refactored reference operations
authorhaftmann
Tue, 06 Jul 2010 09:21:15 +0200
changeset 377226d28a2aea936
parent 37721 6607ccf77946
child 37723 17b05b104390
refactored reference operations
src/HOL/Imperative_HOL/Ref.thy
src/HOL/Imperative_HOL/Relational.thy
src/HOL/Imperative_HOL/ex/Linked_Lists.thy
     1.1 --- a/src/HOL/Imperative_HOL/Ref.thy	Tue Jul 06 09:21:13 2010 +0200
     1.2 +++ b/src/HOL/Imperative_HOL/Ref.thy	Tue Jul 06 09:21:15 2010 +0200
     1.3 @@ -16,185 +16,175 @@
     1.4  
     1.5  subsection {* Primitive layer *}
     1.6  
     1.7 -definition
     1.8 -  ref_present :: "'a\<Colon>heap ref \<Rightarrow> heap \<Rightarrow> bool" where
     1.9 -  "ref_present r h \<longleftrightarrow> addr_of_ref r < lim h"
    1.10 +definition present :: "heap \<Rightarrow> 'a\<Colon>heap ref \<Rightarrow> bool" where
    1.11 +  "present h r \<longleftrightarrow> addr_of_ref r < lim h"
    1.12  
    1.13 -definition
    1.14 -  get_ref :: "'a\<Colon>heap ref \<Rightarrow> heap \<Rightarrow> 'a" where
    1.15 -  "get_ref r h = from_nat (refs h (TYPEREP('a)) (addr_of_ref r))"
    1.16 +definition get :: "heap \<Rightarrow> 'a\<Colon>heap ref \<Rightarrow> 'a" where
    1.17 +  "get h = from_nat \<circ> refs h TYPEREP('a) \<circ> addr_of_ref"
    1.18  
    1.19 -definition
    1.20 -  set_ref :: "'a\<Colon>heap ref \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
    1.21 -  "set_ref r x = 
    1.22 -  refs_update (\<lambda>h. h(TYPEREP('a) := ((h (TYPEREP('a))) (addr_of_ref r:=to_nat x))))"
    1.23 +definition set :: "'a\<Colon>heap ref \<Rightarrow> 'a \<Rightarrow> heap \<Rightarrow> heap" where
    1.24 +  "set r x = refs_update
    1.25 +    (\<lambda>h. h(TYPEREP('a) := ((h (TYPEREP('a))) (addr_of_ref r := to_nat x))))"
    1.26  
    1.27 -definition ref :: "'a \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap ref \<times> heap" where
    1.28 -  "ref x h = (let
    1.29 +definition alloc :: "'a \<Rightarrow> heap \<Rightarrow> 'a\<Colon>heap ref \<times> heap" where
    1.30 +  "alloc x h = (let
    1.31       l = lim h;
    1.32 -     r = Ref l;
    1.33 -     h'' = set_ref r x (h\<lparr>lim := l + 1\<rparr>)
    1.34 -   in (r, h''))"
    1.35 +     r = Ref l
    1.36 +   in (r, set r x (h\<lparr>lim := l + 1\<rparr>)))"
    1.37  
    1.38 -definition noteq_refs :: "('a\<Colon>heap) ref \<Rightarrow> ('b\<Colon>heap) ref \<Rightarrow> bool" (infix "=!=" 70) where
    1.39 +definition noteq :: "'a\<Colon>heap ref \<Rightarrow> 'b\<Colon>heap ref \<Rightarrow> bool" (infix "=!=" 70) where
    1.40    "r =!= s \<longleftrightarrow> TYPEREP('a) \<noteq> TYPEREP('b) \<or> addr_of_ref r \<noteq> addr_of_ref s"
    1.41  
    1.42 -lemma noteq_refs_sym: "r =!= s \<Longrightarrow> s =!= r"
    1.43 -  and unequal_refs [simp]: "r \<noteq> r' \<longleftrightarrow> r =!= r'" -- "same types!"
    1.44 -  unfolding noteq_refs_def by auto
    1.45 +lemma noteq_sym: "r =!= s \<Longrightarrow> s =!= r"
    1.46 +  and unequal [simp]: "r \<noteq> r' \<longleftrightarrow> r =!= r'" -- "same types!"
    1.47 +  by (auto simp add: noteq_def)
    1.48  
    1.49 -lemma noteq_refs_irrefl: "r =!= r \<Longrightarrow> False"
    1.50 -  unfolding noteq_refs_def by auto
    1.51 +lemma noteq_irrefl: "r =!= r \<Longrightarrow> False"
    1.52 +  by (auto simp add: noteq_def)
    1.53  
    1.54 -lemma present_new_ref: "ref_present r h \<Longrightarrow> r =!= fst (ref v h)"
    1.55 -  by (simp add: ref_present_def ref_def Let_def noteq_refs_def)
    1.56 +lemma present_alloc_neq: "present h r \<Longrightarrow> r =!= fst (alloc v h)"
    1.57 +  by (simp add: present_def alloc_def noteq_def Let_def)
    1.58  
    1.59 -lemma next_ref_fresh [simp]:
    1.60 -  assumes "(r, h') = ref x h"
    1.61 -  shows "\<not> ref_present r h"
    1.62 -  using assms by (cases h) (auto simp add: ref_def ref_present_def Let_def)
    1.63 +lemma next_fresh [simp]:
    1.64 +  assumes "(r, h') = alloc x h"
    1.65 +  shows "\<not> present h r"
    1.66 +  using assms by (cases h) (auto simp add: alloc_def present_def Let_def)
    1.67  
    1.68 -lemma next_ref_present [simp]:
    1.69 -  assumes "(r, h') = ref x h"
    1.70 -  shows "ref_present r h'"
    1.71 -  using assms by (cases h) (auto simp add: ref_def set_ref_def ref_present_def Let_def)
    1.72 +lemma next_present [simp]:
    1.73 +  assumes "(r, h') = alloc x h"
    1.74 +  shows "present h' r"
    1.75 +  using assms by (cases h) (auto simp add: alloc_def set_def present_def Let_def)
    1.76  
    1.77 -lemma ref_get_set_eq [simp]: "get_ref r (set_ref r x h) = x"
    1.78 -  by (simp add: get_ref_def set_ref_def)
    1.79 +lemma get_set_eq [simp]:
    1.80 +  "get (set r x h) r = x"
    1.81 +  by (simp add: get_def set_def)
    1.82  
    1.83 -lemma ref_get_set_neq [simp]: "r =!= s \<Longrightarrow> get_ref r (set_ref s x h) = get_ref r h"
    1.84 -  by (simp add: noteq_refs_def get_ref_def set_ref_def)
    1.85 +lemma get_set_neq [simp]:
    1.86 +  "r =!= s \<Longrightarrow> get (set s x h) r = get h r"
    1.87 +  by (simp add: noteq_def get_def set_def)
    1.88  
    1.89 -(* FIXME: We need some infrastructure to infer that locally generated
    1.90 -  new refs (by new_ref(_no_init), new_array(')) are distinct
    1.91 -  from all existing refs.
    1.92 -*)
    1.93 +lemma set_same [simp]:
    1.94 +  "set r x (set r y h) = set r x h"
    1.95 +  by (simp add: set_def)
    1.96  
    1.97 -lemma ref_set_get: "set_ref r (get_ref r h) h = h"
    1.98 -apply (simp add: set_ref_def get_ref_def)
    1.99 -oops
   1.100 +lemma set_set_swap:
   1.101 +  "r =!= r' \<Longrightarrow> set r x (set r' x' h) = set r' x' (set r x h)"
   1.102 +  by (simp add: noteq_def set_def expand_fun_eq)
   1.103  
   1.104 -lemma set_ref_same[simp]:
   1.105 -  "set_ref r x (set_ref r y h) = set_ref r x h"
   1.106 -  by (simp add: set_ref_def)
   1.107 +lemma alloc_set:
   1.108 +  "fst (alloc x (set r x' h)) = fst (alloc x h)"
   1.109 +  by (simp add: alloc_def set_def Let_def)
   1.110  
   1.111 -lemma ref_set_set_swap:
   1.112 -  "r =!= r' \<Longrightarrow> set_ref r x (set_ref r' x' h) = set_ref r' x' (set_ref r x h)"
   1.113 -  by (simp add: Let_def expand_fun_eq noteq_refs_def set_ref_def)
   1.114 +lemma get_alloc [simp]:
   1.115 +  "get (snd (alloc x h)) (fst (alloc x' h)) = x"
   1.116 +  by (simp add: alloc_def Let_def)
   1.117  
   1.118 -lemma ref_new_set: "fst (ref v (set_ref r v' h)) = fst (ref v h)"
   1.119 -  by (simp add: ref_def set_ref_def Let_def)
   1.120 +lemma set_alloc [simp]:
   1.121 +  "set (fst (alloc v h)) v' (snd (alloc v h)) = snd (alloc v' h)"
   1.122 +  by (simp add: alloc_def Let_def)
   1.123  
   1.124 -lemma ref_get_new [simp]:
   1.125 -  "get_ref (fst (ref v h)) (snd (ref v' h)) = v'"
   1.126 -  by (simp add: ref_def Let_def split_def)
   1.127 +lemma get_alloc_neq: "r =!= fst (alloc v h) \<Longrightarrow> 
   1.128 +  get (snd (alloc v h)) r  = get h r"
   1.129 +  by (simp add: get_def set_def alloc_def Let_def noteq_def)
   1.130  
   1.131 -lemma ref_set_new [simp]:
   1.132 -  "set_ref (fst (ref v h)) new_v (snd (ref v h)) = snd (ref new_v h)"
