fixed some overfull lines
authorpaulson
Wed, 16 Feb 2000 10:51:23 +0100
changeset 82493fc32155372c
parent 8248 d7e85fd09291
child 8250 f4029c34adef
fixed some overfull lines
doc-src/ZF/FOL.tex
doc-src/ZF/ZF.tex
     1.1 --- a/doc-src/ZF/FOL.tex	Wed Feb 16 10:50:57 2000 +0100
     1.2 +++ b/doc-src/ZF/FOL.tex	Wed Feb 16 10:51:23 2000 +0100
     1.3 @@ -578,12 +578,12 @@
     1.4  {\out  1. !!x. [| P(?a); ~ (ALL xa. P(?y3(x)) --> P(xa)) |] ==> P(x)}
     1.5  \end{ttbox}
     1.6  In classical logic, a negated assumption is equivalent to a conclusion.  To
     1.7 -get this effect, we create a swapped version of~$(\forall I)$ and apply it
     1.8 -using \ttindex{eresolve_tac}; we could equivalently have applied~$(\forall
     1.9 +get this effect, we create a swapped version of $(\forall I)$ and apply it
    1.10 +using \ttindex{eresolve_tac}; we could equivalently have applied $(\forall
    1.11  I)$ using \ttindex{swap_res_tac}.
    1.12  \begin{ttbox}
    1.13  allI RSN (2,swap);
    1.14 -{\out val it = "[| ~ (ALL x. ?P1(x)); !!x. ~ ?Q ==> ?P1(x) |] ==> ?Q" : thm}
    1.15 +{\out val it = "[| ~(ALL x. ?P1(x)); !!x. ~ ?Q ==> ?P1(x) |] ==> ?Q" : thm}
    1.16  by (eresolve_tac [it] 1);
    1.17  {\out Level 5}
    1.18  {\out EX y. ALL x. P(y) --> P(x)}
     2.1 --- a/doc-src/ZF/ZF.tex	Wed Feb 16 10:50:57 2000 +0100
     2.2 +++ b/doc-src/ZF/ZF.tex	Wed Feb 16 10:51:23 2000 +0100
     2.3 @@ -909,14 +909,14 @@
     2.4  
     2.5  \begin{figure}
     2.6  \begin{ttbox}
     2.7 -\tdx{lamI}         a:A ==> <a,b(a)> : (lam x:A. b(x))
     2.8 -\tdx{lamE}         [| p: (lam x:A. b(x));  !!x.[| x:A; p=<x,b(x)> |] ==> P 
     2.9 -             |] ==>  P
    2.10 -
    2.11 -\tdx{lam_type}     [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)
    2.12 -
    2.13 -\tdx{beta}         a : A ==> (lam x:A. b(x)) ` a = b(a)
    2.14 -\tdx{eta}          f : Pi(A,B) ==> (lam x:A. f`x) = f
    2.15 +\tdx{lamI}      a:A ==> <a,b(a)> : (lam x:A. b(x))
    2.16 +\tdx{lamE}      [| p: (lam x:A. b(x));  !!x.[| x:A; p=<x,b(x)> |] ==> P 
    2.17 +          |] ==>  P
    2.18 +
    2.19 +\tdx{lam_type}  [| !!x. x:A ==> b(x): B(x) |] ==> (lam x:A. b(x)) : Pi(A,B)
    2.20 +
    2.21 +\tdx{beta}      a : A ==> (lam x:A. b(x)) ` a = b(a)
    2.22 +\tdx{eta}       f : Pi(A,B) ==> (lam x:A. f`x) = f
    2.23  \end{ttbox}
    2.24  \caption{$\lambda$-abstraction} \label{zf-lam}
    2.25  \end{figure}
    2.26 @@ -1263,7 +1263,8 @@
    2.27  \tdx{nat_def}  nat == lfp(lam r: Pow(Inf). {\ttlbrace}0{\ttrbrace} Un {\ttlbrace}succ(x). x:r{\ttrbrace}
    2.28  
    2.29  \tdx{mod_def}  m mod n == transrec(m, \%j f. if j:n then j else f`(j#-n))
    2.30 -\tdx{div_def}  m div n == transrec(m, \%j f. if j:n then 0 else succ(f`(j#-n)))
    2.31 +\tdx{div_def}  m div n == transrec(m, \%j f. if j:n then 0 
    2.32 +                                       else succ(f`(j#-n)))
    2.33  
    2.34  \tdx{nat_case_def}  nat_case(a,b,k) == 
    2.35                THE y. k=0 & y=a | (EX x. k=succ(x) & y=b(x))
    2.36 @@ -1285,7 +1286,8 @@
    2.37  \tdx{mult_0}        0 #* n = 0
    2.38  \tdx{mult_succ}     succ(m) #* n = n #+ (m #* n)
    2.39  \tdx{mult_commute}  [| m:nat; n:nat |] ==> m #* n = n #* m
    2.40 -\tdx{add_mult_dist} [| m:nat; k:nat |] ==> (m #+ n) #* k = (m #* k){\thinspace}#+{\thinspace}(n #* k)
    2.41 +\tdx{add_mult_dist} [| m:nat; k:nat |] ==> 
    2.42 +              (m #+ n) #* k = (m #* k) #+ (n #* k)
    2.43  \tdx{mult_assoc}
    2.44      [| m:nat;  n:nat;  k:nat |] ==> (m #* n) #* k = m #* (n #* k)
    2.45  \tdx{mod_quo_equality}
    2.46 @@ -1452,7 +1454,7 @@
