Update HOLLightCompat
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Wed, 13 Jul 2011 00:43:07 +0900
changeset 446405be84619e4d4
parent 44639 fea3ed6951e3
child 44659 e84239a47f32
child 44662 a9242e34d711
Update HOLLightCompat
src/HOL/Import/HOLLightCompat.thy
     1.1 --- a/src/HOL/Import/HOLLightCompat.thy	Wed Jul 13 00:29:33 2011 +0900
     1.2 +++ b/src/HOL/Import/HOLLightCompat.thy	Wed Jul 13 00:43:07 2011 +0900
     1.3 @@ -1,38 +1,139 @@
     1.4  (*  Title:      HOL/Import/HOLLightCompat.thy
     1.5      Author:     Steven Obua and Sebastian Skalberg, TU Muenchen
     1.6 +    Author:     Cezary Kaliszyk
     1.7  *)
     1.8  
     1.9 -theory HOLLightCompat imports HOL4Setup HOL4Compat Divides Primes Real begin
    1.10 +theory HOLLightCompat
    1.11 +imports Main Fact Parity "~~/src/HOL/Library/Infinite_Set"
    1.12 +  HOLLightList HOLLightReal HOLLightInt HOL4Setup
    1.13 +begin
    1.14  
    1.15 -lemma light_imp_def: "(t1 --> t2) = ((t1 & t2) = t1)"
    1.16 -  by auto;
    1.17 +(* list *)
    1.18 +lemmas [hol4rew] = list_el_def member_def list_mem_def
    1.19 +(* int *)
    1.20 +lemmas [hol4rew] = int_coprime.simps int_gcd.simps hl_mod_def hl_div_def int_mod_def eqeq_def
    1.21 +(* real *)
    1.22 +lemma [hol4rew]:
    1.23 +  "real (0::nat) = 0" "real (1::nat) = 1" "real (2::nat) = 2"
    1.24 +  by simp_all
    1.25  
    1.26 -lemma comb_rule: "[| P1 = P2 ; Q1 = Q2 |] ==> P1 Q1 = P2 Q2"
    1.27 +lemma one:
    1.28 +  "\<forall>v. v = ()"
    1.29    by simp
    1.30  
    1.31 -lemma light_and_def: "(t1 & t2) = ((%f. f t1 t2::bool) = (%f. f True True))"
    1.32 -proof auto
    1.33 -  assume a: "(%f. f t1 t2::bool) = (%f. f True True)"
    1.34 -  have b: "(%(x::bool) (y::bool). x) = (%x y. x)" ..
    1.35 -  with a
    1.36 -  have "t1 = True"
    1.37 -    by (rule comb_rule)
    1.38 -  thus t1
    1.39 -    by simp
    1.40 -next
    1.41 -  assume a: "(%f. f t1 t2::bool) = (%f. f True True)"
    1.42 -  have b: "(%(x::bool) (y::bool). y) = (%x y. y)" ..
    1.43 -  with a
    1.44 -  have "t2 = True"
    1.45 -    by (rule comb_rule)
    1.46 -  thus t2
    1.47 -    by simp
    1.48 -qed
    1.49 +lemma num_Axiom:
    1.50 +  "\<forall>e f. \<exists>!fn. fn 0 = e \<and> (\<forall>n. fn (Suc n) = f (fn n) n)"
    1.51 +  apply (intro allI)
    1.52 +  apply (rule_tac a="nat_rec e (%n e. f e n)" in ex1I)
    1.53 +  apply auto
    1.54 +  apply (simp add: fun_eq_iff)
    1.55 +  apply (intro allI)
    1.56 +  apply (induct_tac xa)
    1.57 +  apply simp_all
    1.58 +  done
    1.59  
    1.60 -definition Pred :: "nat \<Rightarrow> nat" where
    1.61 -   "Pred n \<equiv> n - (Suc 0)"
    1.62 +lemma SUC_INJ:
    1.63 +  "\<forall>m n. Suc m = Suc n \<longleftrightarrow> m = n"
    1.64 +  by auto
    1.65  
    1.66 -lemma Pred_altdef: "Pred = (SOME PRE. PRE 0 = 0 & (ALL n. PRE (Suc n) = n))"
    1.67 +lemma PAIR:
    1.68 +  "(fst x, snd x) = x"
    1.69 +  by simp