   1.133 -  by (simp add: ref_def Let_def split_def)
   1.134 +lemma lim_set [simp]:
   1.135 +  "lim (set r v h) = lim h"
   1.136 +  by (simp add: set_def)
   1.137  
   1.138 -lemma ref_get_new_neq: "r =!= (fst (ref v h)) \<Longrightarrow> 
   1.139 -  get_ref r (snd (ref v h)) = get_ref r h"
   1.140 -  by (simp add: get_ref_def set_ref_def ref_def Let_def noteq_refs_def)
   1.141 +lemma present_alloc [simp]: 
   1.142 +  "present h r \<Longrightarrow> present (snd (alloc v h)) r"
   1.143 +  by (simp add: present_def alloc_def Let_def)
   1.144  
   1.145 -lemma lim_set_ref [simp]:
   1.146 -  "lim (set_ref r v h) = lim h"
   1.147 -  by (simp add: set_ref_def)
   1.148 +lemma present_set [simp]:
   1.149 +  "present (set r v h) = present h"
   1.150 +  by (simp add: present_def expand_fun_eq)
   1.151  
   1.152 -lemma ref_present_new_ref [simp]: 
   1.153 -  "ref_present r h \<Longrightarrow> ref_present r (snd (ref v h))"
   1.154 -  by (simp add: ref_present_def ref_def Let_def)
   1.155 -
   1.156 -lemma ref_present_set_ref [simp]:
   1.157 -  "ref_present r (set_ref r' v h) = ref_present r h"
   1.158 -  by (simp add: set_ref_def ref_present_def)
   1.159 -
   1.160 -lemma noteq_refsI: "\<lbrakk> ref_present r h; \<not>ref_present r' h \<rbrakk>  \<Longrightarrow> r =!= r'"
   1.161 -  unfolding noteq_refs_def ref_present_def
   1.162 -  by auto
   1.163 +lemma noteq_I:
   1.164 +  "present h r \<Longrightarrow> \<not> present h r' \<Longrightarrow> r =!= r'"
   1.165 +  by (auto simp add: noteq_def present_def)
   1.166  
   1.167  
   1.168  subsection {* Primitives *}
   1.169  
   1.170 -definition
   1.171 -  new :: "'a\<Colon>heap \<Rightarrow> 'a ref Heap" where
   1.172 -  [code del]: "new v = Heap_Monad.heap (Ref.ref v)"
   1.173 +definition ref :: "'a\<Colon>heap \<Rightarrow> 'a ref Heap" where
   1.174 +  [code del]: "ref v = Heap_Monad.heap (alloc v)"
   1.175  
   1.176 -definition
   1.177 -  lookup :: "'a\<Colon>heap ref \<Rightarrow> 'a Heap" ("!_" 61) where
   1.178 -  [code del]: "lookup r = Heap_Monad.heap (\<lambda>h. (get_ref r h, h))"
   1.179 +definition lookup :: "'a\<Colon>heap ref \<Rightarrow> 'a Heap" ("!_" 61) where
   1.180 +  [code del]: "lookup r = Heap_Monad.heap (\<lambda>h. (get h r, h))"
   1.181  
   1.182 -definition
   1.183 -  update :: "'a ref \<Rightarrow> ('a\<Colon>heap) \<Rightarrow> unit Heap" ("_ := _" 62) where
   1.184 -  [code del]: "update r e = Heap_Monad.heap (\<lambda>h. ((), set_ref r e h))"
   1.185 +definition update :: "'a ref \<Rightarrow> 'a\<Colon>heap \<Rightarrow> unit Heap" ("_ := _" 62) where
   1.186 +  [code del]: "update r v = Heap_Monad.heap (\<lambda>h. ((), set r v h))"
   1.187  
   1.188  
   1.189  subsection {* Derivates *}
   1.190  
   1.191 -definition
   1.192 -  change :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a ref \<Rightarrow> 'a Heap"
   1.193 -where
   1.194 -  "change f r = (do x \<leftarrow> ! r;
   1.195 -                    let y = f x;
   1.196 -                    r := y;
   1.197 -                    return y
   1.198 -                 done)"
   1.199 -
   1.200 -hide_const (open) new lookup update change
   1.201 +definition change :: "('a\<Colon>heap \<Rightarrow> 'a) \<Rightarrow> 'a ref \<Rightarrow> 'a Heap" where
   1.202 +  "change f r = (do
   1.203 +     x \<leftarrow> ! r;
   1.204 +     let y = f x;
   1.205 +     r := y;
   1.206 +     return y
   1.207 +   done)"
   1.208  
   1.209  
   1.210  subsection {* Properties *}
   1.211  
   1.212  lemma lookup_chain:
   1.213    "(!r \<guillemotright> f) = f"
   1.214 -  by (cases f)
   1.215 -    (auto simp add: Let_def bindM_def lookup_def expand_fun_eq)
   1.216 +  by (rule Heap_eqI) (simp add: lookup_def)
   1.217  
   1.218  lemma update_change [code]:
   1.219 -  "r := e = Ref.change (\<lambda>_. e) r \<guillemotright> return ()"
   1.220 -  by (auto simp add: change_def lookup_chain)
   1.221 +  "r := e = change (\<lambda>_. e) r \<guillemotright> return ()"
   1.222 +  by (rule Heap_eqI) (simp add: change_def lookup_chain)
   1.223  
   1.224  
   1.225  text {* Non-interaction between imperative array and imperative references *}
   1.226  
   1.227 -lemma get_array_set_ref [simp]: "get_array a (set_ref r v h) = get_array a h"
   1.228 -  by (simp add: get_array_def set_ref_def)
   1.229 +lemma get_array_set [simp]:
   1.230 +  "get_array a (set r v h) = get_array a h"
   1.231 +  by (simp add: get_array_def set_def)
   1.232  
   1.233 -lemma nth_set_ref [simp]: "get_array a (set_ref r v h) ! i = get_array a h ! i"
   1.234 +lemma nth_set [simp]:
   1.235 +  "get_array a (set r v h) ! i = get_array a h ! i"
   1.236    by simp
   1.237  
   1.238 -lemma get_ref_upd [simp]: "get_ref r (Array.change a i v h) = get_ref r h"
   1.239 -  by (simp add: get_ref_def set_array_def Array.change_def)
   1.240 +lemma get_change [simp]:
   1.241 +  "get (Array.change a i v h) r  = get h r"
   1.242 +  by (simp add: get_def Array.change_def set_array_def)
   1.243  
   1.244 -lemma new_ref_upd: "fst (ref v (Array.change a i v' h)) = fst (ref v h)"
   1.245 -  by (simp add: set_array_def get_array_def Let_def ref_new_set Array.change_def ref_def)
   1.246 +lemma alloc_change:
   1.247 +  "fst (alloc v (Array.change a i v' h)) = fst (alloc v h)"
   1.248 +  by (simp add: Array.change_def get_array_def set_array_def alloc_def Let_def)
   1.249  
   1.250 -lemma upd_set_ref_swap: "Array.change a i v (set_ref r v' h) = set_ref r v' (Array.change a i v h)"
   1.251 -  by (simp add: set_ref_def Array.change_def get_array_def set_array_def)
   1.252 +lemma change_set_swap:
   1.253 +  "Array.change a i v (set r v' h) = set r v' (Array.change a i v h)"
   1.254 +  by (simp add: Array.change_def get_array_def set_array_def set_def)
   1.255  
   1.256 -lemma length_new_ref[simp]: 
   1.257 -  "length a (snd (ref v h)) = length a h"
   1.258 -  by (simp add: get_array_def set_ref_def length_def  ref_def Let_def)
   1.259 +lemma length_alloc [simp]: 
   1.260 +  "Array.length a (snd (alloc v h)) = Array.length a h"
   1.261 +  by (simp add: Array.length_def get_array_def alloc_def set_def Let_def)
   1.262  
   1.263 -lemma get_array_new_ref [simp]: 
   1.264 -  "get_array a (snd (ref v h)) = get_array a h"
   1.265 -  by (simp add: ref_def set_ref_def get_array_def Let_def)
   1.266 +lemma get_array_alloc [simp]: 
   1.267 +  "get_array a (snd (alloc v h)) = get_array a h"
   1.268 +  by (simp add: get_array_def alloc_def set_def Let_def)
   1.269  
   1.270 -lemma ref_present_upd [simp]: 
   1.271 -  "ref_present r (Array.change a i v h) = ref_present r h"
   1.272 -  by (simp add: Array.change_def ref_present_def set_array_def get_array_def)
   1.273 +lemma present_change [simp]: 
   1.274 +  "present (Array.change a i v h) = present h"
   1.275 +  by (simp add: Array.change_def set_array_def expand_fun_eq present_def)
   1.276  
   1.277 -lemma array_present_set_ref [simp]:
   1.278 -  "array_present a (set_ref r v h) = array_present a h"
   1.279 -  by (simp add: array_present_def set_ref_def)
   1.280 +lemma array_present_set [simp]:
   1.281 +  "array_present a (set r v h) = array_present a h"
   1.282 +  by (simp add: array_present_def set_def)
   1.283  
   1.284 -lemma array_present_new_ref [simp]:
   1.285 -  "array_present a h \<Longrightarrow> array_present a (snd (ref v h))"
   1.286 -  by (simp add: array_present_def ref_def Let_def)
   1.287 +lemma array_present_alloc [simp]:
   1.288 +  "array_present a h \<Longrightarrow> array_present a (snd (alloc v h))"
   1.289 +  by (simp add: array_present_def alloc_def Let_def)
   1.290  
   1.291 -lemma array_ref_set_set_swap:
   1.292 -  "set_array r x (set_ref r' x' h) = set_ref r' x' (set_array r x h)"
   1.293 -  by (simp add: Let_def expand_fun_eq set_array_def set_ref_def)
   1.294 +lemma set_array_set_swap:
   1.295 +  "set_array a xs (set r x' h) = set r x' (set_array a xs h)"
   1.296 +  by (simp add: set_array_def set_def)
   1.297 +
   1.298 +hide_const (open) present get set alloc lookup update change
   1.299  
   1.300  
   1.301  subsection {* Code generator setup *}
   1.302 @@ -203,7 +193,7 @@
   1.303  
   1.304  code_type ref (SML "_/ Unsynchronized.ref")
   1.305  code_const Ref (SML "raise/ (Fail/ \"bare Ref\")")
   1.306 -code_const Ref.new (SML "(fn/ ()/ =>/ Unsynchronized.ref/ _)")
   1.307 +code_const ref (SML "(fn/ ()/ =>/ Unsynchronized.ref/ _)")
   1.308  code_const Ref.lookup (SML "(fn/ ()/ =>/ !/ _)")
   1.309  code_const Ref.update (SML "(fn/ ()/ =>/ _/ :=/ _)")
   1.310  
   1.311 @@ -214,7 +204,7 @@
   1.312  
   1.313  code_type ref (OCaml "_/ ref")
   1.314  code_const Ref (OCaml "failwith/ \"bare Ref\")")
   1.315 -code_const Ref.new (OCaml "(fn/ ()/ =>/ ref/ _)")
   1.316 +code_const ref (OCaml "(fn/ ()/ =>/ ref/ _)")
   1.317  code_const Ref.lookup (OCaml "(fn/ ()/ =>/ !/ _)")
   1.318  code_const Ref.update (OCaml "(fn/ ()/ =>/ _/ :=/ _)")
   1.319  
   1.320 @@ -225,7 +215,7 @@
   1.321  
   1.322  code_type ref (Haskell "Heap.STRef/ Heap.RealWorld/ _")
   1.323  code_const Ref (Haskell "error/ \"bare Ref\"")
   1.324 -code_const Ref.new (Haskell "Heap.newSTRef")
   1.325 +code_const ref (Haskell "Heap.newSTRef")
   1.326  code_const Ref.lookup (Haskell "Heap.readSTRef")
   1.327  code_const Ref.update (Haskell "Heap.writeSTRef")
   1.328  
     2.1 --- a/src/HOL/Imperative_HOL/Relational.thy	Tue Jul 06 09:21:13 2010 +0200
     2.2 +++ b/src/HOL/Imperative_HOL/Relational.thy	Tue Jul 06 09:21:15 2010 +0200
     2.3 @@ -311,42 +311,42 @@
     2.4  extends h' h x \<Longrightarrow> lim h' = Suc (lim h)
     2.5  *)
     2.6  
     2.7 -lemma crel_Ref_new:
     2.8 -  assumes "crel (Ref.new v) h h' x"
     2.9 -  obtains "get_ref x h' = v"
    2.10 -  and "\<not> ref_present x h"
    2.11 -  and "ref_present x h'"
    2.12 -  and "\<forall>y. ref_present y h \<longrightarrow> get_ref y h = get_ref y h'"
    2.13 +lemma crel_ref:
    2.14 +  assumes "crel (ref v) h h' x"
    2.15 +  obtains "Ref.get h' x = v"
    2.16 +  and "\<not> Ref.present h x"
    2.17 +  and "Ref.present h' x"
    2.18 +  and "\<forall>y. Ref.present h y \<longrightarrow> Ref.get h y = Ref.get h' y"
    2.19   (* and "lim h' = Suc (lim h)" *)
    2.20 -  and "\<forall>y. ref_present y h \<longrightarrow> ref_present y h'"
    2.21 +  and "\<forall>y. Ref.present h y \<longrightarrow> Ref.present h' y"
    2.22    using assms
    2.23 -  unfolding Ref.new_def
    2.24 +  unfolding Ref.ref_def
    2.25    apply (elim crel_heap)
    2.26 -  unfolding Ref.ref_def
    2.27 +  unfolding Ref.alloc_def
    2.28    apply (simp add: Let_def)
    2.29 -  unfolding ref_present_def
    2.30 +  unfolding Ref.present_def
    2.31    apply auto
    2.32 -  unfolding get_ref_def set_ref_def
    2.33 +  unfolding Ref.get_def Ref.set_def
    2.34    apply auto
    2.35    done
    2.36  
    2.37  lemma crel_lookup:
    2.38    assumes "crel (!r') h h' r"
    2.39 -  obtains "h = h'" "r = get_ref r' h"
    2.40 +  obtains "h = h'" "r = Ref.get h r'"
    2.41  using assms
    2.42  unfolding Ref.lookup_def
    2.43  by (auto elim: crel_heap)
    2.44  
    2.45  lemma crel_update:
    2.46    assumes "crel (r' := v) h h' r"
    2.47 -  obtains "h' = set_ref r' v h" "r = ()"
    2.48 +  obtains "h' = Ref.set r' v h" "r = ()"
    2.49  using assms
    2.50  unfolding Ref.update_def
    2.51  by (auto elim: crel_heap)
    2.52  
    2.53  lemma crel_change:
    2.54    assumes "crel (Ref.change f r') h h' r"
    2.55 -  obtains "h' = set_ref r' (f (get_ref r' h)) h" "r = f (get_ref r' h)"
    2.56 +  obtains "h' = Ref.set r' (f (Ref.get h r')) h" "r = f (Ref.get h r')"
    2.57  using assms
    2.58  unfolding Ref.change_def Let_def
    2.59  by (auto elim!: crelE crel_lookup crel_update crel_return)
    2.60 @@ -467,15 +467,15 @@
    2.61  subsubsection {* Introduction rules for reference commands *}
    2.62  
    2.63  lemma crel_lookupI:
    2.64 -  shows "crel (!r) h h (get_ref r h)"
    2.65 +  shows "crel (!r) h h (Ref.get h r)"
    2.66    unfolding lookup_def by (auto intro!: crel_heapI')
    2.67  
    2.68  lemma crel_updateI:
    2.69 -  shows "crel (r := v) h (set_ref r v h) ()"
    2.70 +  shows "crel (r := v) h (Ref.set r v h) ()"
    2.71    unfolding update_def by (auto intro!: crel_heapI')
    2.72  
    2.73  lemma crel_changeI: 
    2.74 -  shows "crel (Ref.change f r) h (set_ref r (f (get_ref r h)) h) (f (get_ref r h))"
    2.75 +  shows "crel (Ref.change f r) h (Ref.set r (f (Ref.get h r)) h) (f (Ref.get h r))"
    2.76  unfolding change_def Let_def by (auto intro!: crelI crel_returnI crel_lookupI crel_updateI)
    2.77  
    2.78  subsubsection {* Introduction rules for the assert command *}
    2.79 @@ -667,8 +667,8 @@
    2.80  subsection {* Introduction rules for the reference commands *}
    2.81  
    2.82  lemma noError_Ref_new:
    2.83 -  shows "noError (Ref.new v) h"
    2.84 -unfolding Ref.new_def by (intro noError_heap)
    2.85 +  shows "noError (ref v) h"
    2.86 +  unfolding Ref.ref_def by (intro noError_heap)
    2.87  
    2.88  lemma noError_lookup:
    2.89    shows "noError (!r) h"
    2.90 @@ -696,7 +696,7 @@
    2.91  lemmas crel_elim_all =
    2.92    crelE crelE' crel_return crel_raise crel_if crel_option_case
    2.93    crel_length crel_new_weak crel_nth crel_upd crel_of_list_weak crel_map_entry crel_swap crel_make_weak crel_freeze crel_map_weak
    2.94 -  crel_Ref_new crel_lookup crel_update crel_change
    2.95 +  crel_ref crel_lookup crel_update crel_change
    2.96    crel_assert
    2.97  
    2.98  lemmas crel_intro_all =
     3.1 --- a/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Tue Jul 06 09:21:13 2010 +0200
     3.2 +++ b/src/HOL/Imperative_HOL/ex/Linked_Lists.thy	Tue Jul 06 09:21:15 2010 +0200
     3.3 @@ -13,7 +13,7 @@
     3.4  setup {* Sign.add_const_constraint (@{const_name Ref}, SOME @{typ "nat \<Rightarrow> 'a\<Colon>type ref"}) *}
     3.5  datatype 'a node = Empty | Node 'a "('a node) ref"
     3.6  
     3.7 -fun
     3.8 +primrec
     3.9    node_encode :: "'a\<Colon>countable node \<Rightarrow> nat"
    3.10  where
    3.11    "node_encode Empty = 0"
    3.12 @@ -28,11 +28,11 @@
    3.13  
    3.14  instance node :: (heap) heap ..
