \bold{65}
   4.609 +  \item {\tt PROD} symbol, 20, 21
   4.610 +  \item {\tt Prod} constant, 19
   4.611 +  \item {\tt ProdC} theorem, 23, 39
   4.612 +  \item {\tt ProdC2} theorem, 23
   4.613 +  \item {\tt ProdE} theorem, 23, 36, 38, 40
   4.614 +  \item {\tt ProdEL} theorem, 23
   4.615 +  \item {\tt ProdF} theorem, 23
   4.616 +  \item {\tt ProdFL} theorem, 23
   4.617 +  \item {\tt ProdI} theorem, 23, 29, 31
   4.618 +  \item {\tt ProdIL} theorem, 23
   4.619 +  \item {\tt prop_pack}, \bold{12}
   4.620  
   4.621    \indexspace
   4.622  
   4.623 -  \item {\tt qed_spec_mp}, 43
   4.624 +  \item {\tt rec} constant, 19, 22
   4.625 +  \item {\tt red_if_equal} theorem, 22
   4.626 +  \item {\tt Reduce} constant, 19, 22, 28
   4.627 +  \item {\tt refl} theorem, 8
   4.628 +  \item {\tt refl_elem} theorem, 22, 26
   4.629 +  \item {\tt refl_red} theorem, 22
   4.630 +  \item {\tt refl_type} theorem, 22, 26
   4.631 +  \item {\tt REPEAT_FIRST}, 27
   4.632 +  \item {\tt repeat_goal_tac}, \bold{13}
   4.633 +  \item {\tt replace_type} theorem, 26, 38
   4.634 +  \item {\tt reresolve_tac}, \bold{13}
   4.635 +  \item {\tt rew_tac}, \bold{28}
   4.636 +  \item {\tt RL}, 33
   4.637 +  \item {\tt RS}, 38, 40
   4.638  
   4.639    \indexspace
   4.640  
   4.641 -  \item {\tt range} constant, 14, 56
   4.642 -  \item {\tt range_def} theorem, 17
   4.643 -  \item {\tt rangeE} theorem, 19, 56
   4.644 -  \item {\tt rangeI} theorem, 19
   4.645 -  \item {\tt rec} constant, 72, 75
   4.646 -  \item {\tt recdef}, 48--51
   4.647 -  \item {\tt record}, 33
   4.648 -  \item {\tt record_split_tac}, 35, 36
   4.649 -  \item recursion
   4.650 -    \subitem general, 48--51
   4.651 -    \subitem primitive, 45--48
   4.652 -  \item recursive functions, \see{recursion}{44}
   4.653 -  \item {\tt red_if_equal} theorem, 75
   4.654 -  \item {\tt Reduce} constant, 72, 75, 81
   4.655 -  \item {\tt refl} theorem, 9, 61
   4.656 -  \item {\tt refl_elem} theorem, 75, 79
   4.657 -  \item {\tt refl_red} theorem, 75
   4.658 -  \item {\tt refl_type} theorem, 75, 79
   4.659 -  \item {\tt REPEAT_FIRST}, 80
   4.660 -  \item {\tt repeat_goal_tac}, \bold{66}
   4.661 -  \item {\tt replace_type} theorem, 79, 91
   4.662 -  \item {\tt reresolve_tac}, \bold{66}
   4.663 -  \item {\tt res_inst_tac}, 8
   4.664 -  \item {\tt rev} constant, 28
   4.665 -  \item {\tt rew_tac}, \bold{81}
   4.666 -  \item {\tt RL}, 86
   4.667 -  \item {\tt RS}, 91, 93
   4.668 +  \item {\tt safe_goal_tac}, \bold{13}
   4.669 +  \item {\tt safe_tac}, \bold{29}
   4.670 +  \item {\tt safestep_tac}, \bold{29}
   4.671 +  \item {\tt Seqof} constant, 6
   4.672 +  \item sequent calculus, 5--17
   4.673 +  \item {\tt snd} constant, 19, 24
   4.674 +  \item {\tt snd_def} theorem, 24
   4.675 +  \item {\tt sobj} type, 9
   4.676 +  \item {\tt split} constant, 19, 33
   4.677 +  \item {\tt step_tac}, \bold{13}, \bold{29}
   4.678 +  \item {\tt subst_elem} theorem, 22
   4.679 +  \item {\tt subst_elemL} theorem, 22
   4.680 +  \item {\tt subst_eqtyparg} theorem, 26, 38
