meeding dmeindl
authorWalther Neuper <neuper@ist.tugraz.at>
Mon, 24 Sep 2012 09:07:38 +0200
changeset 42517550bb4d75c43
parent 42516 461f6d9d5390
child 42518 b504e0a82b2e
meeding dmeindl
src/Tools/isac/Knowledge/Rational2.thy
test/Tools/isac/Knowledge/rational2.sml
     1.1 --- a/src/Tools/isac/Knowledge/Rational2.thy	Thu Sep 20 10:07:02 2012 +0200
     1.2 +++ b/src/Tools/isac/Knowledge/Rational2.thy	Mon Sep 24 09:07:38 2012 +0200
     1.3 @@ -1,6 +1,5 @@
     1.4  (* rationals, i.e. fractions of multivariate polynomials over the real field
     1.5 -   author: Diana Meindl
     1.6 -   (c) Diana Meindl
     1.7 +   author: (c) Diana Meindl
     1.8     Use is subject to license terms. 
     1.9  1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890
    1.10          10        20        30        40        50        60        70        80         90      100
    1.11 @@ -8,712 +7,660 @@
    1.12  
    1.13  theory Rational2 imports Complex_Main begin 
    1.14  
    1.15 +chapter {* The Isabelle Theory *}
    1.16  text {*
    1.17 -  Below we reference \cite{winkler96}
    1.18 -  F. Winkler, Polynomial Algorithms. ...
    1.19 -  by page. *}
    1.20 +  Below we reference \cite{winkler96} by page. From this book we adopt the 
    1.21 +  algorithms as closely as possible. Isabelle coding standards \cite{TODO isarimpl}
    1.22 +  require to change the identifiers; further changes concern the transition from
    1.23 +  Winkler's imperative pseudocode to efficient functional code.
    1.24  
    1.25 -subsection {* Foundamentals and auxiliary algorithms *}
    1.26 -
    1.27 -ML{*(* use modInvers(r,m) to get rinv= r^-1 mod m *)
    1.28 -fun modi( r , rold , m , rinv )=
    1.29 -if rinv < m
    1.30 -then
    1.31 -  if r mod m = 1
    1.32 -  then ( rinv = rinv + 1 ;
    1.33 -         rinv )
    1.34 -  else modi ( rold * ( rinv + 1 ) , rold , m , rinv + 1 )
    1.35 -else ( 0 )
    1.36 -(*Errormeldung? es gibt kein Inverses sind nicht Teilerfremd!! schon zu Beginn darauf überprüfen!!*)
    1.37 -
    1.38 -fun modInvers ( r , m ) =
    1.39 -modi ( r , r , m , 1 ) ;
    1.40 -*}
    1.41 -ML{*
    1.42 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
    1.43 -*}
    1.44 -ML{*
    1.45 -modInvers(2,5);
    1.46 -modInvers(3,5);
    1.47 -modInvers(4,339);
    1.48 -4*85
    1.49 +  However, in test/../reational.sml there is an almost original version of the
    1.50 +  algorithms, including the identifiers; this version was the first one
    1.51 +  developed in this thesis, the version is kept for simple reference to 
    1.52 +  \cite{winkler96}.
    1.53  *}
    1.54  
    1.55 -ML{*(*  r = r1 mod m1 and r= r2 mod m2 *)
    1.56 -fun CRA_2 ( r1 : int , r2 : int , m1 : int , m2 : int ) =
    1.57 -(*c=m1^-1 mod m2
    1.58 -  r1'=r1 mod m1
    1.59 -  s=(r2-r1')*c mod m2
    1.60 -  r= r1'+s*m1
    1.61 -  return r*)
    1.62 - (r1 mod m1) + ((r2 - (r1 mod m1)) * (modInvers (m1 ,m2)) mod m2) * m1
    1.63 +section {* Auxiliary Functions *}
    1.64 +ML {*
    1.65 +  type unipoly = int list;
    1.66  *}
    1.67  
    1.68 +subsection {* modulo calculations etc. *}
    1.69 +ML {*
    1.70 +  (*The "inverse modulo" functions: "mod_inv 5 7 = 3" 
    1.71 +  because 5*3 mod 7 = 1, or more precisely 5^-1 mod 7 = 3.*)
    1.72 +  fun mod_inv r m =
    1.73 +    let
    1.74 +      fun modi (r, rold, m, rinv) =
    1.75 +        if rinv < m
    1.76 +        then
    1.77 +          if r mod m = 1
    1.78 +          then rinv
    1.79 +          else modi (rold * (rinv + 1), rold, m, rinv + 1)
    1.80 +        else 0
    1.81 +    in modi (r, r, m, 1) end
    1.82  
    1.83 +  fun leading_coeff (uvp: unipoly) =
    1.84 +    if nth uvp (length uvp - 1) <> 0
    1.85 +    then nth uvp (length uvp - 1)
    1.86 +    else leading_coeff (nth_drop (length uvp - 1) uvp);
    1.87 +  
    1.88 +  fun deg (uvp:unipoly) = 
    1.89 +    if nth uvp (length uvp - 1) <> 0
    1.90 +    then length uvp - 1
    1.91 +    else deg (nth_drop (length uvp - 1) uvp)
    1.92 +
    1.93 +  (* gcd is: greatest common divisor *)
    1.94 +  fun gcd a b = if b = 0 then a else gcd b (a mod b);
    1.95 +
    1.96 +  (* Chinese remainder: given r1, r2, m1, m2 
    1.97 +     find r such that r = r1 mod m1 and r = r2 mod m2 *)
    1.98 +  fun CRA_2 (r1: int, m1: int, r2: int, m2: int) =
    1.99 +   (r1 mod m1) + ((r2 - (r1 mod m1)) * (mod_inv m1 m2) mod m2) * m1
   1.100 +*}
   1.101 +
   1.102 +subsection {* primes *}
   1.103 +ML{*
   1.104 +  (* is n divisble by some number in primelist ? *)
   1.105 +  fun is_prime primelist n = 
   1.106 +    if length primelist > 0
   1.107 +    then 
   1.108 +      if (n mod (nth primelist 0)) = 0
   1.109 +      then false
   1.110 +      else is_prime (nth_drop 0 primelist) n
   1.111 +    else true
   1.112 +
   1.113 +  (* sieve of erathostenes *)
   1.114 +  fun primeList p =
   1.115 +    let 
   1.116 +    fun make_primelist list last p =
   1.117 +      if (nth list (length list - 1)) < p 
   1.118 +      then
   1.119 +        if ( is_prime list (last + 2)) 
   1.120 +        then make_primelist (list @ [(last + 2)]) (last + 2) p
   1.121 +        else make_primelist  list (last + 2) p
   1.122 +      else list
   1.123 +    in
   1.124 +      if p < 3
   1.125 +      then [2]
   1.126 +      else make_primelist [2,3] 3 p
   1.127 +    end
   1.128 +*}
   1.129 +text {*
   1.130 +fun primeList' 2 =[2,3]|
   1.131 + primeList' x= if x<2 then [2] else
   1.132 +  let 
   1.133 +  fun make_primelist list last x =
   1.134 +    if (nth list (length list -1)) < x 
   1.135 +    then
   1.136 +      if ( is_prime list (last + 2)) 
   1.137 +      then make_primelist (list @ [(last + 2)]) (last + 2) x
   1.138 +      else make_primelist  list (last + 2) x
   1.139 +    else list
   1.140 +  in
   1.141 +     make_primelist [2,3] 3 x end
   1.142 +*}
   1.143 +
   1.144 +text {*
   1.145 +	To find now a new prime number not dividing a number d, we find the next prime number higher than the old one with (primeList old+1) and test again if it divide our d. If not we found a new prime not dividing d, else we repeat it with the next prime.\\
   1.146 +*}
   1.147 +
   1.148 +ML {*
   1.149 +fun find_next_prime_not_divide a p  = 
   1.150 +  let
   1.151 +    val next = nth (primeList (p+1)) (length(primeList(p+1))-1) ;
   1.152 +  in
   1.153 +    if a mod next  <> 0
   1.154 +      then next
   1.155 +    else find_next_prime_not_divide a next
   1.156 +end
   1.157 +*}
   1.158 +
   1.159 +text{*
   1.160 +find_next_prime_not_divide 12 2;
   1.161 +find_next_prime_not_divide 15 2;
   1.162 +find_next_prime_not_divide 90 7;
   1.163 +find_next_prime_not_divide 90 1;
   1.164 +find_next_prime_not_divide 2 7;
   1.165 +primeList 15;
   1.166 +primeList 1;
   1.167 +primeList 8;
   1.168 +primeList 2;
   1.169 +primeList 0;
   1.170 +primeList' 15;
   1.171 +primeList' 1;
   1.172 +primeList' 8;
   1.173 +primeList' 2;
   1.174 +*}
   1.175 +
   1.176 +ML {*
   1.177 +is_prime (primeList 7) 9;
   1.178 +*}
   1.179 +
   1.180 +ML {*
   1.181 +fun landau_mignotte_bound a b = 2603;
   1.182 +(* 2^min(m,n)gcd(leading_coeff(a),leading_coeff(b)) min(1/(abs leading_coeff(a)) sqrt(sum(a_^2), 1/(abs leading_coeff(b)) sqrt(sum(b_i^2))  *)
   1.183 +*}
   1.184 +
   1.185 +ML {*
   1.186 +infix poly_mod
   1.187 +fun uvp poly_mod m =
   1.188 +  let fun poly_mod' uvp m n =
   1.189 +    if n<length (uvp)
   1.190 +    then poly_mod' ((nth_drop 0 uvp)@[(nth uvp 0)mod m]) m ( n + 1 )
   1.191 +    else uvp (*end of poly_mod'*)
   1.192 +  in
   1.193 +    poly_mod' uvp m 0 end (*poly_mod*)
   1.194 +*}                 
   1.195 +
   1.196 +ML {*
   1.197 +infix %*
   1.198 +fun (a:unipoly) %* (b:int) =
   1.199 +  let fun mul a b = a*b;
   1.200 +  in map2 mul a (replicate (length(a)) b)end
   1.201 +
   1.202 +infix %/
   1.203 +fun (poly:unipoly) %/ (b:int) = (* =quotient*)
   1.204 +  let fun division poly b = poly div b;
   1.205 +  in map2 division poly (replicate (length(poly)) b) end
   1.206 +*}                 
   1.207 +
   1.208 +                 
   1.209 +
   1.210 +ML {*
   1.211 +
   1.212 +infix %-%
   1.213 +fun a %-% b =
   1.214 +  let fun minus a b = a-b;
   1.215 +  in  map2 minus a b end
   1.216 +
   1.217 +infix %-
   1.218 +fun p %- b =
   1.219 +  let fun minus p b = p-b;
   1.220 +in map2 minus p (replicate (length(p)) b) end
   1.221 +
   1.222 +infix %+
   1.223 +fun a %+ b =
   1.224 +  let fun plus a b = a+b;
   1.225 +  in  map2 plus a b end
   1.226 +*}
   1.227  
   1.228  
   1.229  ML{*
   1.230 -(*. univariate polynomials (uv) .*)
   1.231 -(*. 5 * x^5 + 4 * x^3 + 2 * x^2 + x + 19 => [19,1,2,4,0,5] .*)
   1.232 -type uv_poly = int list;
   1.233 -(*. multivariate polynomials .*)
   1.234 -(*. 5 * x^5 * y^3 + 4 * x^3 * z^2 + 2 * x^2 * y * z^3 - z - 19 
   1.235 - => [(5,[5,3,0]),(4,[3,0,2]),(2,[2,1,3]),(~1,[0,0,1]),(~19,[0,0,0])] .*)
   1.236 -type mv_poly = ( int * int list ) list 
   1.237 +fun CRA_2_poly (ma, mb) (r1, r2) = 