    3.15  
    3.16 -fun make_llist :: "'a\<Colon>heap list \<Rightarrow> 'a node Heap"
    3.17 +primrec make_llist :: "'a\<Colon>heap list \<Rightarrow> 'a node Heap"
    3.18  where 
    3.19    [simp del]: "make_llist []     = return Empty"
    3.20              | "make_llist (x#xs) = do tl   \<leftarrow> make_llist xs;
    3.21 -                                      next \<leftarrow> Ref.new tl;
    3.22 +                                      next \<leftarrow> ref tl;
    3.23                                        return (Node x next)
    3.24                                     done"
    3.25  
    3.26 @@ -63,24 +63,24 @@
    3.27  
    3.28  subsection {* Definition of list_of, list_of', refs_of and refs_of' *}
    3.29  
    3.30 -fun list_of :: "heap \<Rightarrow> ('a::heap) node \<Rightarrow> 'a list \<Rightarrow> bool"
    3.31 +primrec list_of :: "heap \<Rightarrow> ('a::heap) node \<Rightarrow> 'a list \<Rightarrow> bool"
    3.32  where
    3.33    "list_of h r [] = (r = Empty)"
    3.34 -| "list_of h r (a#as) = (case r of Empty \<Rightarrow> False | Node b bs \<Rightarrow> (a = b \<and> list_of h (get_ref bs h) as))"
    3.35 +| "list_of h r (a#as) = (case r of Empty \<Rightarrow> False | Node b bs \<Rightarrow> (a = b \<and> list_of h (Ref.get h bs) as))"
    3.36   
    3.37  definition list_of' :: "heap \<Rightarrow> ('a::heap) node ref \<Rightarrow> 'a list \<Rightarrow> bool"
    3.38  where
    3.39 -  "list_of' h r xs = list_of h (get_ref r h) xs"
    3.40 +  "list_of' h r xs = list_of h (Ref.get h r) xs"
    3.41  
    3.42 -fun refs_of :: "heap \<Rightarrow> ('a::heap) node \<Rightarrow> 'a node ref list \<Rightarrow> bool"
    3.43 +primrec refs_of :: "heap \<Rightarrow> ('a::heap) node \<Rightarrow> 'a node ref list \<Rightarrow> bool"
    3.44  where
    3.45    "refs_of h r [] = (r = Empty)"
    3.46 -| "refs_of h r (x#xs) = (case r of Empty \<Rightarrow> False | Node b bs \<Rightarrow> (x = bs) \<and> refs_of h (get_ref bs h) xs)"
    3.47 +| "refs_of h r (x#xs) = (case r of Empty \<Rightarrow> False | Node b bs \<Rightarrow> (x = bs) \<and> refs_of h (Ref.get h bs) xs)"
    3.48  
    3.49 -fun refs_of' :: "heap \<Rightarrow> ('a::heap) node ref \<Rightarrow> 'a node ref list \<Rightarrow> bool"
    3.50 +primrec refs_of' :: "heap \<Rightarrow> ('a::heap) node ref \<Rightarrow> 'a node ref list \<Rightarrow> bool"
    3.51  where
    3.52    "refs_of' h r [] = False"
    3.53 -| "refs_of' h r (x#xs) = ((x = r) \<and> refs_of h (get_ref x h) xs)"
    3.54 +| "refs_of' h r (x#xs) = ((x = r) \<and> refs_of h (Ref.get h x) xs)"
    3.55  
    3.56  
    3.57  subsection {* Properties of these definitions *}
    3.58 @@ -88,35 +88,35 @@
    3.59  lemma list_of_Empty[simp]: "list_of h Empty xs = (xs = [])"
    3.60  by (cases xs, auto)
    3.61  
    3.62 -lemma list_of_Node[simp]: "list_of h (Node x ps) xs = (\<exists>xs'. (xs = x # xs') \<and> list_of h (get_ref ps h) xs')"
    3.63 +lemma list_of_Node[simp]: "list_of h (Node x ps) xs = (\<exists>xs'. (xs = x # xs') \<and> list_of h (Ref.get h ps) xs')"
    3.64  by (cases xs, auto)
    3.65  
    3.66 -lemma list_of'_Empty[simp]: "get_ref q h = Empty \<Longrightarrow> list_of' h q xs = (xs = [])"
    3.67 +lemma list_of'_Empty[simp]: "Ref.get h q = Empty \<Longrightarrow> list_of' h q xs = (xs = [])"
    3.68  unfolding list_of'_def by simp
    3.69  
    3.70 -lemma list_of'_Node[simp]: "get_ref q h = Node x ps \<Longrightarrow> list_of' h q xs = (\<exists>xs'. (xs = x # xs') \<and> list_of' h ps xs')"
    3.71 +lemma list_of'_Node[simp]: "Ref.get h q = Node x ps \<Longrightarrow> list_of' h q xs = (\<exists>xs'. (xs = x # xs') \<and> list_of' h ps xs')"
    3.72  unfolding list_of'_def by simp
    3.73  
    3.74 -lemma list_of'_Nil: "list_of' h q [] \<Longrightarrow> get_ref q h = Empty"
    3.75 +lemma list_of'_Nil: "list_of' h q [] \<Longrightarrow> Ref.get h q = Empty"
    3.76  unfolding list_of'_def by simp
    3.77  
    3.78  lemma list_of'_Cons: 
    3.79  assumes "list_of' h q (x#xs)"
    3.80 -obtains n where "get_ref q h = Node x n" and "list_of' h n xs"
    3.81 +obtains n where "Ref.get h q = Node x n" and "list_of' h n xs"
    3.82  using assms unfolding list_of'_def by (auto split: node.split_asm)
    3.83  
    3.84  lemma refs_of_Empty[simp] : "refs_of h Empty xs = (xs = [])"
    3.85    by (cases xs, auto)
    3.86  
    3.87 -lemma refs_of_Node[simp]: "refs_of h (Node x ps) xs = (\<exists>prs. xs = ps # prs \<and> refs_of h (get_ref ps h) prs)"
    3.88 +lemma refs_of_Node[simp]: "refs_of h (Node x ps) xs = (\<exists>prs. xs = ps # prs \<and> refs_of h (Ref.get h ps) prs)"
    3.89    by (cases xs, auto)
    3.90  
    3.91 -lemma refs_of'_def': "refs_of' h p ps = (\<exists>prs. (ps = (p # prs)) \<and> refs_of h (get_ref p h) prs)"
    3.92 +lemma refs_of'_def': "refs_of' h p ps = (\<exists>prs. (ps = (p # prs)) \<and> refs_of h (Ref.get h p) prs)"
    3.93  by (cases ps, auto)
    3.94  
    3.95  lemma refs_of'_Node:
    3.96    assumes "refs_of' h p xs"
    3.97 -  assumes "get_ref p h = Node x pn"
    3.98 +  assumes "Ref.get h p = Node x pn"
    3.99    obtains pnrs
   3.100    where "xs = p # pnrs" and "refs_of' h pn pnrs"
   3.101  using assms
   3.102 @@ -166,7 +166,7 @@
   3.103    assumes "list_of' h r xs"
   3.104    shows "\<exists>rs. refs_of' h r rs"
   3.105  proof -
   3.106 -  from assms obtain rs' where "refs_of h (get_ref r h) rs'"
   3.107 +  from assms obtain rs' where "refs_of h (Ref.get h r) rs'"
   3.108      unfolding list_of'_def by (rule list_of_refs_of)
   3.109    thus ?thesis unfolding refs_of'_def' by auto
   3.110  qed
   3.111 @@ -238,7 +238,7 @@
   3.112  done
   3.113  
   3.114  lemma refs_of_next:
   3.115 -assumes "refs_of h (get_ref p h) rs"
   3.116 +assumes "refs_of h (Ref.get h p) rs"
   3.117    shows "p \<notin> set rs"
   3.118  proof (rule ccontr)
   3.119    assume a: "\<not> (p \<notin> set rs)"
   3.120 @@ -264,7 +264,7 @@
   3.121  
   3.122  subsection {* Interaction of these predicates with our heap transitions *}
   3.123  
   3.124 -lemma list_of_set_ref: "refs_of h q rs \<Longrightarrow> p \<notin> set rs \<Longrightarrow> list_of (set_ref p v h) q as = list_of h q as"
   3.125 +lemma list_of_set_ref: "refs_of h q rs \<Longrightarrow> p \<notin> set rs \<Longrightarrow> list_of (Ref.set p v h) q as = list_of h q as"
   3.126  using assms
   3.127  proof (induct as arbitrary: q rs)
   3.128    case Nil thus ?case by simp
   3.129 @@ -275,15 +275,15 @@
   3.130      case Empty thus ?thesis by auto
   3.131    next
   3.132      case (Node a ref)
   3.133 -    from Cons(2) Node obtain rs' where 1: "refs_of h (get_ref ref h) rs'" and rs_rs': "rs = ref # rs'" by auto
   3.134 +    from Cons(2) Node obtain rs' where 1: "refs_of h (Ref.get h ref) rs'" and rs_rs': "rs = ref # rs'" by auto
   3.135      from Cons(3) rs_rs' have "ref \<noteq> p" by fastsimp
   3.136 -    hence ref_eq: "get_ref ref (set_ref p v h) = (get_ref ref h)" by (auto simp add: ref_get_set_neq)
   3.137 +    hence ref_eq: "Ref.get (Ref.set p v h) ref = (Ref.get h ref)" by (auto simp add: Ref.get_set_neq)
   3.138      from rs_rs' Cons(3) have 2: "p \<notin> set rs'" by simp
   3.139      from Cons.hyps[OF 1 2] Node ref_eq show ?thesis by simp
   3.140    qed
   3.141  qed
   3.142  
   3.143 -lemma refs_of_set_ref: "refs_of h q rs \<Longrightarrow> p \<notin> set rs \<Longrightarrow> refs_of (set_ref p v h) q as = refs_of h q as"
   3.144 +lemma refs_of_set_ref: "refs_of h q rs \<Longrightarrow> p \<notin> set rs \<Longrightarrow> refs_of (Ref.set p v h) q as = refs_of h q as"
   3.145  proof (induct as arbitrary: q rs)
   3.146    case Nil thus ?case by simp
   3.147  next
   3.148 @@ -293,15 +293,15 @@
   3.149      case Empty thus ?thesis by auto
   3.150    next
   3.151      case (Node a ref)
   3.152 -    from Cons(2) Node obtain rs' where 1: "refs_of h (get_ref ref h) rs'" and rs_rs': "rs = ref # rs'" by auto
   3.153 +    from Cons(2) Node obtain rs' where 1: "refs_of h (Ref.get h ref) rs'" and rs_rs': "rs = ref # rs'" by auto
   3.154      from Cons(3) rs_rs' have "ref \<noteq> p" by fastsimp
   3.155 -    hence ref_eq: "get_ref ref (set_ref p v h) = (get_ref ref h)" by (auto simp add: ref_get_set_neq)
   3.156 +    hence ref_eq: "Ref.get (Ref.set p v h) ref = (Ref.get h ref)" by (auto simp add: Ref.get_set_neq)
   3.157      from rs_rs' Cons(3) have 2: "p \<notin> set rs'" by simp
   3.158      from Cons.hyps[OF 1 2] Node ref_eq show ?thesis by auto
   3.159    qed
   3.160  qed
   3.161  
   3.162 -lemma refs_of_set_ref2: "refs_of (set_ref p v h) q rs \<Longrightarrow> p \<notin> set rs \<Longrightarrow> refs_of (set_ref p v h) q rs = refs_of h q rs"
   3.163 +lemma refs_of_set_ref2: "refs_of (Ref.set p v h) q rs \<Longrightarrow> p \<notin> set rs \<Longrightarrow> refs_of (Ref.set p v h) q rs = refs_of h q rs"
   3.164  proof (induct rs arbitrary: q)
   3.165    case Nil thus ?case by simp
   3.166  next
   3.167 @@ -311,9 +311,9 @@
   3.168      case Empty thus ?thesis by auto
   3.169    next
   3.170      case (Node a ref)
   3.171 -    from Cons(2) Node have 1:"refs_of (set_ref p v h) (get_ref ref (set_ref p v h)) xs" and x_ref: "x = ref" by auto
   3.172 +    from Cons(2) Node have 1:"refs_of (Ref.set p v h) (Ref.get (Ref.set p v h) ref) xs" and x_ref: "x = ref" by auto
   3.173      from Cons(3) this have "ref \<noteq> p" by fastsimp
   3.174 -    hence ref_eq: "get_ref ref (set_ref p v h) = (get_ref ref h)" by (auto simp add: ref_get_set_neq)
   3.175 +    hence ref_eq: "Ref.get (Ref.set p v h) ref = (Ref.get h ref)" by (auto simp add: Ref.get_set_neq)
   3.176      from Cons(3) have 2: "p \<notin> set xs" by simp
   3.177      with Cons.hyps 1 2 Node ref_eq show ?thesis
   3.178        by simp
   3.179 @@ -323,7 +323,7 @@
   3.180  lemma list_of'_set_ref:
   3.181    assumes "refs_of' h q rs"
   3.182    assumes "p \<notin> set rs"
   3.183 -  shows "list_of' (set_ref p v h) q as = list_of' h q as"
   3.184 +  shows "list_of' (Ref.set p v h) q as = list_of' h q as"
   3.185  proof -
   3.186    from assms have "q \<noteq> p" by (auto simp only: dest!: refs_of'E)
   3.187    with assms show ?thesis
   3.188 @@ -333,18 +333,18 @@
   3.189  
   3.190  lemma list_of'_set_next_ref_Node[simp]:
   3.191    assumes "list_of' h r xs"
   3.192 -  assumes "get_ref p h = Node x r'"
   3.193 +  assumes "Ref.get h p = Node x r'"
   3.194    assumes "refs_of' h r rs"
   3.195    assumes "p \<notin> set rs"
   3.196 -  shows "list_of' (set_ref p (Node x r) h) p (x#xs) = list_of' h r xs"
   3.197 +  shows "list_of' (Ref.set p (Node x r) h) p (x#xs) = list_of' h r xs"
   3.198  using assms
   3.199  unfolding list_of'_def refs_of'_def'
   3.200 -by (auto simp add: list_of_set_ref noteq_refs_sym)
   3.201 +by (auto simp add: list_of_set_ref Ref.noteq_sym)
   3.202  
   3.203  lemma refs_of'_set_ref:
   3.204    assumes "refs_of' h q rs"
   3.205    assumes "p \<notin> set rs"
   3.206 -  shows "refs_of' (set_ref p v h) q as = refs_of' h q as"
   3.207 +  shows "refs_of' (Ref.set p v h) q as = refs_of' h q as"
   3.208  using assms
   3.209  proof -
   3.210    from assms have "q \<noteq> p" by (auto simp only: dest!: refs_of'E)
   3.211 @@ -354,9 +354,9 @@
   3.212  qed
   3.213  
   3.214  lemma refs_of'_set_ref2:
   3.215 -  assumes "refs_of' (set_ref p v h) q rs"
   3.216 +  assumes "refs_of' (Ref.set p v h) q rs"
   3.217    assumes "p \<notin> set rs"
   3.218 -  shows "refs_of' (set_ref p v h) q as = refs_of' h q as"
   3.219 +  shows "refs_of' (Ref.set p v h) q as = refs_of' h q as"
   3.220  using assms
   3.221  proof -
   3.222    from assms have "q \<noteq> p" by (auto simp only: dest!: refs_of'E)
   3.223 @@ -364,7 +364,7 @@
   3.224      unfolding refs_of'_def'
   3.225      apply auto
   3.226      apply (subgoal_tac "prs = prsa")
   3.227 -    apply (insert refs_of_set_ref2[of p v h "get_ref q h"])
   3.228 +    apply (insert refs_of_set_ref2[of p v h "Ref.get h q"])
   3.229      apply (erule_tac x="prs" in meta_allE)
   3.230      apply auto
   3.231      apply (auto dest: refs_of_is_fun)
   3.232 @@ -372,15 +372,15 @@
   3.233  qed
   3.234  
   3.235  lemma refs_of'_set_next_ref:
   3.236 -assumes "get_ref p h1 = Node x pn"
   3.237 -assumes "refs_of' (set_ref p (Node x r1) h1) p rs"
   3.238 +assumes "Ref.get h1 p = Node x pn"
   3.239 +assumes "refs_of' (Ref.set p (Node x r1) h1) p rs"
   3.240  obtains r1s where "rs = (p#r1s)" and "refs_of' h1 r1 r1s"
   3.241  using assms
   3.242  proof -
   3.243    from assms refs_of'_distinct[OF assms(2)] have "\<exists> r1s. rs = (p # r1s) \<and> refs_of' h1 r1 r1s"
   3.244      apply -
   3.245      unfolding refs_of'_def'[of _ p]
   3.246 -    apply (auto, frule refs_of_set_ref2) by (auto dest: noteq_refs_sym)
   3.247 +    apply (auto, frule refs_of_set_ref2) by (auto dest: Ref.noteq_sym)
   3.248    with prems show thesis by auto
   3.249  qed
   3.250  
   3.251 @@ -388,7 +388,7 @@
   3.252  
   3.253  lemma refs_of_invariant:
   3.254    assumes "refs_of h (r::('a::heap) node) xs"
   3.255 -  assumes "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>ref \<in> set refs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h')"
   3.256 +  assumes "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>ref \<in> set refs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref)"
   3.257    shows "refs_of h' r xs"
   3.258  using assms
   3.259  proof (induct xs arbitrary: r)
   3.260 @@ -396,28 +396,28 @@
   3.261  next
   3.262    case (Cons x xs')
   3.263    from Cons(2) obtain v where Node: "r = Node v x" by (cases r, auto)
   3.264 -  from Cons(2) Node have refs_of_next: "refs_of h (get_ref x h) xs'" by simp
   3.265 -  from Cons(2-3) Node have ref_eq: "get_ref x h = get_ref x h'" by auto
   3.266 -  from ref_eq refs_of_next have 1: "refs_of h (get_ref x h') xs'" by simp
   3.267 -  from Cons(2) Cons(3) have "\<forall>ref \<in> set xs'. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h'"
   3.268 +  from Cons(2) Node have refs_of_next: "refs_of h (Ref.get h x) xs'" by simp
   3.269 +  from Cons(2-3) Node have ref_eq: "Ref.get h x = Ref.get h' x" by auto
   3.270 +  from ref_eq refs_of_next have 1: "refs_of h (Ref.get h' x) xs'" by simp
   3.271 +  from Cons(2) Cons(3) have "\<forall>ref \<in> set xs'. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref"
   3.272      by fastsimp
   3.273 -  with Cons(3) 1 have 2: "\<forall>refs. refs_of h (get_ref x h') refs \<longrightarrow> (\<forall>ref \<in> set refs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h')"
   3.274 +  with Cons(3) 1 have 2: "\<forall>refs. refs_of h (Ref.get h' x) refs \<longrightarrow> (\<forall>ref \<in> set refs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref)"
   3.275      by (fastsimp dest: refs_of_is_fun)
   3.276 -  from Cons.hyps[OF 1 2] have "refs_of h' (get_ref x h') xs'" .
   3.277 +  from Cons.hyps[OF 1 2] have "refs_of h' (Ref.get h' x) xs'" .
   3.278    with Node show ?case by simp
   3.279  qed
   3.280  
   3.281  lemma refs_of'_invariant:
   3.282    assumes "refs_of' h r xs"
   3.283 -  assumes "\<forall>refs. refs_of' h r refs \<longrightarrow> (\<forall>ref \<in> set refs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h')"
   3.284 +  assumes "\<forall>refs. refs_of' h r refs \<longrightarrow> (\<forall>ref \<in> set refs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref)"
   3.285    shows "refs_of' h' r xs"
   3.286  using assms
   3.287  proof -
   3.288 -  from assms obtain prs where refs:"refs_of h (get_ref r h) prs" and xs_def: "xs = r # prs"
   3.289 +  from assms obtain prs where refs:"refs_of h (Ref.get h r) prs" and xs_def: "xs = r # prs"
   3.290      unfolding refs_of'_def' by auto
   3.291 -  from xs_def assms have x_eq: "get_ref r h = get_ref r h'" by fastsimp
   3.292 -  from refs assms xs_def have 2: "\<forall>refs. refs_of h (get_ref r h) refs \<longrightarrow>
   3.293 -     (\<forall>ref\<in>set refs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h')" 
   3.294 +  from xs_def assms have x_eq: "Ref.get h r = Ref.get h' r" by fastsimp
   3.295 +  from refs assms xs_def have 2: "\<forall>refs. refs_of h (Ref.get h r) refs \<longrightarrow>
   3.296 +     (\<forall>ref\<in>set refs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref)" 
   3.297      by (fastsimp dest: refs_of_is_fun)
   3.298    from refs_of_invariant [OF refs 2] xs_def x_eq show ?thesis
   3.299      unfolding refs_of'_def' by auto
   3.300 @@ -425,7 +425,7 @@
   3.301  
   3.302  lemma list_of_invariant:
   3.303    assumes "list_of h (r::('a::heap) node) xs"
   3.304 -  assumes "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>ref \<in> set refs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h')"
   3.305 +  assumes "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>ref \<in> set refs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref)"
   3.306    shows "list_of h' r xs"
   3.307  using assms
   3.308  proof (induct xs arbitrary: r)
   3.309 @@ -437,16 +437,16 @@
   3.310      by (cases r, auto)
   3.311    from Cons(2) obtain rs where rs_def: "refs_of h r rs" by (rule list_of_refs_of)
   3.312    from Node rs_def obtain rss where refs_of: "refs_of h r (ref#rss)" and rss_def: "rs = ref#rss" by auto
   3.313 -  from Cons(3) Node refs_of have ref_eq: "get_ref ref h = get_ref ref h'"
   3.314 +  from Cons(3) Node refs_of have ref_eq: "Ref.get h ref = Ref.get h' ref"
   3.315      by auto
   3.316 -  from Cons(2) ref_eq Node have 1: "list_of h (get_ref ref h') xs'" by simp
   3.317 -  from refs_of Node ref_eq have refs_of_ref: "refs_of h (get_ref ref h') rss" by simp
   3.318 -  from Cons(3) rs_def have rs_heap_eq: "\<forall>ref\<in>set rs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h'" by simp
   3.319 -  from refs_of_ref rs_heap_eq rss_def have 2: "\<forall>refs. refs_of h (get_ref ref h') refs \<longrightarrow>
   3.320 -          (\<forall>ref\<in>set refs. ref_present ref h \<and> ref_present ref h' \<and> get_ref ref h = get_ref ref h')"
   3.321 +  from Cons(2) ref_eq Node have 1: "list_of h (Ref.get h' ref) xs'" by simp
   3.322 +  from refs_of Node ref_eq have refs_of_ref: "refs_of h (Ref.get h' ref) rss" by simp
   3.323 +  from Cons(3) rs_def have rs_heap_eq: "\<forall>ref\<in>set rs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref" by simp
   3.324 +  from refs_of_ref rs_heap_eq rss_def have 2: "\<forall>refs. refs_of h (Ref.get h' ref) refs \<longrightarrow>
   3.325 +          (\<forall>ref\<in>set refs. Ref.present h ref \<and> Ref.present h' ref \<and> Ref.get h ref = Ref.get h' ref)"
   3.326      by (auto dest: refs_of_is_fun)
   3.327    from Cons(1)[OF 1 2]
   3.328 -  have "list_of h' (get_ref ref h') xs'" .
   3.329 +  have "list_of h' (Ref.get h' ref) xs'" .
   3.330    with Node show ?case
   3.331      unfolding list_of'_def
   3.332      by simp
   3.333 @@ -454,29 +454,29 @@
   3.334  
   3.335  lemma make_llist:
   3.336  assumes "crel (make_llist xs) h h' r"
   3.337 -shows "list_of h' r xs \<and> (\<forall>rs. refs_of h' r rs \<longrightarrow> (\<forall>ref \<in> (set rs). ref_present ref h'))"
   3.338 +shows "list_of h' r xs \<and> (\<forall>rs. refs_of h' r rs \<longrightarrow> (\<forall>ref \<in> (set rs). Ref.present h' ref))"
   3.339  using assms 
   3.340  proof (induct xs arbitrary: h h' r)
   3.341    case Nil thus ?case by (auto elim: crel_return simp add: make_llist.simps)
   3.342  next
   3.343    case (Cons x xs')
   3.344    from Cons.prems obtain h1 r1 r' where make_llist: "crel (make_llist xs') h h1 r1"
   3.345 -    and crel_refnew:"crel (Ref.new r1) h1 h' r'" and Node: "r = Node x r'"
   3.346 +    and crel_refnew:"crel (ref r1) h1 h' r'" and Node: "r = Node x r'"
   3.347      unfolding make_llist.simps
   3.348      by (auto elim!: crelE crel_return)
   3.349    from Cons.hyps[OF make_llist] have list_of_h1: "list_of h1 r1 xs'" ..
   3.350    from Cons.hyps[OF make_llist] obtain rs' where rs'_def: "refs_of h1 r1 rs'" by (auto intro: list_of_refs_of)
   3.351 -  from Cons.hyps[OF make_llist] rs'_def have refs_present: "\<forall>ref\<in>set rs'. ref_present ref h1" by simp
   3.352 +  from Cons.hyps[OF make_llist] rs'_def have refs_present: "\<forall>ref\<in>set rs'. Ref.present h1 ref" by simp
   3.353    from crel_refnew rs'_def refs_present have refs_unchanged: "\<forall>refs. refs_of h1 r1 refs \<longrightarrow>
   3.354 -         (\<forall>ref\<in>set refs. ref_present ref h1 \<and> ref_present ref h' \<and> get_ref ref h1 = get_ref ref h')"
   3.355 -    by (auto elim!: crel_Ref_new dest: refs_of_is_fun)
   3.356 +         (\<forall>ref\<in>set refs. Ref.present h1 ref \<and> Ref.present h' ref \<and> Ref.get h1 ref = Ref.get h' ref)"
   3.357 +    by (auto elim!: crel_ref dest: refs_of_is_fun)
   3.358    with list_of_invariant[OF list_of_h1 refs_unchanged] Node crel_refnew have fstgoal: "list_of h' r (x # xs')"
   3.359      unfolding list_of.simps
   3.360 -    by (auto elim!: crel_Ref_new)
   3.361 -  from refs_unchanged rs'_def have refs_still_present: "\<forall>ref\<in>set rs'. ref_present ref h'" by auto
   3.362 +    by (auto elim!: crel_ref)
   3.363 +  from refs_unchanged rs'_def have refs_still_present: "\<forall>ref\<in>set rs'. Ref.present h' ref" by auto
   3.364    from refs_of_invariant[OF rs'_def refs_unchanged] refs_unchanged Node crel_refnew refs_still_present
   3.365 -  have sndgoal: "\<forall>rs. refs_of h' r rs \<longrightarrow> (\<forall>ref\<in>set rs. ref_present ref h')"
   3.366 -    by (fastsimp elim!: crel_Ref_new dest: refs_of_is_fun)
   3.367 +  have sndgoal: "\<forall>rs. refs_of h' r rs \<longrightarrow> (\<forall>ref\<in>set rs. Ref.present h' ref)"
   3.368 +    by (fastsimp elim!: crel_ref dest: refs_of_is_fun)
   3.369    from fstgoal sndgoal show ?case ..
   3.370  qed
   3.371  
   3.372 @@ -533,10 +533,10 @@
   3.373  thm arg_cong2
   3.374    by (auto simp add: expand_fun_eq intro: arg_cong2[where f = "op \<guillemotright>="] split: node.split)
   3.375  
   3.376 -fun rev :: "('a:: heap) node \<Rightarrow> 'a node Heap" 
   3.377 +primrec rev :: "('a:: heap) node \<Rightarrow> 'a node Heap" 
   3.378  where
   3.379    "rev Empty = return Empty"
   3.380 -| "rev (Node x n) = (do q \<leftarrow> Ref.new Empty; p \<leftarrow> Ref.new (Node x n); v \<leftarrow> rev' (q, p); !v done)"
   3.381 +| "rev (Node x n) = (do q \<leftarrow> ref Empty; p \<leftarrow> ref (Node x n); v \<leftarrow> rev' (q, p); !v done)"
   3.382  
   3.383  subsection {* Correctness Proof *}
   3.384  
   3.385 @@ -556,17 +556,17 @@
   3.386    case (Cons x xs)
   3.387    (*"LinkedList.list_of h' (get_ref v h') (List.rev xs @ x # qsa)"*)
   3.388    from Cons(4) obtain ref where 
   3.389 -    p_is_Node: "get_ref p h = Node x ref"
   3.390 +    p_is_Node: "Ref.get h p = Node x ref"
   3.391      (*and "ref_present ref h"*)
   3.392      and list_of'_ref: "list_of' h ref xs"
   3.393 -    unfolding list_of'_def by (cases "get_ref p h", auto)
   3.394 -  from p_is_Node Cons(2) have crel_rev': "crel (rev' (p, ref)) (set_ref p (Node x q) h) h' v"
   3.395 +    unfolding list_of'_def by (cases "Ref.get h p", auto)
   3.396 +  from p_is_Node Cons(2) have crel_rev': "crel (rev' (p, ref)) (Ref.set p (Node x q) h) h' v"
   3.397      by (auto simp add: rev'_simps [of q p] elim!: crelE crel_lookup crel_update)
   3.398    from Cons(3) obtain qrs where qrs_def: "refs_of' h q qrs" by (elim list_of'_refs_of')
   3.399    from Cons(4) obtain prs where prs_def: "refs_of' h p prs" by (elim list_of'_refs_of')
   3.400    from qrs_def prs_def Cons(5) have distinct_pointers: "set qrs \<inter> set prs = {}" by fastsimp
   3.401    from qrs_def prs_def distinct_pointers refs_of'E have p_notin_qrs: "p \<notin> set qrs" by fastsimp
   3.402 -  from Cons(3) qrs_def this have 1: "list_of' (set_ref p (Node x q) h) p (x#qs)"
   3.403 +  from Cons(3) qrs_def this have 1: "list_of' (Ref.set p (Node x q) h) p (x#qs)"
   3.404      unfolding list_of'_def  
   3.405      apply (simp)
   3.406      unfolding list_of'_def[symmetric]
   3.407 @@ -575,16 +575,16 @@
   3.408      unfolding refs_of'_def' by auto
   3.409    from prs_refs prs_def have p_not_in_refs: "p \<notin> set refs"
   3.410      by (fastsimp dest!: refs_of'_distinct)
   3.411 -  with refs_def p_is_Node list_of'_ref have 2: "list_of' (set_ref p (Node x q) h) ref xs"
   3.412 +  with refs_def p_is_Node list_of'_ref have 2: "list_of' (Ref.set p (Node x q) h) ref xs"
   3.413      by (auto simp add: list_of'_set_ref)
   3.414 -  from p_notin_qrs qrs_def have refs_of1: "refs_of' (set_ref p (Node x q) h) p (p#qrs)"
   3.415 +  from p_notin_qrs qrs_def have refs_of1: "refs_of' (Ref.set p (Node x q) h) p (p#qrs)"
   3.416      unfolding refs_of'_def'
   3.417      apply (simp)
   3.418      unfolding refs_of'_def'[symmetric]
   3.419      by (simp add: refs_of'_set_ref)
   3.420 -  from p_not_in_refs p_is_Node refs_def have refs_of2: "refs_of' (set_ref p (Node x q) h) ref refs"
   3.421 +  from p_not_in_refs p_is_Node refs_def have refs_of2: "refs_of' (Ref.set p (Node x q) h) ref refs"
   3.422      by (simp add: refs_of'_set_ref)
   3.423 -  from p_not_in_refs refs_of1 refs_of2 distinct_pointers prs_refs have 3: "\<forall>qrs prs. refs_of' (set_ref p (Node x q) h) p qrs \<and> refs_of' (set_ref p (Node x q) h) ref prs \<longrightarrow> set prs \<inter> set qrs = {}"
   3.424 +  from p_not_in_refs refs_of1 refs_of2 distinct_pointers prs_refs have 3: "\<forall>qrs prs. refs_of' (Ref.set p (Node x q) h) p qrs \<and> refs_of' (Ref.set p (Node x q) h) ref prs \<longrightarrow> set prs \<inter> set qrs = {}"
   3.425      apply - apply (rule allI)+ apply (rule impI) apply (erule conjE)
   3.426      apply (drule refs_of'_is_fun) back back apply assumption
   3.427      apply (drule refs_of'_is_fun) back back apply assumption
   3.428 @@ -595,7 +595,7 @@
   3.429  
   3.430  lemma rev_correctness:
   3.431    assumes list_of_h: "list_of h r xs"
   3.432 -  assumes validHeap: "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>r \<in> set refs. ref_present r h)"
   3.433 +  assumes validHeap: "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>r \<in> set refs. Ref.present h r)"
   3.434    assumes crel_rev: "crel (rev r) h h' r'"
   3.435    shows "list_of h' r' (List.rev xs)"
   3.436  using assms
   3.437 @@ -606,39 +606,39 @@
   3.438  next
   3.439    case (Node x ps)
   3.440    with crel_rev obtain p q h1 h2 h3 v where
   3.441 -    init: "crel (Ref.new Empty) h h1 q"
   3.442 -    "crel (Ref.new (Node x ps)) h1 h2 p"
   3.443 +    init: "crel (ref Empty) h h1 q"
   3.444 +    "crel (ref (Node x ps)) h1 h2 p"
   3.445      and crel_rev':"crel (rev' (q, p)) h2 h3 v"
   3.446      and lookup: "crel (!v) h3 h' r'"
   3.447      using rev.simps
   3.448      by (auto elim!: crelE)
   3.449    from init have a1:"list_of' h2 q []"
   3.450      unfolding list_of'_def
   3.451 -    by (auto elim!: crel_Ref_new)
   3.452 +    by (auto elim!: crel_ref)
   3.453    from list_of_h obtain refs where refs_def: "refs_of h r refs" by (rule list_of_refs_of)
   3.454 -  from validHeap init refs_def have heap_eq: "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>ref\<in>set refs. ref_present ref h \<and> ref_present ref h2 \<and> get_ref ref h = get_ref ref h2)"
   3.455 -    by (fastsimp elim!: crel_Ref_new dest: refs_of_is_fun)
   3.456 +  from validHeap init refs_def have heap_eq: "\<forall>refs. refs_of h r refs \<longrightarrow> (\<forall>ref\<in>set refs. Ref.present h ref \<and> Ref.present h2 ref \<and> Ref.get h ref = Ref.get h2 ref)"
   3.457 +    by (fastsimp elim!: crel_ref dest: refs_of_is_fun)
   3.458    from list_of_invariant[OF list_of_h heap_eq] have "list_of h2 r xs" .
   3.459    from init this Node have a2: "list_of' h2 p xs"
   3.460      apply -
   3.461      unfolding list_of'_def
   3.462 -    apply (auto elim!: crel_Ref_new)
   3.463 +    apply (auto elim!: crel_ref)
   3.464      done
   3.465    from init have refs_of_q: "refs_of' h2 q [q]"
   3.466 -    by (auto elim!: crel_Ref_new)
   3.467 +    by (auto elim!: crel_ref)
   3.468    from refs_def Node have refs_of'_ps: "refs_of' h ps refs"
   3.469      by (auto simp add: refs_of'_def'[symmetric])
   3.470 -  from validHeap refs_def have all_ref_present: "\<forall>r\<in>set refs. ref_present r h" by simp
   3.471 -  from init refs_of'_ps Node this have heap_eq: "\<forall>refs. refs_of' h ps refs \<longrightarrow> (\<forall>ref\<in>set refs. ref_present ref h \<and> ref_present ref h2 \<and> get_ref ref h = get_ref ref h2)"
   3.472 -    by (fastsimp elim!: crel_Ref_new dest: refs_of'_is_fun)
   3.473 +  from validHeap refs_def have all_ref_present: "\<forall>r\<in>set refs. Ref.present h r" by simp
   3.474 +  from init refs_of'_ps Node this have heap_eq: "\<forall>refs. refs_of' h ps refs \<longrightarrow> (\<forall>ref\<in>set refs. Ref.present h ref \<and> Ref.present h2 ref \<and> Ref.get h ref = Ref.get h2 ref)"
   3.475 +    by (fastsimp elim!: crel_ref dest: refs_of'_is_fun)
   3.476    from refs_of'_invariant[OF refs_of'_ps this] have "refs_of' h2 ps refs" .
   3.477    with init have refs_of_p: "refs_of' h2 p (p#refs)"
   3.478 -    by (auto elim!: crel_Ref_new simp add: refs_of'_def')
   3.479 +    by (auto elim!: crel_ref simp add: refs_of'_def')
   3.480    with init all_ref_present have q_is_new: "q \<notin> set (p#refs)"
   3.481 -    by (auto elim!: crel_Ref_new intro!: noteq_refsI)
   3.482 +    by (auto elim!: crel_ref intro!: Ref.noteq_I)
   3.483    from refs_of_p refs_of_q q_is_new have a3: "\<forall>qrs prs. refs_of' h2 q qrs \<and> refs_of' h2 p prs \<longrightarrow> set prs \<inter> set qrs = {}"
   3.484      by (fastsimp simp only: set.simps dest: refs_of'_is_fun)
   3.485 -  from rev'_invariant [OF crel_rev' a1 a2 a3] have "list_of h3 (get_ref v h3) (List.rev xs)" 
   3.486 +  from rev'_invariant [OF crel_rev' a1 a2 a3] have "list_of h3 (Ref.get h3 v) (List.rev xs)" 
   3.487      unfolding list_of'_def by auto
   3.488    with lookup show ?thesis
   3.489      by (auto elim: crel_lookup)
   3.490 @@ -734,32 +734,32 @@
   3.491  lemma merge_induct2:
   3.492    assumes "list_of' h (p::'a::{heap, ord} node ref) xs"
   3.493    assumes "list_of' h q ys"
   3.494 -  assumes "\<And> ys p q. \<lbrakk> list_of' h p []; list_of' h q ys; get_ref p h = Empty \<rbrakk> \<Longrightarrow> P p q [] ys"
   3.495 -  assumes "\<And> x xs' p q pn. \<lbrakk> list_of' h p (x#xs'); list_of' h q []; get_ref p h = Node x pn; get_ref q h = Empty \<rbrakk> \<Longrightarrow> P p q (x#xs') []"
   3.496 +  assumes "\<And> ys p q. \<lbrakk> list_of' h p []; list_of' h q ys; Ref.get h p = Empty \<rbrakk> \<Longrightarrow> P p q [] ys"
   3.497 +  assumes "\<And> x xs' p q pn. \<lbrakk> list_of' h p (x#xs'); list_of' h q []; Ref.get h p = Node x pn; Ref.get h q = Empty \<rbrakk> \<Longrightarrow> P p q (x#xs') []"
   3.498    assumes "\<And> x xs' y ys' p q pn qn.
   3.499 -  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys'); get_ref p h = Node x pn; get_ref q h = Node y qn;
   3.500 +  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys'); Ref.get h p = Node x pn; Ref.get h q = Node y qn;
   3.501    x \<le> y; P pn q xs' (y#ys') \<rbrakk>
   3.502    \<Longrightarrow> P p q (x#xs') (y#ys')"
   3.503    assumes "\<And> x xs' y ys' p q pn qn.
   3.504 -  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys'); get_ref p h = Node x pn; get_ref q h = Node y qn;
   3.505 +  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys'); Ref.get h p = Node x pn; Ref.get h q = Node y qn;
   3.506    \<not> x \<le> y; P p qn (x#xs') ys'\<rbrakk>
   3.507    \<Longrightarrow> P p q (x#xs') (y#ys')"
   3.508    shows "P p q xs ys"
   3.509  using assms(1-2)
   3.510  proof (induct xs ys arbitrary: p q rule: Lmerge.induct)
   3.511    case (2 ys)
   3.512 -  from 2(1) have "get_ref p h = Empty" unfolding list_of'_def by simp
   3.513 +  from 2(1) have "Ref.get h p = Empty" unfolding list_of'_def by simp
   3.514    with 2(1-2) assms(3) show ?case by blast
   3.515  next
   3.516    case (3 x xs')
   3.517 -  from 3(1) obtain pn where Node: "get_ref p h = Node x pn" by (rule list_of'_Cons)
   3.518 -  from 3(2) have "get_ref q h = Empty" unfolding list_of'_def by simp
   3.519 +  from 3(1) obtain pn where Node: "Ref.get h p = Node x pn" by (rule list_of'_Cons)
   3.520 +  from 3(2) have "Ref.get h q = Empty" unfolding list_of'_def by simp
   3.521    with Node 3(1-2) assms(4) show ?case by blast
   3.522  next
   3.523    case (1 x xs' y ys')
   3.524 -  from 1(3) obtain pn where pNode:"get_ref p h = Node x pn"
   3.525 +  from 1(3) obtain pn where pNode:"Ref.get h p = Node x pn"
   3.526      and list_of'_pn: "list_of' h pn xs'" by (rule list_of'_Cons)
   3.527 -  from 1(4) obtain qn where qNode:"get_ref q h = Node y qn"
   3.528 +  from 1(4) obtain qn where qNode:"Ref.get h q = Node y qn"
   3.529      and  list_of'_qn: "list_of' h qn ys'" by (rule list_of'_Cons)
   3.530    show ?case
   3.531    proof (cases "x \<le> y")
   3.532 @@ -780,15 +780,15 @@
   3.533  assumes  "list_of' h p xs"
   3.534  assumes  "list_of' h q ys"
   3.535  assumes  "crel (merge p q) h h' r"
   3.536 -assumes  "\<And> ys p q. \<lbrakk> list_of' h p []; list_of' h q ys; get_ref p h = Empty \<rbrakk> \<Longrightarrow> P p q h h q [] ys"
   3.537 -assumes  "\<And> x xs' p q pn. \<lbrakk> list_of' h p (x#xs'); list_of' h q []; get_ref p h = Node x pn; get_ref q h = Empty \<rbrakk> \<Longrightarrow> P p q h h p (x#xs') []"
   3.538 +assumes  "\<And> ys p q. \<lbrakk> list_of' h p []; list_of' h q ys; Ref.get h p = Empty \<rbrakk> \<Longrightarrow> P p q h h q [] ys"
   3.539 +assumes  "\<And> x xs' p q pn. \<lbrakk> list_of' h p (x#xs'); list_of' h q []; Ref.get h p = Node x pn; Ref.get h q = Empty \<rbrakk> \<Longrightarrow> P p q h h p (x#xs') []"
   3.540  assumes  "\<And> x xs' y ys' p q pn qn h1 r1 h'.
   3.541 -  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys');get_ref p h = Node x pn; get_ref q h = Node y qn;
   3.542 -  x \<le> y; crel (merge pn q) h h1 r1 ; P pn q h h1 r1 xs' (y#ys'); h' = set_ref p (Node x r1) h1 \<rbrakk>
   3.543 +  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys');Ref.get h p = Node x pn; Ref.get h q = Node y qn;
   3.544 +  x \<le> y; crel (merge pn q) h h1 r1 ; P pn q h h1 r1 xs' (y#ys'); h' = Ref.set p (Node x r1) h1 \<rbrakk>
   3.545    \<Longrightarrow> P p q h h' p (x#xs') (y#ys')"
   3.546  assumes "\<And> x xs' y ys' p q pn qn h1 r1 h'.
   3.547 -  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys'); get_ref p h = Node x pn; get_ref q h = Node y qn;
   3.548 -  \<not> x \<le> y; crel (merge p qn) h h1 r1; P p qn h h1 r1 (x#xs') ys'; h' = set_ref q (Node y r1) h1 \<rbrakk>
   3.549 +  \<lbrakk> list_of' h p (x#xs'); list_of' h q (y#ys'); Ref.get h p = Node x pn; Ref.get h q = Node y qn;
   3.550 +  \<not> x \<le> y; crel (merge p qn) h h1 r1; P p qn h h1 r1 (x#xs') ys'; h' = Ref.set q (Node y r1) h1 \<rbrakk>
   3.551    \<Longrightarrow> P p q h h' q (x#xs') (y#ys')"
   3.552  shows "P p q h h' r xs ys"
   3.553  using assms(3)
   3.554 @@ -808,7 +808,7 @@
   3.555    case (3 x xs' y ys' p q pn qn)
   3.556    from 3(3-5) 3(7) obtain h1 r1 where
   3.557      1: "crel (merge pn q) h h1 r1" 
   3.558 -    and 2: "h' = set_ref p (Node x r1) h1 \<and> r = p"
   3.559 +    and 2: "h' = Ref.set p (Node x r1) h1 \<and> r = p"
   3.560      unfolding merge_simps[of p q]
   3.561      by (auto elim!: crel_lookup crelE crel_return crel_if crel_update)
   3.562    from 3(6)[OF 1] assms(6) [OF 3(1-5)] 1 2 show ?case by simp
   3.563 @@ -816,7 +816,7 @@
   3.564    case (4 x xs' y ys' p q pn qn)
   3.565    from 4(3-5) 4(7) obtain h1 r1 where
   3.566      1: "crel (merge p qn) h h1 r1" 
   3.567 -    and 2: "h' = set_ref q (Node y r1) h1 \<and> r = q"
   3.568 +    and 2: "h' = Ref.set q (Node y r1) h1 \<and> r = q"
   3.569      unfolding merge_simps[of p q]
   3.570      by (auto elim!: crel_lookup crelE crel_return crel_if crel_update)
   3.571    from 4(6)[OF 1] assms(7) [OF 4(1-5)] 1 2 show ?case by simp
   3.572 @@ -834,7 +834,7 @@
   3.573    assumes "crel (merge p q) h h' r'"
   3.574    assumes "set xs \<inter> set ys = {}"
   3.575    assumes "r \<notin> set xs \<union> set ys"
   3.576 -  shows "get_ref r h = get_ref r h'"
   3.577 +  shows "Ref.get h r = Ref.get h' r"
   3.578  proof -
   3.579    from assms(1) obtain ps where ps_def: "list_of' h p ps" by (rule refs_of'_list_of')
   3.580    from assms(2) obtain qs where qs_def: "list_of' h q qs" by (rule refs_of'_list_of')
   3.581 @@ -853,7 +853,8 @@
   3.582      from pnrs_def 3(12) have "r \<noteq> p" by auto
   3.583      with 3(11) 3(12) pnrs_def refs_of'_distinct[OF 3(9)] have p_in: "p \<notin> set pnrs \<union> set ys" by auto
   3.584      from 3(11) pnrs_def have no_inter: "set pnrs \<inter> set ys = {}" by auto
   3.585 -    from 3(7)[OF refs_of'_pn 3(10) this p_in] 3(3) have p_is_Node: "get_ref p h1 = Node x pn" by simp
   3.586 +    from 3(7)[OF refs_of'_pn 3(10) this p_in] 3(3) have p_is_Node: "Ref.get h1 p = Node x pn"
   3.587 +      by simp
   3.588      from 3(7)[OF refs_of'_pn 3(10) no_inter r_in] 3(8) `r \<noteq> p` show ?case
   3.589        by simp
   3.590    next
   3.591 @@ -866,7 +867,7 @@
   3.592      from qnrs_def 4(12) have "r \<noteq> q" by auto
   3.593      with 4(11) 4(12) qnrs_def refs_of'_distinct[OF 4(10)] have q_in: "q \<notin> set xs \<union> set qnrs" by auto
   3.594      from 4(11) qnrs_def have no_inter: "set xs \<inter> set qnrs = {}" by auto
   3.595 -    from 4(7)[OF 4(9) refs_of'_qn this q_in] 4(4) have q_is_Node: "get_ref q h1 = Node y qn" by simp
   3.596 +    from 4(7)[OF 4(9) refs_of'_qn this q_in] 4(4) have q_is_Node: "Ref.get h1 q = Node y qn" by simp
   3.597      from 4(7)[OF 4(9) refs_of'_qn no_inter r_in] 4(8) `r \<noteq> q` show ?case
   3.598        by simp
   3.599    qed
   3.600 @@ -899,7 +900,7 @@
   3.601        by (rule refs_of'_Node)
   3.602      from 3(10) 3(9) 3(11) pnrs_def refs_of'_distinct[OF 3(9)] have p_in: "p \<notin> set pnrs \<union> set ys" by auto
   3.603      from 3(11) pnrs_def have no_inter: "set pnrs \<inter> set ys = {}" by auto
   3.604 -    from merge_unchanged[OF refs_of'_pn 3(10) 3(6) no_inter p_in] have p_stays: "get_ref p h1 = get_ref p h" ..
   3.605 +    from merge_unchanged[OF refs_of'_pn 3(10) 3(6) no_inter p_in] have p_stays: "Ref.get h1 p = Ref.get h p" ..
   3.606      from 3 p_stays obtain r1s
   3.607        where rs_def: "rs = p#r1s" and refs_of'_r1:"refs_of' h1 r1 r1s"
   3.608        by (auto elim: refs_of'_set_next_ref)
   3.609 @@ -912,7 +913,7 @@
   3.610        by (rule refs_of'_Node)
   3.611      from 4(10) 4(9) 4(11) qnrs_def refs_of'_distinct[OF 4(10)] have q_in: "q \<notin> set xs \<union> set qnrs" by auto
   3.612      from 4(11) qnrs_def have no_inter: "set xs \<inter> set qnrs = {}" by auto
   3.613 -    from merge_unchanged[OF 4(9) refs_of'_qn 4(6) no_inter q_in] have q_stays: "get_ref q h1 = get_ref q h" ..
   3.614 +    from merge_unchanged[OF 4(9) refs_of'_qn 4(6) no_inter q_in] have q_stays: "Ref.get h1 q = Ref.get h q" ..
   3.615      from 4 q_stays obtain r1s
   3.616        where rs_def: "rs = q#r1s" and refs_of'_r1:"refs_of' h1 r1 r1s"
   3.617        by (auto elim: refs_of'_set_next_ref)
   3.618 @@ -945,7 +946,7 @@
   3.619    from prs_def qrs_def 3(9) pnrs_def have no_inter: "set pnrs \<inter> set qrs = {}" by fastsimp
   3.620    from no_inter refs_of'_pn qrs_def have no_inter2: "\<forall>qrs prs. refs_of' h q qrs \<and> refs_of' h pn prs \<longrightarrow> set prs \<inter> set qrs = {}"
   3.621      by (fastsimp dest: refs_of'_is_fun)
   3.622 -  from merge_unchanged[OF refs_of'_pn qrs_def 3(6) no_inter p_in] have p_stays: "get_ref p h1 = get_ref p h" ..
   3.623 +  from merge_unchanged[OF refs_of'_pn qrs_def 3(6) no_inter p_in] have p_stays: "Ref.get h1 p = Ref.get h p" ..
   3.624    from 3(7)[OF no_inter2] obtain rs where rs_def: "refs_of' h1 r1 rs" by (rule list_of'_refs_of')
   3.625    from refs_of'_merge[OF refs_of'_pn qrs_def 3(6) no_inter this] p_in have p_rs: "p \<notin> set rs" by auto
   3.626    with 3(7)[OF no_inter2] 3(1-5) 3(8) p_rs rs_def p_stays
   3.627 @@ -962,7 +963,7 @@
   3.628    from prs_def qrs_def 4(9) qnrs_def have no_inter: "set prs \<inter> set qnrs = {}" by fastsimp
   3.629    from no_inter refs_of'_qn prs_def have no_inter2: "\<forall>qrs prs. refs_of' h qn qrs \<and> refs_of' h p prs \<longrightarrow> set prs \<inter> set qrs = {}"
   3.630      by (fastsimp dest: refs_of'_is_fun)
   3.631 -  from merge_unchanged[OF prs_def refs_of'_qn 4(6) no_inter q_in] have q_stays: "get_ref q h1 = get_ref q h" ..
   3.632 +  from merge_unchanged[OF prs_def refs_of'_qn 4(6) no_inter q_in] have q_stays: "Ref.get h1 q = Ref.get h q" ..
   3.633    from 4(7)[OF no_inter2] obtain rs where rs_def: "refs_of' h1 r1 rs" by (rule list_of'_refs_of')
   3.634    from refs_of'_merge[OF prs_def refs_of'_qn 4(6) no_inter this] q_in have q_rs: "q \<notin> set rs" by auto
   3.635    with 4(7)[OF no_inter2] 4(1-5) 4(8) q_rs rs_def q_stays
   3.636 @@ -984,8 +985,8 @@
   3.637    (do
   3.638      ll_xs \<leftarrow> make_llist (filter (%n. n mod 2 = 0) [2..8]);
   3.639      ll_ys \<leftarrow> make_llist (filter (%n. n mod 2 = 1) [5..11]);
   3.640 -    r \<leftarrow> Ref.new ll_xs;
   3.641 -    q \<leftarrow> Ref.new ll_ys;
   3.642 +    r \<leftarrow> ref ll_xs;
   3.643 +    q \<leftarrow> ref ll_ys;
   3.644      p \<leftarrow> merge r q;
   3.645      ll_zs \<leftarrow> !p;
   3.646      zs \<leftarrow> traverse ll_zs;
   3.647 @@ -998,4 +999,4 @@
   3.648  ML {* @{code test_2} () *}
   3.649  ML {* @{code test_3} () *}
   3.650  
   3.651 -end
   3.652 \ No newline at end of file
   3.653 +end