    2.47  essentially type-checking.  Such proofs are built by applying rules such as
    2.48  these:
    2.49  \begin{ttbox}
    2.50 -[| ?P ==> ?a : ?A; ~ ?P ==> ?b : ?A |] ==> (if ?P then ?a else ?b) : ?A
    2.51 +[| ?P ==> ?a: ?A; ~?P ==> ?b: ?A |] ==> (if ?P then ?a else ?b): ?A
    2.52  
    2.53  [| ?m : nat; ?n : nat |] ==> ?m #+ ?n : nat
    2.54  
    2.55 @@ -1625,7 +1627,8 @@
    2.56  and forests:
    2.57  \begin{ttbox}
    2.58  [| x : tree_forest(A);
    2.59 -   !!a f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f)); P(Fnil);
    2.60 +   !!a f. [| a : A; f : forest(A); P(f) |] ==> P(Tcons(a, f)); 
    2.61 +   P(Fnil);
    2.62     !!f t. [| t : tree(A); P(t); f : forest(A); P(f) |]
    2.63            ==> P(Fcons(t, f)) 
    2.64  |] ==> P(x)
    2.65 @@ -1647,7 +1650,7 @@
    2.66  refers to the monotonic operator, \texttt{list}:
    2.67  \begin{ttbox}
    2.68  [| x : term(A);
    2.69 -   !!a l. [| a : A; l : list(Collect(term(A), P)) |] ==> P(Apply(a, l)) 
    2.70 +   !!a l. [| a: A; l: list(Collect(term(A), P)) |] ==> P(Apply(a, l)) 
    2.71  |] ==> P(x)
    2.72  \end{ttbox}
    2.73  The file \texttt{ex/Term.ML} derives two higher-level induction rules, one of
    2.74 @@ -1797,7 +1800,8 @@
    2.75  {\out l : bt(A) ==> ALL x r. Br(x, l, r) ~= l}
    2.76  {\out  1. ALL x r. Br(x, Lf, r) ~= Lf}
    2.77  {\out  2. !!a t1 t2.}
    2.78 -{\out        [| a : A; t1 : bt(A); ALL x r. Br(x, t1, r) ~= t1; t2 : bt(A);}
    2.79 +{\out        [| a : A; t1 : bt(A);}
    2.80 +{\out           ALL x r. Br(x, t1, r) ~= t1; t2 : bt(A);}
    2.81  {\out           ALL x r. Br(x, t2, r) ~= t2 |]}
    2.82  {\out        ==> ALL x r. Br(x, Br(a, t1, t2), r) ~= Br(a, t1, t2)}
    2.83  \end{ttbox}
    2.84 @@ -1820,7 +1824,8 @@
    2.85  theorems for each constructor.  This is trivial, using the function given us
    2.86  for that purpose:
    2.87  \begin{ttbox}
    2.88 -val Br_iff = bt.mk_free "Br(a,l,r)=Br(a',l',r') <-> a=a' & l=l' & r=r'";
    2.89 +val Br_iff = 
    2.90 +    bt.mk_free "Br(a,l,r)=Br(a',l',r') <-> a=a' & l=l' & r=r'";
    2.91  {\out val Br_iff =}
    2.92  {\out   "Br(?a, ?l, ?r) = Br(?a', ?l', ?r') <->}
    2.93  {\out                     ?a = ?a' & ?l = ?l' & ?r = ?r'" : thm}
    2.94 @@ -1834,7 +1839,8 @@
    2.95  val BrE = bt.mk_cases "Br(a,l,r) : bt(A)";
    2.96  {\out val BrE =}
    2.97  {\out   "[| Br(?a, ?l, ?r) : bt(?A);}
    2.98 -{\out       [| ?a : ?A; ?l : bt(?A); ?r : bt(?A) |] ==> ?Q |] ==> ?Q" : thm}
    2.99 +{\out       [| ?a : ?A; ?l : bt(?A); ?r : bt(?A) |] ==> ?Q |]}
   2.100 +{\out    ==> ?Q" : thm}
   2.101  \end{ttbox}
   2.102  
   2.103  
   2.104 @@ -2021,7 +2027,7 @@
   2.105    type_elims {\it elimination rules for type-checking}
   2.106  \end{ttbox}
   2.107  A coinductive definition is identical, but starts with the keyword
   2.108 -{\tt coinductive}.  
   2.109 +{\tt co\-inductive}.  
   2.110  
   2.111  The {\tt monos}, {\tt con\_defs}, {\tt type\_intrs} and {\tt type\_elims}
   2.112  sections are optional.  If present, each is specified either as a list of
   2.113 @@ -2031,7 +2037,7 @@
   2.114  error messages.  You can then inspect the file on the temporary directory.
   2.115  
   2.116  \begin{description}
   2.117 -\item[\it domain declarations] consist of one or more items of the form
   2.118 +\item[\it domain declarations] are items of the form
   2.119    {\it string\/}~{\tt <=}~{\it string}, associating each recursive set with
   2.120    its domain.  (The domain is some existing set that is large enough to
   2.121    hold the new set being defined.)