   1.238 +let 
   1.239 + fun CRA_2' (ma, mb) (r1, r2) = CRA_2 (r1, ma,r2, mb)
   1.240 +in  map (CRA_2' (ma, mb)) (r1 ~~ r2)end
   1.241 +*}
   1.242 +
   1.243 +ML {*(*a/b mod m*)
   1.244 +fun mod_div (a:int) (b:int) (m:int) =
   1.245 +  a*(mod_inv b m) mod m
   1.246 +
   1.247 +fun  poly_mod_div (a:unipoly) (b:int)  m =
   1.248 +  let fun lm_div a b c m i =
   1.249 +    if length c = length a
   1.250 +    then c
   1.251 +    else lm_div a b (c @ [ mod_div (nth a i) b m ]) m (i+1)
   1.252 +  in  lm_div a b [] m 0 end
   1.253 +*}
   1.254 +
   1.255 +ML {*
   1.256 +fun mod_mult a b m = (a * b) mod m;
   1.257 +fun mod_minus a b m = (a - b) mod m;
   1.258 +fun mod_plus a b m = (a + b) mod m;
   1.259  *}
   1.260  
   1.261  ML{*
   1.262 -val a=[15,1,2,4];
   1.263 -val b= [(5,[5,3,0]),(4,[3,0,2]),(2,[2,1,3]),(~1,[0,0,1]),(~19,[0,0,0])];
   1.264 -val u:uv_poly=a;
   1.265 +fun lc_of_list_not_0 [] = [](* and delete leading_coeff=0*)
   1.266 +| lc_of_list_not_0 (uvp:unipoly) = 
   1.267 +  if nth uvp (length uvp -1) =0
   1.268 +  then lc_of_list_not_0 (nth_drop (length uvp-1) uvp)
   1.269 +  else 
   1.270 +    if nth uvp 0 = 0
   1.271 +    then  lc_of_list_not_0 (nth_drop 0 uvp)
   1.272 +    else uvp;
   1.273  *}
   1.274  
   1.275 +ML {* (* if poly2|poly1 *)
   1.276 +infix %/%
   1.277 +fun [a:int] %/% [b:int] = 
   1.278 +  if b<a andalso a mod b = 0
   1.279 +  then true
   1.280 +  else false
   1.281 +| (poly1:unipoly) %/% (poly2:unipoly) = 
   1.282 +  let 
   1.283 +  val b = (replicate (length poly1 - length(lc_of_list_not_0 poly2)) 0) @ lc_of_list_not_0 poly2 ;
   1.284 +  val c = leading_coeff poly1 div leading_coeff b;
   1.285 +  val rest = lc_of_list_not_0 (poly1 %-% (b %* c));
   1.286 +  in 
   1.287 +    if rest = []
   1.288 +    then true
   1.289 +    else
   1.290 +      if c<>0 andalso length rest >= length poly2
   1.291 +      then rest %/% poly2 
   1.292 +      else false
   1.293 +  end
   1.294 +*}
   1.295 +
   1.296 +
   1.297 +ML {*
   1.298 +fun mod_poly_gcd (upoly1:unipoly, upoly2:unipoly, m:int) =
   1.299 +  let 
   1.300 +    val moda = upoly1 poly_mod m
   1.301 +    val modb = (replicate (length upoly1 - length(lc_of_list_not_0 upoly2)) 0)
   1.302 +                @ (lc_of_list_not_0 upoly2 poly_mod m) ;
   1.303 +    val c =  mod_div (leading_coeff moda) (leading_coeff modb) m
   1.304 +    val rest = lc_of_list_not_0 ((moda %-% (modb %*  c)) poly_mod m)
   1.305 +  in 
   1.306 +    if rest = []
   1.307 +    then [upoly1, [0] ]
   1.308 +    else
   1.309 +      if length rest < length upoly2
   1.310 +      then mod_poly_gcd (upoly2, rest, m) (*[ rest,[c]@d]*)
   1.311 +      else mod_poly_gcd (rest, upoly2, m)
   1.312 +  end
   1.313 +*}
   1.314 +
   1.315 +ML {*
   1.316 +fun  mod_polynom_gcd (poly1:unipoly) (poly2:unipoly) (m:int) =
   1.317 +  let 
   1.318 +    val moda = poly1 poly_mod m;
   1.319 +    val modb = (replicate (length poly1 - length poly2) 0) @ (poly2 poly_mod m) ;
   1.320 +    val c =  mod_div (leading_coeff moda) (leading_coeff modb) m;
   1.321 +    val rest = lc_of_list_not_0 (moda %-% (modb %* c) poly_mod m) poly_mod m;
   1.322 +  in (* nth_drop ( length ( upoly1 ) - 1 )*)
   1.323 +    if rest = []
   1.324 +    then [poly2, [0]]
   1.325 +    else
   1.326 +      if length rest < length poly2
   1.327 +      then [rest]
   1.328 +      else mod_poly_gcd (rest, poly2 ,  m)
   1.329 +  end
   1.330 +*}
   1.331  
   1.332  ML{*
   1.333 -CRA_2(2,1,4,5);
   1.334 +fun normirt_polynom (poly1:unipoly) (m:int) =
   1.335 +  let
   1.336 +    val poly1 = lc_of_list_not_0 poly1
   1.337 +    val lc_a=leading_coeff poly1;
   1.338 +    fun normirt poly1 b m lc_a i =
   1.339 +      if i=0
   1.340 +      then [mod_div (nth poly1 i) lc_a m]@b
   1.341 +      else normirt poly1 ( [mod_div(nth poly1 i) lc_a m]@b) m lc_a (i-1) ;
   1.342 +  in 
   1.343 +    if length(poly1)=0
   1.344 +    then poly1
   1.345 +    else normirt poly1  [] m lc_a (length(poly1)-1)
   1.346 +end
   1.347  *}
   1.348  
   1.349 +ML{*
   1.350 +fun  mod_gcd_p (poly1:unipoly) (poly2:unipoly) (p:int) =
   1.351 +  let
   1.352 +    val rest = mod_polynom_gcd poly1 poly2 p;
   1.353 +  in
   1.354 +    if length rest = 2
   1.355 +    then normirt_polynom (nth rest 0) p
   1.356 +    else   mod_gcd_p  poly2 (nth rest 0) p
   1.357 +end
   1.358 +*}
   1.359 +
   1.360  
   1.361  ML{*
   1.362 -3 mod 2;
   1.363 -((3+5)*5)mod 9;
   1.364 -CRA_2(2,6,2,5);
   1.365 -modInvers(2,5);
   1.366 -modInvers(3,5);
   1.367 -CRA_2(2,6,3,5);
   1.368 -6 mod 5;
   1.369 +fun gcd_n (list:int list) =
   1.370 +  if length list = 2
   1.371 +  then gcd (nth list 0)(nth list 1)
   1.372 +  else gcd_n ([gcd (nth list 0)(nth list 1)]@(nth_drop 0 (nth_drop 0 list)))
   1.373 +*}
   1.374 +
   1.375 +ML {*
   1.376 +fun pp (poly1:unipoly) = 
   1.377 +  if (poly1 poly_mod (gcd_n poly1)) = (replicate (length (poly1)) 0)
   1.378 +  then  poly1 %/ (gcd_n poly1)
   1.379 +  else poly1
   1.380  
   1.381  *}
   1.382  
   1.383 +ML {* 
   1.384 +pp [4,8,2,6];
   1.385 +*}
   1.386 +
   1.387 +ML {* 
   1.388 +fun poly_centr (poly:unipoly) (m:int) =
   1.389 +  let
   1.390 +    fun midle m =
   1.391 +      let val mid = m div 2
   1.392 +      in 
   1.393 +        if m mod mid = 0
   1.394 +        then  mid
   1.395 +        else  mid+1
   1.396 +      end
   1.397 +    fun centr a m mid =
   1.398 +      if a > mid
   1.399 +      then a - m
   1.400 +      else a
   1.401 +    fun polyCentr poly poly' m mid counter =
   1.402 +      if length(poly) > counter
   1.403 +      then polyCentr poly (poly' @ [centr (nth poly counter) m mid]) m mid (counter+1)
   1.404 +      else (poly':unipoly)
   1.405 +  in polyCentr poly [] m (midle m) 0
   1.406 +end
   1.407 +*}
   1.408 +
   1.409 +
   1.410 +subsection {* GCD_MOD Algorgithmus *}
   1.411 +
   1.412 +ML {*
   1.413 + fun GCD_MOD a b =
   1.414 +   let
   1.415 +(*1*)val d = gcd (leading_coeff a) (leading_coeff b);
   1.416 +     val M  = 2*d*landau_mignotte_bound a b;
   1.417 +     fun GOTO2 a b d M p =   (*==============================*)
   1.418 +       let 
   1.419 +(*2*)    val p = find_next_prime_not_divide d p
   1.420 +         val c_p = normirt_polynom ( mod_gcd_p a b p) p
   1.421 +         val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p
   1.422 +         fun GOTO3 a b d M p g_p =  (*~~~~~~~~~~~~~~~~~~~~~~*)
   1.423 +(*3*)      if (deg g_p) = 0
   1.424 +           then  [1]
   1.425 +           else
   1.426 +             let
   1.427 +               val P = p
   1.428 +               val g = g_p
   1.429 +               fun WHILE a b d M P g = (*------------------*)
   1.430 +(*4*)            if P > M 
   1.431 +                 then g
   1.432 +                 else
   1.433 +                   let 
   1.434 +                     val p = find_next_prime_not_divide d p
   1.435 +                     val c_p = normirt_polynom ( mod_gcd_p a b p) p
   1.436 +                     val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p
   1.437 +                   in
   1.438 +                     if deg g_p < deg g
   1.439 +                     then GOTO3 a b d M p g_p
   1.440 +                     else
   1.441 +                       if deg g_p = deg g
   1.442 +                       then 
   1.443 +                         let 
   1.444 +                           val g = CRA_2_poly (P,p)(g,g_p)
   1.445 +                           val P = P*p
   1.446 +                           val g = poly_centr(g poly_mod P)P
   1.447 +                         in WHILE a b d M P g end
   1.448 +                       else WHILE a b d M P g
   1.449 +               end (*----------------------------------*)
   1.450 +              
   1.451 +               
   1.452 +               val g = WHILE a b d M P g (* << 1.Mal -----*)
   1.453 +             in g end (*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*)
   1.454 +         
   1.455 +          val g = GOTO3 a b d M p g_p (* << 1.Mal ~~~~~~~~~~*)
   1.456 +(*5*)     val g = pp g
   1.457 +        in
   1.458 +          if (a %/% g) andalso (b %/% g)
   1.459 +          then  g
   1.460 +          else GOTO2 a b d M p
   1.461 +        end (*==============================================*)
   1.462 +      
   1.463 +
   1.464 +     val  g = GOTO2 a b d (*p*)1 M (* << 1. Mal  =============*)
   1.465 +   in g end;
   1.466 +*}
   1.467  
   1.468  
   1.469  ML{*
   1.470 -fun lc uv =
   1.471 -if nth uv (length uv -1)<>0
   1.472 -then nth uv (length uv -1)
   1.473 -else lc (nth_drop (length uv-1) uv);
   1.474 -
   1.475 -fun deg uv = length uv - 1;
   1.476 -
   1.477 + fun GCD_MOD' a b =
   1.478 +   let
   1.479 +(*1*)val d = gcd (leading_coeff a) (leading_coeff b);
   1.480 +     val M  = 2*d*landau_mignotte_bound a b;
   1.481 +     fun GOTO2 a b d M p =   (*==============================*)
   1.482 +       let 
   1.483 +(*2*)    val p = find_next_prime_not_divide d p
   1.484 +         val c_p = normirt_polynom ( mod_gcd_p a b p) p