    1.70 +
    1.71 +lemma EXISTS_UNIQUE_THM:
    1.72 +  "(Ex1 P) = (Ex P & (\<forall>x y. P x & P y --> (x = y)))"
    1.73 +  by auto
    1.74 +
    1.75 +lemma DEF__star_:
    1.76 +  "op * = (SOME mult. (\<forall>n. mult 0 n = 0) \<and> (\<forall>m n. mult (Suc m) n = mult m n + n))"
    1.77 +  apply (rule some_equality[symmetric])
    1.78 +  apply auto
    1.79 +  apply (rule ext)+
    1.80 +  apply (induct_tac x)
    1.81 +  apply auto
    1.82 +  done
    1.83 +
    1.84 +lemma DEF__slash__backslash_:
    1.85 +  "(t1 \<and> t2) = ((\<lambda>f. f t1 t2 :: bool) = (\<lambda>f. f True True))"
    1.86 +  unfolding fun_eq_iff
    1.87 +  by (intro iffI, simp_all) (erule allE[of _ "(%a b. a \<and> b)"], simp)
    1.88 +
    1.89 +lemma DEF__lessthan__equal_:
    1.90 +  "op \<le> = (SOME u. (\<forall>m. u m 0 = (m = 0)) \<and> (\<forall>m n. u m (Suc n) = (m = Suc n \<or> u m n)))"
    1.91 +  apply (rule some_equality[symmetric])
    1.92 +  apply auto[1]
    1.93 +  apply (simp add: fun_eq_iff)
    1.94 +  apply (intro allI)
    1.95 +  apply (induct_tac xa)
    1.96 +  apply auto
    1.97 +  done
    1.98 +
    1.99 +lemma DEF__lessthan_:
   1.100 +  "op < = (SOME u. (\<forall>m. u m 0 = False) \<and> (\<forall>m n. u m (Suc n) = (m = n \<or> u m n)))"
   1.101 +  apply (rule some_equality[symmetric])
   1.102 +  apply auto[1]
   1.103 +  apply (simp add: fun_eq_iff)
   1.104 +  apply (intro allI)
   1.105 +  apply (induct_tac xa)
   1.106 +  apply auto
   1.107 +  done
   1.108 +
   1.109 +lemma DEF__greaterthan__equal_:
   1.110 +  "(op \<ge>) = (%u ua. ua \<le> u)"
   1.111 +  by (simp)
   1.112 +
   1.113 +lemma DEF__greaterthan_:
   1.114 +  "(op >) = (%u ua. ua < u)"
   1.115 +  by (simp)
   1.116 +
   1.117 +lemma DEF__equal__equal__greaterthan_:
   1.118 +  "(t1 \<longrightarrow> t2) = ((t1 \<and> t2) = t1)"
   1.119 +  by auto
   1.120 +
   1.121 +lemma DEF_WF:
   1.122 +  "wfP = (\<lambda>u. \<forall>P. (\<exists>x. P x) \<longrightarrow> (\<exists>x. P x \<and> (\<forall>y. u y x \<longrightarrow> \<not> P y)))"
   1.123 +  unfolding fun_eq_iff
   1.124 +  apply (intro allI, rule, intro allI impI, elim exE)
   1.125 +  apply (drule_tac wfE_min[to_pred, unfolded mem_def])
   1.126 +  apply assumption
   1.127 +  prefer 2
   1.128 +  apply assumption
   1.129 +  apply auto[1]
   1.130 +  apply (intro wfI_min[to_pred, unfolded mem_def])
   1.131 +  apply (drule_tac x="Q" in spec)
   1.132 +  apply auto
   1.133 +  apply (rule_tac x="xb" in bexI)
   1.134 +  apply (auto simp add: mem_def)
   1.135 +  done
   1.136 +
   1.137 +lemma DEF_UNIV: "UNIV = (%x. True)"
   1.138 +  by (auto simp add: mem_def)
   1.139 +
   1.140 +lemma DEF_UNIONS:
   1.141 +  "Sup = (\<lambda>u. {ua. \<exists>x. (\<exists>ua. ua \<in> u \<and> x \<in> ua) \<and> ua = x})"
   1.142 +  by (simp add: fun_eq_iff Collect_def)
   1.143 +     (metis UnionE complete_lattice_class.Sup_upper mem_def predicate1D)
   1.144 +