   4.681 +  \item {\tt subst_prodE} theorem, 24, 26
   4.682 +  \item {\tt subst_type} theorem, 22
   4.683 +  \item {\tt subst_typeL} theorem, 22
   4.684 +  \item {\tt succ} constant, 19
   4.685 +  \item {\tt SUM} symbol, 20, 21
   4.686 +  \item {\tt Sum} constant, 19
   4.687 +  \item {\tt SumC} theorem, 24
   4.688 +  \item {\tt SumE} theorem, 24, 29, 33
   4.689 +  \item {\tt SumE_fst} theorem, 24, 26, 38, 39
   4.690 +  \item {\tt SumE_snd} theorem, 24, 26, 40
   4.691 +  \item {\tt SumEL} theorem, 24
   4.692 +  \item {\tt SumF} theorem, 24
   4.693 +  \item {\tt SumFL} theorem, 24
   4.694 +  \item {\tt SumI} theorem, 24, 34
   4.695 +  \item {\tt SumIL} theorem, 24
   4.696 +  \item {\tt SumIL2} theorem, 26
   4.697 +  \item {\tt sym} theorem, 8
   4.698 +  \item {\tt sym_elem} theorem, 22
   4.699 +  \item {\tt sym_type} theorem, 22
   4.700 +  \item {\tt symL} theorem, 9
   4.701  
   4.702    \indexspace
   4.703  
   4.704 -  \item {\tt safe_goal_tac}, \bold{66}
   4.705 -  \item {\tt safe_tac}, \bold{82}
   4.706 -  \item {\tt safestep_tac}, \bold{82}
   4.707 -  \item search
   4.708 -    \subitem best-first, 57
   4.709 -  \item {\tt select_equality} theorem, 10, 12
   4.710 -  \item {\tt selectI} theorem, 9, 10
   4.711 -  \item {\tt Seqof} constant, 59
   4.712 -  \item sequent calculus, 58--70
   4.713 -  \item {\tt Set} theory, 13, 16
   4.714 -  \item {\tt set} constant, 28
   4.715 -  \item {\tt set} type, 13
   4.716 -  \item {\tt set_diff_def} theorem, 17
   4.717 -  \item {\tt show_sorts}, 8
   4.718 -  \item {\tt show_types}, 8
   4.719 -  \item {\tt Sigma} constant, 23
   4.720 -  \item {\tt Sigma_def} theorem, 23
   4.721 -  \item {\tt SigmaE} theorem, 23
   4.722 -  \item {\tt SigmaI} theorem, 23
   4.723 -  \item simplification
   4.724 -    \subitem of conjunctions, 21
   4.725 -  \item {\tt size} constant, 40
   4.726 -  \item {\tt snd} constant, 23, 72, 77
   4.727 -  \item {\tt snd_conv} theorem, 23
   4.728 -  \item {\tt snd_def} theorem, 77
   4.729 -  \item {\tt sobj} type, 62
   4.730 -  \item {\tt spec} theorem, 12
   4.731 -  \item {\tt split} constant, 23, 72, 86
   4.732 -  \item {\tt split} theorem, 23
   4.733 -  \item {\tt split_all_tac}, \bold{24}
   4.734 -  \item {\tt split_if} theorem, 12, 22
   4.735 -  \item {\tt split_list_case} theorem, 27
   4.736 -  \item {\tt split_split} theorem, 23
   4.737 -  \item {\tt split_sum_case} theorem, 25
   4.738 -  \item {\tt ssubst} theorem, 11, 13
   4.739 -  \item {\tt stac}, \bold{21}
   4.740 -  \item {\tt step_tac}, \bold{66}, \bold{82}
   4.741 -  \item {\tt strip_tac}, \bold{13}
   4.742 -  \item {\tt subset_def} theorem, 17
   4.743 -  \item {\tt subset_refl} theorem, 18
   4.744 -  \item {\tt subset_trans} theorem, 18
   4.745 -  \item {\tt subsetCE} theorem, 16, 18
   4.746 -  \item {\tt subsetD} theorem, 16, 18
   4.747 -  \item {\tt subsetI} theorem, 18
   4.748 -  \item {\tt subst} theorem, 9
   4.749 -  \item {\tt subst_elem} theorem, 75
   4.750 -  \item {\tt subst_elemL} theorem, 75