   1.485 +         val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p
   1.486 +         fun WHILE a b d M P p g = (*------------------*)
   1.487 +(*4*)      if P > M 
   1.488 +           then 
   1.489 +             if a %/% (pp g) andalso b %/% (pp g)
   1.490 +              then pp g
   1.491 +              else GOTO2 a b d M p
   1.492 +           else
   1.493 +             let 
   1.494 +               val p = find_next_prime_not_divide d p
   1.495 +               val c_p = normirt_polynom (mod_gcd_p a b p) p
   1.496 +               val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p
   1.497 +             in
   1.498 +              if deg g_p < deg g
   1.499 +               then 
   1.500 +(*3*)            if deg g_p = 0
   1.501 +                 then [1]
   1.502 +                 else WHILE a b d M p p g_p
   1.503 +               else
   1.504 +                 if deg g_p = deg g
   1.505 +                 then 
   1.506 +                   WHILE a b d M (P*p) p ( poly_centr(CRA_2_poly (P,p)(g,g_p))(P*p)) 
   1.507 +                 else WHILE a b d M P p g
   1.508 +         end (*--------------WHILE--------------------*)
   1.509 +       in 
   1.510 +(*3*)      if deg g_p = 0 then [1]
   1.511 +           else WHILE a b d M p p g_p
   1.512 +    end (*========================GOTO2======================*)
   1.513 +in  GOTO2 a b d (*p*)1 M end
   1.514  *}
   1.515  
   1.516 -ML{*
   1.517 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.518 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.519 -(* lv uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.520 +subsection {* GCD_MODm Algorgithmus *}
   1.521 +
   1.522 +ML {*
   1.523 +type monom = (int * int list);
   1.524 +type multipoly = monom list;
   1.525 +val mpoly1 = [(~3,[0,2]),(3,[1,0]),(1,[0,5]),(~6,[1,1]),(~1,[1,3]),(2,[1,4]),(1,[2,3]),(~1,[3,1]),(2,[3,2])];
   1.526 +val mpoly2 = [(2,[3,1]),(~1,[3,0]),(~1,[2,2]),(1,[2,1]),(~1,[1,3]),(4,[1,1]),(~2,[1,0]),(2,[0,2])];
   1.527 +val (test:monom) =(22,[5,6,7]);
   1.528 +*}
   1.529 +
   1.530 +
   1.531 +ML {*
   1.532 +fun get_coef ((coef,var):monom) = coef;
   1.533 +fun get_varlist ((coef,var):monom) = var;
   1.534 +fun get_coeflist (poly:multipoly) = 
   1.535 +  let 
   1.536 +    fun get_coeflist' (poly:multipoly) list = 
   1.537 +      if poly = []
   1.538 +       then 
   1.539 +        list
   1.540 +       else          
   1.541 +         get_coeflist' (nth_drop 0 poly) (list @ [get_coef(nth poly 0)])
   1.542 +  in 
   1.543 +    get_coeflist' poly []
   1.544 +end
   1.545 +  
   1.546 +(* Eine Funktion für verschiedene Typen? *)
   1.547 +fun lc_mv (poly:multipoly) = 
   1.548 +  if get_coef (nth mpoly1 (length mpoly1 - 1)) <> 0
   1.549 +  then get_coef (nth poly (length poly-1))
   1.550 +  else lc_mv (nth_drop (length poly-1) poly);
   1.551 +fun deg_mv (mvp:multipoly) = 
   1.552 +  if get_coef (nth mvp (length mvp-1)) <> 0
   1.553 +  then nth (get_varlist (nth mvp (length mvp-1))) 0
   1.554 +  else  deg_mv (nth_drop (length mvp-1) mvp)
   1.555 +fun greater_deg (monom1:monom) (monom2:monom)=
   1.556 +  if  deg_mv [monom1] >  deg_mv [monom2]
   1.557 +    then 1
   1.558 +    else if  deg_mv [monom1] <  deg_mv [monom2]
   1.559 +      then 2
   1.560 +      else if length (get_varlist monom1) >0
   1.561 +        then
   1.562 +          greater_deg (1,(nth_drop 0 (get_varlist monom1))) (1,(nth_drop 0 (get_varlist monom2)))
   1.563 +        else 0
   1.564 +        
   1.565  *}
   1.566  
   1.567  ML {*
   1.568 -lc a;
   1.569 -lc [2,4,4,1,0,0];
   1.570 +get_coef test;
   1.571 +get_varlist test;
   1.572 +val t = [[1,2,4,5],[4,5,6,7]];
   1.573 +nth (nth t 1) 1;
   1.574 +lc_mv mpoly1;
   1.575 + deg_mv mpoly1;
   1.576 + deg_mv [(5,[4,5,6])];
   1.577 +get_coeflist mpoly1;
   1.578 +val monom =(5,[4,5,6]) ;
   1.579 + deg_mv [monom];
   1.580 +get_varlist monom;
   1.581 + [(1,(nth_drop 0 (get_varlist monom)))];
   1.582 +greater_deg (5,[4,5,6]) (5,[4,5,5]);
   1.583  *}
   1.584  
   1.585  ML {*
   1.586 -fun absolut a = 
   1.587 -if a <= 0 
   1.588 - then  ~a
   1.589 - else a;
   1.590 +infix %%/
   1.591 +fun (poly:multipoly) %%/ (b:int) = (* =quotient*)
   1.592 +  let fun division monom b = ((get_coef monom div b),get_varlist monom);
   1.593 +  in map2 division poly (replicate (length(poly)) b) end
   1.594  *}
   1.595  
   1.596  ML {*
   1.597 -absolut(3);
   1.598 -absolut ~3;
   1.599 -5 div 3 ;
   1.600 -4 div 10;
   1.601 -
   1.602 -*}
   1.603 -ML{*
   1.604 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.605 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.606 -(* lv uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.607 -(* abs x --> |x| *)
   1.608 +mpoly1;
   1.609 +mpoly1 %%/ 2;
   1.610 +~11 div 2;
   1.611 +11 div 2;
   1.612 +[3,4,~4,~3,~1] %/ 2;
   1.613  *}
   1.614  
   1.615  ML {*
   1.616 -infix divide
   1.617 -fun a divide b =
   1.618 - if abs b > 0
   1.619 -  then abs b divide abs a - abs a div abs b * abs b  
   1.620 -  else abs a
   1.621 -fun INT_GCD  a b = a divide b;
   1.622 -(* funktoniert nicht wenn ich es mit INT_GCD rekursiev mache 
   1.623 -   die Struktur passt ihm dann nicht *)
   1.624 +fun cont (poly1:unipoly) = gcd_n poly1
   1.625 +fun cont' (poly:multipoly) = gcd_n (get_coeflist poly)
   1.626 +*}
   1.627 +
   1.628 +
   1.629 +ML {*
   1.630 +[3,4,5] = [3,4,5];
   1.631 +[3,4,5]=[5,4,3];
   1.632 +[3,4,5] @ [get_coef (nth mpoly1 (length mpoly1 - 1))
   1.633 +                                - get_coef (nth mpoly2 (length mpoly2 - 1))];
   1.634 +mpoly1 = [] orelse mpoly2 =[];
   1.635 +get_varlist (nth mpoly1 (length mpoly1 - 1)) = get_varlist (nth mpoly2 (length mpoly2 - 1))
   1.636  *}
   1.637  
   1.638  ML {*
   1.639 -12 divide 6;
   1.640 -10 divide 3;
   1.641 -15 divide 6;
   1.642 -6 divide 15;
   1.643 -INT_GCD 6 21;
   1.644 +infix %%-
   1.645 +fun (mpoly1:multipoly) %%- (mpoly2:multipoly) = 
   1.646 +  let 
   1.647 +    fun min' (mpoly1:multipoly) (mpoly2:multipoly) (result:multipoly) = 
   1.648 +      if mpoly1 = [] andalso mpoly2 =[] 
   1.649 +        then result
   1.650 +        else if mpoly1 = []
   1.651 +          then let
   1.652 +            val result = [(0 - get_coef (nth mpoly2 (length mpoly2 - 1)),
   1.653 +                               get_varlist (nth mpoly2 (length mpoly2 - 1)))] @ result
   1.654 +            in 
   1.655 +               min'  mpoly1 (nth_drop (length mpoly2 - 1) mpoly2) result
   1.656 +            end
   1.657 +          else if mpoly2 = []
   1.658 +            then 
   1.659 +               mpoly1 @ result
   1.660 +            
   1.661 +       else 
   1.662 +         if get_varlist (nth mpoly1 (length mpoly1 - 1)) = get_varlist (nth mpoly2 (length mpoly2 - 1))
   1.663 +           then
   1.664 +            let
   1.665 +             val result =  [(get_coef (nth mpoly1 (length mpoly1 - 1))
   1.666 +                             - get_coef (nth mpoly2 (length mpoly2 - 1)),
   1.667 +                           get_varlist (nth mpoly1 (length mpoly1 - 1)))] @ result
   1.668 +            in 
   1.669 +              min' (nth_drop (length mpoly1 - 1) mpoly1) (nth_drop (length mpoly2 - 1) mpoly2) result
   1.670 +            end
   1.671 +         else
   1.672 +           if greater_deg (nth mpoly1 (length mpoly1 - 1)) (nth mpoly2 (length mpoly2 - 1)) = 1 
   1.673 +             then 
   1.674 +               min' (nth_drop (length mpoly1 - 1) mpoly1) mpoly2 ( [nth mpoly1 (length mpoly1 - 1)] @ result)
   1.675 +             else 
   1.676 +               let
   1.677 +                 val result =  [(0 - get_coef (nth mpoly2 (length mpoly2 - 1)),
   1.678 +                               get_varlist (nth mpoly2 (length mpoly2 - 1)))]@ result
   1.679 +               in 
   1.680 +                  min'  mpoly1 (nth_drop (length mpoly2 - 1) mpoly2) result
   1.681 +            end
   1.682 +    in 
   1.683 +      min' mpoly1 mpoly2 []
   1.684 +end
   1.685 +*}
   1.686 +
   1.687 +ML {*
   1.688 +[(~6,[1,1]),(~1,[1,3])]%%-[(~4,[1,1]),(3,[1,3])];
   1.689 +[(~6,[1,1]),(~1,[1,5])]%%-[(~4,[1,1]),(3,[2,3])];
   1.690 +*}
   1.691 +
   1.692 +ML {*
   1.693 +*}
   1.694 +
   1.695 +ML {*
   1.696 +*}
   1.697 +
   1.698 +ML {*
   1.699 +*}
   1.700 +
   1.701 +ML {*
   1.702 +*}
   1.703 +
   1.704 +ML {*
   1.705 +*}
   1.706 +
   1.707 +ML {*
   1.708 +*}
   1.709 +
   1.710 +ML {*
   1.711 +
   1.712 +*}
   1.713 +text {*
   1.714 +
   1.715 +fun GCD_MODm a b n s =
   1.716 +(*0*)  if s = 0
   1.717 +    then g = (gcd (cont a) (cont b)) %* (GCD_MOD pp(a) pp(b))
   1.718 +    else 
   1.719 +      let
   1.720 +(*1*)   val M = 1 + Int.min (DEG_X a, DEG_X b);
   1.721 +(*2*)     fun GOTO2 a b n s x M =
   1.722 +              let
   1.723 +                val r = AN_Integer_DEG_H;
   1.724 +                val g_r = GCD_MODm (REDUCED a)(REDUCED b) n (s-1)
   1.725 +(*3*)           fun GOTO3 a b n s x M g_r r=
   1.726 +                  let
   1.727 +                    val m = 1;
