tuned header;
authorwenzelm
Sat, 15 May 2010 18:12:58 +0200
changeset 36940278029c8a462
parent 36939 a30e50d4aeeb
child 36941 897ee863885d
tuned header;
tuned white space;
src/HOL/Multivariate_Analysis/normarith.ML
     1.1 --- a/src/HOL/Multivariate_Analysis/normarith.ML	Sat May 15 18:11:00 2010 +0200
     1.2 +++ b/src/HOL/Multivariate_Analysis/normarith.ML	Sat May 15 18:12:58 2010 +0200
     1.3 @@ -1,18 +1,16 @@
     1.4 -(* Title:      Library/normarith.ML
     1.5 -   Author:     Amine Chaieb, University of Cambridge
     1.6 -   Description: A simple decision procedure for linear problems in euclidean space
     1.7 +(*  Title:      Library/normarith.ML
     1.8 +    Author:     Amine Chaieb, University of Cambridge
     1.9 +
    1.10 +Simple decision procedure for linear problems in Euclidean space.
    1.11  *)
    1.12  
    1.13 -  (* Now the norm procedure for euclidean spaces *)
    1.14 -
    1.15 -
    1.16 -signature NORM_ARITH = 
    1.17 +signature NORM_ARITH =
    1.18  sig
    1.19   val norm_arith : Proof.context -> conv
    1.20   val norm_arith_tac : Proof.context -> int -> tactic
    1.21  end
    1.22  
    1.23 -structure NormArith : NORM_ARITH = 
    1.24 +structure NormArith : NORM_ARITH =
    1.25  struct
    1.26  
    1.27   open Conv;
    1.28 @@ -22,7 +20,7 @@
    1.29   | Const(@{const_name inverse}, _)$a => Rat.rat_of_quotient(1, HOLogic.dest_number a |> snd)
    1.30   | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd)
    1.31   fun is_ratconst t = can dest_ratconst t
    1.32 - fun augment_norm b t acc = case term_of t of 
    1.33 + fun augment_norm b t acc = case term_of t of
    1.34       Const(@{const_name norm}, _) $ _ => insert (eq_pair bool_eq (op aconvc)) (b,Thm.dest_arg t) acc
    1.35     | _ => acc
    1.36   fun find_normedterms t acc = case term_of t of
    1.37 @@ -30,25 +28,25 @@
    1.38              find_normedterms (Thm.dest_arg1 t) (find_normedterms (Thm.dest_arg t) acc)
    1.39        | @{term "op * :: real => _"}$_$n =>
    1.40              if not (is_ratconst (Thm.dest_arg1 t)) then acc else
    1.41 -            augment_norm (dest_ratconst (Thm.dest_arg1 t) >=/ Rat.zero) 
    1.42 +            augment_norm (dest_ratconst (Thm.dest_arg1 t) >=/ Rat.zero)
    1.43                        (Thm.dest_arg t) acc
    1.44 -      | _ => augment_norm true t acc 
    1.45 +      | _ => augment_norm true t acc
    1.46  
    1.47   val cterm_lincomb_neg = FuncUtil.Ctermfunc.map Rat.neg
    1.48 - fun cterm_lincomb_cmul c t = 
    1.49 + fun cterm_lincomb_cmul c t =
    1.50      if c =/ Rat.zero then FuncUtil.Ctermfunc.empty else FuncUtil.Ctermfunc.map (fn x => x */ c) t
    1.51   fun cterm_lincomb_add l r = FuncUtil.Ctermfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r
    1.52   fun cterm_lincomb_sub l r = cterm_lincomb_add l (cterm_lincomb_neg r)
    1.53   fun cterm_lincomb_eq l r = FuncUtil.Ctermfunc.is_empty (cterm_lincomb_sub l r)
    1.54  
    1.55   val int_lincomb_neg = FuncUtil.Intfunc.map Rat.neg
    1.56 - fun int_lincomb_cmul c t = 
    1.57 + fun int_lincomb_cmul c t =
    1.58      if c =/ Rat.zero then FuncUtil.Intfunc.empty else FuncUtil.Intfunc.map (fn x => x */ c) t
    1.59   fun int_lincomb_add l r = FuncUtil.Intfunc.combine (curry op +/) (fn x => x =/ Rat.zero) l r
    1.60   fun int_lincomb_sub l r = int_lincomb_add l (int_lincomb_neg r)
    1.61   fun int_lincomb_eq l r = FuncUtil.Intfunc.is_empty (int_lincomb_sub l r)
    1.62  
    1.63 -fun vector_lincomb t = case term_of t of 
    1.64 +fun vector_lincomb t = case term_of t of
    1.65     Const(@{const_name plus}, _) $ _ $ _ =>
    1.66      cterm_lincomb_add (vector_lincomb (Thm.dest_arg1 t)) (vector_lincomb (Thm.dest_arg t))
    1.67   | Const(@{const_name minus}, _) $ _ $ _ =>
    1.68 @@ -58,9 +56,9 @@
    1.69   | Const(@{const_name uminus}, _)$_ =>
    1.70       cterm_lincomb_neg (vector_lincomb (Thm.dest_arg t))
    1.71  (* FIXME: how should we handle numerals?
    1.72 - | Const(@ {const_name vec},_)$_ => 
    1.73 -   let 
    1.74 -     val b = ((snd o HOLogic.dest_number o term_of o Thm.dest_arg) t = 0 
    1.75 + | Const(@ {const_name vec},_)$_ =>
    1.76 +   let
    1.77 +     val b = ((snd o HOLogic.dest_number o term_of o Thm.dest_arg) t = 0
    1.78                 handle TERM _=> false)
    1.79     in if b then FuncUtil.Ctermfunc.onefunc (t,Rat.one)
    1.80        else FuncUtil.Ctermfunc.empty
    1.81 @@ -69,44 +67,44 @@
    1.82   | _ => FuncUtil.Ctermfunc.onefunc (t,Rat.one)
    1.83  
    1.84   fun vector_lincombs ts =
    1.85 -  fold_rev 
    1.86 +  fold_rev
    1.87     (fn t => fn fns => case AList.lookup (op aconvc) fns t of
    1.88 -     NONE => 
    1.89 -       let val f = vector_lincomb t 
    1.90 +     NONE =>
    1.91 +       let val f = vector_lincomb t
    1.92         in case find_first (fn (_,f') => cterm_lincomb_eq f f') fns of
    1.93             SOME (_,f') => (t,f') :: fns
    1.94 -         | NONE => (t,f) :: fns 
    1.95 +         | NONE => (t,f) :: fns
    1.96         end
    1.97     | SOME _ => fns) ts []
    1.98  
    1.99 -fun replacenegnorms cv t = case term_of t of 
   1.100 +fun replacenegnorms cv t = case term_of t of
   1.101    @{term "op + :: real => _"}$_$_ => binop_conv (replacenegnorms cv) t
   1.102 -| @{term "op * :: real => _"}$_$_ => 
   1.103 +| @{term "op * :: real => _"}$_$_ =>
   1.104      if dest_ratconst (Thm.dest_arg1 t) </ Rat.zero then arg_conv cv t else reflexive t
   1.105  | _ => reflexive t
   1.106 -fun flip v eq = 
   1.107 -  if FuncUtil.Ctermfunc.defined eq v 
   1.108 +fun flip v eq =
   1.109 +  if FuncUtil.Ctermfunc.defined eq v
   1.110    then FuncUtil.Ctermfunc.update (v, Rat.neg (FuncUtil.Ctermfunc.apply eq v)) eq else eq
   1.111 -fun allsubsets s = case s of 
   1.112 +fun allsubsets s = case s of
   1.113    [] => [[]]
   1.114  |(a::t) => let val res = allsubsets t in
   1.115                 map (cons a) res @ res end
   1.116  fun evaluate env lin =
   1.117 - FuncUtil.Intfunc.fold (fn (x,c) => fn s => s +/ c */ (FuncUtil.Intfunc.apply env x)) 
   1.118 + FuncUtil.Intfunc.fold (fn (x,c) => fn s => s +/ c */ (FuncUtil.Intfunc.apply env x))
   1.119     lin Rat.zero
   1.120  
   1.121  fun solve (vs,eqs) = case (vs,eqs) of
   1.122    ([],[]) => SOME (FuncUtil.Intfunc.onefunc (0,Rat.one))
   1.123 - |(_,eq::oeqs) => 
   1.124 + |(_,eq::oeqs) =>
   1.125     (case filter (member (op =) vs) (FuncUtil.Intfunc.dom eq) of (*FIXME use find_first here*)
   1.126       [] => NONE
   1.127 -    | v::_ => 
   1.128 -       if FuncUtil.Intfunc.defined eq v 
   1.129 -       then 
   1.130 -        let 
   1.131 +    | v::_ =>
   1.132 +       if FuncUtil.Intfunc.defined eq v
   1.133 +       then
   1.134 +        let
   1.135           val c = FuncUtil.Intfunc.apply eq v
   1.136           val vdef = int_lincomb_cmul (Rat.neg (Rat.inv c)) eq
   1.137 -         fun eliminate eqn = if not (FuncUtil.Intfunc.defined eqn v) then eqn 
   1.138 +         fun eliminate eqn = if not (FuncUtil.Intfunc.defined eqn v) then eqn
   1.139                               else int_lincomb_add (int_lincomb_cmul (FuncUtil.Intfunc.apply eqn v) vdef) eqn
   1.140          in (case solve (remove (op =) v vs, map eliminate oeqs) of
   1.141              NONE => NONE
   1.142 @@ -115,44 +113,44 @@
   1.143         else NONE)
   1.144  
   1.145  fun combinations k l = if k = 0 then [[]] else
   1.146 - case l of 
   1.147 + case l of
   1.148    [] => []
   1.149  | h::t => map (cons h) (combinations (k - 1) t) @ combinations k t
   1.150  
   1.151  
   1.152 -fun forall2 p l1 l2 = case (l1,l2) of 
   1.153 +fun forall2 p l1 l2 = case (l1,l2) of
   1.154     ([],[]) => true
   1.155   | (h1::t1,h2::t2) => p h1 h2 andalso forall2 p t1 t2
   1.156   | _ => false;
   1.157  
   1.158  
   1.159  fun vertices vs eqs =
   1.160 - let 
   1.161 + let
   1.162    fun vertex cmb = case solve(vs,cmb) of
   1.163      NONE => NONE
   1.164     | SOME soln => SOME (map (fn v => FuncUtil.Intfunc.tryapplyd soln v Rat.zero) vs)
   1.165    val rawvs = map_filter vertex (combinations (length vs) eqs)
   1.166 -  val unset = filter (forall (fn c => c >=/ Rat.zero)) rawvs 
   1.167 - in fold_rev (insert (uncurry (forall2 (curry op =/)))) unset [] 
   1.168 - end 
   1.169 +  val unset = filter (forall (fn c => c >=/ Rat.zero)) rawvs
   1.170 + in fold_rev (insert (uncurry (forall2 (curry op =/)))) unset []
   1.171 + end
   1.172  
   1.173 -fun subsumes l m = forall2 (fn x => fn y => Rat.abs x <=/ Rat.abs y) l m 
   1.174 +fun subsumes l m = forall2 (fn x => fn y => Rat.abs x <=/ Rat.abs y) l m
   1.175  
   1.176  fun subsume todo dun = case todo of
   1.177   [] => dun
   1.178 -|v::ovs => 
   1.179 +|v::ovs =>
   1.180     let val dun' = if exists (fn w => subsumes w v) dun then dun
   1.181 -                  else v::(filter (fn w => not(subsumes v w)) dun) 
   1.182 -   in subsume ovs dun' 
   1.183 +                  else v::(filter (fn w => not(subsumes v w)) dun)
   1.184 +   in subsume ovs dun'
   1.185     end;
   1.186  
   1.187  fun match_mp PQ P = P RS PQ;
   1.188  
   1.189 -fun cterm_of_rat x = 
   1.190 +fun cterm_of_rat x =
   1.191  let val (a, b) = Rat.quotient_of_rat x
   1.192 -in 
   1.193 +in
   1.194   if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a
   1.195 -  else Thm.capply (Thm.capply @{cterm "op / :: real => _"} 
   1.196 +  else Thm.capply (Thm.capply @{cterm "op / :: real => _"}
   1.197                     (Numeral.mk_cnumber @{ctyp "real"} a))
   1.198          (Numeral.mk_cnumber @{ctyp "real"} b)
   1.199  end;
   1.200 @@ -162,24 +160,24 @@
   1.201  fun norm_add_rule th1 th2 = [th1, th2] MRS @{thm norm_add_rule_thm};
   1.202  
   1.203    (* I think here the static context should be sufficient!! *)
   1.204 -fun inequality_canon_rule ctxt = 
   1.205 - let 
   1.206 +fun inequality_canon_rule ctxt =
   1.207 + let
   1.208    (* FIXME : Should be computed statically!! *)
   1.209 -  val real_poly_conv = 
   1.210 +  val real_poly_conv =
   1.211      Semiring_Normalizer.semiring_normalize_wrapper ctxt
   1.212       (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
   1.213   in fconv_rule (arg_conv ((rewr_conv @{thm ge_iff_diff_ge_0}) then_conv arg_conv (Numeral_Simprocs.field_comp_conv then_conv real_poly_conv)))
   1.214  end;
   1.215  
   1.216 - fun absc cv ct = case term_of ct of 
   1.217 - Abs (v,_, _) => 
   1.218 + fun absc cv ct = case term_of ct of
   1.219 + Abs (v,_, _) =>
   1.220    let val (x,t) = Thm.dest_abs (SOME v) ct
   1.221    in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t)
   1.222    end
   1.223   | _ => all_conv ct;
   1.224  
   1.225  fun sub_conv cv ct = (comb_conv cv else_conv absc cv) ct;
   1.226 -fun botc1 conv ct = 
   1.227 +fun botc1 conv ct =
   1.228    ((sub_conv (botc1 conv)) then_conv (conv else_conv all_conv)) ct;
   1.229  
   1.230   val apply_pth1 = rewr_conv @{thm pth_1};
   1.231 @@ -196,7 +194,7 @@
   1.232   val apply_pthc = rewrs_conv @{thms pth_c};
   1.233   val apply_pthd = try_conv (rewr_conv @{thm pth_d});
   1.234  
   1.235 -fun headvector t = case t of 
   1.236 +fun headvector t = case t of
   1.237    Const(@{const_name plus}, _)$
   1.238     (Const(@{const_name scaleR}, _)$l$v)$r => v
   1.239   | Const(@{const_name scaleR}, _)$l$v => v
   1.240 @@ -206,39 +204,39 @@
   1.241     ((apply_pth5 then_conv arg1_conv Numeral_Simprocs.field_comp_conv) else_conv
   1.242      (apply_pth6 then_conv binop_conv vector_cmul_conv)) ct
   1.243  
   1.244 -fun vector_add_conv ct = apply_pth7 ct 
   1.245 - handle CTERM _ => 
   1.246 -  (apply_pth8 ct 
   1.247 -   handle CTERM _ => 
   1.248 -    (case term_of ct of 
   1.249 +fun vector_add_conv ct = apply_pth7 ct
   1.250 + handle CTERM _ =>
   1.251 +  (apply_pth8 ct
   1.252 +   handle CTERM _ =>
   1.253 +    (case term_of ct of
   1.254       Const(@{const_name plus},_)$lt$rt =>
   1.255 -      let 
   1.256 -       val l = headvector lt 
   1.257 +      let
   1.258 +       val l = headvector lt
   1.259         val r = headvector rt
   1.260        in (case Term_Ord.fast_term_ord (l,r) of
   1.261 -         LESS => (apply_pthb then_conv arg_conv vector_add_conv 
   1.262 +         LESS => (apply_pthb then_conv arg_conv vector_add_conv
   1.263                    then_conv apply_pthd) ct
   1.264 -        | GREATER => (apply_pthc then_conv arg_conv vector_add_conv 
   1.265 -                     then_conv apply_pthd) ct 
   1.266 -        | EQUAL => (apply_pth9 then_conv 
   1.267 -                ((apply_ptha then_conv vector_add_conv) else_conv 
   1.268 +        | GREATER => (apply_pthc then_conv arg_conv vector_add_conv
   1.269 +                     then_conv apply_pthd) ct
   1.270 +        | EQUAL => (apply_pth9 then_conv
   1.271 +                ((apply_ptha then_conv vector_add_conv) else_conv
   1.272                arg_conv vector_add_conv then_conv apply_pthd)) ct)
   1.273        end
   1.274       | _ => reflexive ct))
   1.275  
   1.276  fun vector_canon_conv ct = case term_of ct of
   1.277   Const(@{const_name plus},_)$_$_ =>
   1.278 -  let 
   1.279 +  let
   1.280     val ((p,l),r) = Thm.dest_comb ct |>> Thm.dest_comb
   1.281 -   val lth = vector_canon_conv l 
   1.282 +   val lth = vector_canon_conv l
   1.283     val rth = vector_canon_conv r
   1.284 -   val th = Drule.binop_cong_rule p lth rth 
   1.285 +   val th = Drule.binop_cong_rule p lth rth
   1.286    in fconv_rule (arg_conv vector_add_conv) th end
   1.287  
   1.288  | Const(@{const_name scaleR}, _)$_$_ =>
   1.289 -  let 
   1.290 +  let
   1.291     val (p,r) = Thm.dest_comb ct
   1.292 -   val rth = Drule.arg_cong_rule p (vector_canon_conv r) 
   1.293 +   val rth = Drule.arg_cong_rule p (vector_canon_conv r)
   1.294    in fconv_rule (arg_conv (apply_pth4 else_conv vector_cmul_conv)) rth
   1.295    end
   1.296  
   1.297 @@ -247,9 +245,9 @@
   1.298  | Const(@{const_name uminus},_)$_ => (apply_pth3 then_conv vector_canon_conv) ct
   1.299  
   1.300  (* FIXME
   1.301 -| Const(@{const_name vec},_)$n => 
   1.302 +| Const(@{const_name vec},_)$n =>
   1.303    let val n = Thm.dest_arg ct
   1.304 -  in if is_ratconst n andalso not (dest_ratconst n =/ Rat.zero) 
   1.305 +  in if is_ratconst n andalso not (dest_ratconst n =/ Rat.zero)
   1.306       then reflexive ct else apply_pth1 ct
   1.307    end
   1.308  *)
   1.309 @@ -263,64 +261,64 @@
   1.310   | fold_rev2 f (x::xs) (y::ys) z = f x y (fold_rev2 f xs ys z)
   1.311   | fold_rev2 f _ _ _ = raise UnequalLengths;
   1.312  
   1.313 -fun int_flip v eq = 
   1.314 -  if FuncUtil.Intfunc.defined eq v 
   1.315 +fun int_flip v eq =
   1.316 +  if FuncUtil.Intfunc.defined eq v
   1.317    then FuncUtil.Intfunc.update (v, Rat.neg (FuncUtil.Intfunc.apply eq v)) eq else eq;
   1.318  
   1.319  local
   1.320   val pth_zero = @{thm norm_zero}
   1.321   val tv_n = (ctyp_of_term o Thm.dest_arg o Thm.dest_arg1 o Thm.dest_arg o cprop_of)
   1.322               pth_zero
   1.323 - val concl = Thm.dest_arg o cprop_of 
   1.324 - fun real_vector_combo_prover ctxt translator (nubs,ges,gts) = 
   1.325 -  let 
   1.326 + val concl = Thm.dest_arg o cprop_of
   1.327 + fun real_vector_combo_prover ctxt translator (nubs,ges,gts) =
   1.328 +  let
   1.329     (* FIXME: Should be computed statically!!*)
   1.330 -   val real_poly_conv = 
   1.331 +   val real_poly_conv =
   1.332        Semiring_Normalizer.semiring_normalize_wrapper ctxt
   1.333         (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"}))
   1.334     val sources = map (Thm.dest_arg o Thm.dest_arg1 o concl) nubs
   1.335 -   val rawdests = fold_rev (find_normedterms o Thm.dest_arg o concl) (ges @ gts) [] 
   1.336 -   val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check" 
   1.337 +   val rawdests = fold_rev (find_normedterms o Thm.dest_arg o concl) (ges @ gts) []
   1.338 +   val _ = if not (forall fst rawdests) then error "real_vector_combo_prover: Sanity check"
   1.339             else ()
   1.340     val dests = distinct (op aconvc) (map snd rawdests)
   1.341     val srcfuns = map vector_lincomb sources
   1.342 -   val destfuns = map vector_lincomb dests 
   1.343 +   val destfuns = map vector_lincomb dests
   1.344     val vvs = fold_rev (union (op aconvc) o FuncUtil.Ctermfunc.dom) (srcfuns @ destfuns) []
   1.345     val n = length srcfuns
   1.346     val nvs = 1 upto n
   1.347     val srccombs = srcfuns ~~ nvs
   1.348     fun consider d =
   1.349 -    let 
   1.350 +    let
   1.351       fun coefficients x =
   1.352 -      let 
   1.353 +      let
   1.354         val inp = if FuncUtil.Ctermfunc.defined d x then FuncUtil.Intfunc.onefunc (0, Rat.neg(FuncUtil.Ctermfunc.apply d x))
   1.355 -                      else FuncUtil.Intfunc.empty 
   1.356 -      in fold_rev (fn (f,v) => fn g => if FuncUtil.Ctermfunc.defined f x then FuncUtil.Intfunc.update (v, FuncUtil.Ctermfunc.apply f x) g else g) srccombs inp 
   1.357 +                      else FuncUtil.Intfunc.empty
   1.358 +      in fold_rev (fn (f,v) => fn g => if FuncUtil.Ctermfunc.defined f x then FuncUtil.Intfunc.update (v, FuncUtil.Ctermfunc.apply f x) g else g) srccombs inp
   1.359        end
   1.360       val equations = map coefficients vvs
   1.361       val inequalities = map (fn n => FuncUtil.Intfunc.onefunc (n,Rat.one)) nvs
   1.362       fun plausiblevertices f =
   1.363 -      let 
   1.364 +      let
   1.365         val flippedequations = map (fold_rev int_flip f) equations
   1.366         val constraints = flippedequations @ inequalities
   1.367         val rawverts = vertices nvs constraints
   1.368         fun check_solution v =
   1.369 -        let 
   1.370 +        let
   1.371            val f = fold_rev2 (curry FuncUtil.Intfunc.update) nvs v (FuncUtil.Intfunc.onefunc (0, Rat.one))
   1.372          in forall (fn e => evaluate f e =/ Rat.zero) flippedequations
   1.373          end
   1.374         val goodverts = filter check_solution rawverts
   1.375 -       val signfixups = map (fn n => if member (op =) f n then ~1 else 1) nvs 
   1.376 +       val signfixups = map (fn n => if member (op =) f n then ~1 else 1) nvs
   1.377        in map (map2 (fn s => fn c => Rat.rat_of_int s */ c) signfixups) goodverts
   1.378        end
   1.379 -     val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) [] 
   1.380 +     val allverts = fold_rev append (map plausiblevertices (allsubsets nvs)) []
   1.381      in subsume allverts []
   1.382      end
   1.383     fun compute_ineq v =
   1.384 -    let 
   1.385 -     val ths = map_filter (fn (v,t) => if v =/ Rat.zero then NONE 
   1.386 +    let
   1.387 +     val ths = map_filter (fn (v,t) => if v =/ Rat.zero then NONE
   1.388                                       else SOME(norm_cmul_rule v t))
   1.389 -                            (v ~~ nubs) 
   1.390 +                            (v ~~ nubs)
   1.391       fun end_itlist f xs = split_last xs |> uncurry (fold_rev f)
   1.392      in inequality_canon_rule ctxt (end_itlist norm_add_rule ths)
   1.393      end
   1.394 @@ -334,7 +332,7 @@
   1.395              zerodests,
   1.396          map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv
   1.397                         arg_conv (arg_conv real_poly_conv))) ges',
   1.398 -        map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv 
   1.399 +        map (fconv_rule (try_conv (Conv.top_sweep_conv (K norm_canon_conv) ctxt) then_conv
   1.400                         arg_conv (arg_conv real_poly_conv))) gts))
   1.401    end
   1.402  in val real_vector_combo_prover = real_vector_combo_prover
   1.403 @@ -346,8 +344,8 @@
   1.404   val concl = Thm.dest_arg o cprop_of
   1.405   fun conjunct1 th = th RS @{thm conjunct1}
   1.406   fun conjunct2 th = th RS @{thm conjunct2}
   1.407 -fun real_vector_ineq_prover ctxt translator (ges,gts) = 
   1.408 - let 
   1.409 +fun real_vector_ineq_prover ctxt translator (ges,gts) =
   1.410 + let
   1.411  (*   val _ = error "real_vector_ineq_prover: pause" *)
   1.412    val ntms = fold_rev find_normedterms (map (Thm.dest_arg o concl) (ges @ gts)) []
   1.413    val lctab = vector_lincombs (map snd (filter (not o fst) ntms))
   1.414 @@ -364,13 +362,13 @@
   1.415    val gts' = map replace_rule gts
   1.416    val nubs = map (conjunct2 o norm_mp) asl
   1.417    val th1 = real_vector_combo_prover ctxt' translator (nubs,ges',gts')
   1.418 -  val shs = filter (member (fn (t,th) => t aconvc cprop_of th) asl) (#hyps (crep_thm th1)) 
   1.419 +  val shs = filter (member (fn (t,th) => t aconvc cprop_of th) asl) (#hyps (crep_thm th1))
   1.420    val th11 = hd (Variable.export ctxt' ctxt [fold implies_intr shs th1])
   1.421    val cps = map (swap o Thm.dest_equals) (cprems_of th11)
   1.422    val th12 = instantiate ([], cps) th11
   1.423    val th13 = fold Thm.elim_implies (map (reflexive o snd) cps) th12;
   1.424   in hd (Variable.export ctxt' ctxt [th13])
   1.425 - end 
   1.426 + end
   1.427  in val real_vector_ineq_prover = real_vector_ineq_prover
   1.428  end;
   1.429  
   1.430 @@ -380,7 +378,7 @@
   1.431   fun simple_cterm_ord t u = Term_Ord.term_ord (term_of t, term_of u) = LESS;
   1.432    (* FIXME: Lookup in the context every time!!! Fix this !!!*)
   1.433   fun splitequation ctxt th acc =
   1.434 -  let 
   1.435 +  let
   1.436     val real_poly_neg_conv = #neg
   1.437         (Semiring_Normalizer.semiring_normalizers_ord_wrapper ctxt
   1.438          (the (Semiring_Normalizer.match ctxt @{cterm "(0::real) + 1"})) simple_cterm_ord)
   1.439 @@ -392,22 +390,22 @@
   1.440           (fold_rev (splitequation ctxt) eqs ges,gts), RealArith.Trivial)
   1.441  end;
   1.442  
   1.443 -  fun init_conv ctxt = 
   1.444 -   Simplifier.rewrite (Simplifier.context ctxt 
   1.445 +  fun init_conv ctxt =
   1.446 +   Simplifier.rewrite (Simplifier.context ctxt
   1.447       (HOL_basic_ss addsimps ([(*@{thm vec_0}, @{thm vec_1},*) @{thm dist_norm}, @{thm diff_0_right}, @{thm right_minus}, @{thm diff_self}, @{thm norm_zero}] @ @{thms arithmetic_simps} @ @{thms norm_pths})))
   1.448 -   then_conv Numeral_Simprocs.field_comp_conv 
   1.449 +   then_conv Numeral_Simprocs.field_comp_conv
   1.450     then_conv nnf_conv
   1.451  
   1.452   fun pure ctxt = fst o RealArith.gen_prover_real_arith ctxt (real_vector_prover ctxt);
   1.453 - fun norm_arith ctxt ct = 
   1.454 -  let 
   1.455 + fun norm_arith ctxt ct =
   1.456 +  let
   1.457     val ctxt' = Variable.declare_term (term_of ct) ctxt
   1.458     val th = init_conv ctxt' ct
   1.459 -  in equal_elim (Drule.arg_cong_rule @{cterm Trueprop} (symmetric th)) 
   1.460 +  in equal_elim (Drule.arg_cong_rule @{cterm Trueprop} (symmetric th))
   1.461                  (pure ctxt' (Thm.rhs_of th))
   1.462   end
   1.463  
   1.464 - fun norm_arith_tac ctxt = 
   1.465 + fun norm_arith_tac ctxt =
   1.466     clarify_tac HOL_cs THEN'
   1.467     Object_Logic.full_atomize_tac THEN'
   1.468     CSUBGOAL ( fn (p,i) => rtac (norm_arith ctxt (Thm.dest_arg p )) i);