   4.751 -  \item {\tt subst_eqtyparg} theorem, 79, 91
   4.752 -  \item {\tt subst_prodE} theorem, 77, 79
   4.753 -  \item {\tt subst_type} theorem, 75
   4.754 -  \item {\tt subst_typeL} theorem, 75
   4.755 -  \item {\tt Suc} constant, 25
   4.756 -  \item {\tt Suc_not_Zero} theorem, 25
   4.757 -  \item {\tt succ} constant, 72
   4.758 -  \item {\tt SUM} symbol, 73, 74
   4.759 -  \item {\tt Sum} constant, 72
   4.760 -  \item {\tt Sum} theory, 24
   4.761 -  \item {\tt sum_case} constant, 25
   4.762 -  \item {\tt sum_case_Inl} theorem, 25
   4.763 -  \item {\tt sum_case_Inr} theorem, 25
   4.764 -  \item {\tt SumC} theorem, 77
   4.765 -  \item {\tt SumE} theorem, 77, 82, 86
   4.766 -  \item {\tt sumE} theorem, 25
   4.767 -  \item {\tt SumE_fst} theorem, 77, 79, 91, 92
   4.768 -  \item {\tt SumE_snd} theorem, 77, 79, 93
   4.769 -  \item {\tt SumEL} theorem, 77
   4.770 -  \item {\tt SumF} theorem, 77
   4.771 -  \item {\tt SumFL} theorem, 77
   4.772 -  \item {\tt SumI} theorem, 77, 87
   4.773 -  \item {\tt SumIL} theorem, 77
   4.774 -  \item {\tt SumIL2} theorem, 79
   4.775 -  \item {\tt surj} constant, 17, 21
   4.776 -  \item {\tt surj_def} theorem, 21
   4.777 -  \item {\tt surjective_pairing} theorem, 23
   4.778 -  \item {\tt surjective_sum} theorem, 25
   4.779 -  \item {\tt swap} theorem, 12
   4.780 -  \item {\tt swap_res_tac}, 57
   4.781 -  \item {\tt sym} theorem, 11, 61
   4.782 -  \item {\tt sym_elem} theorem, 75
   4.783 -  \item {\tt sym_type} theorem, 75
   4.784 -  \item {\tt symL} theorem, 62
   4.785 +  \item {\tt T} constant, 19
   4.786 +  \item {\textit {t}} type, 18
   4.787 +  \item {\tt TC} theorem, 25
   4.788 +  \item {\tt TE} theorem, 25
   4.789 +  \item {\tt TEL} theorem, 25
   4.790 +  \item {\tt term} class, 5
   4.791 +  \item {\tt test_assume_tac}, \bold{27}
   4.792 +  \item {\tt TF} theorem, 25
   4.793 +  \item {\tt THE} symbol, 6
   4.794 +  \item {\tt The} constant, 6
   4.795 +  \item {\tt The} theorem, 8
   4.796 +  \item {\tt thinL} theorem, 8
   4.797 +  \item {\tt thinR} theorem, 8
   4.798 +  \item {\tt TI} theorem, 25
   4.799 +  \item {\tt trans} theorem, 8
   4.800 +  \item {\tt trans_elem} theorem, 22
   4.801 +  \item {\tt trans_red} theorem, 22
   4.802 +  \item {\tt trans_type} theorem, 22
   4.803 +  \item {\tt True} constant, 6
   4.804 +  \item {\tt True_def} theorem, 8
   4.805 +  \item {\tt Trueprop} constant, 6
   4.806 +  \item {\tt TrueR} theorem, 9
   4.807 +  \item {\tt tt} constant, 19
   4.808 +  \item {\tt Type} constant, 19
   4.809 +  \item {\tt typechk_tac}, \bold{27}, 32, 35, 39, 40
   4.810  
   4.811    \indexspace
   4.812  
   4.813 -  \item {\tt T} constant, 72
   4.814 -  \item {\textit {t}} type, 71
   4.815 -  \item {\tt take} constant, 28
   4.816 -  \item {\tt takeWhile} constant, 28
   4.817 -  \item {\tt TC} theorem, 78
   4.818 -  \item {\tt TE} theorem, 78
   4.819 -  \item {\tt TEL} theorem, 78
   4.820 -  \item {\tt term} class, 7, 58
   4.821 -  \item {\tt test_assume_tac}, \bold{80}
   4.822 -  \item {\tt TF} theorem, 78