   1.145 +lemma DEF_UNION:
   1.146 +  "op \<union> = (\<lambda>u ua. {ub. \<exists>x. (x \<in> u \<or> x \<in> ua) \<and> ub = x})"
   1.147 +  by (auto simp add: mem_def fun_eq_iff Collect_def)
   1.148 +
   1.149 +lemma DEF_SUBSET: "op \<subseteq> = (\<lambda>u ua. \<forall>x. x \<in> u \<longrightarrow> x \<in> ua)"
   1.150 +  by (metis set_rev_mp subsetI)
   1.151 +
   1.152 +lemma DEF_SND:
   1.153 +  "snd = (\<lambda>p. SOME x. EX y. p = (y, x))"
   1.154 +  unfolding fun_eq_iff
   1.155 +  by (rule someI2) (auto intro: snd_conv[symmetric] someI2)
   1.156 +
   1.157 +definition [simp, hol4rew]: "SETSPEC x P y \<longleftrightarrow> P & x = y"
   1.158 +
   1.159 +lemma DEF_PSUBSET: "op \<subset> = (\<lambda>u ua. u \<subseteq> ua & u \<noteq> ua)"
   1.160 +  by (auto simp add: mem_def fun_eq_iff)
   1.161 +
   1.162 +definition [hol4rew]: "Pred n = n - (Suc 0)"
   1.163 +
   1.164 +lemma DEF_PRE: "Pred = (SOME PRE. PRE 0 = 0 & (\<forall>n. PRE (Suc n) = n))"
   1.165    apply (rule some_equality[symmetric])
   1.166    apply (simp add: Pred_def)
   1.167    apply (rule ext)
   1.168 @@ -40,24 +141,198 @@
   1.169    apply (auto simp add: Pred_def)
   1.170    done
   1.171  
   1.172 -lemma NUMERAL_rew[hol4rew]: "NUMERAL x = x" by (simp add: NUMERAL_def)
   1.173 +lemma DEF_ONE_ONE:
   1.174 +  "inj = (\<lambda>u. \<forall>x1 x2. u x1 = u x2 \<longrightarrow> x1 = x2)"
   1.175 +  by (simp add: inj_on_def)
   1.176  
   1.177 -lemma REP_ABS_PAIR: "\<forall> x y. Rep_Prod (Abs_Prod (Pair_Rep x y)) = Pair_Rep x y"
   1.178 -  apply (subst Abs_Prod_inverse)
   1.179 -  apply (auto simp add: Prod_def)
   1.180 +definition ODD'[hol4rew]: "(ODD :: nat \<Rightarrow> bool) = odd"
   1.181 +
   1.182 +lemma DEF_ODD:
   1.183 +  "odd = (SOME ODD. ODD 0 = False \<and> (\<forall>n. ODD (Suc n) = (\<not> ODD n)))"
   1.184 +  apply (rule some_equality[symmetric])
   1.185 +  apply simp
   1.186 +  unfolding fun_eq_iff
   1.187 +  apply (intro allI)
   1.188 +  apply (induct_tac x)
   1.189 +  apply simp_all
   1.190    done
   1.191  
   1.192 -lemma fst_altdef: "fst = (%p. SOME x. EX y. p = (x, y))"
   1.193 -  apply (rule ext, rule someI2)
   1.194 -  apply (auto intro: fst_conv[symmetric])
   1.195 +definition [hol4rew, simp]: "NUMERAL (x :: nat) = x"
   1.196 +
   1.197 +lemma DEF_MOD:
   1.198 +  "op mod = (SOME r. \<forall>m n. if n = (0 :: nat) then m div n = 0 \<and>
   1.199 +     r m n = m else m = m div n * n + r m n \<and> r m n < n)"
   1.200 +  apply (rule some_equality[symmetric])
   1.201 +  apply (auto simp add: fun_eq_iff)
   1.202 +  apply (case_tac "xa = 0")
   1.203 +  apply auto
   1.204 +  apply (drule_tac x="x" in spec)
   1.205 +  apply (drule_tac x="xa" in spec)
   1.206 +  apply auto
   1.207 +  by (metis mod_less mod_mult_self2 nat_add_commute nat_mult_commute)
   1.208 +
   1.209 +definition "MEASURE = (%u x y. (u x :: nat) < u y)"
   1.210 +
   1.211 +lemma [hol4rew]:
   1.212 +  "MEASURE u = (%a b. measure u (a, b))"
   1.213 +  unfolding MEASURE_def measure_def fun_eq_iff inv_image_def Collect_def
   1.214 +  by simp
   1.215 +
   1.216 +definition
   1.217 +  "LET f s = f s"
   1.218 +
   1.219 +lemma [hol4rew]:
   1.220 +  "LET f s = Let s f"
   1.221 +  by (simp add: LET_def Let_def)
   1.222 +
   1.223 +lemma DEF_INTERS:
   1.224 +  "Inter = (\<lambda>u. {ua. \<exists>x. (\<forall>ua. ua \<in> u \<longrightarrow> x \<in> ua) \<and> ua = x})"
   1.225 +  by (auto simp add: fun_eq_iff mem_def Collect_def)
   1.226 +     (metis InterD InterI mem_def)+
   1.227 +
   1.228 +lemma DEF_INTER:
   1.229 +  "op \<inter> = (\<lambda>u ua. {ub. \<exists>x. (x \<in> u \<and> x \<in> ua) \<and> ub = x})"
   1.230 +  by (auto simp add: mem_def fun_eq_iff Collect_def)
   1.231 +
   1.232 +lemma DEF_INSERT:
   1.233 +  "insert = (%u ua y. y \<in> ua | y = u)"
   1.234 +  unfolding mem_def fun_eq_iff insert_code by blast
   1.235 +
   1.236 +lemma DEF_IMAGE:
   1.237 +  "op ` = (\<lambda>u ua. {ub. \<exists>y. (\<exists>x. x \<in> ua \<and> y = u x) \<and> ub = y})"
   1.238 +  by (simp add: fun_eq_iff image_def Bex_def)
   1.239 +
   1.240 +lemma DEF_GSPEC:
   1.241 +  "Collect = (\<lambda>u. u)"
   1.242 +  by (simp add: Collect_def ext)
   1.243 +
   1.244 +lemma DEF_GEQ:
   1.245 +  "(op =) = (op =)"
   1.246 +  by simp
   1.247 +
   1.248 +lemma DEF_GABS:
   1.249 +  "Eps = Eps"
   1.250 +  by simp
   1.251 +
   1.252 +lemma DEF_FST:
   1.253 +  "fst = (%p. SOME x. EX y. p = (x, y))"
   1.254 +  unfolding fun_eq_iff
   1.255 +  by (rule someI2) (auto intro: fst_conv[symmetric] someI2)
   1.256 +
   1.257 +lemma DEF_FINITE:
   1.258 +  "finite = (\<lambda>a. \<forall>FP. (\<forall>a. a = {} \<or> (\<exists>x s. a = insert x s \<and> FP s) \<longrightarrow> FP a) \<longrightarrow> FP a)"
   1.259 +  unfolding fun_eq_iff
   1.260 +  apply (intro allI iffI impI)
   1.261 +  apply (erule finite_induct)
   1.262 +  apply auto[2]
   1.263 +  apply (drule_tac x="finite" in spec)
   1.264 +  apply auto
   1.265 +  apply (metis Collect_def Collect_empty_eq finite.emptyI)
   1.266 +  by (metis (no_types) finite.insertI predicate1I sup.commute sup_absorb1)
   1.267 +
   1.268 +lemma DEF_FACT:
   1.269 +  "fact = (SOME FACT. FACT 0 = 1 & (\<forall>n. FACT (Suc n) = Suc n * FACT n))"
   1.270 +  apply (rule some_equality[symmetric])
   1.271 +  apply (simp_all)
   1.272 +  unfolding fun_eq_iff
   1.273 +  apply (intro allI)
   1.274 +  apply (induct_tac x)
   1.275 +  apply simp_all
   1.276    done
   1.277  
   1.278 -lemma snd_altdef: "snd = (%p. SOME x. EX y. p = (y, x))"
   1.279 -  apply (rule ext, rule someI2)
   1.280 -  apply (auto intro: snd_conv[symmetric])
   1.281 +lemma DEF_EXP:
   1.282 +  "power = (SOME EXP. (\<forall>m. EXP m 0 = 1) \<and> (\<forall>m n. EXP m (Suc n) = m * EXP m n))"
   1.283 +  apply (rule some_equality[symmetric])
   1.284 +  apply (simp_all)
   1.285 +  unfolding fun_eq_iff
   1.286 +  apply (intro allI)
   1.287 +  apply (induct_tac xa)
   1.288 +  apply simp_all
   1.289    done
   1.290  
   1.291 -lemma add_altdef: "op + = (SOME add. (ALL n. add 0 n = n) & (ALL m n. add (Suc m) n = Suc (add m n)))"
   1.292 +lemma DEF_EVEN:
   1.293 +  "even = (SOME EVEN. EVEN 0 = True \<and> (\<forall>n. EVEN (Suc n) = (\<not> EVEN n)))"
   1.294 +  apply (rule some_equality[symmetric])
   1.295 +  apply simp
   1.296 +  unfolding fun_eq_iff
   1.297 +  apply (intro allI)
   1.298 +  apply (induct_tac x)
   1.299 +  apply simp_all
   1.300 +  done
   1.301 +
   1.302 +lemma DEF_EMPTY: "{} = (%x. False)"
   1.303 +  unfolding fun_eq_iff empty_def
   1.304 +  by auto
   1.305 +
   1.306 +lemma DEF_DIV:
   1.307 +  "op div = (SOME q. \<exists>r. \<forall>m n. if n = (0 :: nat) then q m n = 0 \<and> r m n = m
   1.308 +     else m = q m n * n + r m n \<and> r m n < n)"
   1.309 +  apply (rule some_equality[symmetric])
   1.310 +  apply (rule_tac x="op mod" in exI)
   1.311 +  apply (auto simp add: fun_eq_iff)
   1.312 +  apply (case_tac "xa = 0")
   1.313 +  apply auto
   1.314 +  apply (drule_tac x="x" in spec)
   1.315 +  apply (drule_tac x="xa" in spec)
   1.316 +  apply auto
   1.317 +  by (metis div_mult_self2 gr_implies_not0 mod_div_trivial mod_less
   1.318 +      nat_add_commute nat_mult_commute plus_nat.add_0)
   1.319 +
   1.320 +definition [hol4rew]: "DISJOINT a b \<longleftrightarrow> a \<inter> b = {}"
   1.321 +
   1.322 +lemma DEF_DISJOINT:
   1.323 +  "DISJOINT = (%u ua. u \<inter> ua = {})"
   1.324 +  by (auto simp add: DISJOINT_def_raw)
   1.325 +
   1.326 +lemma DEF_DIFF:
   1.327 +  "op - = (\<lambda>u ua. {ub. \<exists>x. (x \<in> u \<and> x \<notin> ua) \<and> ub = x})"
   1.328 +  by (simp add: fun_eq_iff Collect_def)
   1.329 +     (metis DiffE DiffI mem_def)
   1.330 +
   1.331 +definition [hol4rew]: "DELETE s e = s - {e}"
   1.332 +
   1.333 +lemma DEF_DELETE:
   1.334 +  "DELETE = (\<lambda>u ua. {ub. \<exists>y. (y \<in> u \<and> y \<noteq> ua) \<and> ub = y})"
   1.335 +  by (auto simp add: DELETE_def_raw)
   1.336 +
   1.337 +lemma COND_DEF:
   1.338 +  "(if b then t else f) = (SOME x. (b = True \<longrightarrow> x = t) \<and> (b = False \<longrightarrow> x = f))"
   1.339 +  by auto
   1.340 +
   1.341 +definition [simp]: "NUMERAL_BIT1 n = n + (n + Suc 0)"
   1.342 +
   1.343 +lemma BIT1_DEF:
   1.344 +  "NUMERAL_BIT1 = (%u. Suc (2 * u))"
   1.345 +  by (auto)
   1.346 +
   1.347 +definition [simp]: "NUMERAL_BIT0 (n :: nat) = n + n"
   1.348 +
   1.349 +lemma BIT0_DEF:
   1.350 +  "NUMERAL_BIT0 = (SOME BIT0. BIT0 0 = 0 \<and> (\<forall>n. BIT0 (Suc n) = Suc (Suc (BIT0 n))))"
   1.351 +  apply (rule some_equality[symmetric])
   1.352 +  apply auto
   1.353 +  apply (rule ext)
   1.354 +  apply (induct_tac x)
   1.355 +  apply auto
   1.356 +  done
   1.357 +
   1.358 +lemma [hol4rew]:
   1.359 +  "NUMERAL_BIT0 n = 2 * n"
   1.360 +  "NUMERAL_BIT1 n = 2 * n + 1"
   1.361 +  "2 * 0 = (0 :: nat)"
   1.362 +  "2 * 1 = (2 :: nat)"
   1.363 +  "0 + 1 = (1 :: nat)"
   1.364 +  by simp_all
   1.365 +
   1.366 +lemma DEF_MINUS: "op - = (SOME sub. (\<forall>m. sub m 0 = m) & (\<forall>m n. sub m (Suc n) = sub m n - Suc 0))"
   1.367 +  apply (rule some_equality[symmetric])
   1.368 +  apply auto
   1.369 +  apply (rule ext)+
   1.370 +  apply (induct_tac xa)
   1.371 +  apply auto
   1.372 +  done
   1.373 +
   1.374 +lemma DEF_PLUS: "op + = (SOME add. (\<forall>n. add 0 n = n) & (\<forall>m n. add (Suc m) n = Suc (add m n)))"
   1.375    apply (rule some_equality[symmetric])
   1.376    apply auto
   1.377    apply (rule ext)+
   1.378 @@ -65,39 +340,24 @@
   1.379    apply auto
   1.380    done
   1.381  
   1.382 -lemma mult_altdef: "op * = (SOME mult. (ALL n. mult 0 n = 0) & (ALL m n. mult (Suc m) n = mult m n + n))"
   1.383 -  apply (rule some_equality[symmetric])
   1.384 -  apply auto
   1.385 -  apply (rule ext)+
   1.386 -  apply (induct_tac x)
   1.387 -  apply auto
   1.388 -  done
   1.389 +lemmas [hol4rew] = id_apply
   1.390  
   1.391 -lemma sub_altdef: "op - = (SOME sub. (ALL m. sub m 0 = m) & (ALL m n. sub m (Suc n) = Pred (sub m n)))"
   1.392 -  apply (simp add: Pred_def)
   1.393 -  apply (rule some_equality[symmetric])
   1.394 -  apply auto
   1.395 -  apply (rule ext)+
   1.396 -  apply (induct_tac xa)
   1.397 -  apply auto
   1.398 -  done
   1.399 +lemma DEF_CHOICE: "Eps = (%u. SOME x. x \<in> u)"
   1.400 +  by (simp add: mem_def)
   1.401  
   1.402 -definition NUMERAL_BIT0 :: "nat \<Rightarrow> nat" where
   1.403 -  "NUMERAL_BIT0 n \<equiv> n + n"
   1.404 +definition dotdot :: "nat => nat => nat => bool"
   1.405 +  where "dotdot == %(u::nat) ua::nat. {ub::nat. EX x::nat. (u <= x & x <= ua) & ub = x}"
   1.406  
   1.407 -lemma NUMERAL_BIT1_altdef: "NUMERAL_BIT1 n = Suc (n + n)"
   1.408 -  by (simp add: NUMERAL_BIT1_def)
   1.409 +lemma DEF__dot__dot_: "dotdot = (%u ua. {ub. EX x. (u <= x & x <= ua) & ub = x})"
   1.410 +  by (simp add: dotdot_def)
   1.411  
   1.412 -consts
   1.413 -  sumlift :: "('a \<Rightarrow> 'c) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> (('a + 'b) \<Rightarrow> 'c)"
   1.414 +lemma [hol4rew]: "dotdot a b = {a..b}"
   1.415 +  unfolding fun_eq_iff atLeastAtMost_def atLeast_def atMost_def dotdot_def
   1.416 +  by (simp add: Collect_conj_eq)
   1.417  
   1.418 -primrec
   1.419 -  "sumlift f g (Inl a) = f a"
   1.420 -  "sumlift f g (Inr b) = g b"
   1.421 -  
   1.422 -lemma sum_Recursion: "\<exists> f. (\<forall> a. f (Inl a) = Inl' a) \<and> (\<forall> b. f (Inr b) = Inr' b)"
   1.423 -  apply (rule exI[where x="sumlift Inl' Inr'"])
   1.424 -  apply auto
   1.425 -  done
   1.426 +definition [hol4rew,simp]: "INFINITE S \<longleftrightarrow> \<not> finite S"
   1.427 +
   1.428 +lemma DEF_INFINITE: "INFINITE = (\<lambda>u. \<not>finite u)"
   1.429 +  by (simp add: INFINITE_def_raw)
   1.430  
   1.431  end