   1.728 +                    val g = g_r
   1.729 +                    fun WHILE a b n s x M m r =
   1.730 +                      if m > M
   1.731 +                        then 
   1.732 +                         if g TEILT a andalso g TEILT a
   1.733 +                          then  g
   1.734 +                          else GOTO2 a b n s x M
   1.735 +                        else
   1.736 +                        let
   1.737 +                        val r = NEW_INTEGER;
   1.738 +                        val g_r = GCD_MODm (REDUCED a)(REDUCED b) n (s-1);
   1.739 +                        in
   1.740 +                          if DEG_XN g_r < DEG_XN g
   1.741 +                            then GOTO3 a b n s x M g_r r
   1.742 +                            else if DEG_XN g_r < DEG_XN g
   1.743 +                              then INCORPORATE g_r
   1.744 +                              else WHILE a b n s x M (m+1) r
   1.745 +                        end (* WHILE *)
   1.746 +                  in (* GOTO3*)
   1.747 +                    WHILE a b n s x M m r
   1.748 +                  end (*GOTO3*)
   1.749 +              in (* GOTO2*)
   1.750 +                GOTO3 a b n s x M g_r r
   1.751 +              end (*GOTO2*)
   1.752 +            in
   1.753 +             GOTO2 a b n s x M 
   1.754 +          end (*end 0*)
   1.755  
   1.756  *}
   1.757  
   1.758  ML {*
   1.759 -val list = [ 2 , 3 ];
   1.760 -length ( list );
   1.761 -list @ [(4+2)];
   1.762 +  val a = [~18, ~15, ~20, 12, 20, ~13, 2];
   1.763 +  val b = [8, 28, 22, ~11, ~14, 1, 2];
   1.764 +  if GCD_MOD a b = [~2, ~1, 1] then ()
   1.765 +  else error "GCD_MOD a b = [~2, ~1, 1]";
   1.766  *}
   1.767  
   1.768 -ML{*
   1.769 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.770 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.771 -(* lv uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.772 -(* abs x --> |x| *)
   1.773 -(* INT_GCD a b *)
   1.774 -*}
   1.775 -
   1.776 -ML {*
   1.777 -infix listMod;
   1.778 -fun  m listMod list =
   1.779 -if length( list )>0 andalso m mod nth list 0 <> 0
   1.780 -then  m listMod nth_drop 0 list
   1.781 -else length( list )
   1.782 -
   1.783 -
   1.784 -fun makePrimeList list last x =
   1.785 -if last < x
   1.786 -then
   1.787 -if (( last + 2) listMod list ) = 0
   1.788 -then makePrimeList ( list @ [( last + 2)]) ( last + 2 ) x
   1.789 -else makePrimeList list ( last + 2 ) x
   1.790 -else list
   1.791 -
   1.792 -fun primeList x =
   1.793 -if x<3
   1.794 -then [2]
   1.795 -else makePrimeList [2,3] 3 x
   1.796 -*}
   1.797 -
   1.798 -
   1.799 -
   1.800 -
   1.801 -ML {*
   1.802 -makePrimeList [2,3] 3 7 ;
   1.803 -makePrimeList [2,3] 3 5;
   1.804 -makePrimeList [2,3] 3 3;
   1.805 -makePrimeList [2,3] 3 29;
   1.806 -primeList 29;
   1.807 -primeList 2;
   1.808 -primeList 28;
   1.809 -*}
   1.810 -
   1.811 -ML{*
   1.812 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.813 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.814 -(* lv uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.815 -(* abs x --> |x| *)
   1.816 -(* INT_GCD a b *)
   1.817 -(* m listMod list  --> new list where every entry mod m*)
   1.818 -(*primeList x --> a list with primenumbers until >= x *)
   1.819 -*}
   1.820 -
   1.821 -ML {*
   1.822 -fun nextPrimeList p list list' = 
   1.823 -if length ( list ) = length ( list' )
   1.824 -  then
   1.825 -  if (( p + 2) listMod list ) = 0
   1.826 -   then nextPrimeList ( p + 2 ) (list @ [( p + 2)]) list'
   1.827 -  else nextPrimeList ( p +2)  list list' 
   1.828 - else list
   1.829 -
   1.830 -
   1.831 -fun findNextPrime p  = 
   1.832 -  let
   1.833 -    val list = primeList p;
   1.834 -    val list' = list;
   1.835 -  in
   1.836 -    if p = 2
   1.837 -    then nth (nextPrimeList ( p + 1 ) list list' ) (length( list ))
   1.838 -    else nth (nextPrimeList p list list') (length( list ))
   1.839 -  end
   1.840 -
   1.841 -fun findNextPrimeNotDivide x p  = 
   1.842 -let
   1.843 -val next = findNextPrime p ;
   1.844 -in
   1.845 -if x mod next  <> 0
   1.846 -then next
   1.847 -else findNextPrimeNotDivide x next
   1.848  end
   1.849 -*}
   1.850 -
   1.851 -ML {*
   1.852 -fun GCD_MOD a b =
   1.853 -let
   1.854 -val d = INT_GCD ( lc a) ( lc b);
   1.855 -val m = 2 * d ;
   1.856 -val list = primeList d;
   1.857 -val p = findNextPrimeNotDivide d 1;
   1.858 -
   1.859 -in
   1.860 -d * m * p
   1.861 -end
   1.862 -*}
   1.863 -
   1.864 -
   1.865 -ML {*
   1.866 -findNextPrime 33 ;
   1.867 -findNextPrimeNotDivide 90 7;
   1.868 -findNextPrimeNotDivide 90 1;
   1.869 -
   1.870 -*}
   1.871 -
   1.872 -ML{*
   1.873 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.874 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.875 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.876 -(* abs x --> |x| *)
   1.877 -(* INT_GCD a b *)
   1.878 -(* m listMod list  --> new list where every entry mod m*)
   1.879 -(*primeList x --> a list with primenumbers until >= x *)
   1.880 -(*findNextPrime p *)
   1.881 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
   1.882 -*}
   1.883 -
   1.884 -ML {*
   1.885 -fun min a b =
   1.886 - if a < b 
   1.887 -  then a
   1.888 -  else b
   1.889 -*}
   1.890 -
   1.891 -ML {*
   1.892 -min 3 5;
   1.893 -min ~6 5 ;
   1.894 -
   1.895 -*}
   1.896 -
   1.897 -ML {*
   1.898 -fun landau_mignotte_bound a b = 100000
   1.899 -(* 2^min(m,n)gcd(lc(a),lc(b)) min(1/(abs lc(a)) sqrt(sum(a_^2), 1/(abs lc(b)) sqrt(sum(b_i^2))  *)
   1.900 -
   1.901 -*}
   1.902 -
   1.903 -ML {*
   1.904 -val a=[2,~13,20,12,~20,~15,~18];
   1.905 -val b=[2,1,~14,~11,22,28,8];
   1.906 -
   1.907 -*}
   1.908 -
   1.909 -
   1.910 -ML {*
   1.911 -val list = a;
   1.912 -nth_drop 1 list;
   1.913 -list;
   1.914 -(nth_drop 0 list)@[(nth list 0)mod 5];
   1.915 -*}
   1.916 -ML{*
   1.917 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.918 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.919 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.920 -(* abs x --> |x| *)
   1.921 -(* INT_GCD a b *)
   1.922 -(* m listMod list  --> new list where every entry mod m*)
   1.923 -(*primeList x --> a list with primenumbers until >= x *)
   1.924 -(*findNextPrime p *)
   1.925 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
   1.926 -*}
   1.927 -ML {*
   1.928 -fun list_mod' list m n =
   1.929 -if n<length ( list )
   1.930 -then list_mod' ((nth_drop 0 list)@[(nth list 0)mod m]) m ( n + 1 )
   1.931 -else list
   1.932 -
   1.933 -infix list_mod
   1.934 -fun list list_mod m =
   1.935 -list_mod' list m 0
   1.936 -
   1.937 -fun mul a b = a*b;
   1.938 -fun list_mult a b = map2 mul a (replicate (length(a)) b);
   1.939 -
   1.940 -fun minus a b = a-b;
   1.941 -fun list_minus a b = map2 minus a b;
   1.942 -
   1.943 -fun plus a b = a+b;
   1.944 -fun list_plus a b = map2 plus a b;
   1.945 -
   1.946 -*}
   1.947 -ML {*
   1.948 -4 div 2;
   1.949 -a;
   1.950 -b;
   1.951 -a list_mod 5;
   1.952 -([12,0,9]) list_mod 5;
   1.953 -b list_mod 5;
   1.954 -*}
   1.955 -
   1.956 -
   1.957 -ML {*
   1.958 -nth;
   1.959 -val mv= [[1,2,3],[4,5,6]];
   1.960 -map2 (nth) mv [0,2];
   1.961 -fun modulo a b = a mod b;
   1.962 -map2 (modulo) a [5,5,5,5,5,5,5];
   1.963 -*}
   1.964 -
   1.965 -ML {*
   1.966 -CRA_2 (4,3,5,5);
   1.967 -*}
   1.968 -ML{*
   1.969 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
   1.970 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
   1.971 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
   1.972 -(* abs x --> |x| *)
   1.973 -(* INT_GCD a b *)
   1.974 -(* m listMod list  --> new list where every entry mod m*)
   1.975 -(*primeList x --> a list with primenumbers until >= x *)
   1.976 -(*findNextPrime p *)
   1.977 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
   1.978 -*}
   1.979 -
   1.980 -ML{*
   1.981 -fun CRA_2_poly a b ma mb =
   1.982 -(* ( r1 mod m1 ) +     (   (( r2-(r1 mod m1)) * ( modInvers ( m1 , m2 )))  mod m2 )  * m1*)
   1.983 -list_plus (a list_mod ma) ((list_mult (list_mult (list_minus b (a list_mod ma))( (modInvers ( ma , mb ))mod mb)list_mod mb)  ma)  )
   1.984 -*}
   1.985 -
   1.986 -ML {*
   1.987 -fun m_div a b m=
   1.988 -if a mod b =0
   1.989 -then a div b
   1.990 -else m_div ( a +  m ) b  m
   1.991 -
   1.992 -infix mod_div  (* a/b mod m *) 
   1.993 -fun ( a , b ) mod_div m  = m_div a  b m ;
   1.994 -
   1.995 -fun lm_div a b c m i =
   1.996 -if length c = length a
   1.997 -then c
   1.998 -else lm_div a b (c @ [((nth a i), b) mod_div m]) m (i+1)
   1.999 -infix list_mod_div
  1.1000 -fun ( a , b ) list_mod_div m = lm_div a b [] m 0; 
  1.1001 -(*fun minus a b = a-b;*)
  1.1002 -fun mod_mult a b m = ( a * b ) mod m;
  1.1003 -fun mod_minus a b m = ( a - b ) mod m;
  1.1004 -fun mod_plus a b m = (a+b) mod m;
  1.1005 -
  1.1006 -*}
  1.1007 -
  1.1008 -ML {*
  1.1009 -([1,2,3,4,5],3)list_mod_div 5;
  1.1010 -m_div 3 2 5;
  1.1011 -map2 minus [3,3,3] [2,2,2];