   4.823 -  \item {\tt THE} symbol, 59
   4.824 -  \item {\tt The} constant, 59
   4.825 -  \item {\tt The} theorem, 61
   4.826 -  \item {\tt thinL} theorem, 61
   4.827 -  \item {\tt thinR} theorem, 61
   4.828 -  \item {\tt TI} theorem, 78
   4.829 -  \item {\tt times} class, 7
   4.830 -  \item {\tt tl} constant, 28
   4.831 -  \item tracing
   4.832 -    \subitem of unification, 8
   4.833 -  \item {\tt trans} theorem, 11, 61
   4.834 -  \item {\tt trans_elem} theorem, 75
   4.835 -  \item {\tt trans_red} theorem, 75
   4.836 -  \item {\tt trans_type} theorem, 75
   4.837 -  \item {\tt True} constant, 6, 59
   4.838 -  \item {\tt True_def} theorem, 10, 61
   4.839 -  \item {\tt True_or_False} theorem, 9, 10
   4.840 -  \item {\tt TrueI} theorem, 11
   4.841 -  \item {\tt Trueprop} constant, 6, 59
   4.842 -  \item {\tt TrueR} theorem, 62
   4.843 -  \item {\tt tt} constant, 72
   4.844 -  \item {\tt Type} constant, 72
   4.845 -  \item type definition, \bold{30}
   4.846 -  \item {\tt typechk_tac}, \bold{80}, 85, 88, 92, 93
   4.847 -  \item {\tt typedef}, 27
   4.848 +  \item {\tt when} constant, 19, 24, 33
   4.849  
   4.850    \indexspace
   4.851  
   4.852 -  \item {\tt UN} symbol, 14--16
   4.853 -  \item {\tt Un} symbol, 14
   4.854 -  \item {\tt Un1} theorem, 16
   4.855 -  \item {\tt Un2} theorem, 16
   4.856 -  \item {\tt Un_absorb} theorem, 20
   4.857 -  \item {\tt Un_assoc} theorem, 20
   4.858 -  \item {\tt Un_commute} theorem, 20
   4.859 -  \item {\tt Un_def} theorem, 17
   4.860 -  \item {\tt UN_E} theorem, 19
   4.861 -  \item {\tt UN_I} theorem, 19
   4.862 -  \item {\tt Un_Int_distrib} theorem, 20
   4.863 -  \item {\tt Un_Inter} theorem, 20
   4.864 -  \item {\tt Un_least} theorem, 20
   4.865 -  \item {\tt Un_Union_image} theorem, 20
   4.866 -  \item {\tt Un_upper1} theorem, 20
   4.867 -  \item {\tt Un_upper2} theorem, 20
   4.868 -  \item {\tt UnCI} theorem, 16, 19
   4.869 -  \item {\tt UnE} theorem, 19
   4.870 -  \item {\tt UnI1} theorem, 19
   4.871 -  \item {\tt UnI2} theorem, 19
   4.872 -  \item unification
   4.873 -    \subitem incompleteness of, 8
   4.874 -  \item {\tt Unify.trace_types}, 8
   4.875 -  \item {\tt UNION} constant, 14
   4.876 -  \item {\tt Union} constant, 14
   4.877 -  \item {\tt UNION1} constant, 14
   4.878 -  \item {\tt UNION1_def} theorem, 17
   4.879 -  \item {\tt UNION_def} theorem, 17
   4.880 -  \item {\tt Union_def} theorem, 17
   4.881 -  \item {\tt Union_least} theorem, 20
   4.882 -  \item {\tt Union_Un_distrib} theorem, 20
   4.883 -  \item {\tt Union_upper} theorem, 20
   4.884 -  \item {\tt UnionE} theorem, 19
   4.885 -  \item {\tt UnionI} theorem, 19
   4.886 -  \item {\tt unit_eq} theorem, 24
   4.887 -
   4.888 -  \indexspace
   4.889 -
   4.890 -  \item {\tt when} constant, 72, 77, 86
   4.891 -
   4.892 -  \indexspace
   4.893 -
   4.894 -  \item {\tt zero_ne_succ} theorem, 75, 76
   4.895 -  \item {\tt ZF} theory, 5
   4.896 +  \item {\tt zero_ne_succ} theorem, 22, 23
   4.897  
   4.898  \end{theindex}
     5.1 --- a/doc-src/Logics/logics.tex	Tue May 04 18:04:45 1999 +0200
     5.2 +++ b/doc-src/Logics/logics.tex	Tue May 04 18:05:34 1999 +0200
     5.3 @@ -21,15 +21,12 @@
     5.4          Computer Laboratory \\ University of Cambridge \\
     5.5          \texttt{lcp@cl.cam.ac.uk}\\[3ex] 
     5.6          With Contributions by Tobias Nipkow and Markus Wenzel%
     5.7 -\thanks{Tobias Nipkow revised and extended
     5.8 -    the chapter on \HOL.  Markus Wenzel made numerous improvements.
     5.9 -    Philippe de Groote wrote the
    5.10 -    first version of the logic~\LK{}.  Tobias
    5.11 -    Nipkow developed~\HOL{}, \LCF{} and~\Cube{}.  Martin Coen
    5.12 -    developed~\Modal{} with assistance from Rajeev Gor\'e.  The research has 
    5.13 -    been funded by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381,
    5.14 -    GR/K77051) and by ESPRIT project 6453: Types.}
    5.15 -}
    5.16 +        \thanks{Markus Wenzel made numerous improvements.  Philippe de Groote
    5.17 +          wrote the first version of the logic~\LK{}.  Tobias Nipkow developed
    5.18 +          \LCF{} and~\Cube{}.  Martin Coen developed~\Modal{} with assistance
    5.19 +          from Rajeev Gor\'e.  The research has been funded by the EPSRC
    5.20 +          (grants GR/G53279, GR/H40570, GR/K57381, GR/K77051) and by ESPRIT
    5.21 +          project 6453: Types.} }
    5.22  
    5.23  \newcommand\subcaption[1]{\par {\centering\normalsize\sc#1\par}\bigskip
    5.24    \hrule\bigskip}
    5.25 @@ -50,13 +47,12 @@
    5.26  \pagenumbering{roman} \tableofcontents \clearfirst
    5.27  \include{preface}
    5.28  \include{syntax}
    5.29 -\include{HOL}
    5.30  \include{LK}
    5.31  %%\include{Modal}
    5.32  \include{CTT}
    5.33  %%\include{Cube}
    5.34  %%\include{LCF}
    5.35  \bibliographystyle{plain}
    5.36 -\bibliography{string,general,atp,theory,funprog,logicprog,isabelle,crossref}
    5.37 +\bibliography{bib,string,general,atp,theory,funprog,logicprog,isabelle,crossref}
    5.38  \input{logics.ind}
    5.39  \end{document}
     6.1 --- a/doc-src/Logics/preface.tex	Tue May 04 18:04:45 1999 +0200
     6.2 +++ b/doc-src/Logics/preface.tex	Tue May 04 18:05:34 1999 +0200
     6.3 @@ -5,10 +5,21 @@
     6.4  starting points for defining new logics.  Each logic is distributed with
     6.5  sample proofs, some of which are described in this document.
     6.6  
     6.7 -The logics \texttt{FOL} (first-order logic) and \texttt{ZF} (axiomatic set
     6.8 -theory) are described in a separate manual~\cite{isabelle-ZF}.  Here are the
     6.9 -others:
    6.10 +\texttt{HOL} is currently the best developed Isabelle object-logic, including
    6.11 +an extensive library of (concrete) mathematics, and various packages for
    6.12 +advanced definitional concepts (like (co-)inductive sets and types,
    6.13 +well-founded recursion etc.). The distribution also includes some large
    6.14 +applications.  See the separate manual \emph{Isabelle's Logics: HOL}.  There
    6.15 +is also a comprehensive tutorial on Isabelle/HOL available.