  1.1012 -(1,4) mod_div 5;
  1.1013 -(2,2) mod_div 5;
  1.1014 -mod_mult 2 4 5;
  1.1015 -a; b;
  1.1016 -a list_mod 5;
  1.1017 -b list_mod 5;
  1.1018 -mod_minus 0 1 5;
  1.1019 -replicate (length(a))
  1.1020 -
  1.1021 -*}
  1.1022 -
  1.1023 -ML{*
  1.1024 -
  1.1025 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
  1.1026 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
  1.1027 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
  1.1028 -(* abs x --> |x| *)
  1.1029 -(* INT_GCD a b *)
  1.1030 -(* m listMod list  --> new list where every entry mod m*)
  1.1031 -(*primeList x --> a list with primenumbers until >= x *)
  1.1032 -(*findNextPrime p *)
  1.1033 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
  1.1034 -(*list_mod list m, list_mult list b*)
  1.1035 -(*(a,b) mod_div  m, mod_minus a b m, mod_mult a b m, mod_plus a b m*)
  1.1036 -*}
  1.1037 -ML{*
  1.1038 -fun lc_of_list_not_0 [] = []
  1.1039 -| lc_of_list_not_0 list = 
  1.1040 -if nth list (length list -1) =0
  1.1041 -then lc_of_list_not_0 (nth_drop (length list-1) list)
  1.1042 -else list;
  1.1043 -
  1.1044 -
  1.1045 -*}
  1.1046 -ML {*
  1.1047 -
  1.1048 -fun mod_poly_div (a,b,m,d)=
  1.1049 -let 
  1.1050 -val moda= a list_mod m;
  1.1051 -val modb=   ( replicate ( length ( a ) - length ( b )) 0 ) @ (b list_mod m) ;
  1.1052 -val c = ( lc ( moda ) , lc ( modb )) mod_div m;
  1.1053 -val rest = lc_of_list_not_0 ( list_minus moda (( list_mult modb c ))list_mod m );
  1.1054 -in 
  1.1055 -if rest= []
  1.1056 -then [b, [0],[c]@d]
  1.1057 -else
  1.1058 -  if length ( rest ) < length ( b )
  1.1059 -  then [ rest,[c]@d]
  1.1060 -  else ( mod_poly_div ( rest , b , m ,[c]@ d ))
  1.1061 -end
  1.1062 -
  1.1063 -infix mod_polynom_div 
  1.1064 -fun ( a , b ) mod_polynom_div m =
  1.1065 -let 
  1.1066 -val moda= a list_mod m;
  1.1067 -val modb= ( replicate ( length ( a ) - length ( b )) 0 ) @ (b list_mod m) ;
  1.1068 -val c = ( lc ( moda ) , lc ( modb )) mod_div m;
  1.1069 -val rest =lc_of_list_not_0 ( list_minus moda ( list_mult modb c ) list_mod m )list_mod m;
  1.1070 -in (* nth_drop ( length ( a ) - 1 )*)
  1.1071 -if rest= []
  1.1072 -then [b,[0],[c]]
  1.1073 -else
  1.1074 -  if length ( rest ) < length ( b )
  1.1075 -  then [rest,[c]]
  1.1076 -  else  mod_poly_div (rest, b ,  m , [c]) 
  1.1077 -end
  1.1078 -
  1.1079 -*}
  1.1080 -
  1.1081 -ML {*
  1.1082 -val m=5; val a= [2,1]; val b=[3,4];
  1.1083 -
  1.1084 -([2,1],[3,4]) mod_polynom_div 5;
  1.1085 -
  1.1086 -val er=([2,0,2],[3,4]) mod_polynom_div 5;
  1.1087 -*}
  1.1088 -
  1.1089 -ML {*
  1.1090 -(*mod_polynom_div 1000000000000000;*)
  1.1091 -val b=[~18,~15,~20,12,20,~13,2];
  1.1092 -val a=[8,28,22,~11,~14,1,2];
  1.1093 -*}
  1.1094 -
  1.1095 -
  1.1096 -ML{*
  1.1097 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
  1.1098 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
  1.1099 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
  1.1100 -(* abs x --> |x| *)
  1.1101 -(* INT_GCD a b *)
  1.1102 -(* m listMod list  --> new list where every entry mod m*)
  1.1103 -(*primeList x --> a list with primenumbers until >= x *)
  1.1104 -(*findNextPrime p *)
  1.1105 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
  1.1106 -(*list_mod list m, list_mult list b*)
  1.1107 -(*mod_div a b m, mod_minus a b m, mod_mult a b m, mod_plus a b m*)
  1.1108 -(*(a,b) mod_polynom_div m --> (a/b)mod m = [rest, quotient *)
  1.1109 -*}
  1.1110 -
  1.1111 -ML{*
  1.1112 -fun normirt a b m lc_a i =
  1.1113 -if i=0
  1.1114 -then [(((nth a i) ,lc_a)mod_div m)]@b
  1.1115 -else normirt a ( [(((nth a i) ,lc_a)mod_div m)]@b) m lc_a (i-1) ;
  1.1116 -
  1.1117 -fun normirt_polynom a m =
  1.1118 -let
  1.1119 -val lc_a=lc a;
  1.1120 -in 
  1.1121 -if length(a)=0
  1.1122 -then a
  1.1123 -else normirt a  [] m lc_a (length(a)-1)
  1.1124 -end
  1.1125 -*}
  1.1126 -
  1.1127 -ML{*
  1.1128 -lc [2,3,4,2];
  1.1129 -val list_a=[3,3,3,3]; val lc_a =lc list_a;val m = 5;
  1.1130 -normirt_polynom list_a 5;
  1.1131 -*}
  1.1132 -ML{*
  1.1133 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
  1.1134 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
  1.1135 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
  1.1136 -(* abs x --> |x| *)
  1.1137 -(* INT_GCD a b *)
  1.1138 -(* m listMod list  --> new list where every entry mod m*)
  1.1139 -(*primeList x --> a list with primenumbers until >= x *)
  1.1140 -(*findNextPrime p *)
  1.1141 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
  1.1142 -(*list_mod list m, list_mult list b*)
  1.1143 -(*mod_div a b m, mod_minus a b m, mod_mult a b m, mod_plus a b m*)
  1.1144 -(*(a,b) mod_polynom_div m --> (a/b)mod m = [rest, quotient *)
  1.1145 -(*normirt_polynom a m*)
  1.1146 -*}
  1.1147 -
  1.1148 -ML{*
  1.1149 -infix modGCD_p;
  1.1150 -fun (a , b) modGCD_p  p =
  1.1151 -let
  1.1152 -val rest=  ((a,b) mod_polynom_div p);
  1.1153 -in
  1.1154 -if length(rest)=3
  1.1155 -then normirt_polynom (nth  rest 0) m
  1.1156 -else  ( b ,nth rest 0 ) modGCD_p p
  1.1157 -end
  1.1158 -*}
  1.1159 -
  1.1160 -ML{*
  1.1161 -(a,b) modGCD_p 5;
  1.1162 -(a,b) modGCD_p 7;
  1.1163 -(a,b) modGCD_p 11;
  1.1164 -(a,b) modGCD_p 13;
  1.1165 -(a,b) modGCD_p 17;
  1.1166 -*}
  1.1167 -
  1.1168 -ML{*
  1.1169 -(*  modInvers(r,m) -->  rinv= r^-1 mod m *)
  1.1170 -(* CRA_2(r1,r2,m1,m2) --> r= r1 mod m1 = r2 mod m2 *)
  1.1171 -(* lc uv --> leading coefficient of univariate polynomials,  deg uv *)
  1.1172 -(* abs x --> |x| *)
  1.1173 -(* INT_GCD a b *)
  1.1174 -(* m listMod list  --> new list where every entry mod m*)
  1.1175 -(*primeList x --> a list with primenumbers until >= x *)
  1.1176 -(*findNextPrime p *)
  1.1177 -(*findNextPrimeNotDievide x p --> find the primenumber after p wich not divide x*)
  1.1178 -(*list_mod list m, list_mult list b*)
  1.1179 -(*mod_div a b m, mod_minus a b m, mod_mult a b m, mod_plus a b m*)
  1.1180 -(*(a,b) mod_polynom_div m --> (a/b)mod m = [rest, quotient *)
  1.1181 -(*normirt_polynom a m*)
  1.1182 -(* (a,b)modGCD_p p ggt(a_p,b_p)*)
  1.1183 -*}
  1.1184 -
  1.1185 -
  1.1186 -ML {*
  1.1187 -5 mod 3;
  1.1188 -*}
  1.1189 -
  1.1190 -
  1.1191 -ML {*
  1.1192 -fun gcd_mod' a b g p' d m =
  1.1193 -let
  1.1194 -val p=findNextPrimeNotDivide d p';
  1.1195 -in
  1.1196 -if p' <= m
  1.1197 -then  
  1.1198 - ( if deg (list_mult ((a,b)modGCD_p p)(d mod p))< deg g
  1.1199 -  then gcd_mod' a b g p d m
  1.1200 -  else 
  1.1201 -   ( if  deg (list_mult ((a,b)modGCD_p p)(d mod p))= deg g
  1.1202 -    then gcd_mod' a b (CRA_2_poly  g (list_mult ((a,b)modGCD_p p)(d mod p)) ((findNextPrime p')*p') (findNextPrime p') ) ((findNextPrime p')*p') d m
  1.1203 -    else list_mult ((a,b)modGCD_p p)(d mod p)
  1.1204 -    )
  1.1205 -  )  
  1.1206 -else g 
  1.1207 -end
  1.1208 -*}
  1.1209 -ML {* (*----------------------------------------------------------------*)
  1.1210 -val g = [2,2,2,2];
  1.1211 -val g_p = [3,2,3,2];
  1.1212 -val P = 5;
  1.1213 -val p = 7;
  1.1214 -*}
  1.1215 -ML {*
  1.1216 -val (r1, r2, m1, m2) = (2, 3, 5, 7);
  1.1217 -fun CRA_2' (m1, m2) (r1, r2) = CRA_2 (r1, r2, m1, m2)
  1.1218 -*}
  1.1219 -ML {*
  1.1220 -map (CRA_2' (m1, m2)) (g ~~ g_p)
  1.1221 -*}
  1.1222 -ML {*
  1.1223 -*}
  1.1224 -ML {*
  1.1225 -*}
  1.1226 -ML {*
  1.1227 -*}
  1.1228 -ML {*
  1.1229 -  (*\cite{winkler96} p.94 ----------------------------------------------*)
  1.1230 -val a = [~18, ~15, ~20, 12, 20, ~13, 2];
  1.1231 -val b = [8, 28, 22, ~11, ~14, 1, 2];
  1.1232 -*}
  1.1233 -ML {*
  1.1234 -fun aaaaa (a, b) d g P =
  1.1235 -  let
  1.1236 -    val p = findNextPrimeNotDivide d P;
  1.1237 -    val c_p = (a , b) modGCD_p  p;
  1.1238 -    val g_p = list_mult c_p (d mod p);
  1.1239 -(*---
  1.1240 -    val g =
  1.1241 -      if deg g_p = deg g then (*goto (3)*) [2]
  1.1242 -      else
  1.1243 -        let
  1.1244 -          val P = p
  1.1245 -          val g = g_p;
  1.1246 -        in g end;
  1.1247 ----*)
  1.1248 -     
  1.1249 -
  1.1250 -  in 123 end;
  1.1251 -
  1.1252 -*}
  1.1253 -text {*
  1.1254 -
  1.1255 -(*start of fun GCD_MOD*)
  1.1256 -lc a; lc b;
  1.1257 -(*1*)
  1.1258 -val d = INT_GCD (lc a) (lc b)
  1.1259 -val M = 10412;
  1.1260 -(*2*)
  1.1261 -val p = findNextPrimeNotDivide d 3;
  1.1262 -val c_p = (a , b) modGCD_p  p;
  1.1263 -val g_p = list_mult c_p (d mod p);
  1.1264 -(*3*)
  1.1265 -deg g_p;
  1.1266 -fun bbbbb p 0 = [1]
  1.1267 -  | bbbbb p g_p =
  1.1268 -      let
  1.1269 -        val P = p
  1.1270 -        val g = g_p
  1.1271 -      in aaaaa (a, b) d g P
  1.1272 -
  1.1273 -
  1.1274 -if deg g_p = 0 then [1]
  1.1275 -else
  1.1276 -  let
  1.1277 -    val P = p
  1.1278 -    val g = g_p;
  1.1279 -  in g end;
  1.1280 -*}
  1.1281 -ML {*
  1.1282 -(*4*)
  1.1283 -*}
  1.1284 -ML {*
  1.1285 -
  1.1286 -*}
  1.1287 -ML {*
  1.1288 -*}
  1.1289 -ML {*
  1.1290 -*}
  1.1291 -ML {*
  1.1292 -
  1.1293 -fun gcd_mod a b  p' m d =  (*Fuer die WHILE-Schleife*)
  1.1294 -let
  1.1295 -val p=findNextPrimeNotDivide d p';
  1.1296 -val g_p = list_mult ((a,b)modGCD_p p) (d mod p)
  1.1297 -in
  1.1298 -if deg g_p =0
  1.1299 -then 1
  1.1300 -else g=gcd_mod' a b g_p p m d;
  1.1301 -if length((((a,b)modGCD_p p),a) mod_polynom_div m)=3 && length((((a,b)modGCD_p p),b) mod_polynom_div m)=3 
  1.1302 -then g
  1.1303 -else gcd_mod a b p m d
  1.1304 -end
  1.1305 -
  1.1306 -fun GCD_MOD a b =
  1.1307 -let
  1.1308 -val d = INT_GCD (lc a) (lc b);
  1.1309 -val m  = 2*d*landau_mignotte_bound a b;
  1.1310 -val p'=1;
  1.1311 -val p = findNextPrime 1;
  1.1312 -(*val c_p = (a,b)modGCD_p p;*)
  1.1313 -val g_p =list_mult ((a,b)modGCD_p p)(d mod p);
  1.1314 -in
  1.1315 -if deg g_p=0
  1.1316 -then 1
  1.1317 -else (*while-Schleife*)
  1.1318 -gcd_mod a b g_p p m d
  1.1319 -end
  1.1320 -
  1.1321 -*}
  1.1322 -
  1.1323 -ML{*
  1.1324 -lc [1,2,3,4,5];
  1.1325 -
  1.1326 -*}
  1.1327 -
  1.1328 -
  1.1329 -end
     2.1 --- a/test/Tools/isac/Knowledge/rational2.sml	Thu Sep 20 10:07:02 2012 +0200
     2.2 +++ b/test/Tools/isac/Knowledge/rational2.sml	Mon Sep 24 09:07:38 2012 +0200
     2.3 @@ -4,17 +4,453 @@
     2.4  12345678901234567890123456789012345678901234567890123456789012345678901234567890
     2.5          10        20        30        40        50        60        70        80
     2.6  *)
     2.7 +"--------------------------------------------------------";
     2.8 +"table of contents --------------------------------------";
     2.9 +"--------------------------------------------------------";
    2.10 +"----------- special case for partial fractions ---------";
    2.11 +"----------- fun mod_invers -----------------------------";
    2.12 +"----------- fun CRA_2 ----------------------------------";
    2.13 +"----------- fun lc -------------------------------------";
    2.14 +"----------- fun deg ------------------------------------";
    2.15 +"----------- fun INT_GCD --------------------------------";
    2.16 +"----------- fun primeList ------------------------------";
    2.17 +"----------- fun find_next_prime_not_divide -------------";
    2.18 +"----------- fun poly_mod -------------------------------";
    2.19 +"----------- fun %* -------------------------------------";
    2.20 +"----------- fun %/ -------------------------------------";
    2.21 +"----------- fun %-% ------------------------------------";
    2.22 +"----------- fun %+ -------------------------------------";
    2.23 +"----------- fun CRA_2_poly -----------------------------";
    2.24 +"----------- fun mod_div --------------------------------";
    2.25 +"----------- fun poly_mod_div ---------------------------";
    2.26 +"----------- fun mod_mult -------------------------------";
    2.27 +"----------- fun mod_minus ------------------------------";
    2.28 +"----------- fun mod_plus -------------------------------";
    2.29 +"----------- fun lc_of_list_not_0 -----------------------";
    2.30 +"----------- fun %/% ------------------------------------";
    2.31 +"----------- fun mod_polynom_gcd ------------------------";
    2.32 +"----------- fun normirt_polynom ------------------------";
    2.33 +"----------- fun poly_centr -----------------------------";
    2.34 +"----------- fun mod_gcd_p ------------------------------";
    2.35 +"----------- fun gcd_n ----------------------------------";
    2.36 +"----------- fun pp -------------------------------------";
    2.37 +"----------- fun GCD_MOD --------------------------------";
    2.38 +"--------------------------------------------------------";
    2.39 +"--------------------------------------------------------";
    2.40  
    2.41 -writeln "test/../rational2";
    2.42 +"----------- values used for many tests -----------------";
    2.43 +  val a = [~18, ~15, ~20, 12, 20, ~13, 2]: unipoly;
    2.44 +  val b = [8, 28, 22, ~11, ~14, 1, 2]: unipoly;
    2.45 +"--------------------------------------------------------";
    2.46 +(*============ inhibit exn WN120920 ==============================================
    2.47 +a %- 10;
    2.48  
    2.49 +val list =  mod_gcd_p a b 7;
    2.50 +(list %* 2) poly_mod 7;
    2.51 +val list =  mod_gcd_p a b 11;
    2.52 +(list %* 2) poly_mod 11;
    2.53 +val list =  mod_gcd_p a b 13;
    2.54 +(list %* 2) poly_mod 13;
    2.55 +val list =  mod_gcd_p a b 17;
    2.56 +(list %* 2) poly_mod 17;
    2.57 +
    2.58 +a;b;
    2.59 +find_next_prime_not_divide 2 7;
    2.60 +
    2.61 +a;
    2.62 +b;
    2.63 +val gcd = GCD_MOD a b;
    2.64 +a %/% gcd;
    2.65 +b %/% gcd;
    2.66 +
    2.67 +a;b;
    2.68 +val gcd = GCD_MOD' a b;
    2.69 +a %/% gcd;
    2.70 +b %/% gcd;
    2.71 +
    2.72 +(*poly :: 'a poly => 'a => 'a;*)
    2.73 +(*[:4,0,1:];*)
    2.74 +(*[:0, 1, 1:] =!= 0*)
    2.75 +
    2.76 +pp [4,8,12,~2,0,~4];
    2.77 +cont a;
    2.78 +cont [4,8,12,~2,0,~4];
    2.79 +cont' mpoly1;
    2.80 +gcd_n a;
    2.81 +nth a 3;
    2.82 +nth_drop 3 a;
    2.83 +
    2.84 +============ inhibit exn WN120920 ==============================================*)
    2.85 +
    2.86 +
    2.87 +
    2.88 +"----------- special case for partial fractions ---------";
    2.89 +"----------- special case for partial fractions ---------";
    2.90 +"----------- special case for partial fractions ---------";
    2.91  (*specific simplification for partial fractions in Z-transform*)
    2.92 -val ctxt = ProofContext.init_global @{theory Isac};
    2.93 -val ctxt = declare_constraints' [@{term "z::real"}] ctxt;
    2.94 +val ctxt = ProofContext.init_global @{theory Rational2};
    2.95 +val ctxt = Variable.declare_constraints @{term "z::real"} ctxt;
    2.96 +(* parseNEW is defined in Isac; wait for that
    2.97  val SOME fract1 =
    2.98    parseNEW ctxt "(z - 1 / 2) * (z - -1 / 4) * (A / (z - 1 / 2) + B / (z - -1 / 4))";
    2.99 -val SOME (fract2,_) = rewrite_set_ @{theory Isac} false norm_Rational fract1;
   2.100 +val SOME (fract2,_) = rewrite_set_ @{theory Rational2} false norm_Rational fract1;
   2.101 +*)
   2.102  (* TODO
   2.103  if term2str fract2 = "A * (1 / 4 + z) + B * (-1 / 2 + z)" then ()
   2.104  else error "specific simplification for partial fractions";
   2.105  *)
   2.106  
   2.107 +"----------- fun mod_invers -----------------------------";
   2.108 +"----------- fun mod_invers -----------------------------";
   2.109 +"----------- fun mod_invers -----------------------------";
   2.110 +"~~~~~ fun mod_inv, args:"; val (r, m) = (5,7);
   2.111 +"~~~~~ fun modi, args:"; val (r, rold, m, rinv) = (r, r, m, 1);
   2.112 +rinv < m; (*=true*)
   2.113 +r mod m = 1; (*=false*)
   2.114 +"~~~~~ fun modi, args:"; val (r, rold, m, rinv) = (rold * (rinv + 1), rold, m, rinv + 1);
   2.115 +rinv < m;(*=true*)
   2.116 +r mod m = 1; (*=false*)
   2.117 +"~~~~~ fun modi, args:"; val (r, rold, m, rinv) = (rold * (rinv + 1), rold, m, rinv + 1);
   2.118 +rinv < m;(*=true*)
   2.119 +r mod m = 1; (*=true*)
   2.120 +"~~~~~ to mod_inv return val:"; val (rinv) = (rinv);
   2.121 +
   2.122 +if mod_inv 5 7 = 3 then () else error "mod_inv 5 7 = 3 changed";
   2.123 +if mod_inv 3 7 = 5 then () else error "mod_inv 3 7 = 5 changed";
   2.124 +if mod_inv 4 339 = 85 then () else error "mod_inv 4 339 = 85 changed";
   2.125 +
   2.126 +"----------- fun CRA_2 ----------------------------------";
   2.127 +"----------- fun CRA_2 ----------------------------------";
   2.128 +"----------- fun CRA_2 ----------------------------------";
   2.129 +
   2.130 +if  CRA_2(17,9,3,4) = 35 then () else error "CRA_2(17,9,3,4)=35 changed"; 
   2.131 +if  CRA_2(7,2,6,11) = 17  then () else error "CRA_2(7,2,6,11) = 17 changed";  
   2.132 +
   2.133 +"----------- fun lc -------------------------------------";
   2.134 +"----------- fun lc -------------------------------------";
   2.135 +"----------- fun lc -------------------------------------";
   2.136 +if lc [3,4,5,6] = 6 then () else error "ls_mv (3,4,5,6) = 6 changed" ;
   2.137 +if lc [3,4,5,6,0] = 6 then () else error "ls_mv (3,4,5,6,0) = 6 changed"  ;
   2.138 +
   2.139 +"----------- fun deg ------------------------------------";
   2.140 +"----------- fun deg ------------------------------------";
   2.141 +"----------- fun deg ------------------------------------";
   2.142 +if deg [3,4,5,6] = 3 then () else error "lc (3,4,5,6) = 3 changed" ;
   2.143 +if deg [3,4,5,6,0] = 3 then () else error "lc (3,4,5,6) = 6 changed";
   2.144 +
   2.145 +"----------- fun INT_GCD --------------------------------";
   2.146 +"----------- fun INT_GCD --------------------------------";
   2.147 +"----------- fun INT_GCD --------------------------------";
   2.148 +if INT_GCD 15 6 = 3 then () else error "INT_GCD 15 6 = 3 changed";
   2.149 +if INT_GCD 10 3 =1 then () else error "INT_GCD 10 3  = 1 changed";
   2.150 +if INT_GCD 6 24 = 6 then () else error "INT_GCD 6 24  = 6  changed";
   2.151 +
   2.152 +"----------- fun primeList ------------------------------";
   2.153 +"----------- fun primeList ------------------------------";
   2.154 +"----------- fun primeList ------------------------------";
   2.155 +if primeList 1 = [2] then () else error " primeList 1 = [2] changed";
   2.156 +if primeList 3 = [2,3] then () else error " primeList 3 = [2,3] changed";
   2.157 +if primeList 6 = [2,3,5,7] then () else error " primeList 6 = [2,3,5,7] changed";
   2.158 +if primeList 7 = [2,3,5,7] then () else error " primeList 7 = [2,3,5,7] changed";
   2.159 +
   2.160 +"----------- fun find_next_prime_not_divide -----------------";
   2.161 +"----------- fun find_next_prime_not_divide -----------------";
   2.162 +"----------- fun find_next_prime_not_divide -----------------";
   2.163 +if find_next_prime_not_divide 15 2 = 7 then () else error "findNextPrimeNotdivide 15 2 = 7 changed";
   2.164 +if find_next_prime_not_divide 90 1 = 7 then () else error "findNextPrimeNotdivide 90 1 = 7 changed";
   2.165 +
   2.166 +"----------- fun poly_mod -------------------------------";
   2.167 +"----------- fun poly_mod -------------------------------";
   2.168 +"----------- fun poly_mod -------------------------------";
   2.169 +if ([5,4,7,8,1] poly_mod 5) = [0, 4, 2, 3, 1] then () 
   2.170 +else error "[5,4,7,8,1] poly_mod 5 = [0, 4, 2, 3, 1] changed" ;
   2.171 +if ([5,4,~7,8,~1] poly_mod 5) = [0, 4, 3, 3, 4] then () 
   2.172 +else error "[5,4,~7,8,~1] poly_mod 5  = [0, 4, 3, 3, 4] changed" ;
   2.173 +
   2.174 +"----------- fun %* ------------------------------";
   2.175 +"----------- fun %* ------------------------------";
   2.176 +"----------- fun %* ------------------------------";
   2.177 +if ([5,4,7,8,1] %* 5) = [25, 20, 35, 40, 5] then () 
   2.178 +else error "[5,4,7,8,1] %* 5 = [25, 20, 35, 40, 5] changed";
   2.179 +if ([5,4,~7,8,~1] %* 5) = [25, 20, ~35, 40, ~5] then () 
   2.180 +else error "[5,4,~7,8,~1] %* 5 = [25, 20, ~35, 40, ~5] changed";
   2.181 +
   2.182 +"----------- fun %/ -------------------------------";
   2.183 +"----------- fun %/ -------------------------------";
   2.184 +"----------- fun %/ -------------------------------";
   2.185 +if ([4,3,2,5,6] %/ 3) =[1, 1, 0, 1, 2] then ()
   2.186 +else error "%/ [4,3,2,5,6] 3 =[1, 1, 0, 1, 2] changed";
   2.187 +if ([4,3,2,0] %/ 3) =[1, 1, 0, 0] then () 
   2.188 +else error "%/ [4,3,2,0] 3 =[1, 1, 0, 0] changed";
   2.189 +
   2.190 +"----------- fun %-% ------------------------";
   2.191 +"----------- fun %-% ------------------------";
   2.192 +"----------- fun %-% ------------------------";
   2.193 +if ([8,~7,0,1] %-% [~2,2,3,0])=[10,~9,~3,1] then () 
   2.194 +else error "[8,~7,0,1] %-% [~2,2,3,0]=[10,~9,~3,1] changed";
   2.195 +if ([8,7,6,5,4] %-% [2,2,3,1,1])=[6,5,3,4,3] then ()
   2.196 +else error "[8,7,6,5,4] %-% [2,2,3,1,1]=[6,5,3,4,3] changed";
   2.197 +
   2.198 +"----------- fun %- -----------------------------";
   2.199 +"----------- fun %- -----------------------------";
   2.200 +"----------- fun %- -----------------------------";
   2.201 +if ([8,~7,0,1] %- 8 )=[0,~15,~8,~7] then () 
   2.202 +else error "[8,~7,0,1] %-% 8 =[0,~15,~8,~7] changed";
   2.203 +if ([8,7,6,5,4] %- ~2 )=[10,9,8,7,6] then ()
   2.204 +else error "[8,7,6,5,4] %-% ~2 =[10,9,8,7,6] changed";
   2.205 +
   2.206 +"----------- fun %+ ------------------------------";
   2.207 +"----------- fun %+ ------------------------------";
   2.208 +"----------- fun %+ ------------------------------";
   2.209 +if ([8,~7,0,1] %+ [~2,2,3,0])=[6,~5,3,1] then ()
   2.210 +else error "[8,~7,0,1] %+ [~2,2,3,0]=[6,~5,3,1] changed";
   2.211 +if ([8,7,6,5,4] %+ [2,2,3,1,1])=[10,9,9,6,5] then ()
   2.212 +else error "[8,7,6,5,4] %+ [2,2,3,1,1]=[10,9,9,6,5] changed";
   2.213 +
   2.214 +"----------- fun CRA_2_poly -----------------------------";
   2.215 +"----------- fun CRA_2_poly -----------------------------";
   2.216 +"----------- fun CRA_2_poly -----------------------------";
   2.217 +if (CRA_2_poly (5, 7)([2,2,4,3],[3,2,3,5]))=[17,2,24,33] then ()
   2.218 +else error "CRA_2_poly (5, 7)([2,2,4,3],[3,2,3,5])=[17,2,24,33] changed";
   2.219 +
   2.220 +"----------- fun mod_div --------------------------------";
   2.221 +"----------- fun mod_div --------------------------------";
   2.222 +"----------- fun mod_div --------------------------------";
   2.223 +if mod_div 21 4 5 = 4 then () else error "mod_div 21 4 5 = 4 changed";
   2.224 +if mod_div 1 4 5 = 4 then () else error "mod_div 1 4 5 = 4 changed";
   2.225 +if mod_div 0 4 5 = 0 then () else error "mod_div 0 4 5 = 0 changed";
   2.226 +
   2.227 +"----------- fun poly_mod_div ---------------------------";
   2.228 +"----------- fun poly_mod_div ---------------------------";
   2.229 +"----------- fun poly_mod_div ---------------------------";
   2.230 +if poly_mod_div [21, 1, 0] 4 5 = [4, 4, 0] then ()
   2.231 + else error "poly_mod_div [21, 1, 0]=[4,4,0] changed";
   2.232 +
   2.233 +"----------- fun mod_mult -------------------------------";
   2.234 +"----------- fun mod_mult -------------------------------";
   2.235 +"----------- fun mod_mult -------------------------------";
   2.236 +if mod_mult 4 4 5 = 1 then () else error "mod_mult 4 4 5 = 1 changed";
   2.237 +
   2.238 +"----------- fun mod_minus ------------------------------";
   2.239 +"----------- fun mod_minus ------------------------------";
   2.240 +"----------- fun mod_minus ------------------------------";
   2.241 +if mod_minus 9 3 5 = 1 then () else error "mod_minus 9 3 5 = 1 changed";
   2.242 +
   2.243 +"----------- fun mod_plus -------------------------------";
   2.244 +"----------- fun mod_plus -------------------------------";
   2.245 +"----------- fun mod_plus -------------------------------";
   2.246 +if mod_plus 9 3 5 = 2 then () else error "mod_plus 9 3 5 =2 changed";
   2.247 +
   2.248 +"----------- fun lc_of_list_not_0 -----------------------";
   2.249 +"----------- fun lc_of_list_not_0 -----------------------";
   2.250 +"----------- fun lc_of_list_not_0 -----------------------";
   2.251 +if lc_of_list_not_0 [0,1,2,3,4,5,0,0]=[1, 2, 3, 4, 5] then ()
   2.252 +else error "lc_of_list_not_0 [0,1,2,3,4,5,0,0]=[1, 2, 3, 4, 5] changed";
   2.253 +if lc_of_list_not_0 [0,1,2,3,4,5]=[1, 2, 3, 4, 5] then () 
   2.254 +else error "lc_of_list_not_0 [0,1,2,3,4,5]=[ 1, 2, 3, 4, 5] changed";
   2.255 +
   2.256 +"----------- fun %/% -------------------------------";
   2.257 +"----------- fun %/% -------------------------------";
   2.258 +"----------- fun %/% -------------------------------";
   2.259 +"~~~~~ fun %/% , args:"; val (poly1, poly2) = ([9,12,4],[3,2]);
   2.260 +val b = (replicate (length poly1 - length poly2) 0 ) @ poly2 ;
   2.261 +val c = lc poly1 div lc b;
   2.262 +val rest = lc_of_list_not_0 ( poly1 %-% (b %* c ));
   2.263 +rest = [];(*=false*)
   2.264 +c<>0 andalso length rest >= length poly2; (*=true*)
   2.265 +"~~~~~ fun %/% , args:"; val (poly1, poly2) = (rest, poly2);
   2.266 +val b = (replicate (length poly1 - length poly2) 0 ) @ poly2 ;
   2.267 +val c = lc poly1 div lc b;
   2.268 +val rest = lc_of_list_not_0 ( poly1 %-% (b %* c ));
   2.269 +rest = [];(*=true*)
   2.270 +"~~~~~ to  return val:"; val (divide) = (true);
   2.271 +
   2.272 +if ([6] %/% [4]) = false then () else error "[6] %/% [4] = false changed";
   2.273 +if ([16,0] %/% [8]) = true then () else error "[16,0] %/% [8] = true changed";
   2.274 +if ([0,0,9,12,4] %/% [3,2]) = true then () 
   2.275 +else error "[0,0,9,12,4] %/% [3,2] = true changed";
   2.276 +if ([16] %/% [8,0]) = true then () else error "[16] %/% [8,0] = true changed";
   2.277 +
   2.278 +"----------- fun mod_polynom_gcd ------------------------";
   2.279 +"----------- fun mod_polynom_gcd ------------------------";
   2.280 +"----------- fun mod_polynom_gcd ------------------------";
   2.281 +"~~~~~ fun mod_polynom_gcd , args:"; 
   2.282 +val (a,b,m) = ([ ~13, 2,12],[ ~14, 2],5);
   2.283 +val moda = a poly_mod m;
   2.284 +val modb = (replicate (length a - length(lc_of_list_not_0 b)) 0) @ (lc_of_list_not_0 b poly_mod m) ;
   2.285 +val c =  mod_div (lc moda) (lc modb) m;
   2.286 +val rest = lc_of_list_not_0 (moda %-% (modb %* c) poly_mod m) poly_mod m;
   2.287 +rest = []; (*=false*)
   2.288 +length rest < length b; (*=false*)
   2.289 +"~~~~~ fun  mod_poly_gcd , args:";
   2.290 +val (a,b,m,d) = (rest, b ,  m , [c]);
   2.291 +val moda = a poly_mod m
   2.292 +val modb = (replicate (length a - length(lc_of_list_not_0 b)) 0) @ (lc_of_list_not_0 b poly_mod m) ;
   2.293 +val c =  mod_div (lc moda) (lc modb) m
   2.294 +val rest = lc_of_list_not_0 ((moda %-% (modb %*  c)) poly_mod m);
   2.295 +rest = [];(*=flase*)
   2.296 +length rest < length b; (*=true*)
   2.297 +"~~~~~ fun  mod_poly_gcd , args:";
   2.298 +val (a,b,m,d) = (b, rest, m, [c] @ d);
   2.299 +val moda = a poly_mod m
   2.300 +val modb = (replicate (length a - length(lc_of_list_not_0 b)) 0) @ (lc_of_list_not_0 b poly_mod m) ;
   2.301 +val c =  mod_div (lc moda) (lc modb) m
   2.302 +val rest = lc_of_list_not_0 ((moda %-% (modb %*  c)) poly_mod m);
   2.303 +rest = [];(*=flase*)
   2.304 +length rest < length b; (*=false*)
   2.305 +"~~~~~ fun  mod_poly_gcd , args:";
   2.306 +val (a,b,m,d) = (b, rest, m, [c] @ d);
   2.307 +val moda = a poly_mod m
   2.308 +val modb = (replicate (length a - length(lc_of_list_not_0 b)) 0) @ (lc_of_list_not_0 b poly_mod m) ;
   2.309 +val c =  mod_div (lc moda) (lc modb) m
   2.310 +val rest = lc_of_list_not_0 ((moda %-% (modb %*  c)) poly_mod m);
   2.311 +rest = [];(*=true*)
   2.312 +"~~~~~ to  return val:"; val ([b, rest, lsit])=[b, [0], [c] @ d];
   2.313 +
   2.314 +if ( mod_polynom_gcd [~18, ~15, ~20, 12, 20, ~13, 2] [8, 28, 22, ~11, ~14, 1, 2] 7)=[[2, 6, 0, 2, 6]]
   2.315 +then () else error "( mod_polynom_gcd [~18, ~15, ~20, 12, 20, ~13, 2] [8, 28, 22, ~11, ~14, 1, 2] 7 = [[2, 6, 0, 2, 6] changed";
   2.316 +if ( mod_polynom_gcd [8, 28, 22, ~11, ~14, 1, 2] [2, 6, 0, 2, 6] 7)=[[1, 3, 0, 1, 3], [0]] then ()
   2.317 +else error "mod_polynom_gcd [8, 28, 22, ~11, ~14, 1, 2] [2, 6, 0, 2, 6] 7=[[1, 3, 0, 1, 3], [0]] changed";
   2.318 +
   2.319 +"----------- fun normirt_polynom ------------------------";
   2.320 +"----------- fun normirt_polynom ------------------------";
   2.321 +"----------- fun normirt_polynom ------------------------";
   2.322 +if (normirt_polynom [~18, ~15, ~20, 12, 20, ~13, 2] 5) =[1, 0, 0, 1, 0, 1, 1 ] then ()
   2.323 +else error "(normirt_polynom [~18, ~15, ~20, 12, 20, ~13, 2] 5) =[1, 0, 0, 1, 0, 1, 1 ] changed"
   2.324 +
   2.325 +"----------- fun poly_centr -----------------------------";
   2.326 +"----------- fun poly_centr -----------------------------";
   2.327 +"----------- fun poly_centr -----------------------------";
   2.328 +if (poly_centr [7,3,5,8,1,3] 10) = [~3, 3, 5, ~2, 1, 3] then ()
   2.329 +else error "poly_centr [7,3,5,8,1,3] 10 = [~3, 3, 5, ~2, 1, 3] cahnged";
   2.330 +
   2.331 +"----------- fun mod_gcd_p -------------------------------";
   2.332 +"----------- fun mod_gcd_p -------------------------------";
   2.333 +"----------- fun mod_gcd_p -------------------------------";
   2.334 +if  (mod_gcd_p [~18, ~15, ~20, 12, 20, ~13, 2] [8, 28, 22, ~11, ~14, 1, 2] 5) = [1, 1, 1, 1] then ()
   2.335 +else error "mod_gcd_p [~18, ~15, ~20, 12, 20, ~13, 2] [8, 28, 22, ~11, ~14, 1, 2] 5 = [1, 1, 1, 1] changed";
   2.336 +if  (mod_gcd_p [~18, ~15, ~20, 12, 20, ~13, 2] [8, 28, 22, ~11, ~14, 1, 2] 7) = [5, 1, 0, 5, 1] then ()
   2.337 +else error "mod_gcd_p [~18, ~15, ~20, 12, 20, ~13, 2] [8, 28, 22, ~11, ~14, 1, 2] 7 = [5, 1, 0, 5, 1] changed";
   2.338 +
   2.339 +"----------- fun gcd_n ----------------------------";
   2.340 +"----------- fun gcd_n ----------------------------";
   2.341 +"----------- fun gcd_n ----------------------------";
   2.342 +if gcd_n [3,9,12,21] = 3 then () else error "gcd_n [3,9,12,21] = 3 changed";
   2.343 +if gcd_n [12,16,32,44] = 4 then () else error "gcd_n [12,16,32,44] = 4 changed";
   2.344 +if gcd_n [4,5,12] = 1 then () else error "gcd_n [4,5,12] = 1 changed";
   2.345 +
   2.346 +"----------- fun pp -------------------------------------";
   2.347 +"----------- fun pp -------------------------------------";
   2.348 +"----------- fun pp -------------------------------------";
   2.349 +if pp [12,16,32,44] = [3, 4, 8, 11] then () else error "pp [12,16,32,44] = [3, 4, 8, 11] changed";
   2.350 +if pp [4,5,12] =  [4, 5, 12] then () else error "pp [4,5,12] =  [4, 5, 12] changed";
   2.351 +
   2.352 +"----------- fun GCD_MOD -------------------------------";
   2.353 +"----------- fun GCD_MOD -------------------------------";
   2.354 +"----------- fun GCD_MOD -------------------------------";
   2.355 +
   2.356 +"~~~~~ fun GCD_MOD a b , args:"; val (a, b) = ([~18, ~15, ~20, 12, 20, ~13, 2], [8, 28, 22, ~11, ~14, 1, 2]);
   2.357 +val d = INT_GCD (lc a) (lc b);
   2.358 +val M  =2*d* landau_mignotte_bound a b;
   2.359 +(*val  g = GOTO2 a b d (*p*)1 M*)
   2.360 +   "~~~~~ fun GOTO2 a b d M p , args:"; val (a, b, d, p, M) = (a,b,d,3,M);
   2.361 +  val p = find_next_prime_not_divide d p
   2.362 +  val c_p = normirt_polynom ( mod_gcd_p a b p) p
   2.363 +  val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.364 +  (*val (p, g) = GOTO3 a b d M p g_p (* << 1.Mal ~~~~~~~~~~*)*)       
   2.365 +     "~~~~~ fun GOTO3 a b d M p g_p , args:"; val (a, b, d, M, p, g_p) = (a,b,d,M,p,g_p);
   2.366 +    (deg g_p) = 0; (*=false*)
   2.367 +    val P = p
   2.368 +    val g = g_p;
   2.369 +    (*(p, g) = WHILE a b d M P g (* << 1.Mal -----*)*)
   2.370 +       "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,p,g);
   2.371 +       P > M ;(*false*)
   2.372 +      val p = find_next_prime_not_divide d p
   2.373 +      val c_p = normirt_polynom ( mod_gcd_p a b p) p
   2.374 +      val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.375 +      deg g_p < deg g;   (*=fasle*) 
   2.376 +      deg g_p = deg g; (*false*);
   2.377 +      "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,P,g);
   2.378 +       P > M ;(*false*)
   2.379 +      val p = find_next_prime_not_divide d p
   2.380 +      val c_p = normirt_polynom ( mod_gcd_p a b p) p
   2.381 +      val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.382 +      deg g_p < deg g;   (*=false*) 
   2.383 +      deg g_p = deg g; (*=true*)
   2.384 +      val g = CRA_2_poly (P,p)(g,g_p)
   2.385 +      val P = P*p;
   2.386 +      val g = poly_centr(g poly_mod P)P;
   2.387 +      "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,P,g);
   2.388 +       P > M ;(*false*)
   2.389 +      val p = find_next_prime_not_divide d p
   2.390 +      val c_p = normirt_polynom (mod_gcd_p a b p) p
   2.391 +      val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.392 +      deg g_p < deg g;   (*=true*) 
   2.393 +       "~~~~~ fun GOTO3 a b d M p g_p , args:"; val (a, b, d, M, p, g_p) = (a,b,d,M,p,g_p);
   2.394 +      (deg g_p) = 0; (*false*)
   2.395 +      val P = p
   2.396 +      val g = g_p;
   2.397 +      "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,P,g);
   2.398 +       P > M ;(*false*)
   2.399 +      val p = find_next_prime_not_divide d p
   2.400 +      val c_p = normirt_polynom (mod_gcd_p a b p) p
   2.401 +      val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.402 +      deg g_p < deg g;   (*=fasle*) 
   2.403 +      deg g_p = deg g;(*true*)
   2.404 +      val g = CRA_2_poly (P,p)(g,g_p)
   2.405 +      val P = P*p;
   2.406 +      val g = poly_centr(g poly_mod P)P;
   2.407 +      "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,P,g);
   2.408 +       P > M ;(*false*)
   2.409 +      val p = find_next_prime_not_divide d p
   2.410 +      val c_p = normirt_polynom (mod_gcd_p a b p) p
   2.411 +      val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.412 +      deg g_p < deg g;   (*=false*) 
   2.413 +      deg g_p = deg g;(*true*)
   2.414 +      val g = CRA_2_poly (P,p)(g,g_p)
   2.415 +      val P = P*p;
   2.416 +      val g = poly_centr(g poly_mod P)P;
   2.417 +      "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,P,g);
   2.418 +       P > M ;(*false*)
   2.419 +      val p = find_next_prime_not_divide d p
   2.420 +      val c_p = normirt_polynom (mod_gcd_p a b p) p
   2.421 +      val g_p = poly_centr((c_p %* (d mod p)) poly_mod p) p;
   2.422 +      deg g_p < deg g;   (*=false*) 
   2.423 +      deg g_p = deg g;(*true*)
   2.424 +      val g = CRA_2_poly (P,p)(g,g_p)
   2.425 +      val P = P*p;
   2.426 +      val g = poly_centr(g poly_mod P)P;
   2.427 +      "~~~~~ fun WHILE a b d M p g , args:"; val (a, b, d, M, P, g) = (a,b,d,M,P,g);
   2.428 +       P > M ;(*true*)
   2.429 +    "~~~~~ to  return WHILE val:"; val (g,p) = (g,p);
   2.430 +  "~~~~~ to  return GOTO3 val:"; val (g,p) = (g,p);
   2.431 +   val g = pp g;
   2.432 +   (a %/% g) andalso (b %/% g);(*=true*)
   2.433 +"~~~~~ to  return GOTO2 val:"; val (g) = (g);
   2.434 +"~~~~~ to  return GCD_MOD val:"; val (g) = (g);
   2.435 +
   2.436 +"----------- fun GCD_MOD --------------------------------";
   2.437 +"----------- fun GCD_MOD --------------------------------";
   2.438 +"----------- fun GCD_MOD --------------------------------";
   2.439 +val a = [~18, ~15, ~20, 12, 20, ~13, 2];
   2.440 +val b = [8, 28, 22, ~11, ~14, 1, 2];
   2.441 +if GCD_MOD a b = [~2, ~1, 1] then ()
   2.442 +else error "GCD_MOD a b = [~2, ~1, 1]";
   2.443 +
   2.444 +"----------- fun %/% -------------------------------";
   2.445 +"----------- fun %/% -------------------------------";
   2.446 +"----------- fun %/% -------------------------------";
   2.447 +
   2.448 +"----------- fun %/% -------------------------------";
   2.449 +"----------- fun %/% -------------------------------";
   2.450 +"----------- fun %/% -------------------------------";
   2.451 +
   2.452 +"----------- fun %/% -------------------------------";
   2.453 +"----------- fun %/% -------------------------------";
   2.454 +"----------- fun %/% -------------------------------";
   2.455 +
   2.456 +"----------- fun %/% -------------------------------";
   2.457 +"----------- fun %/% -------------------------------";
   2.458 +"----------- fun %/% -------------------------------";
   2.459 +
   2.460 +