    6.16  
    6.17 +\texttt{ZF} provides another starting point for applications, with a slightly
    6.18 +less developed library than \texttt{HOL}.  \texttt{ZF}'s definitional packages
    6.19 +are similar to those of \texttt{HOL}. Untyped \texttt{ZF} set theory provides
    6.20 +more advanced constructions for sets than simply-typed \texttt{HOL}.
    6.21 +\texttt{ZF} is built on \texttt{FOL} (first-order logic), both are described
    6.22 +in a separate manual \emph{Isabelle's Logics: FOL and ZF}~\cite{isabelle-ZF}.
    6.23 +
    6.24 +\medskip There are some further logics distributed with Isabelle:
    6.25  \begin{ttdescription}
    6.26  \item[\thydx{CCL}] is Martin Coen's Classical Computational Logic,
    6.27    which is the basis of a preliminary method for deriving programs from
    6.28 @@ -17,14 +28,9 @@
    6.29  \item[\thydx{LCF}] is a version of Scott's Logic for Computable
    6.30    Functions, which is also implemented by the~{\sc lcf}
    6.31    system~\cite{paulson87}.  It is built upon classical~\FOL{}.
    6.32 -
    6.33 -\item[\thydx{HOL}] is the higher-order logic of Church~\cite{church40},
    6.34 -which is also implemented by Gordon's~{\sc hol} system~\cite{mgordon-hol}.
    6.35 -This object-logic should not be confused with Isabelle's meta-logic, which is
    6.36 -also a form of higher-order logic.
    6.37 -
    6.38 -\item[\thydx{HOLCF}] is a version of {\sc lcf}, defined as an
    6.39 -  extension of \texttt{HOL}\@.
    6.40 +  
    6.41 +\item[\thydx{HOLCF}] is a version of {\sc lcf}, defined as an extension of
    6.42 +  \texttt{HOL}\@. %FIXME See \cite{MNOS98} for more details on \texttt{HOLCF}.
    6.43   
    6.44  \item[\thydx{CTT}] is a version of Martin-L\"of's Constructive Type
    6.45  Theory~\cite{nordstrom90}, with extensional equality.  Universes are not
    6.46 @@ -44,19 +50,20 @@
    6.47  \item[\thydx{ILL}] implements intuitionistic linear logic.
    6.48  \end{ttdescription}
    6.49  
    6.50 -The logics \texttt{CCL}, \texttt{LCF}, \texttt{HOLCF}, \texttt{Modal}, \texttt{ILL} and {\tt
    6.51 -  Cube} are undocumented.  All object-logics' sources are
    6.52 -distributed with Isabelle (see the directory \texttt{src}).  They are
    6.53 -also available for browsing on the WWW at
    6.54 +The logics \texttt{CCL}, \texttt{LCF}, \texttt{Modal}, \texttt{ILL} and {\tt
    6.55 +  Cube} are undocumented.  All object-logics' sources are distributed with
    6.56 +Isabelle (see the directory \texttt{src}).  They are also available for
    6.57 +browsing on the WWW at
    6.58  \begin{ttbox}
    6.59  http://www.cl.cam.ac.uk/Research/HVG/Isabelle/library/
    6.60  http://isabelle.in.tum.de/library/
    6.61  \end{ttbox}
    6.62  Note that this is not necessarily consistent with your local sources!
    6.63  
    6.64 -\medskip Do not read this manual before reading \emph{Introduction to
    6.65 -  Isabelle} and performing some Isabelle proofs.  Consult the {\em Reference
    6.66 -  Manual} for more information on tactics, packages, etc.
    6.67 +\medskip Do not read the \emph{Isabelle's Logics} manuals before reading
    6.68 +\emph{Isabelle/HOL --- The Tutorial} or \emph{Introduction to Isabelle}, and
    6.69 +performing some Isabelle proofs.  Consult the {\em Reference Manual} for more
    6.70 +information on tactics, packages, etc.
    6.71  
    6.72  
    6.73  %%% Local Variables: